Repository logoRepository logo

Magnifying Elements in the Generalized Semigroups of Transformations Preserving an Equivalence Relation

dc.contributor.advisorRonnason Chinram
dc.contributor.authorThananya Kaewnoi
dc.contributor.departmentFaculty of Science (Mathemetics and Statistics)
dc.contributor.departmentคณะวิทยาศาสตร์ ภาควิชาคณิตศาสตร์และสถิติ
dc.date.accessioned2021-07-24T06:29:14Z
dc.date.available2021-07-24T06:29:14Z
dc.date.issued2020
dc.descriptionThesis (M.Sc., Mathematics)--Prince of Songkla University, 2020en_US
dc.description.abstractAn element a of a semigroup S is called a left (right) magnifying element if there exists a proper subset M of S such that aM = S (Ma = S). Let T(X) and P(X) denote the semigroup of the full and partial transformations on a nonempty set X, respectively. For an equivalence relation E and a partition P = {X; | i E A} on the set X, let TE(X) = {a e T(X)(x,y) E E implies (xa, ya) € E}, PE(X) = {a e P(X)(x,y) € E implies (2a, ya) € E}, T(X,P) = {a ET(X) Xịa CX, for all i E A}, and P(X,P) = {a e P(X) Xịa CX; for all i E A} Then TE(X), PE(X), T(X, P) and P(X, P) are semigroups under the composition of functions, as well. The main purpose of this thesis is to provide the properties of magnifying elements in the semigroups TE(X), PE(X), TE(X,P) = TE(X) n T(X,P) and PE(X,P) = PE(X) n P(X,P). Futhermore, the necessary and sufficient conditions for elements in these semigroups to be a left or right magnifying element are established.
dc.identifier.urihttp://kb.psu.ac.th/psukb/handle/2016/17164
dc.language.isoenen_US
dc.publisherPrince of Songkla Universityen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Thailand*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/th/*
dc.subjectSemigroupsen_US
dc.titleMagnifying Elements in the Generalized Semigroups of Transformations Preserving an Equivalence Relationen_US
dc.title.alternativeสมาชิกขยายในกึ่งกรุปการแปลงวางนัยทั่วไปคงสภาพความสัมพันธ์สมมูลen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
440718.pdf
Size:
672.44 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
6.05 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections