Smart Prescription Ordering System for Elderly Patients with Diabetes, Hypertension and Cardiovascular Disease at Songklanagarind Hospital
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Prince of Songkla University
Abstract
Over time, large amounts of clinical data have accumulated in electronic health records (EHRs), making it difficult for healthcare professionals to navigate and make patient-centered decisions. This underscores the need for healthcare recommendation systems that help medical professionals make faster and more accurate decisions. This study addresses drug recommendation systems that generate an appropriate list of drugs that match patients’ diagnoses. Currently, recommendations are manually prepared by physicians, but this is difficult for patients with multiple comorbidities. We explored approaches to drug recommendations based on elderly patients with diabetes, hypertension, and cardiovascular disease who visited primary care clinics and often had multiple conditions. We examined both collaborative filtering approaches and traditional machine learning classifiers. The hybrid model between the two yielded a recall at 5 of 76.61%, a precision at 5 of 46.20%, a macro-averaged area under the curve of 74.52%, and an average physician agreement of 47.50%. Although collaborative filtering is widely used in recommendation systems, our results showed that it consistently underperformed traditional classification. Collaborative filtering was
sensitive to class imbalances and favored the more popular classes. This study has highlighted challenges that need to be addressed when developing recommendation systems in EHRs.
Description
Master of Science (Data Science), 2023
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Thailand



