Please use this identifier to cite or link to this item: http://kb.psu.ac.th/psukb/handle/2016/17164
Title: Magnifying Elements in the Generalized Semigroups of Transformations Preserving an Equivalence Relation
Other Titles: สมาชิกขยายในกึ่งกรุปการแปลงวางนัยทั่วไปคงสภาพความสัมพันธ์สมมูล
Authors: Ronnason Chinram
Thananya Kaewnoi
Faculty of Science (Mathemetics and Statistics)
คณะวิทยาศาสตร์ ภาควิชาคณิตศาสตร์และสถิติ
Keywords: Semigroups
Issue Date: 2020
Publisher: Prince of Songkla University
Abstract: An element a of a semigroup S is called a left (right) magnifying element if there exists a proper subset M of S such that aM = S (Ma = S). Let T(X) and P(X) denote the semigroup of the full and partial transformations on a nonempty set X, respectively. For an equivalence relation E and a partition P = {X; | i E A} on the set X, let TE(X) = {a e T(X)(x,y) E E implies (xa, ya) € E}, PE(X) = {a e P(X)(x,y) € E implies (2a, ya) € E}, T(X,P) = {a ET(X) Xịa CX, for all i E A}, and P(X,P) = {a e P(X) Xịa CX; for all i E A} Then TE(X), PE(X), T(X, P) and P(X, P) are semigroups under the composition of functions, as well. The main purpose of this thesis is to provide the properties of magnifying elements in the semigroups TE(X), PE(X), TE(X,P) = TE(X) n T(X,P) and PE(X,P) = PE(X) n P(X,P). Futhermore, the necessary and sufficient conditions for elements in these semigroups to be a left or right magnifying element are established.
Description: Thesis (M.Sc., Mathematics)--Prince of Songkla University, 2020
URI: http://kb.psu.ac.th/psukb/handle/2016/17164
Appears in Collections:322 Thesis

Files in This Item:
File Description SizeFormat 
440718.pdf672.44 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons