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ชื่อวิทยานิพนธ สมาชิกขยายในกึ่งกรุปการแปลงวางนัยทั่วไปคงสภาพความ

สัมพันธ์สมมูล

ผูเขียน นางสาวธนัญญา แก้วน้อย

สาขาวิชา คณิตศาสตร์

ปการศึกษา 2562

บทคัดยอ

สมาชิก a ของกึ่งกรุป S ถูกเรียกว่าสมาชิกขยายซ้าย (ขวา) ถ้า
มีสับเซตแท้ M ของ S ที่ทําให้ aM = S (Ma = S) กําหนดให้ T (X) และ
P (X) แทนกึ่งกรุปการแปลงเต็มและกึ่งกรุปการแปลงบางส่วนบนเซต X ตาม
ลําดับ สําหรับความสัมพันธ์สมมูล E และผลแบ่งกั้น P = {Xi | i ∈ Λ} บนเซต
X กําหนด

TE(X) = {α ∈ T (X) | ถ้า (x, y) ∈ E แล้ว (xα, yα) ∈ E},

PE(X) = {α ∈ P (X) | ถ้า (x, y) ∈ E แล้ว (xα, yα) ∈ E},

T (X,P) = {α ∈ T (X) | Xiα ⊆ Xi สําหรับทุก i ∈ Λ}

และ

P (X,P) = {α ∈ P (X) | Xiα ⊆ Xi สําหรับทุก i ∈ Λ}

ได้ว่า TE(X), PE(X), T (X,P) และ P (X,P) เป็นกึ่งกรุปภายใต้การประกอบ
ของฟังก์ชัน

วัตถุประสงค์หลักของวิทยานิพนธ์นี้ ให้สมบัติของสมาชิกขยายใน
กึ่งกรุป TE(X), PE(X), TE(X,P) = TE(X) ∩ T (X,P) และ PE(X,P) =

PE(X) ∩ P (X,P) นอกจากนี้ จะให้เงื่อนไขจําเป็นและเพียงพอในการเป็นสมาชิก
ขยายซ้ายและสมาชิกขยายขวาสําหรับสมาชิกในกึ่งกรุปดังกล่าวข้างต้น
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ABSTRACT

An element a of a semigroup S is called a left (right) magnifying

element if there exists a proper subset M of S such that aM = S (Ma = S).

Let T (X) and P (X) denote the semigroup of the full and partial transformations

on a nonempty set X, respectively. For an equivalence relation E and a partition

P = {Xi | i ∈ Λ} on the set X , let

TE(X) = {α ∈ T (X) | (x, y) ∈ E implies (xα, yα) ∈ E},

PE(X) = {α ∈ P (X) | (x, y) ∈ E implies (xα, yα) ∈ E},

T (X,P) = {α ∈ T (X) | Xiα ⊆ Xi for all i ∈ Λ},

and

P (X,P) = {α ∈ P (X) | Xiα ⊆ Xi for all i ∈ Λ}

Then TE(X), PE(X), T (X,P) and P (X,P) are semigroups under the composition

of functions, as well.

The main purpose of this thesis is to provide the properties of mag-

nifying elements in the semigroups TE(X), PE(X), TE(X,P) = TE(X) ∩ T (X,P)

and PE(X,P) = PE(X) ∩ P (X,P). Futhermore, the necessary and sufficient con-

ditions for elements in these semigroups to be a left or right magnifying element are

established.
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Chapter 1

Introduction and Preliminaries

A semigroup is a system (S, ∗) consisting of a nonempty set S together

with the binary associative operation ∗, i.e., x∗y belongs to S and (x∗y)∗z = x∗(y∗z)

for all elements x, y, z in S. For example, (N,+), (N,×), (R,+) and (R,×) are semi-

groups. Nevertheless, (N,−) is not a semigroup since 2− 3 = −1 6∈ N.
For convenience, we write S instead of (S, ∗) and let xy stand for x ∗ y for any

elements x, y in S. For a semigroup S, a subset T of a semigroup S is called a sub-

semigroup of S if T is a semigroup under the operation of S. The intersection of any

set of subsemigroups of S is either an emptyset or a subsemigroup of S.

An element a of a semigroup S is called a left (right) magnifying element if

aM = S (Ma = S) for some proper subset M of S. If such a proper subset M

related to a left (right) magnifying element a is a subsemigroup of S, then a is called

a strong left (right) magnifying element. The notion of magnifying elements in the

semigroup was originally proposed by Ljapin [9] in 1963. In 1969, Tolo [12] showed

that a regular semigroup S containing a left identity element is factorizable, i.e., it

can be written as the set product of proper subsemigroups A and B of S if a left

magnifying element exists in S. In 1992, the neccesary and sufficient conditions of

the existence of magnifying elements in any semigroups were established by Catino

and Migliorini [1]; moreover, they improved the results of Tolo [12] by showing the

existence of a left magnifying element in a regular semigroup with a left or right

identity.

Let T (X) denote the set of all functions on a nonempty set X, i.e.,

T (X) = {α | α is a function from X to itself}.

The set T (X) is a semigroup under the composition of functions which is called the

full transformation semigroup on X. In 1996, the necessary and sufficient conditions
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for elements in any subsemigroup of T (X) with identity to be left or right magni-

fying elements were established by K.D. Magill, Jr. [11]. Furthermore, he applied

the result in some specific transformation semigroups, e.g., the semigroup of all lin-

ear transformations of a vector space, the semigroup of all continuous selfmaps of

the topological space. Later, Gutan [5] constructed the semigroup S containing both

left and strong left magnifying elements. This result answers the question that was

queried by K.D. Magill, Jr. in [11]. A year later, Gutan [6] showed that every semi-

group containing magnifying elements is factorizable. Besides, Gutan established the

definitions of good, very good, and bad magnifying elements by using the notion of

magnifying elements in a semigroup which has been introduced by Ljapin [9]. Gutan

provided the method for obtaining semigroups having good left magnifying elements

such that none of those is a very good magnifying element in [7]; moreover, Gutan

and Kisielewicz constructed a semigroup having both good and bad magnifying ele-

ments in [8]. Recently, the study of magnifying elements in transformation semigroup

have been developing by many authors. The necessary and sufficient conditions for

elements in the generalizations of T (X) to be magnifying elements are determined,

e.g., Chinram, Petchkaew and Buapradist [4] worked on T (X) which is determined

by a partition of the setX. Chinram and Buapradist focused on the set of all functions

in T (X) such that the range of restricted function to Y, where Y is a fixed nonempty

subset of X, and the set of all functions in T (X) whose range is a nonempty subset

Y of X in [3] and [2], respectively.

Let P (X) denote the set of all functions from all subsets of X to X , i.e.,

P (X) = {α : A −→ X | A ⊆ X and α is a function}.

The semigroup P (X) is a generalization of T (X) which is called the partial trans-

formation semigroup on X . Recently, Luangchaisri, Changphas and Phanlert [10]

extended the Magill’s results [11] to P (X).

Let E be an equivalence relation and P = {Xi | i ∈ Λ} be a partition of a

nonempty set X. Next, we introduce a generalization of P (X) which is defined as

follows:

The full transformation semigroup on X preserving a partition P , denoted by

T (X,P), is defined as

T (X,P) = {α ∈ T (X) | Xiα ⊆ Xi for all i ∈ Λ}.

Note that if P = {X}, then T (X,P) = T (X) and if P = {{x} | x ∈ X}, then

T (X,P) is a singleton set containing the identity map on X.
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In 2018, Chinram, Petchkaew, and Buapradist [4] investigated magnifying ele-

ments in T (X,P).

Theorem 1.0.1. [4] Let P = {Xi | i ∈ Λ} be a partition of a set X . A semigroup

T (X,P) has left and right magnifying elements if and only if Xi is infinite for some

i ∈ Λ.

Theorem 1.0.2. [4] Let P = {Xi | i ∈ Λ} be a partition of a set X and Xi is infinite

for some i ∈ Λ. A function α is a left magnifying element of T (X,P) if and only if α

is one-to-one but not onto.

Theorem 1.0.3. [4] Let P = {Xi | i ∈ Λ} be a partition of a set X and Xi is infinite

for some i ∈ Λ. A function α is a right magnifying element of T (X,P) if and only if

α is onto but not one-to-one.

The partial transformations semigroup on X preserving a partition P , denoted

by P (X,P), is defined as

P (X,P) = {α ∈ P (X) | Xiα ⊆ Xi for all i ∈ Λ}.

Note that if P = {X}, then P (X,P) = P (X) and if P = {{x} | x ∈ X}, then

T (X,P) is the set of all restrictions of the identity function on a set X to a subset A

of X .

The full transformation semigroup on X preserving an equivalence relation E,

denoted by TE(X), is defined as

TE(X) = {α ∈ T (X) | (x, y) ∈ E implies (xα, yα) ∈ E}.

The partial transformation semigroup on X preserving an equivalence relation

E, denoted by PE(X), is defined as

PE(X) = {α ∈ P (X) | (x, y) ∈ E implies (xα, yα) ∈ E}.

Clearly, TE(X) and PE(X) contain the identity map on X are subsemigroups of

T (X) and P (X), respectively. Furthermore, if the equivalence relation E is trivial,

i.e., E = X × X or E is the identity relation, then TE(X) = T (X) and PE(X) =

P (X).

Many authors have extensively studied the transformation semigroups that pre-

serve an equivalence relation in many aspects, e.g., regularity, Green’s equivalences,

natural partial orders. However, no one has yet studied the magnifying elements
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in this semigroup which is determined by a partition of a nonempty set X. Conse-

quently, we will study magnifying elements in T (X) and P (X) that preserves both

an equivalence relation and a partition on a nonempty set X.

We denote the set of the full and partial transformations on X preserving both an

equivalence relation E and a partition P by TE(X,P) and PE(X,P), respectively.

Note that

TE(X,P) = TE(X) ∩ T (X,P)

and

PE(X,P) = PE(X) ∩ P (X,P).

Then TE(X,P) and PE(X,P) are semigroups under the composition of functions

since the identity map idX onX belongs to TE(X)∩T (X,P) and PE(X)∩P (X,P).

Note that if the equivalence relation E is trivial, i.e., E = X × X or E is an

identity relation, then TE(X,P) = T (X,P) and PE(X,P) = P (X,P). If P =

{X}, then TE(X,P) = TE(X) and PE(X,P) = PE(X). Moreover, TE(X,P) =

T (X) and PE(X,P) = P (X) if the equivalence relation E is trivial and the partition

P = {X}. If all elements in P are singleton sets, then T (X,P) is a singleton set

containing the identity map on X and PE(X,P) is the set of all restrictions of the

identity function on a set X to a subset A of X.

The main purpose of this thesis is to provide the properties of magnifying ele-

ments in the following transformation semigroups:

1. TE(X),

2. PE(X),

3. TE(X,P),

4. PE(X,P).

Futhermore, we justify the existence of magnifying elements in these semigroups.

In particular, the necessary and sufficient conditions for elements to be a left or right

magnifying element are established.

Throughout the rest of this chapter, we denote a partition on a nonempty set X

by P = {Xi | i ∈ Λ}, which is a collection of nonempty subsets of X satisfying

X =
⋃
i∈Λ

Xi with Xi ∩ Xj = ∅ for all i, j ∈ Λ such that i 6= j. Let X = {xj |

j ∈ Λ′} and E be an equivalence relation on a nonempty set X. The equivalence
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class of x ∈ X determined by E is denoted by [x]E = {y ∈ X | (x, y) ∈ E}. Let

X/E = {[x]E | x ∈ X} and (Xi, xj) = Xi ∩ [xj]E for i ∈ Λ and j ∈ Λ′. For any

functions α, β and x ∈ X, the notations xα and xαβ are used instead of α(x) and

(β ◦ α)(x), respectively. The image of α is denoted by ran α.



Chapter 2

Magnifying elements in TE(X) and
PE(X)

In this chapter, we provide the necessary and sufficient conditions for

elements in the full and partial transformation semigroups preserving an equivalence

relation to be a left or right magnifying element.

2.1 Magnifying elements in TE(X)

Recall that TE(X) = {α ∈ T (X) | (x, y) ∈ E implies (xα, yα) ∈ E},
where E is an equivalence relation on X, is a semigroup under the composition of

functions. A function α ∈ TE(X) is called a left (right) magnifying element if there

exists a proper subset M of TE(X) such that αM = TE(X) (Mα = TE(X)).

2.1.1 Left magnifying elements in TE(X)

In this subsection, we provide the necessary and sufficient conditions for elements

in TE(X) to be a left magnifying element and also illustrate the ideas of the main

theorem and lemmas by giving the examples.

Lemma 2.1.1. If α is a left magnifying element in TE(X), then α is one-to-one.

Proof. Assume that α is a left magnifying element in TE(X). By definition, there

exists a proper subset M of TE(X) such that αM = TE(X). Since the identity map

idX on X belongs to TE(X), there exists β ∈ M such that αβ = idX . This implies

that α is one-to-one.
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However, the converse of Lemma 2.1.1 is not true since there exists no proper

subset M of TE(X) such that idXM = TE(X).

Lemma 2.1.2. Let α be a left magnifying element in TE(X). For any x, y ∈ X ,

(x, y) ∈ E if and only if (xα, yα) ∈ E.

Proof. The necessity is obvious. Conversely, let α be a left magnifying element in

TE(X). By definition, there exists a proper subset M of TE(X) such that αM =

TE(X). Since idX ∈ TE(X), there exists β ∈ M such that αβ = idX . Let x, y ∈ X
be such that (xα, yα) ∈ E. It follows that x = xidX = xαβ and y = yidX = yαβ.

Therefore, (x, y) = (xαβ, yαβ) ∈ E since β ∈ TE(X).

Lemma 2.1.3. If α is a left magnifying element in TE(X), then αM = αTE(X) for

some proper subset M of TE(X).

Proof. Assume that α is a left magnifying element in TE(X). By definition, there

exists a proper subsetM of TE(X) such that αM = TE(X). Clearly, αM ⊆ αTE(X)

and αTE(X) ⊆ TE(X) = αM. This shows that αM = αTE(X).

Lemma 2.1.4. If α ∈ TE(X) is bijective, then α is not a left magnifying element.

Proof. Assume that α ∈ TE(X) is bijective. So α−1 is also bijective. Suppose to

the contrary that α is a left magnifying element. By definition, there exists a proper

subset M of TE(X) such that αM = TE(X). By Lemma 2.1.3, αM = αTE(X).

Hence M = α−1αM = α−1αTE(X) = TE(X), which is a contradiction. Therefore,

α is not a left magnifying element.

The next corollary follows by Lemma 2.1.1, Lemma 2.1.2 and Lemma 2.1.4.

Corollary 2.1.5. If α is a left magnifying element in TE(X), then α is one-to-one but

not onto and for any x, y ∈ X , (xα, yα) ∈ E implies (x, y) ∈ E.

Lemma 2.1.6. If α ∈ TE(X) is one-to-one but not onto and for any x, y ∈ X ,

(xα, yα) ∈ E implies (x, y) ∈ E, then α is a left magnifying element.

Proof. Assume that α is one-to-one but not onto and for any x, y ∈ X , if (xα, yα) ∈
E, then (x, y) ∈ E. For each x ∈ ran α, there exists yx ∈ X such that yxα = x.

Case 1: |[x]E| = 1 for all x ∈ X .

Let x0 ∈ X and M = {β ∈ TE(X) | xβ = x0 for all x /∈ ranα}. Clearly, M is a

proper subset of TE(X) since the constant map β′ ∈ TE(X) (for all x ∈ X, xβ′ = x′
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where x′ ∈ X such that x′ 6= x0) does not belong to M. To show that αM = TE(X),

let γ ∈ TE(X) and define β ∈ TE(X) for all x ∈ X by

xβ =

yxγ if x ∈ ranα,

x0 if x /∈ ranα.

Clearly, β ∈ M. Since α is one-to-one and yxαα = xα, yxα = x and hence for each

x ∈ X, xαβ = yxαγ = xγ. This shows that αβ = γ, which implies αM = TE(X).

Therefore, α is a left magnifying element in TE(X).

Case 2: |[x]E| > 1 for some x ∈ X .

For each x ∈ X , choose ax ∈ [x]E (if (x, y) ∈ E, we must choose ax = ay). Let

I = {ax | x ∈ X}. Clearly, I 6= X since |[x]E| > 1 for some x ∈ X . Let

M = {β ∈ TE(X) | xβ ∈ I for all x /∈ ranα}. Clearly, M is a proper subset of

TE(X). To show that αM = TE(X), let γ ∈ TE(X) and define β ∈ TE(X) for all

x ∈ X by

xβ =


yxγ if x ∈ ranα,

ax′γ if x /∈ ranα and ∃x′ ∈ X such that (x, x′α) ∈ E,

ax otherwise.

To show that β ∈M, let (a, b) ∈ E. Then a, b ∈ [x]E for some x ∈ X.
Case I: a, b ∈ ran α.

Then there exist ya, yb ∈ X such that yaα = a and ybα = b. By assumption, we have

(ya, yb) ∈ E. Therefore, (aβ, bβ) = (yaγ, ybγ) ∈ E since γ ∈ TE(X).

Case II: a, b 6∈ ran α.

Case i: ran α ∩ [x]E 6= ∅.
Then we can choose c ∈ ran α ∩ [x]E and hence there exists yc ∈ X such

that ycα = c. Since (a, b) ∈ [x]E, we have (a, ycα), (b, ycα) ∈ E. Thus

(aβ, bβ) = (aycγ, aycγ) ∈ E.
Case ii: ran α ∩ [x]E = ∅.
Then there exists no c ∈ X such that (a, cα), (b, cα) ∈ E. Therefore,

(aβ, bβ) = (ax, ax) ∈ E.
Next, we may assume that a ∈ ran α and b 6∈ ran α.

Case III: a ∈ ran α, b 6∈ ran α.

Consider b 6∈ ran α, there exists ya ∈ X such that (b, yaα) = (b, a) ∈ E.
Therefore, (aβ, bβ) = (yaγ, ayaγ) ∈ E because ayaγ ∈ [yaγ]E.
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Since α is one-to-one and yxαα = xα, yxα = x and hence for each x ∈ X, we

have xαβ = yxαγ = xγ. This shows that αβ = γ, which implies αM = TE(X).

Therefore, α is a left magnifying element in TE(X).

The following examples illustrate the ideas of the proof given in Lemma 2.1.6.

Example 2.1.7. Let X = N. Define a relation E on X by

(x, y) ∈ E if and only if x = y.

Clearly, E is an equivalence relation on X and X/E = {{1}, {2}, {3}, {4}, . . .}. Let

α ∈ TE(X) be defined by xα = 2x for all x ∈ X . For convenience, we write α as

α =

(
1 2 3 4 5 6 7 8 · · ·
2 4 6 8 10 12 14 16 · · ·

)
.

It is obvious that α is one-to-one but not onto and for any x, y ∈ X , if (xα, yα) ∈ E,
then (x, y) ∈ E. By Lemma 2.1.6, the function α is a left magnifying element. Let

M = {β ∈ TE(X) | (2x + 1)β = 2 for all x ∈ N} and γ be any function in TE(X).

Then there exists β ∈M such that αβ = γ.

We will illustrate the ideas by considering the element γ of TE(X), which is

defined by xγ = 4x for all x ∈ X . For convenience, we write γ as

γ =

(
1 2 3 4 5 6 7 8 · · ·
4 8 12 16 20 24 28 32 · · ·

)
.

To get the required result, define a function β ∈ TE(X) for all x ∈ X by

xβ =

2x if x is even,

2 if x is odd.

For convenience, we write β as

β =

(
1 2 3 4 5 6 7 8 · · ·
2 4 2 8 2 12 2 16 · · ·

)
.

Clearly, β ∈M and we have

αβ =

(
1 2 3 4 5 6 7 8 · · ·
2 4 6 8 10 12 14 16 · · ·

)(
1 2 3 4 5 6 7 8 · · ·
2 4 2 8 2 12 2 16 · · ·

)

=

(
1 2 3 4 5 6 7 8 · · ·
4 8 12 16 20 24 28 32 · · ·

)
= γ.
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Example 2.1.8. Let X = N. Define a relation E on X by

(x, y) ∈ E if and only if x ≡ y mod 2.

Clearly, E is an equivalence relation on X and X/E = {{1, 3, 5, . . .}, {2, 4, 6, . . .}}.
Let α ∈ TE(X) be defined by xα = x + 2 for all x ∈ N. For convenience, we write

α as

α =

(
1 2 3 4 5 6 7 8 · · ·
3 4 5 6 7 8 9 10 · · ·

)
.

It is obvious that α is one-to-one but not onto and for any x, y ∈ X , if (xα, yα) ∈ E,
then (x, y) ∈ E. By Lemma 2.1.6, the function α is a left magnifying element. Let

M = {β ∈ TE(X) | 1β, 2β ∈ {1, 2}} and γ be any function in TE(X). Then there

exists β ∈M such that αβ = γ.

We will illustrate the ideas by considering the element γ of TE(X), which is

defined by xγ = x+ 1 for all x ∈ X. For convenience, we write γ as

γ =

(
1 2 3 4 5 6 7 8 · · ·
2 3 4 5 6 7 8 9 · · ·

)
.

To get the required result, define a function β ∈ TE(X) by 1β = 2, 2β = 1 and

xβ = x− 1 for all positive integers x > 2. For convenience, we write β as

β =

(
1 2 3 4 5 6 7 8 · · ·
2 1 2 3 4 5 6 7 · · ·

)
.

So β ∈M and we have

αβ =

(
1 2 3 4 5 6 7 8 · · ·
3 4 5 6 7 8 9 10 · · ·

)(
1 2 3 4 5 6 7 8 · · ·
2 1 2 3 4 5 6 7 · · ·

)

=

(
1 2 3 4 5 6 7 8 · · ·
2 3 4 5 6 7 8 9 · · ·

)
= γ.

Theorem 2.1.9. A function α ∈ TE(X) is a left magnifying element if and only if α

is one-to-one but not onto and for any x, y ∈ X, (xα, yα) ∈ E implies (x, y) ∈ E.

Proof. It follows by Corollary 2.1.5 and Lemma 2.1.6.

If E = X ×X, then the following corollary holds.

Corollary 2.1.10. A function α ∈ T (X) is a left magnifying element if and only if α

is one-to-one but not onto.



11

2.1.2 Right magnifying elements in TE(X)

In this subsection, we provide the necessary and sufficient conditions for elements

in TE(X) to be a right magnifying element and also illustrate the ideas of the main

theorem and lemmas by giving the examples.

Lemma 2.1.11. If α is a right magnifying element in TE(X), then α is onto.

Proof. Assume that α is a right magnifying element in TE(X). By definition, there

exists a proper subset M of TE(X) such that Mα = TE(X). Since the identity map

idX on X belongs to TE(X), there exists β ∈ M such that βα = idX . This implies

that α is onto.

Lemma 2.1.12. Let α be a right magnifying element in TE(X). For any (x, y) ∈ E,

there exists (a, b) ∈ E such that x = aα and y = bα.

Proof. Assume that α is a right magnifying element in TE(X). By definition, there

exists a proper subset M of TE(X) such that Mα = TE(X). Since idX ∈ TE(X),

there exists β ∈ M such that βα = idX . Let x, y ∈ X be such that (x, y) ∈ E.

It follows that xβα = xidX = x and yβα = yidX = y. Choose a = xβ and

b = yβ. Clearly, (a, b) = (xβ, yβ) ∈ E since β ∈ TE(X). Therefore, the proof is

completed.

Lemma 2.1.13. If α is a right magnifying element in TE(X), then Mα = TE(X)α

for some proper subset M of TE(X).

Proof. Assume that α is a right magnifying element in TE(X). By definition, there

exists a proper subsetM of TE(X) such thatMα = TE(X). Clearly,Mα ⊆ TE(X)α

and TE(X)α ⊆ TE(X) = Mα. This shows that Mα = TE(X)α.

Lemma 2.1.14. If α ∈ TE(X) is bijective, then α is not a right magnifying element.

Proof. Assume that α ∈ TE(X) is bijective. So α−1 is also bijective. Suppose to

the contrary that α is a right magnifying element. By definition, there exists a proper

subset M of TE(X) such that Mα = TE(X). By Lemma 2.1.13, Mα = TE(X)α.

Hence M = Mαα−1 = TE(X)αα−1 = TE(X), which is a contradiction. Therefore,

α is not a right magnifying element.

The next corollary follows by Lemma 2.1.11, Lemma 2.1.12 and Lemma 2.1.14.

Corollary 2.1.15. If α ∈ TE(X) is a right magnifying element, then α is onto but

not one-to-one and for any (x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and

y = bα.
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Lemma 2.1.16. If α ∈ TE(X) is onto but not one-to-one and for any (x, y) ∈ E,

there exists (a, b) ∈ E such that x = aα and y = bα, then α is a right magnifying

element.

Proof. Assume that α ∈ TE(X) is onto but not one-to-one and for any (x, y) ∈ E,

there is (a, b) ∈ E with x = aα and y = bα. Let M = {β ∈ TE(X) | β is not onto}.
Clearly, M is a proper subset of TE(X) since the identity map idX on X does not

belong to M . Let γ be any function in TE(X). Since α is onto, for each x ∈ X

there exists yx ∈ X such that yxα = xγ (if x1γ = x2γ, we must choose yx1 = yx2

and if (aγ, bγ) ∈ E, we must choose (ya, yb) ∈ E). Define β ∈ T (X) by xβ = yx

for all x ∈ X . To show that β ∈ TE(X), let a, b ∈ X be such that (a, b) ∈ E.

Since γ ∈ TE(X), (aγ, bγ) ∈ E. By assumption, there exists (ya, yb) ∈ E such that

yaα = aγ and ybα = bγ. Hence (aβ, bβ) = (ya, yb) ∈ E. Since α is not one-to-one,

there are distinct elements x, y ∈ X such that xα = yα. Then at least one of x and

y does not belong to ran β and hence β is not onto. So β ∈ M. Futhermore, for all

x ∈ X , we see that xβα = yxα = xγ. This shows that βα = γ , which implies

Mα = TE(X). Therefore, α is a right magnifying element.

The following examples illustrate the ideas of the proof given in Lemma 2.1.16.

Example 2.1.17. Let X = N. Define a relation E on X by

(x, y) ∈ E if and only if bx
2
c = by

2
c.

Clearly, E is an equivalence relation on X and X/E = {{1}, {2, 3}, {4, 5}, . . .}. Let

α ∈ TE(X) be defined by 1α = 1, 2α = 2, 3α = 3 and xα = x − 2 for all positive

integers x > 3. For convenience, we write α as

α =

(
1 2 3 4 5 6 7 8 · · ·
1 2 3 2 3 4 5 6 · · ·

)
.

It is obvious that α is onto but not one-to-one and for any (x, y) ∈ E, there exists

(a, b) ∈ E such that x = aα and y = bα. By Lemma 2.1.16, the function α is a right

magnifying element. Let M = {β ∈ TE(X) | β is not onto} and γ ∈ TE(X) be any

function. Then there exists β ∈M such that βα = γ.

We will illustrate the ideas by considering the element γ of TE(X), which is

defined by xγ = bx+ 2

2
c for all x ∈ X. For convenience, we write γ as

γ =

(
1 2 3 4 5 6 7 8 · · ·
1 2 2 3 3 4 4 5 · · ·

)
.
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To get the required result, define a function β ∈ TE(X) by 1β = 1 and for all x ∈ X,
(2x)β = (2x+ 1)β = x+ 3. For convenience, we write β as

β =

(
1 2 3 4 5 6 7 8 · · ·
1 4 4 5 5 6 6 7 · · ·

)
.

So β ∈M and we have

βα =

(
1 2 3 4 5 6 7 8 · · ·
1 4 4 5 5 6 6 7 · · ·

)(
1 2 3 4 5 6 7 8 · · ·
1 2 3 2 3 4 5 6 · · ·

)

=

(
1 2 3 4 5 6 7 8 · · ·
1 2 2 3 3 4 4 5 · · ·

)
= γ.

Example 2.1.18. Let X = N. Define a relation E on X by

(x, y) ∈ E if and only if x ≡ y mod 2.

Clearly, E is an equivalence relation on X and X/E = {{2, 4, 6, . . .}, {1, 3, 5, . . .}}.
Let α ∈ TE(X) be defined by 1α = 1, 2α = 2 and xα = x − 2 for all positive

integers x > 2. For convenience, we write α as

α =

(
1 2 3 4 5 6 7 8 · · ·
1 2 1 2 3 4 5 6 · · ·

)
.

It is obvious that α is onto but not one-to-one and for any (x, y) ∈ E, there exists

(a, b) ∈ E such that x = aα and y = bα. By Lemma 2.1.16, the function α is a right

magnifying element. Let M = {β ∈ TE(X) | β is not onto} and γ ∈ TE(X) be any

function. Then there exists β ∈M such that βα = γ.

We will illustrate the ideas by considering the element γ of TE(X), which is

defined by xγ = x+ 2 for all x ∈ X. For convenience, we write γ as

γ =

(
1 2 3 4 5 6 7 8 · · ·
3 4 5 6 7 8 9 10 · · ·

)
.

To get the required result, define a function β ∈ TE(X) by xβ = x+ 4 for all x ∈ X.
For convenience, we write β as

β =

(
1 2 3 4 5 6 7 8 · · ·
5 6 7 8 9 10 11 12 · · ·

)
.

So β ∈M and we have

βα =

(
1 2 3 4 5 6 7 8 · · ·
5 6 7 8 9 10 11 12 · · ·

)(
1 2 3 4 5 6 7 8 · · ·
1 2 1 2 3 4 5 6 · · ·

)

=

(
1 2 3 4 5 6 7 8 · · ·
3 4 5 6 7 8 9 10 · · ·

)
= γ.
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Theorem 2.1.19. A function α ∈ TE(X) is a right magnifying element if and only if

α is onto but not one-to-one and for any (x, y) ∈ E, there exists (a, b) ∈ E such that

x = aα and y = bα.

Proof. This follows by Corollary 2.1.15 and Lemma 2.1.16.

If E = X ×X, then the following corollary holds.

Corollary 2.1.20. A function α ∈ T (X) is a right magnifying element if and only if

α is onto but not one-to-one.

2.2 Magnifying elements in PE(X)

Recall that PE(X) = {α ∈ P (X) | (x, y) ∈ E implies (xα, yα) ∈ E},
where E is an equivalence relation on X, is a semigroup under the composition of

functions. A function α ∈ PE(X) is called a left (right) magnifying element if there

exists a proper subset M of PE(X) such that αM = PE(X) (Mα = PE(X)).

2.2.1 Left magnifying elements in PE(X)

In this subsection, we provide the necessary and sufficient conditions for elements

in PE(X) to be a left magnifying element and also illustrate the ideas of the main

theorem and lemmas by giving the examples.

Lemma 2.2.1. If α is a left magnifying element in PE(X), then α is one-to-one and

dom α = X .

Proof. Assume that α is a left magnifying element in PE(X). By definition, there is

a proper subset M of PE(X) such that αM = PE(X). Since the identity map idX on

X belongs to PE(X), there exists β ∈M such that αβ = idX . This implies that α is

one-to-one and dom α = X .

However, the converse of Lemma 2.2.1 is not true in general since there is no

proper subset M of PE(X) such that idXM = PE(X).

Lemma 2.2.2. Let α be a left magnifying element in PE(X). For any x, y ∈ X ,

(x, y) ∈ E if and only if (xα, yα) ∈ E.

Proof. The necessity is obvious. Conversely, assume that α is a left magnifying

element in PE(X). By definition, there exists a proper subset M of PE(X) such that
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αM = PE(X). Since idX ∈ PE(X), there exists β ∈ M such that αβ = idX .

Let x, y ∈ X be such that (xα, yα) ∈ E. It follows that x = xidX = xαβ and

y = yidX = yαβ. Thus (x, y) = (xαβ, yαβ) ∈ E since β ∈ PE(X).

Lemma 2.2.3. If α is a left magnifying element in PE(X), then αM = αPE(X) for

some proper subset M of PE(X).

Proof. Assume that α is a left magnifying element in PE(X). By definition, there

exists a proper subsetM of PE(X) such that αM = PE(X).Clearly, αM ⊆ αPE(X)

and αPE(X) ⊆ PE(X) = αM. This shows that αM = αPE(X).

Lemma 2.2.4. If α ∈ PE(X) is bijective on X , then α is not a left magnifying

element.

Proof. Assume that α ∈ PE(X) is bijective on X . So α−1 is also bijective on X.

Suppose to the contrary that α is a left magnifying element. By definition, there

is a proper subset M of PE(X) such that αM = PE(X). By Lemma 2.2.3, we

have αM = αPE(X). Then M = α−1αM = α−1αPE(X) = PE(X), which is a

contradiction. Therefore, α is not a left magnifying element.

The next corollary follows by Lemma 2.2.1, Lemma 2.2.2 and Lemma 2.2.4.

Corollary 2.2.5. If α is a left magnifying element in PE(X), then α is one-to-one but

not onto, dom α = X and for any x, y ∈ X , (xα, yα) ∈ E, implies (x, y) ∈ E.

Lemma 2.2.6. If α ∈ PE(X) is one-to-one but not onto, dom α = X and for any

x, y ∈ X , (xα, yα) ∈ E implies (x, y) ∈ E, then α is a left magnifying element in

PE(X).

Proof. Assume that α ∈ PE(X) is one-to-one but not onto, dom α = X and for any

x, y ∈ X , if (xα, yα) ∈ E, then (x, y) ∈ E. LetM = {β ∈ PE(X) | dom β ⊆ ran α}.
Since α is not onto, ran α 6= X and hence dom β 6= X for all β ∈ M. So M is a

proper subset of PE(X) since idX does not belong toM. To show that αM = PE(X),

let γ ∈ PE(X). For x ∈ (domγ)α, there exists yx ∈ dom γ such that yxα = x. De-

fine β ∈ P (X) by xβ = yxγ if x ∈ (domγ)α. Clearly, dom β ⊆ ran α. To claim

that β ∈ PE(X), let a, b ∈ (domγ)α. Then there exist ya, yb ∈ dom γ such that

yaα = a and ybα = b. By assumption, (ya, yb) ∈ E. Then (aβ, bβ) = (yaγ, ybγ) ∈ E
since γ ∈ PE(X). So β ∈ M. Since α is one-to-one and yxαα = xα, yxα = x and

hence for x ∈ dom γ, xαβ = yxαγ = xγ. This shows that αβ = γ, which implies

Mα = TE(X). Therefore, α is a left magnifying element.
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The following examples illustrate the ideas of the proof given in Lemma 2.2.6.

Example 2.2.7. Let X = N. Define a relation E on X by

(x, y) ∈ E if and only if bx
2
c ≡ by

2
c mod 2.

Clearly, E is an equivalence relation on X and X/E = {{2, 3, 6, . . .}, {1, 4, 5, . . .}}.
Let α ∈ PE(X) be defined by 1α = 2, xα = x + 2 for all positive integers x > 1.

For convenience, we write α as

α =

(
2 3 6 7 10 11 · · · 1 4 5 8 9 12 13 · · ·
4 5 8 9 12 13 · · · 2 6 7 10 11 14 15 · · ·

)
.

It is obvious that α is one-to-one but not onto, dom α = X and for any x, y ∈ X , if

(xα, yα) ∈ E, then (x, y) ∈ E. By Lemma 2.2.6, the function α is a left magnifying

element. Let M = {β ∈ PE(X) | dom β ⊆ N \ {1, 3}} and let γ ∈ PE(X) be any

function. Then there exists β ∈M such that αβ = γ.

We will illustrate the ideas by considering the element γ of PE(X), which is

defined by xγ = x− 2 for all positive integers x > 3. For convenience, we write γ as

γ =

(
2 3 6 7 10 11 · · · 1 4 5 8 9 12 13 · · ·
− − 4 5 8 9 · · · − 2 3 6 7 10 11 · · ·

)
.

To get the required result, define a function β ∈ PE(X) by xβ = x − 4 for all

possitive integers x > 5. For convenience, we write β as

β =

(
2 3 6 7 10 11 · · · 1 4 5 8 9 12 13 · · ·
− − 2 3 6 7 · · · − − − 4 5 8 9 · · ·

)
.

So β ∈M and we have

αβ =

(
2 3 6 7 10 11 · · · 1 4 5 8 9 12 13 · · ·
4 5 8 9 12 13 · · · 2 6 7 10 11 14 15 · · ·

)
(

2 3 6 7 10 11 · · · 1 4 5 8 9 12 13 · · ·
− − 2 3 6 7 · · · − − − 4 5 8 9 · · ·

)

=

(
2 3 6 7 10 11 · · · 1 4 5 8 9 12 13 · · ·
− − 4 5 8 9 · · · − 2 3 6 7 10 11 · · ·

)
= γ.
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Example 2.2.8. Let X = Z× Z. Define a relation E on X by

((a, b), (c, d)) ∈ E if and only if a = c.

It is clear that E is an equivalence relation on X. Let α ∈ PE(X) be defined by

(a, b)α = (2a, 2b) for all a, b ∈ Z. Then α is one-to-one but not onto and for any

(a, b), (c, d) ∈ X , if ((a, b)α, (c, d)α) ∈ E, then ((a, b), (c, d)) ∈ E. By Lemma 2.2.6,

the function α is a left magnifying element. LetM = {β ∈ PE(X) | dom β ⊆ ran α}
and γ ∈ PE(X) be any function. Then there exists β ∈M such that αβ = γ.

We will illustrate the ideas by considering the element γ of PE(X), which is

defined by (a, b)γ = (a+ 1, b+ 2) for all a, b ∈ Z. To get the required result, define a

function β ∈ PE(X) by (2k, 2l)β = (k+ 1, l+ 2) for all k, l ∈ Z. So β ∈M and we

have (a, b)αβ = ((a, b)α)β = (2a, 2b)β = (a + 1, b + 2) = (a, b)γ for all a, b ∈ Z,
which shows that αβ = γ.

Theorem 2.2.9. A function α ∈ PE(X) is a left magnifying element if and only if α

is one-to-one but not onto, dom α = X and for any x, y ∈ X , (xα, yα) ∈ E implies

(x, y) ∈ E.

Proof. It follows from Corollary 2.2.5 and Lemma 2.2.6.

If E = X ×X, then the following corollary holds.

Corollary 2.2.10. A function α ∈ P (X) is a left magnifying element if and only if α

is one-to-one but not onto on X.

2.2.2 Right magnifying elements in PE(X)

In this subsection, we provide the necessary and sufficient conditions for elements

in PE(X) to be a right magnifying element and also illustrate the ideas of the main

theorem and lemmas by giving the examples.

Lemma 2.2.11. If α is a right magnifying element in PE(X), then α is onto.

Proof. Assume that α is a right magnifying element in PE(X). By definition, there

exists a proper subset M of PE(X) with Mα = PE(X). Since the identity map idX
on X belongs to PE(X), there exists β ∈ M such that βα = idX . This implies that

α is onto.

Lemma 2.2.12. Let α be a right magnifying element in PE(X). For any (x, y) ∈ E,

there exists (a, b) ∈ E such that x = aα and y = bα.
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Proof. Assume that α is a right magnifying element in PE(X). By definition, there

exists a proper subset M of PE(X) such that Mα = PE(X). Since idX ∈ PE(X),

there exists β ∈ M such that βα = idX . Let x, y ∈ X be such that (x, y) ∈ E.

It follows that xβα = xidX = x and yβα = yidX = y. Choose a = xβ and

b = yβ. Clearly, (a, b) = (xβ, yβ) ∈ E since β ∈ PE(X). Therefore, the proof is

completed.

Lemma 2.2.13. If α is a right magnifying element, then Mα = PE(X)α for some

proper subset M of PE(X).

Proof. Assume that α is a right magnifying element in PE(X). By definition, there

exists a proper subsetM of PE(X) such thatMα = PE(X). Clearly, Mα ⊆ PE(X)α

and PE(X)α ⊆ PE(X) = Mα. Therfore, Mα = PE(X)α.

Lemma 2.2.14. If α ∈ PE(X) is bijective on X , then α is not a right magnifying

element.

Proof. Assume that α ∈ PE(X) is bijective on X . So α−1 is al so bijective on X .

Suppose to the contrary that α is a right magnifying element. By definition, there

is a proper subset M of PE(X) such that Mα = PE(X). By Lemma 2.2.13, we

have Mα = PE(X)α. Then M = Mαα−1 = PE(X)αα−1 = PE(X), which is a

contradiction. Therefore, α is not a right magnifying element.

The next corollary follows by Lemma 2.2.11, Lemma 2.2.12 and Lemma 2.2.14.

Corollary 2.2.15. If α ∈ PE(X) is a right magnifying element and dom α = X, then

α is onto but not one-to-one and for any (x, y) ∈ E there exists (a, b) ∈ E such that

x = aα and y = bα.

Lemma 2.2.16. If α ∈ PE(X) is onto but not one-to-one, dom α = X and for any

(x, y) ∈ E there exists (a, b) ∈ E such that x = aα and y = bα, then α is a right

magnifying element.

Proof. Assume that α ∈ PE(X) is onto but not one-to-one, dom α = X and for

any (x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα. Let

M = {β ∈ PE(X) | β is not onto}. Clearly, M is a proper subset of PE(X) since

the identity map idX on X does not belong to M . Let γ be any function in PE(X).

Since α is onto, for each x ∈ dom γ, there exists yx ∈ dom α such that yxα = xγ

(if x1γ = x2γ, we must choose yx1 = yx2 and if (aγ, bγ) ∈ E, we must choose

(ya, yb) ∈ E). Define β ∈ P (X) by xβ = yx for all x ∈ dom γ. To show that
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β ∈ PE(X), let a, b ∈ X be such that (a, b) ∈ E. Since γ ∈ PE(X), (aγ, bγ) ∈ E.

By assumption, we can choose (ya, yb) ∈ E such that yaα = aγ and ybα = bγ.

Then (aβ, bβ) = (ya, yb) ∈ E. Since α is not one-to-one, there are distinct elements

x, y ∈ X such that xα = yα. Thus at least one of x and y does not belong to ran β. So

β ∈ M. For all x ∈ dom γ, we see that xβα = yxα = xγ. This shows that βα = γ ,

which implies that Mα = PE(X). Therefore, α is a right magnifying element.

The next example illustrates the ideas of the proof given in Lemma 2.2.16.

Example 2.2.17. Let X = N. Define a relation E on X by

(x, y) ∈ E if and only if bx
3
c = by

3
c.

Clearly, E is an equivalence relation on X and X/E = {{1, 2}, {3, 4, 5}, . . .}. Let

α ∈ PE(X) be defined by xα = x for all positive integers x ≤ 5 and xα = x− 3 for

all positive integers x > 5. For convenience, we write α as

α =

(
1 2 3 4 5 6 7 8 · · ·
1 2 3 4 5 3 4 5 · · ·

)
.

It is obvious that α is onto but not one-to-one, dom α = X and for any (x, y) ∈ E,

there exists (a, b) ∈ E such that x = aα and y = bα. By Lemma 2.2.16, the function

α is a right magnifying element. Let M = {β ∈ PE(X) | β is not onto} and γ be

any function in PE(X). Then there exists β ∈M such that βα = γ.

We will illustrate the ideas by considering the element γ of PE(X), which is

defined by 1γ = 1, 2γ = 2 xγ = x− 3 for positive integer x > 5. For convenience,

we write γ as

γ =

(
1 2 3 4 5 6 7 8 · · ·
1 2 − − − 3 4 5 · · ·

)
.

To get the required result, define a function β ∈ PE(X) by xβ = x for all x ∈ dom γ.

For convenience, we write β as

β =

(
1 2 3 4 5 6 7 8 · · ·
1 2 − − − 6 7 8 · · ·

)
.

So β ∈M and we have

βα =

(
1 2 3 4 5 6 7 8 · · ·
1 2 − − − 6 7 8 · · ·

)(
1 2 3 4 5 6 7 8 · · ·
1 2 3 4 5 3 4 5 · · ·

)

=

(
1 2 3 4 5 6 7 8 · · ·
1 2 − − − 3 4 5 · · ·

)
= γ.
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Lemma 2.2.18. If α ∈ PE(X) is onto, dom α 6= X and for any (x, y) ∈ E, there

exists (a, b) ∈ E such that x = aα and y = bα, then α is a right magnifying element.

Proof. Assume that α ∈ PE(X) is onto, dom α 6= X and for any (x, y) ∈ E, there

is (a, b) ∈ E such that x = aα and y = bα. Let M = {β ∈ PE(X) | β is not onto}.
Clearly, M is a proper subset of PE(X) since the identity map idX on X does not

belong to M . Let γ be any function in PE(X). Since α is onto, for each x ∈ dom

γ, there exists yx ∈ dom α such that yxα = xγ (if x1γ = x2γ, we must choose

yx1 = yx2 and if (aγ, bγ) ∈ E, we must choose (ya, yb) ∈ E). Define a function

β ∈ P (X) by xβ = yx for all x ∈ dom γ. To show that β ∈ PE(X), let a, b ∈ X be

such that (a, b) ∈ E. Since γ ∈ PE(X), we have (aγ, bγ) ∈ E. By assumption, there

exists (ya, yb) ∈ E such that yaα = aγ and ybα = bγ. Then (aβ, bβ) = (ya, yb) ∈ E.
Since ran β ⊆ dom α 6= X , β is not onto. So β ∈ M. For all x ∈ dom γ, we see

that xβα = yxα = xγ. This shows that βα = γ, which implies Mα = PE(X).

Therefore, α is a right magnifying element.

The next example illustrates the ideas of the proof given in Lemma 2.2.18.

Example 2.2.19. Let X = N. Define a relation E on X by

(x, y) ∈ E if and only if bx
3
c = by

3
c.

Clearly, E is an equivelence relation on X and X/E = {{1, 2}, {3, 4, 5}, . . .}. Let

α ∈ PE(X) be defined by 3α = 1, 4α = 2 and xα = x − 3 for all positive integers

x > 5. For convenience, we write α as

α =

(
1 2 3 4 5 6 7 8 · · ·
− − 1 2 − 3 4 5 · · ·

)
.

It is obvious that α is onto, dom α 6= X and for any (x, y) ∈ E, there exists (a, b) ∈ E
such that x = aα and y = bα. By Lemma 2.2.18, the function α is a right magnifying

element. Let M = {β ∈ PE(X) | β is not onto} and γ be any function in PE(X).

Then there exists β ∈M such that βα = γ.

We will illustrate the ideas by considering the element γ of PE(X), which is

defined by xγ = bx+ 3

3
c for all positive integers x > 2. For convenience, we write

γ as

γ =

(
1 2 3 4 5 6 7 8 · · ·
− − 2 2 2 3 3 3 · · ·

)
.
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To get the required result, define a function β ∈ PE(X) by xβ = bx+ 9

3
c if x =

3, 4, 5 and xβ = bx+ 12

3
c for all positive integers x ≥ 6. For convenience, we write

β as

β =

(
1 2 3 4 5 6 7 8 · · ·
− − 4 4 4 6 6 6 · · ·

)
.

So β ∈M and we have

βα =

(
1 2 3 4 5 6 7 8 · · ·
− − 4 4 4 6 6 6 · · ·

)(
1 2 3 4 5 6 7 8 · · ·
− − 1 2 − 3 4 5 · · ·

)

=

(
1 2 3 4 5 6 7 8 · · ·
− − 2 2 2 3 3 3 · · ·

)
= γ.

Theorem 2.2.20. A function α ∈ PE(X) is a right magnifying element if and only if

α is onto, for any (x, y) ∈ E, there exists (a, b) ∈ E such that x = aα, y = bα and

either

1. dom α 6= X or

2. dom α = X and α is not one-to-one.

Proof. It follows by Corollary 2.2.15, Lemma 2.2.16 and Lemma 2.2.18.

If E = X ×X, then the following corollary holds.

Corollary 2.2.21. A function α ∈ P (X) is a right magnifying element if and only if

α is onto and either

1. dom α 6= X or

2. dom α = X and α is not one-to-one.
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Chapter 3

Magnifying elements in TE(X,P) and
PE(X,P)

In this chapter, we provide the necessary and sufficient conditions for

elements in the full and partial transformation semigroups preserving an equivalence

relation and a partition to be a left or right magnifying element.

3.1 Magnifying elements in TE(X,P)

Recall that, for an equivalence relation E on a nonempty set X,

[x]E = {y ∈ X | (x, y) ∈ E} denotes the equivalence class of an element x ∈ X

determined by E, and we set X/E = {[x]E | x ∈ X}. Let P = {Xi | i ∈ Λ} be a

partition of X = {xj | j ∈ Λ′}. Put (Xi, xj) = Xi ∩ [xj]E for i ∈ Λ and j ∈ Λ′. The

semigroup TE(X,P) = TE(X) ∩ T (X,P), i.e.,

TE(X,P) = {α ∈ TE(X) | Xiα ⊆ Xi for all i ∈ Λ},

which is a semigroup under the composition of functions. A function α ∈ TE(X,P)

is called a left (right) magnifying element if there exists a proper subsetM of TE(X,P)

such that αM = TE(X,P) (Mα = TE(X,P)).

3.1.1 Left magnifying elements in TE(X,P)

In this subsection, we provide the necessary and sufficient conditions for elements in

TE(X,P) to be a left magnifying element and also illustrate the ideas of the main

theorem and lemmas by giving the examples.

Lemma 3.1.1. If α is a left magnifying element in TE(X,P), then α is one-to-one.
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Proof. Assume that α is a left magnifying element in TE(X,P). By definition, there

exists a proper subset M of TE(X,P) such that αM = TE(X,P). Since the identity

map idX on X belongs to TE(X,P), there exists β ∈ M such that αβ = idX . This

implies that α is one-to-one.

However, the converse of Lemma 3.1.1 is not true since there exists no proper

subset M of TE(X,P) such that idXM = TE(X,P).

Lemma 3.1.2. Let α be a left magnifying element in TE(X,P). For any x, y ∈ X,
(x, y) ∈ E if and only if (xα, yα) ∈ E.

Proof. The necessity is obvious. Conversely, assume that α ∈ TE(X,P) is a left

magnifying element. By definition, there exists a proper subset M of TE(X,P) such

that αM = TE(X,P). Since idX ∈ TE(X,P), there exists β ∈ M such that αβ =

idX . Let x, y ∈ X be such that (xα, yα) ∈ E. It follows that x = xidX = xαβ and

y = yidX = yαβ. Therefore, (x, y) = (xαβ, yαβ) ∈ E since β ∈ TE(X,P).

Lemma 3.1.3. If α is a left magnifying element in TE(X,P), then αM = αTE(X,P)

for some proper subset M of TE(X,P).

Proof. Assume that α is a left magnifying element in TE(X,P). By definition, there

exists a proper subset M of TE(X,P) such that αM = TE(X,P). It is clear that

αM ⊆ αTE(X,P) and αTE(X,P) ⊆ TE(X,P) = αM. This shows that αM =

αTE(X,P).

Lemma 3.1.4. If α ∈ TE(X,P) is bijective, then α is not a left magnifying element.

Proof. Let α ∈ TE(X,P) be bijective. So α−1 is also bijective. Suppose that α is

a left magnifying element. By definition, there is a proper subset M of TE(X,P)

such that αM = TE(X,P). By Lemma 3.1.3, we have αM = αTE(X,P). Then

M = α−1αM = α−1αTE(X,P) = TE(X,P), which is a contradiction. Therefore,

α is not a left magnifying element.

The next corollary follows by Lemma 3.1.1, Lemma 3.1.2 and Lemma 3.1.4.

Corollary 3.1.5. If α is a left magnifying element in TE(X,P), then α is one-to-one

but not onto and for any x, y ∈ X, (xα, yα) ∈ E implies (x, y) ∈ E.

Lemma 3.1.6. Let P = {Xi | i ∈ Λ} be a partition on a set X. If Xi ∈ P is finite

for all i ∈ Λ, then there exists no left magnifying element in TE(X,P).
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Proof. Suppose to contrary that there is a left magnifying element α in TE(X,P).

By assumption and Lemma 3.1.1, we have α|Xi
is bijective for all i ∈ Λ. Since

Xα =
( ⋃
i∈Λ

Xi

)
α =

⋃
i∈Λ

Xiα =
⋃
i∈Λ

Xi = X, α is onto which is a contradiction.

It is noticeable in Lemma 3.1.6 that if a left magnifying element exists in TE(X,P),

then Xi is infinite for some i ∈ Λ. However, the converse of this statement is not true

in general. It is illustrated by the following counterexample.

Example 3.1.7. LetX = Z andP = {Xi | i ∈ N∪{0}}whereX0 = {0,−1,−2, . . .}
andXi = {2i−1, 2i} for all i ∈ N, that is,X1 = {1, 2}, X2 = {3, 4}, X3 = {5, 6}, . . .
Define a relation E on X by E =

∞⋃
j=1

(Aj × Aj) where A1 = {0,±1,±2} and

Aj = {±(2j − 1),±2j} for all positive integers j ≥ 2, that is, A2 = {±3,±4},
A3 = {±5,±6}, A4 = {±7,±8}, . . . Clearly, (Xi, x) is finite for all i ∈ N ∪ {0}
and x ∈ X . Moreover, Ai = (X0, xi)∪̇Xi where [xi]E = Ai for all i ∈ N. Note

that (X0, xi) ⊆ Ai where [xi]E = Ai and Xi ⊆ Ai for all i ∈ N. Let α be

one-to-one in TE(X,P). Then Xiα = Xi ⊆ Ai for all i ∈ N. This forces that

(X0, xi)α = (X0, xi) ⊆ Ai where [xi]E = Ai for all i ∈ N. Then α is onto. This

implies that there exists no left magnifying element in TE(X,P).

Corollary 3.1.8. If X is a finite set, then TE(X,P) has no left magnifying element.

Lemma 3.1.9. Let P = {Xi | i ∈ Λ} be a partition on a nonempty set X such that

for any x ∈ X, there is exactly one Xi ∈ P with [x]E ⊆ Xi. If α ∈ TE(X,P) is

one-to-one but not onto and for any x, y ∈ X , (xα, yα) ∈ E implies (x, y) ∈ E, then

α is a left magnifying element of TE(X,P).

Proof. Assume that α ∈ TE(X,P) is one-to-one but not onto and for any x, y ∈ X ,

(xα, yα) ∈ E implies (x, y) ∈ E. For each x ∈ ran α, there exists yx ∈ X such that

yxα = x.

Case 1: |[x]E| = 1 for all x ∈ X.
Let M = {β ∈ TE(X,P) | xβ = x for all x /∈ ran α}. Clearly, M is a proper subset

of TE(X,P). For any function γ in TE(X,P), define a function β ∈ TE(X,P) for

all x ∈ X by

xβ =

yxγ if x ∈ ran α,

x if x /∈ ran α.

Clearly, β ∈M. For any x ∈ X, xαβ = yxαγ. Since yxαα = xα and α is one-to-one,

yxα = x. Therefore, xαβ = xγ. This shows that αβ = γ which implies that



25

αM = TE(X,P).

Case 2: |[x]E| > 1 for some x ∈ X.
Let X = {xj | j ∈ Λ′}. For any i ∈ Λ and j ∈ Λ′ with (Xi, xj) ∩ ran α 6= ∅, we can

choose xij ∈ (Xi, xj) ∩ ran α. Then there exists yxij ∈ Xi such that yxijα = xij. If

(Xi, xj) ∩ ran α = ∅, then we choose xi ∈ Xi ∩ ran α.

Let M = {β ∈ TE(X,P) | β is not one-to-one}. Clearly, M is a proper subset of

TE(X,P) since the identity map idX on X does not belong to M. For any function γ

in TE(X,P), define a function β ∈ T (X) for all x ∈ X by

xβ =


yxγ if x ∈ ran α,

yxijγ if x 6∈ ran α and x ∈ (Xi, xj) such that (Xi, xj) ∩ ran α 6= ∅,

yxiγ if x 6∈ ran α and x ∈ (Xi, xj) such that (Xi, xj) ∩ ran α = ∅.

To show that β ∈ TE(X,P), let (a, b) ∈ E. Then a, b ∈ [xj]E for some xj ∈ X.
Case I: a, b ∈ ran α.

Then there exist ya, yb ∈ X such that yaα = a and ybα = b. By assumption, we have

(ya, yb) ∈ E. Hence (aβ, bβ) = (yaγ, ybγ) ∈ E.
Case II: a, b 6∈ ran α.

Since there is exactly one Xi ∈ P such that [x]E ⊆ Xi for all x ∈ X, a and b must

belong to Xi for some i ∈ Λ. So a, b ∈ (Xi, xj).

Case i: (Xi, xj) ∩ ran α 6= ∅. Then (aβ, bβ) = (yxijγ, yxijγ) ∈ E.
Case ii: (Xi, xj) ∩ ran α = ∅. Then (aβ, bβ) = (yxiγ, yxiγ) ∈ E.

Next, we may assume that a ∈ ran α and b 6∈ ran α.

Case III: a ∈ ran α and b 6∈ ran α.

Then (Xi, xj)∩ ran α 6= ∅ since a ∈ (Xi, xj)∩ ran α and hence choose xij = a.

Therefore, (aβ, bβ) = (yaγ, yaγ) ∈ E.
Hence, β preserves the equivalence relation E. Moreover, it is easy to see that

β preserves the partition P on X , as well. Since [x]E > 1 for some x ∈ X and α

is one-to-one but not onto, there exists x0 6∈ ran α. Then x0β ∈ (X \ {x0})β and

hence β is not one-to-one. Therefore, β ∈ M. For any x ∈ X, xαβ = yxαγ. Since

yxα = xα and α is one-to-one, yxα = x. Therefore, xαβ = xγ. This shows that

αβ = γ which implies that αM = TE(X,P).

The following examples illustrate the ideas of the proof given in Lemma 3.1.9.

Example 3.1.10. LetX = Q andP be a partition onX whereP = {Q+,Q− ∪ {0}}.
LetA = Q−\{−2n+1 | n ∈ N} and denoteAn =

{x
n
| x ∈ N and gcd(x, n) = 1

}
where n ∈ N. Define a relation E on X by
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E =
∞⋃
i=1

(A2i × A2i) ∪
∞⋃
i=1

(
A2i−1 ∪ {−2i+ 1} × A2i−1 ∪ {−2i+ 1}

)
∪ (B × B)

where B = A ∪ {0}. Thus E is an equivalence relation on X and Q+ ∈ P is

infinite. Clearly, B and An are infinite for all n ∈ N. Then there exist bijections

ϕ0 : B −→ B, ϕ2 : A2 −→ A1, ϕ2n : A2n −→ A2(n−1) for all n ≥ 2 and

ϕ2n−1 : A2n−1 −→ A2(n+1)−1 for all n ∈ N. Define a function α ∈ TE(X,P) by

xα =


xϕi if x ∈ Ai, i ∈ N,

x− 2 if x ∈ {−2n+ 1 | n ∈ N},

x otherwise.

Clearly, −1 6∈ ran α. Therefore, α is one-to-one but not onto and for any x, y ∈ X ,

if (xα, yα) ∈ E, then (x, y) ∈ E but α is not a left magnifying element of TE(X,P)

since there exists no function β ∈ TE(X,P) such that αβ = idX .

Example 3.1.11. Let X = Z and P be a partition on X such that P = {X1, X2}
where X1 = {0,−1,−2,−3, . . .} and X2 = {1, 2, 3, . . .}. Define a relation E on X

by E =
∞⋃
i=0

(Ai × Ai) where A0 = X1, A1 = {1}, A2 = {2, 3}, A3 = {4, 5, 6}, . . .

It is obvious that X1 ∈ P is infinite, E is an equivalence relation on X and X/E =

{{0,−1,−2, . . .}, {1}, {2, 3}, {4, 5, 6}, {7, 8, 9, 10}, . . .}. Define a function α on X

by

xα =

x if x ∈ A0,

x+ i if x ∈ Ai, i > 0.

For convenience, we write α as

α =

(
. . . −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 · · ·
. . . −3 −2 −1 0 2 4 5 7 8 9 11 12 13 14 · · ·

)
.

It is noticeable that α is one-to-one but not onto and for any x, y ∈ X , if (xα, yα) ∈ E,
then (x, y) ∈ E. By Lemma 3.1.9, the function α is a left magnifying element. Let

M = {β ∈ TE(X,P) | β is not one-to-one } and let γ be an element of TE(X,P).

Then there exists an element β ∈M such that αβ = γ.

We will illustrate the ideas by considering the element γ of TE(X,P), which is

defined by

xγ =

x if x ∈ Ai, i ≤ 2,

x+ i if x ∈ Ai, i > 2.
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For convenience, we write γ as

γ =

(
. . . −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 · · ·
. . . −3 −2 −1 0 1 2 3 7 8 9 11 12 13 14 · · ·

)
.

Note that for all j ≥ 1, Aj ∩ ran α 6= Aj and hence there is an element xj ∈ Aj and

xj 6∈ ran α. To get the desired result, for any xj 6∈ ran α such that (Xi, xj)∩ ran α 6= ∅,
we can choose yxj = min

(
(Xi, xj) ∩ ran α

)
= minAj for all j ≥ 4 and define a

function β in TE(X,P ) by xβ = x for all x ∈ A0 ∪A1, 2β = 3β = 1, 4β = 6β = 2,

5β = 3 and

xβ =

x if x 6= maxAj,

yxj if x = maxAj

for all x ∈ Aj such that j ≥ 4. For convenience, we write β as

β =

(
. . . −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 · · ·
. . . −3 −2 −1 0 1 1 1 2 3 2 7 8 9 7 · · ·

)
.

So β ∈M and we have

αβ =

(
. . . −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 · · ·
. . . −3 −2 −1 0 2 4 5 7 8 9 11 12 13 14 · · ·

)
(
. . . −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 · · ·
. . . −3 −2 −1 0 1 1 1 2 3 2 7 8 9 7 · · ·

)

=

(
. . . −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 · · ·
. . . −3 −2 −1 0 1 2 3 7 8 9 11 12 13 14 · · ·

)
= γ.

Note that maxAi 6∈ ran α for all Ai such that i ≥ 1. The main ideas behind the

concept are as follows: We illustrate the idea by considering 1, 3, 6, and 10 6∈ ran α.

Since 1 ∈ (X2, 1) and (X2, 1) ∩ ran α = ∅, 1β = 1. Consider 3 ∈ (X2, 3) and

(X2, 3) ∩ ran α = {2}. We can see that 1α = 2. Hence y2 = 1 and y2γ = 1.

Therefore, 3β = 1. Consider 6 ∈ (X2, 6) and (X2, 6) ∩ ran α = {4, 5}. Then we

choose 4 ∈ (X3, 6) ∩ ran α. We can see that 2α = 4. Hence y4 = 2 and y4γ = 2.

Therefore, 6β = 2. Consider 10 ∈ (X2, 10) and (X2, 10) ∩ ran α = {7, 8, 9}. Then

we choose 7 ∈ (X2, 10)∩ ran α. We can see that 4α = 7. Hence y7 = 4 and y7γ = 7.

Therefore, 10β = 7.

Theorem 3.1.12. Let P = {Xi | i ∈ Λ} be a partition and E be an equivalence

relation on a set X such that Xi is infinite for some i ∈ Λ and for each x ∈ X,
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there is exactly one Xi ∈ P with [x]E ⊆ Xi. A function α ∈ TE(X,P) is a left

magnifying element if and only if α is one-to-one but not onto and for any x, y ∈ X ,

if (xα, yα) ∈ E, then (x, y) ∈ E.

Proof. It follows by Corollary 3.1.5 and Lemma 3.1.9.

Theorem 3.1.13. Let P = {Xi | i ∈ Λ} be a partition and E be an equivalence

relation on a set X such that for each x ∈ X, there is exactly one Xi ∈ P with

[x]E ⊆ Xi. There exists a left magnifying element in TE(X,P) if and only if at least

one element of P is infinite.

Proof. The necessity is obtained by Lemma 3.1.6. On the other hand, suppose that

there exists Xi ∈ P such that Xi is infinite.

Case 1: There exists t ∈ Xi such that (Xi, t) is infinite. Then there is a proper subset

A of (Xi, t) such that |A| = |(Xi, t)| = |(Xi, t) \ A|. So there is a bijection γ from

(Xi, t) to A. Define a function α by

xα =

xγ if x ∈ (Xi, t),

x otherwise.

Clearly, α ∈ TE(X,P), α is one-to-one. Hence ran α ⊆ X \ ((Xi, t) \ A) 6= X.

Then α is one-to-one but not onto. It is easy to see that for any x, y ∈ X , if

(xα, yα) ∈ E, then (x, y) ∈ E. By Theorem 3.1.12, α is a left magnifying element.

Case 2: (Xi, t) is finite for all t ∈ Xi.

Case 2.1: There exists n ∈ N such that K = {(Xi, t) | t ∈ Xi and |(Xi, t)| = n}
is infinite. Then there exists a proper subsetK ′ ofK such that |K ′| = |K| = |K\K ′|.
There is a bijection λ from K to K ′. So |A| = |Aλ| = n for all A ∈ K. Hence for all

A ∈ K, there exists a bijective function ηA from A to Aλ. Let η =
⋃
A∈K

ηA. Then η is

a bijection from
⋃
A∈K

A to
⋃
A∈K′

A. Define a function α by

xα =


xη if x ∈

⋃
A∈K

A,

x otherwise.

Clearly, α ∈ TE(X,P) and α is one-to-one. Since ran α = X\(
⋃
A∈K

A\
⋃
A∈K′

A) 6= X,

α is not onto. Then α is one-to-one but not onto. It is easy to see that for any x, y ∈ X ,

if (xα, yα) ∈ E, then (x, y) ∈ E. By Theorem 3.1.12, α is a left magnifying element.



29

Case 2.2: For all n ∈ N, the set K = {(Xi, t) | t ∈ Xi and |(Xi, t)| = n} is

finite. Then for each t ∈ Xi, there exists t′ ∈ Xi such that |(Xi, t)| < |(Xi, t
′)|. Let

A = {(Xi, t) | [t]E ⊆ Xi}. In this case, A is an infinite set. Let n1 = min
(Xi,t)∈A

|(Xi, t)|

andK1 = {(Xi, t) | |(Xi, t)| = n1}. Choose (Xi, t1) ∈ K1. Let n2 = min
(Xi,t)∈A1

|(Xi, t)|

where A1 = A\K1 and K2 = {(Xi, t) | |(Xi, t)| = n2}. Choose (Xi, t2) ∈ K2. Pro-

ceeding in this way, we obtain the sets (Xi, t1), (Xi, t2), . . . , (Xi, tk), . . . and positive

integers n1, n2, . . . , nk, . . . such that nk = min
(Xi,t)∈Ak

|(Xi, t)|whereAk = A \
⋃k−1
l=1 Kl

and (Xi, tk) ∈ Kk, where Kk = {(Xi, t) | |(Xi, t)| = nk} for all k ≥ 2. Clearly,

n1 < n2 < ... < nk < ...

Next, we let B = {(Xi, tl) | l ≥ 1}. Then |(Xi, tl)| < |(Xi, tl+1)| for all l ≥ 1.

Hence there exists an injection γl : (Xi, tl) → (Xi, tl+1). Let γ =
⋃
l≥1

γl. Then γ is

an injection from
⋃
C∈B

C to itself. Next, define a function α by

xα =


xγ if x ∈

⋃
C∈B

C,

x otherwise.

Clearly, α ∈ TE(X,P) and α is one-to-one. Since ran α ⊆ X \ (Xi, t1) 6= X , α is

not onto. Then α is one-to-one but not onto. It is easy to see that for any x, y ∈ X, if

(xα, yα) ∈ E, then (x, y) ∈ E. By Theorem 3.1.12, α is a left magnifying element.

3.1.2 Right magnifying elements in TE(X,P)

In this subsection, we provide the necessary and sufficient conditions for elements in

TE(X,P) to be a right magnifying element and also illustrate the ideas of the main

theorem and lemmas by giving the examples.

Lemma 3.1.14. If α is a right magnifying element in TE(X,P), then α is onto.

Proof. Assume that α is a right magnifying element in TE(X,P). By definition, there

exists a proper subset M of TE(X,P) such that Mα = TE(X,P). Since the identity

map idX on X belongs to TE(X,P), there exists β ∈ M such that βα = idX . This

implies that α is onto.

Lemma 3.1.15. Let α be a right magnifying element in TE(X,P). For any x, y ∈ X,
if (x, y) ∈ E, then there exists (a, b) ∈ E such that x = aα and y = bα.
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Proof. Assume that α is a right magnifying element in TE(X,P). By definition, there

exists a proper subset M of TE(X,P) such that Mα = TE(X,P). Since idX ∈
TE(X,P), there exists β ∈ M such that βα = idX . Let x, y ∈ X be such that

(x, y) ∈ E. It follows that xβα = xidX = x and yβα = yidX = y. Choose a = xβ

and b = yβ. Clearly, (a, b) = (xβ, yβ) ∈ E since β ∈ TE(X,P). Therefore, the

proof is completed.

Lemma 3.1.16. If α is a right magnifying element in TE(X,P), thenMα = TE(X,P)α

for some proper subset M of TE(X,P).

Proof. Assume that α is a right magnifying element in TE(X,P). By definition,

there exists a proper subset M of TE(X,P) such that Mα = TE(X,P). It is clear

that Mα ⊆ TE(X,P)α and TE(X,P)α ⊆ TE(X,P) = Mα. This shows that

Mα = TE(X,P)α.

Lemma 3.1.17. If α ∈ TE(X,P) is bijective, then α is not a right magnifying ele-

ment.

Proof. Assume that α ∈ TE(X,P) is bijective. So α−1 is also bijective. Suppose

to the contrary that α is a right magnifying element. By definition, there is a proper

subset M of TE(X,P) such that Mα = TE(X,P). By Lemma 3.1.16, we have

Mα = TE(X,P)α. Then M = Mαα−1 = TE(X,P)αα−1 = TE(X,P), which is a

contradiction. Therefore, α is not a right magnifying element.

The next corollary follows by Lemma 3.1.14, Lemma 3.1.15 and Lemma 3.1.17.

Corollary 3.1.18. If α is a right magnifying element in TE(X,P), then α is onto but

not one-to-one and for any (x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and

y = bα.

Lemma 3.1.19. Let P = {Xi | i ∈ Λ} be a partition on a set X. If Xi is finite for all

i ∈ Λ, then there exists no right magnifying element in TE(X,P).

Proof. Suppose to the contrary that there is a right magnifying element α ∈ TE(X,P).

By assumption and Lemma 3.1.14, we have α|Xi
is one-to-one for all i ∈ Λ. Since

Xα =
( ⋃
i∈Λ

Xi

)
α =

⋃
i∈Λ

Xiα, α is one-to-one, which is a contradiction.

It is noticeable in Lemma 3.1.19 that if a right magnifying element exists in

TE(X,P), thenXi is infinite for some i ∈ Λ. However, the converse of this statement

is not true in general. It is illustrated by the following counterexample.
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Example 3.1.20. LetX = Z andP = {Xi | i ∈ N∪{0}}whereX0 = {0,−1,−2, . . .}
andXi = {2i−1, 2i} for all i ∈ N, that is, X1 = {1, 2}, X2 = {3, 4}, X3 = {5, 6}, . . .
Define a relation E on X by E =

∞⋃
j=1

(Aj × Aj) where A1 = {0,±1,±2} and

Aj = {±(2j − 1),±2j} for all possitive integer j ≥ 2, that is, A2 = {±3,±4},
A3 = {±5,±6}, A4 = {±7,±8}, . . . Clearly, (Xi, x) is finite for all i ∈ N ∪ {0}
and x ∈ X . Moreover, Ai = (X0, xi)∪̇Xi where [xi]E = Ai for all i ∈ N. Note that

(X0, xi) ⊆ Ai where [xi]E = Ai and Xi ⊆ Ai for all i ∈ N. Let α ∈ TE(X,P) be

onto. ThenXiα = Xi ⊆ Ai for all i ∈ N. This forces that (X0, xi)α = (X0, xi) ⊆ Ai

where [xi]E = Ai for all i ∈ N. Then α is one-to-one. This implies that there exists

no right magnifying element in TE(X,P).

Corollary 3.1.21. IfX is a finite set, then TE(X,P) has no right magnifing elements.

Lemma 3.1.22. Let P = {Xi | i ∈ Λ} be a partition on a set X such that Xi is

infinite for some i ∈ Λ. If α ∈ TE(X,P) is onto but not one-to-one and for any

(x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα, then α is a right

magnifying element.

Proof. Assume that α ∈ TE(X,P) is onto but not one-to-one and and for any

(x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα. Let γ ∈ TE(X,P)

andM = {β ∈ TE(X,P) | β is not onto }.Clearly,M is a proper subset of TE(X,P)

since the identity map idX on X does not belong to M. Let xj ∈ X and x ∈ (Xi, xj).

So xγ ∈ Xi. Since α is onto, we can choose yx ∈ Xi such that yxα = xγ and

(yx, yz) ∈ E for all z ∈ (Xi, xj). Then for all x, z ∈ (Xi, xj), there are yx, yz ∈ Xi

such that yxα = xγ, yzα = zγ and (yx, yz) ∈ E because (x, z) ∈ E. Define a

function β by xβ = yx for all x ∈ X. Obviously, β is a function on X. To show that

β ∈ TE(X,P ), let a, b ∈ X be such that (a, b) ∈ E.Clearly, (aβ, bβ) = (ya, yb) ∈ E.
For each Xi ∈ P , if a ∈ Xi, then aβ = ya. Since yaα = a, aβ ∈ Xi. Therefore,

β ∈ TE(X,P). Since α is not one-to-one, there are distinct elements x, y ∈ Xi for

some i ∈ Λ such that xα = yα = z for some z ∈ Xi.Hence yz = x or yz = y. There-

fore, either x 6∈ ran β or y 6∈ ran β. So β ∈ M. For all x ∈ X, xβα = yxα = xγ.

This shows that βα = γ, which implies Mα = TE(X,P). Therefore, α is a right

magnifying element.

The following examples illustrate the ideas of the proof given in Lemma 3.1.22.

Example 3.1.23. Let X = Z and P be a partition on X where P = {Z−,Z+ ∪{0}}.
Define a relation E on X by E =

∞⋃
j=1

(Aj × Aj) where A1 = {−1,−3,−5, . . . , },
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A2 = {±2,±4,±6, . . .}, A3 = {0}, A4 = {1, 3}, A5 = {5, 7}, A6 = {9, 11}, . . .
Clearly, E is an equivalence relation on X and X/E = {A1, A2, A3, A4, . . .}. Let

α ∈ TE(X,P) be defined by xα = 4 for all x ∈ A4 and

xα =


x− 4 if x ∈ Z+ \ (2Z+ ∪ A4),

x+ 4 if x ∈ 4Z+,

x otherwise.

For convenience, we write α as

α =

(
. . . −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 · · ·
. . . −3 −2 −1 0 4 2 4 8 1 6 3 12 5 10 · · ·

)
.

It is easy to see that α belongs to TE(X,P) and it is onto but not one-to-one. However,

we can not construct the function β ∈ TE(X,P ) such that βα = idX since (4, 8) ∈ E
but there exist no a, b ∈ X such that (a, b) ∈ E satisfying aα = 4 and bα = 8.

Example 3.1.24. Let X = N and P be a partition on X such that

P = {{1}, {2}, {3, 4, 5}, {6, 7, 8, 9, . . .}}. Define a relation E on X by

(x, y) ∈ E if and only if x ≡ y mod 2.

Clearly, E is an equivalence relation on X and X/E = {{1, 3, 5, . . .}, {2, 4, 6, . . .}}.
It is easy to see that {6, 7, 8, 9, . . .} ∈ P is infinite. Let α ∈ TE(X,P) be a function

defined by 1α = 1, 2α = 2, 3α = 5, 4α = 4, 5α = 3, 6α = 6, 7α = 7 and xα = x−2

for all x ≥ 8. For convenience, we write α as

α =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 5 4 3 6 7 6 7 8 9 10 11 12 13 · · ·

)
.

It is obvious that α is onto but not one-to-one and for any (x, y) ∈ E, there exists

(a, b) ∈ E such that x = aα and y = bα. By Lemma 3.1.22, the function α is a

right magnifying element. Let M = {β ∈ TE(X,P) | β not onto} and let γ be any

fucntion in TE(X,P). Then there exists a function β ∈M such that βα = γ.

We illustrate the ideas by considering the element γ of TE(X,P),which is defined

by 1γ = 1, 2γ = 2, 3γ = 5, 4γ = 4, 5γ = 3, and xγ = x + 2 for all x ≥ 6. For

convenience, we write β as

γ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 5 4 3 8 9 10 11 12 13 14 15 16 13 · · ·

)
.
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To get the desired result, define a function β in TE(X,P) by

xβ =

x if x ≤ 5,

x+ 4 if x > 5.

For convenience, we write β as

β =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 · · ·

)
.

So β ∈M and we have

βα =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 · · ·

)
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 5 4 3 6 7 6 7 8 9 10 11 12 13 · · ·

)

=

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 5 4 3 8 9 10 11 12 13 14 15 16 13 · · ·

)
= γ.

Theorem 3.1.25. Let P = {Xi | i ∈ Λ} be a partition on a set X such that Xi is

infinite for some i ∈ Λ. A function α ∈ TE(X,P) is a right magnifying element if and

only if α is onto but not one-to-one and for any (x, y) ∈ E, there exists (a, b) ∈ E
such that x = aα and y = bα.

Proof. It follows by Corollary 3.1.18 and Lemma 3.1.22.

Theorem 3.1.26. Let P = {Xi | i ∈ Λ} be a partition and E be an equivalence

relation on a set X such that for each x ∈ X, there is exactly one Xi ∈ P with

[x]E ⊆ Xi. There exists a right magnifying element in TE(X,P) if and only if at least

one element of P is infinite.

Proof. The necessity is obtained by Lemma 3.1.19. On the other hand, suppose that

there exists Xi ∈ P such that Xi is infinite.

Case 1: There exists t ∈ Xi such that (Xi, t) is infinite. Then there is a proper subset

A of (Xi, t) such that |A| = |(Xi, t)| = |(Xi, t) \A|. So there is a bijection γ from A

to (Xi, t). Define a function α by

xα =

xγ if x ∈ A,

x otherwise.
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Clearly, α belongs to TE(X,P) and α is onto. Since (X \ (Xi \ A))α = X , α is

not one-to-one. Then α is onto but not one-to-one. It is clear that for any (x, y) ∈ E,
there exists (a, b) ∈ E such that x = aα and y = bα. By Theorem 3.1.25, α is a right

magnifying element.

Case 2: (Xi, t) is finite for all t ∈ Xi.

Case 2.1: There exists n ∈ N such that K = {(Xi, t) | t ∈ Xi and |(Xi, t)| = n}
is infinite. Then there exists a proper subsetK ′ ofK such that |K ′| = |K| = |K\K ′|.
There is a bijection λ from K ′ to K. So |A| = |Aλ| = n for all A ∈ K ′. Hence for

all A ∈ K ′, there exists a bijective function γA from A to Aλ. Let γ =
⋃
A∈K′

γA. Then

γ is a bijection from
⋃
A∈K′

A to
⋃
A∈K

A. Define a function α by

xα =


xγ if x ∈

⋃
A∈K′

A,

x otherwise.

Clearly, α belongs to TE(X,P) and α is onto. Since (X \ (
⋃
A∈K

A \
⋃
A∈K′

A))α = X ,

α is not one-to-one. Then α is onto but not one-to-one. It is clear that for any

(x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα. By Theorem

3.1.25, α is a right magnifying element.

Case 2.2: For all n ∈ N, the set K = {(Xi, t) | t ∈ Xi and |(Xi, t)| = n} is

finite. Then for each t ∈ Xi, there exists t′ ∈ Xi such that |(Xi, t)| < |(Xi, t
′)|. Let

A = {(Xi, t) | [t]E ⊆ Xi}. In this case, A is an infinite set. Let n1 = min
(Xi,t)∈A

|(Xi, t)|

andK1 = {(Xi, t) | |(Xi, t)| = n1}. Choose (Xi, t1) ∈ K1. Let n2 = min
(Xi,t)∈A1

|(Xi, t)|

where A1 = A\K1 and K2 = {(Xi, t) | |(Xi, t)| = n2}. Choose (Xi, t2) ∈ K2. Pro-

ceeding in this way, we obtain the sets (Xi, t1), (Xi, t2), . . . , (Xi, tk), . . . and positive

integers n1, n2, . . . , nk, . . . such that nk = min
(Xi,t)∈Ak

|(Xi, t)| where Ak = A\
⋃k−1
l=1 Kl

and (Xi, tk) ∈ Kk, where Kk = {(Xi, t) | |(Xi, t)| = nk} for all k ≥ 2. Clearly,

n1 < n2 < ... < nk < ....

Next, we let B = {(Xi, tj) | j ≥ 1}. Then |(Xi, tj)| < |(Xi, tj+1)| for all

j ≥ 1. Hence there exists a surjection γj : (Xi, tj) → (Xi, tj−1) for all j ≥ 2. Let

γ =
⋃
j≥2

γj . Then γ is a surjection from
⋃
C∈B

C \ (Xi, t1) to
⋃
C∈B

C. Next, define a

function α by

xα =


xγ if x ∈

⋃
C∈B

C \ (Xi, t1),

x otherwise.
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Clearly, α belongs to TE(X,P) and α is onto. Since (Xi, t1)α = (Xi, t1) = (Xi, t2)α,

α is not one-to-one. Then α is onto but not one-to-one. It is clear that for any

(x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα. By Theorem 3.1.25,

α is a right magnifying element.

3.2 Magnifying elements in PE(X,P)

Recall that, for an equivalence relation E on a nonempty set X,

[x]E = {y ∈ X | (x, y) ∈ E} denotes the equivalence class of an element x ∈ X

determined by E, and we set X/E = {[x]E | x ∈ X}. Let P = {Xi | i ∈ Λ} be a

partition of X = {xj | j ∈ Λ′}. Put (Xi, xj) = Xi ∩ [xj]E for i ∈ Λ and j ∈ Λ′. The

semigroup PE(X,P) = PE(X) ∩ P (X,P), i.e.,

PE(X,P) = {α ∈ PE(X) | Xiα ⊆ Xi for all i ∈ Λ},

which is a semigroup under the composition of functions. A function α ∈ PE(X,P)

is called a left (right) magnifying element if there exists a proper subsetM of PE(X,P)

such that αM = PE(X,P) (Mα = PE(X,P)).

3.2.1 Left magnifying elements in PE(X,P)

In this subsection, we provide the necessary and sufficient conditions for elements in

PE(X,P) to be a left magnifying element and also illustrate the ideas of the main

theorem and lemmas by giving the examples.

Lemma 3.2.1. If α is a left magnifying element in PE(X,P), then α is one-to-one

and dom α = X .

Proof. Assume that α is a left magnifying element in PE(X,P). By definition, there

exists a proper subset M of PE(X,P) such that αM = PE(X,P). Since the identity

map idX on X belongs to PE(X,P), there exists β ∈ M such that αβ = idX . This

implies that α is one-to-one and dom α = X.

However, the converse of Lemma 3.2.1 is not true in general since there exists no

proper subset M of PE(X,P) such that idXM = PE(X,P).

Lemma 3.2.2. Let α be a left magnifying element in PE(X,P). For any x, y ∈ X,
(x, y) ∈ E if and only if (xα, yα) ∈ E.
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Proof. The necessity is obvious. Conversely, assume that α is a left magnifying

element in PE(X,P). By definition, there exists a proper subsetM of PE(X,P) such

that αM = PE(X,P). Since idX ∈ PE(X,P), there exists β ∈ M such that αβ =

idX . Let x, y ∈ X be such that (xα, yα) ∈ E. It follows that x = xidX = xαβ and

y = yidX = yαβ. Therefore, (x, y) = (xαβ, yαβ) ∈ E since β ∈ PE(X,P).

Lemma 3.2.3. If α is a left magnifying element in PE(X,P), then αM = αPE(X,P)

for some proper subset M of PE(X,P).

Proof. Assume that α is a left magnifying element in PE(X,P). By definition, there

exists a proper subset M of PE(X,P) such that αM = PE(X,P). It is clear that

αM ⊆ αPE(X,P) and αPE(X,P) ⊆ PE(X,P) = αM. This shows that αM =

αPE(X,P).

Lemma 3.2.4. If α ∈ PE(X,P) is bijective on X , then α is not a left magnifying

element.

Proof. Assume that α ∈ PE(X,P) is bijective on X . So α−1 is also bijective on

X . Suppose to the contrary that α is a left magnifying element. By definition, there

exists a proper subset M of PE(X,P) such that αM = PE(X,P). By Lemma 3.2.3,

we have αM = αPE(X,P). Then M = α−1αM = α−1αPE(X,P) = PE(X,P),

which is a contradiction. Therefore, α is not a left magnifying element.

The next corollary follows by Lemma 3.2.1, Lemma 3.2.2 and Lemma 3.2.4.

Corollary 3.2.5. If α is a left magnifying element in PE(X,P), then α is one-to-one

but not onto, dom α = X and for any x, y ∈ X, (xα, yα) ∈ E implies (x, y) ∈ E.

Lemma 3.2.6. Let P = {Xi | i ∈ Λ} be a partition on a set X. If Xi ∈ P is finite

for all i ∈ Λ, then there exists no left magnifying element in PE(X,P).

Proof. Suppose to the contrary that there is a left magnifying element α in PE(X,P).

By assumption and Lemma 3.2.1, we have α|Xi
is bijective for all i ∈ Λ. Since

dom α = X and Xα =
( ⋃
i∈Λ

Xi

)
α =

⋃
i∈Λ

Xiα =
⋃
i∈Λ

Xi = X, α is onto which is a

contradiction.

It is noticeable in Lemma 3.2.6 that if a left magnifying element exists in PE(X,P),

then Xi ∈ P is infinite for some i ∈ Λ. However, the converse of this statement is

not true in general. It is illustrated by the following counterexample.
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Example 3.2.7. Let X = Z and P = {Xi | i ∈ N ∪ {0}} be a partition on X

where X0 = {±(2n − 1), | n ∈ N} ∪ {0}, that is, X0 = {0,±1,±3,±5, . . .} and

Xi = {±2i} for all i ∈ N, that is, X1 = {±2}, X2 = {±4}, X3 = {±6}, . . . .
Define a relation E on X by E =

∞⋃
j=1

(Aj × Aj) where A1 = {0,±1,±2} and

Aj = {±(2j − 1),±2j} for all possitive integers j ≥ 2, that is, A2 = {±3,±4},
A3 = {±5,±6}, A4 = {±7,±8}, . . . . Clearly, X0 ∈ P is infinite and E is an

equivalence relation on X . We can see that every injection on X in PE(X,P) is

surjective on X. Therefore, there exists no left magnifying element in PE(X,P).

Corollary 3.2.8. If X is a finite set, then PE(X,P) has no left magnifying element.

Lemma 3.2.9. Let P = {Xi | i ∈ Λ} be a partition on a set X such that Xi is infinite

for some i ∈ Λ. If α ∈ PE(X,P) is one-to-one but not onto, dom α = X and for any

x, y ∈ X , (xα, yα) ∈ E implies (x, y) ∈ E, then α is a left magnifying element.

Proof. Let α ∈ PE(X,P) be one-to-one but not onto, dom α = X and for x, y ∈ X,
if (xα, yα) ∈ E, then (x, y) ∈ E andM = {β ∈ PE(X,P) | dom β ⊆ ran α}. Since

α is not onto, ran α 6= X and hence dom β 6= X for all β ∈ M. So M is a proper

subset of PE(X,P) since idX does not belong to M. To show that αM = PE(X,P),

let γ ∈ PE(X,P). For each x ∈ (domγ)α, there exists yx ∈ dom γ such that

yxα = x.Define β ∈ P (X) by xβ = yxγ if x ∈ (domγ)α. To claim that β ∈ PE(X),

let a, b ∈ (domγ)α such that (a, b) ∈ E. Then there exist ya, yb ∈ dom γ such that

yaα = a and ybα = b. By assumption, (ya, yb) ∈ E. Then (aβ, bβ) = (yaγ, ybγ) ∈ E
since γ ∈ PE(X,P). Next, let x ∈ (dom γ)α be such that x ∈ Xi for some Xi ∈ P .
Then there exists yx ∈ dom γ and yx ∈ Xi such that yxα = x. Thus xβ = yxγ ∈ Xi

since γ ∈ PE(X,P). Thus β ∈ PE(X,P). Clearly, dom β ⊆ ran α. So β ∈ M.

Since yxαα = xα and α is one-to-one, yxα = x. For any x ∈ dom γ, we have

xαβ = yxαγ = xγ. This shows that αβ = γ, which implies Mα = TE(X,P).

Therefore, α is a left magnifying element.

The next examples illustrates the ideas of the proof given in Lemma 3.2.9.

Example 3.2.10. Let X = N and P = {{1}, {2}, {3, 4, 5}, {6, 7, 8, 9, . . .}} be a

partition on X. Define a relation E on X by

(x, y) ∈ E if and only if bx
3
c = by

3
c.
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Clearly,E is an equivalence relation onX andX/E = {{1, 2}, {3, 4, 5}, {6, 7, 8}, . . .}.
It is easy to see that {6, 7, 8, 9, . . .} ∈ P is infinite. Let α ∈ PE(X,P) be defined by

xα =

x if x ≤ 5,

x+ 3 if x > 5.

For convenience, we write α as

α =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 5 9 10 11 12 13 14 15 16 17 18 · · ·

)
.

It is obvious that α is one-to-one but not onto, dom α = X and for any x, y ∈ X , if

(xα, yα) ∈ E, then (x, y) ∈ E. By Lemma 3.2.9, the function α is a left magnifying

element. LetM =
{
β ∈ PE(X,P) | dom β ⊆ N\{6, 7, 8}

}
and let γ be any function

in PE(X,P). Then there exists an element β ∈ M such that αβ = γ. Consider the

element γ ∈ PE(X,P), which is defined by

xγ =

x if x ≤ 4,

x− 3 if x > 8.

For convenience, we write γ as

γ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 − − − − 6 7 8 9 10 11 12 · · ·

)
.

We illustrate the ideas by considering 9, 10 ∈ dom γ. Hence 12, 13 ∈ (dom γ)α such

that y12 = 9 and y13 = 10. Therefore, 12β = y12γ = 9γ = 6 and 13β = y13γ =

10γ = 7. To get the desired result, define a function β in PE(X,P) by

xβ =

x if x ≤ 4,

x− 6 if x > 11.

For convenience, we write β as

β =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 − − − − − − − 6 7 8 9 · · ·

)
.

Clearly, β ∈M and we have

αβ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 5 9 10 11 12 13 14 15 16 17 18 · · ·

)
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(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 − − − − − − − 6 7 8 9 · · ·

)
=

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 − − − − 6 7 8 9 10 11 12 · · ·

)
= γ.

Theorem 3.2.11. Let P = {Xi | i ∈ Λ} be a partition on a set X such that Xi is

infinite for some i ∈ Λ. A function α ∈ PE(X,P) is a left magnifying element if and

only if α is one-to-one but not onto, dom α = X and for any x, y ∈ X , (xα, yα) ∈ E
implies (x, y) ∈ E.

Proof. It follows by Corollary 3.2.5 and Lemma 3.2.9.

Theorem 3.2.12. Let P = {Xi | i ∈ Λ} be a partition and E be an equivalence

relation on a set X such that for each x ∈ X, there is exactly one Xi ∈ P with

[x]E ⊆ Xi. There exists a left magnifying element in PE(X,P) if and only if at least

one element of P is infinite.

Proof. The necessity is obtained by Lemma 3.2.6. On the other hand, suppose that

there exists Xi ∈ P such that Xi is infinite.

Case 1: There exists t ∈ Xi such that (Xi, t) is infinite. Then there is a proper subset

A of (Xi, t) such that |A| = |(Xi, t)| = |(Xi, t) \ A|. So there is a bijection γ from

(Xi, t) to A. Define a function α by

xα =

xγ if x ∈ (Xi, t),

x otherwise.

Clearly, α ∈ PE(X,P) and α is one-to-one. Hence ran α ⊆ X \ ((Xi, t) \ A) 6= X.

Then α is one-to-one but not onto. It is clear that dom α = X and for any x, y ∈ X ,

(xα, yα) ∈ E implies (x, y) ∈ E.By Theorem 3.2.11, α is a left magnifying element.

Case 2: (Xi, t) is finite for all t ∈ X.
Case 2.1: There exists n ∈ N such that K = {(Xi, t) | t ∈ Xi and |(Xi, t)| = n}

is infinite. Then there exists a proper subsetK ′ ofK such that |K ′| = |K| = |K\K ′|.
There is a bijection λ from K to K ′. So |A| = |Aλ| = n for all A ∈ K. Hence for

all A ∈ K, there exists a bijection ηA from A to Aλ. Let η =
⋃
A∈K

ηA. Then η is a

bijection from
⋃
A∈K

A to
⋃
A∈K′

A. Define a function α by

xα =


xη if x ∈

⋃
A∈K

A,

x otherwise.
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Clearly, α ∈ PE(X,P) and α is one-to-one. Since ran α = X \
⋃

A∈K\K′

A 6= X, α

is not onto. Then α is one-to-one but not onto. It is clear that dom α = X and for

any x, y ∈ X , (xα, yα) ∈ E implies (x, y) ∈ E. By Theorem 3.2.11, α is a left

magnifying element.

Case 2.2: For all n ∈ N, the set K = {(Xi, t) | t ∈ Xi and |(Xi, t)| = n} is finite.

Then for each t ∈ Xi, there exists t′ ∈ Xi such that |(Xi, t)| < |(Xi, t
′)|. Let

A = {(Xi, t) | [t]E ⊆ Xi}. In this case, A is an infinite set. Let n1 = min
(Xi,t)∈A

|(Xi, t)|

andK1 = {(Xi, t) | |(Xi, t)| = n1}. Choose (Xi, t1) ∈ K1. Let n2 = min
(Xi,t)∈A1

|(Xi, t)|

where A1 = A\K1 and K2 = {(Xi, t) | |(Xi, t)| = n2}. Choose (Xi, t2) ∈ K2. Pro-

ceeding in this way, we obtain the sets (Xi, t1), (Xi, t2), . . . , (Xi, tk), . . . and positive

integers n1, n2, . . . , nk, . . . such that nk = min
(Xi,t)∈Ak

|(Xi, t)| where Ak = A\
⋃k−1
l=1 Kl

and (Xi, tk) ∈ Kk, where Kk = {(Xi, t) | |(Xi, t)| = nk} for all k ≥ 2. Clearly,

n1 < n2 < ... < nk < ....

Next, we let B = {(Xi, tj) | j ≥ 1}. Then |(Xi, tj)| < |(Xi, tj+1)| for all j ≥ 1.

Hence there exists an injection γj : (Xi, tj) → (Xi, tj+1). Let γ =
⋃
j≥1

γj . Then γ is

one-to-one on
⋃
C∈B

C. Next, define a function α by

xα =


xγ if x ∈

⋃
C∈B

C,

x otherwise.

Clearly, α ∈ PE(X,P) and α is one-to-one. Since ran α ⊆ X \ (Xi, t1) 6= X , α

is not onto. Then α is one-to-one but not onto. It is clear that dom α = X and for

any x, y ∈ X , (xα, yα) ∈ E implies (x, y) ∈ E. By Theorem 3.2.11 , α is a left

magnifying element.

3.2.2 Right magnifying elements in PE(X,P)

In this subsection, we provide the necessary and sufficient conditions for elements in

PE(X,P) to be a right magnifying element and also illustrste the ideas of the main

theorem and lemmas by giving the examples.

Lemma 3.2.13. If α is a right magnifying element in PE(X,P), then α is onto.

Proof. Assume that α is a right magnifying element in PE(X,P). By definition,

there exists a proper subset M of PE(X,P) such that Mα = PE(X,P). Since the
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identity map idX onX belongs to PE(X,P), there exists β ∈M such that βα = idX .

This implies that α is onto.

Lemma 3.2.14. Let α be a right magnifying element in PE(X,P). For any (x, y) ∈ E,
there exists (a, b) ∈ E such that x = aα and y = bα.

Proof. Assume that α is a right magnifying element of PE(X,P). By definition,

there exists a proper subset M of PE(X,P) such that Mα = PE(X,P). Since

idX ∈ PE(X,P), there exists β ∈M such that βα = idX . Let x, y ∈ X be such that

(x, y) ∈ E. It follows that x = xidX = xβα and y = yidX = yβα. Choose a = xβ

and b = yβ. Clearly, (a, b) = (xβ, yβ) ∈ E since β ∈ PE(X,P). Therefore, the

proof is completed.

Lemma 3.2.15. If α ∈ PE(X) is a right magnifying element, thenMα = PE(X,P)α

for some proper subset M of PE(X,P).

Proof. Assume that α is a right magnifying element in PE(X,P). By definition,

there exists a proper subset M of PE(X,P) such that Mα = PE(X,P). It is clear

that Mα ⊆ PE(X,P)α and PE(X,P)α ⊆ PE(X,P) = Mα. This shows that

Mα = PE(X,P)α.

Lemma 3.2.16. If α ∈ PE(X,P) is bijective on X , then α is not a right magnifying

element.

Proof. Assume that α ∈ PE(X,P) is bijective on X . So α−1 is also bijective on X .

Suppose to the contrary that α is a right magnifying element. By definition, there

is a proper subset M of PE(X,P) such that Mα = PE(X,P). By Lemma 3.2.15,

we have Mα = PE(X,P)α. Then M = Mαα−1 = PE(X,P)αα−1 = PE(X,P),

which is a contradiction. Therefore, α is not a right magnifying element.

The next corollary follows by Lemma 3.2.13, Lemma 3.2.14 and Lemma 3.2.16.

Corollary 3.2.17. If α is a right magnifying element in PE(X,P) and dom α = X ,

then α is onto but not one-to-one and for any (x, y) ∈ E, there exists (a, b) ∈ E such

that x = aα and y = bα.

Lemma 3.2.18. Let P = {Xi | i ∈ Λ} be a partition on a set X. If Xi is finite for all

i ∈ Λ, then there exists no right magnifying element in PE(X,P).

Proof. Suppose to the contrary that there is a right magnifying element α ∈ PE(X,P).

By Lemma 3.2.13, α is onto and hence dom α = X since Xiα ⊆ Xi and Xi is finite
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for all i ∈ Λ. So α|Xi
is onto Xi and hence α|Xi

is bijective on Xi. Since Xα =( ⋃
i∈Λ

Xi

)
α =

⋃
i∈Λ

Xiα = X, α is one-to-one on X which is a contradiction.

It is noticeable in Lemma 3.2.18 that if a right magnifying element exists in

PE(X,P), thenXi is infinite for some i ∈ Λ.However, the converse of this statement

is not true in general. It is illustrated by a following counterexample.

Example 3.2.19. Let X = Z and P = {Xi | i ∈ N∪{0}} be a partition on X where

X0 = {0,−1,−2, . . .} and Xi = {2i − 1, 2i} for all i ∈ N, that is, X1 = {1, 2},
X2 = {3, 4}, X3 = {5, 6}, . . . .Define a relationE onX byE =

∞⋃
j=1

(Aj×Aj) where

A1 = {0,±1,±2} andAj = {±(2j−1),±2j} for all possitive integers j ≥ 2, that is,

A2 = {±3,±4}, A3 = {±5,±6}, X4 = {±7,±8}, . . . . It is easy to verify that every

surjection in PE(X,P) is bijctive on X. Therefore, there exists no right magnifying

element in PE(X,P).

Corollary 3.2.20. IfX is a finite set, then PE(X,P) has no right magnifying element.

Lemma 3.2.21. Let P = {Xi | i ∈ Λ} be a partition on a set X such that Xi is

infinite for some i ∈ Λ. If α ∈ PE(X,P) is onto but not one-to-one, dom α = X and

for any (x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα, then α is a

right magnifying element.

Proof. Assume that α ∈ PE(X,P) is onto but not one-to-one, dom α = X and

for any (x, y) ∈ E, there exists (a, b) ∈ E such that x = aα and y = bα. Let

M = {β ∈ PE(X,P) | β is not onto}. Clearly, M is a proper subset of TE(X,P)

since the identity map idX on X does not belong to M. Let γ be a function in

PE(X,P). Since α is onto, for each x ∈ dom γ such that x ∈ Xi for some Xi ∈ P ,

there exists yx ∈ Xi such that yxα = xγ (if x1γ = x2γ, then choose yx1 = yx2 and

if (aγ, aγ) ∈ E, then choose (ya, ya) ∈ E). Define β ∈ P (X) by xβ = yx for

all x ∈ dom γ. To show that β ∈ PE(X,P), let a, b ∈ X be such that (a, b) ∈ E.

Since γ ∈ PE(X,P), (aγ, bγ) ∈ E. By assumption, we can choose (ya, yb) ∈ E

such that yaα = aγ and ybα = bγ. Then (aβ, bβ) = (ya, yb) ∈ E. Since α is not

one-to-one, there are distinct elements x, y ∈ X such that xα = yα. Thus at least

one of x and y does not belong to ran β. So β ∈ M. For all x ∈ dom γ, we see that

xβα = yxα = xγ. Therefore, α is a right magnifying element.

Example 3.2.22. Let X = N and P = {{1, 3, 5, 7, 9, . . .}, {2, 4, 6, 8, 10, . . .}} be a

partition on X. Define a relation E on X by
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(x, y) ∈ E if and only if bx
3
c = by

3
c.

Clearly,E is an equivalence relation onX andX/E = {{1, 2}, {3, 4, 5}, {6, 7, 8}, . . .}.
We now see that {1, 3, 5, 7, 9, . . .} ∈ P is infinite. Let α ∈ PE(X,P) be defined by

xα =

x if x ≤ 8,

x− 6 if x > 8.

For convenience, we write α as

α =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 5 6 7 8 3 4 5 6 7 8 9 · · ·

)
.

It is obvious that α is onto but not one-to-one, dom α = X and for any (x, y) ∈ E,
there exists (a, b) ∈ E such that x = aα and y = bα. By Lemma 3.2.21, the function

α is a right magnifying element. Let M = {β ∈ PE(X,P) | β is not onto} and let γ

be any function in PE(X,P). Then there exists an element β ∈M such that βα = γ.

Consider the element γ ∈ PE(X,P), which is defined by

xγ =

x if x ≤ 5,

x− 12 if x ≥ 15.

For convenience, we write γ as

γ =

(
1 2 3 4 5 6 7 · · · 13 14 15 16 17 18 19 · · ·
1 2 3 4 5 − − · · · − − 3 4 5 6 7 · · ·

)
.

We illustrate the idea by considering 3, 4, 15, 16 ∈ dom γ. It is easy to see that

3γ = 15γ = 3 and 4γ = 16γ = 4. Now we have 2 choices of each y3 and y4, i.e.,

y3 = 3 or 9 and y4 = 4 or 10. If we follow the proof of Lemma 3.2.21, then we

choose y3 = y15 = 9. Since (3γ, 4γ) ∈ E, we must choose y4 = y16 = 10. To get the

desired result, define a function β in PE(X,P) by 3β = 15β = 9, 4β = 16β = 10,

5β = 17β = 11 and

xβ =

x if x ≤ 2,

x− 6 if x ≥ 18.

For convenience, we write β as

β =

(
1 2 3 4 5 6 · · · 14 15 16 17 18 19 20 21 · · ·
1 2 9 10 11 − · · · − 9 10 11 12 13 14 15 · · ·

)
.
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So β ∈M and we have

βα =

(
1 2 3 4 5 6 · · · 14 15 16 17 18 19 20 21 · · ·
1 2 9 10 11 − · · · − 9 10 11 12 13 14 15 · · ·

)
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 5 6 7 8 3 4 5 6 7 8 9 · · ·

)
=

(
1 2 3 4 5 6 7 · · · 13 14 15 16 17 18 19 · · ·
1 2 3 4 5 − − · · · − − 3 4 5 6 7 · · ·

)
= γ.

Lemma 3.2.23. LetP = {Xi | i ∈ Λ} be a partition on a setX such thatXi is infinite

for some i ∈ Λ. If α ∈ PE(X,P) is onto, dom α 6= X and for any (x, y) ∈ E, there

exists (a, b) ∈ E such that x = aα and y = bα, then α is a right magnifying element.

Proof. Assume that α ∈ PE(X,P) is onto, dom α 6= X and for any (x, y) ∈ E, there

is (a, b) ∈ E such that x = aα and y = bα. LetM = {β ∈ PE(X,P) | β is not onto}.
Clearly, M is a proper subset of TE(X,P) since the identity map idX on X does not

belong to M. Let γ be a function in PE(X,P). Since α is onto, for each x ∈ dom γ,

there exists yx ∈ X such that yxα = xγ (if x1γ = x2γ, we must choose yx1 = yx2

and if (aγ, bγ) ∈ E, we must choose (ya, yb) ∈ E). Define a function β ∈ P (X)

by xβ = yx for all x ∈ dom γ. To show that β ∈ PE(X), let a, b ∈ dom γ be

such that (a, b) ∈ E. Then (aγ, bγ) ∈ E since γ ∈ PE(X,P). By assumption, there

exists (ya, yb) ∈ E such that yaα = aγ and ybα = bγ. Let a ∈ dom γ be such that

a ∈ Xi and hence aγ ∈ Xi. Then there exists ya ∈ Xi such that yaγα = aγ. So

aβ = ya ∈ Xi. Since ran β ⊆ dom α 6= X, β is not onto. Thus β ∈ M. For all

x ∈ dom γ, we see that xβα = yxα = xγ. This shows that βα = γ, which implies

Mα = PE(X,P). Therefore, α is a right magnifying element.

Example 3.2.24. Let X = N and P = {{1, 3, 5, 7, 9, . . .}, {2, 4, 6, 8, 10, . . .}} be a

partition on X. Define a relation E on X by

(x, y) ∈ E if and only if bx
3
c = by

3
c.

Clearly,E is an equivalence relation onX andX/E = {{1, 2}, {3, 4, 5}, {6, 7, 8}, . . .}.
We now see that {1, 3, 5, 7, 9, . . .} ∈ P is infinite. Let α be a function defined by

xα =

x if x ≤ 5,

x− 6 if x ≥ 9.
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For convenience, we write α as

α =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 5 − − − 3 4 5 6 7 8 9 · · ·

)
.

It is obvious that α ∈ PE(X,P) is onto, dom α 6= X, and and for any (x, y) ∈ E,
there exists (a, b) ∈ E such that x = aα and y = bα. By Lemma 3.2.23, the function

α is a right magnifying element. Let M = {β ∈ PE(X,P) | β is not onto} and let γ

be any function in PE(X,P). Then there exists β ∈M such that βα = γ.

We will illustrate the ideas by considering the element γ ∈ PE(X,P), which is

defined by xγ = x for all odd positive integers. For convenience, we write γ as

γ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 − 3 − 5 − 7 − 9 − 11 − 13 − 15 · · ·

)
.

To get the desired result, define a function β in PE(X,P) by 1β = 1 and xβ = x+ 6

for all odd positive integers. For convenience, we write β as

β =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 − 9 − 11 − 13 − 15 − 17 − 19 − 21 · · ·

)
.

So β ∈M and we have

βα =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 − 9 − 11 − 13 − 15 − 17 − 19 − 21 · · ·

)
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 5 − − − 3 4 5 6 7 8 9 · · ·

)
=

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 − 3 − 5 − 7 − 9 − 11 − 13 − 15 · · ·

)
= γ.

The next example shows that α is a right magnifying element such that dom α 6= X

and α is bijective.

Example 3.2.25. Let X = N and P = {X1, X2} be a partition on X such that

X1 = {1, 3, 5, 7, 9, . . .} and X2 = {2, 4, 6, 8, 10, . . .}. Define a relation E on X by

(x, y) ∈ E if and only if bx
3
c = by

3
c.

Clearly,E is an equivalence relation onX andX/E = {{1, 2}, {3, 4, 5}, {6, 7, 8}, . . .}.
We now see that X1 ∈ P is infinite. Let α be a function defined by 3α = 1, 4α = 2

and

xα =

x if |(X1, x)| = 1,

x− 6 if |(X1, x)| = 2.
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for all x > 5. For convenience, we write α as

α =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
− − 1 2 − 6 7 8 3 4 5 12 13 14 9 · · ·

)
.

It is obvious that α ∈ PE(X,P) is bijective, dom α 6= X, and for any (x, y) ∈ E,
there exists (a, b) ∈ E such that x = aα and y = bα. By Lemma 3.2.23, the function

α is a right magnifying element. Let M = {β ∈ PE(X,P) | β is not onto} and let γ

be any function in PE(X,P). Then there exists β ∈M such that βα = γ.

We will illustrate the ideas by considering the element γ ∈ PE(X,P), which is

defined by xγ = x if x ≤ 5 and xγ = x− 6 if x ≥ 12. For convenience, we write γ

as

γ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 5 − − − − − − 6 7 8 9 · · ·

)
.

To get the desired result, define a function β ∈ PE(X,P) by xβ = x+ 2 if x = 1, 2,

xβ = x+ 6 if x = 3, 4, 5 and

xβ =

x if |(X1, x)| = 2,

x− 6 if |(X1, x)| = 1.

for all x > 11. For convenience, we write β as

β =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
3 4 9 10 11 − − − − − − 6 7 8 15 · · ·

)
.

So β ∈M and we have

βα =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
3 4 9 10 11 − − − − − − 6 7 8 15 · · ·

)
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
− − 1 2 − 6 7 8 3 4 5 12 13 14 9 · · ·

)
=

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
1 2 3 4 5 − − − − − − 6 7 8 9 · · ·

)
= γ.

Theorem 3.2.26. Let E be an equivalence relation on a set X and P = {Xi | i ∈ Λ}
be a partition on X such that Xi is infinite for some i ∈ Λ. A function α ∈ PE(X,P)

is a right magnifying element if and only if α is onto, for any (x, y) ∈ E, there exists

(a, b) ∈ E such that x = aα and y = bα and either



47

1. dom α 6= X or

2. dom α = X and α is not one-to-one.

Proof. If follows by Corollary 3.2.17, Lemma 3.2.21 and Lemma 3.2.23.

Theorem 3.2.27. Let P = {Xi | i ∈ Λ} be a partition and E be an equivalence

relation on a set X such that for each x ∈ X, there is exactly one Xi ∈ P with

[x]E ⊆ Xi. There exists a right magnifying element in PE(X,P) if and only if at

least one element of P is infinite.

Proof. The necessity is obtained by Lemma 3.2.18. On the other hand, suppose that

there exists Xi ∈ P such that Xi is infinite.

Case 1: There exists t ∈ Xi such that (Xi, t) is infinite. Then there is a proper subset

A of (Xi, t) such that |A| = |(Xi, t)| = |(Xi, t) \ A|. So there is a bijective function

γ from A to (Xi, t). Define a function α ∈ PE(X,P) by

xα =

xγ if x ∈ A,

x if x ∈ X \ (Xi, t).

Clearly, dom α 6= X, α is onto and for any (x, y) ∈ E, there exists (a, b) ∈ E such

that x = aα and y = bα. By Theorem 3.2.26, α is a right magnifying element.

Case 2: (Xi, t) is finite for all t ∈ Xi.

Case 2.1: There exists n ∈ N such that K = {(Xi, t) | t ∈ Xi and |(Xi, t)| = n}
is infinite. Then there exists a proper subsetK ′ ofK such that |K ′| = |K| = |K\K ′|.
There is a bijective function λ from K ′ to K. So |A| = |Aλ| = n for all A ∈ K ′.

Hence for all A ∈ K ′, there exists a bijection γA from A to Aλ. Let γ =
⋃
A∈K′

γA.

Then γ is a bijection from
⋃
A∈K′

A to
⋃
A∈K

A. Define a function α ∈ PE(X,P) by

xα =


xγ if x ∈

⋃
A∈K′

A,

x if x 6∈
⋃
A∈K

A.

Clearly, dom α 6= X, α is onto and for any (x, y) ∈ E, there exists (a, b) ∈ E such

that x = aα and y = bα. By Theorem 3.2.26 , α is a right magnifying element.

Case 2.2: For all n ∈ N, the set K = {(Xi, t) | t ∈ Xi and |(Xi, t)| = n} is finite.

Then for each t ∈ Xi, there exists t′ ∈ Xi such that |(Xi, t)| < |(Xi, t
′)|. Let

A = {(Xi, t) | [t]E ⊆ Xi}. In this case, A is an infinite set. Let n1 = min
(Xi,t)∈A

|(Xi, t)|



48

andK1 = {(Xi, t) | |(Xi, t)| = n1}. Choose (Xi, t1) ∈ K1. Let n2 = min
(Xi,t)∈A1

|(Xi, t)|

where A1 = A\K1 and K2 = {(Xi, t) | |(Xi, t)| = n2}. Choose (Xi, t2) ∈ K2. Pro-

ceeding in this way, we obtain the sets (Xi, t1), (Xi, t2), . . . , (Xi, tk), . . . and positive

integers n1, n2, . . . , nk, . . . such that nk = min
(Xi,t)∈Ak

|(Xi, t)| where Ak = A\
⋃k−1
l=1 Kl

and (Xi, tk) ∈ Kk, where Kk = {(Xi, t) | |(Xi, t)| = nk} for all k ≥ 2. Clearly,

n1 < n2 < ... < nk < ....

Next, we let B = {(Xi, tj) | j ≥ 1}. Then |(Xi, tj)| < |(Xi, tj+1)| for all

j ≥ 1. Hence there exists a surjection γj : (Xi, tj) → (Xi, tj−1) for all j ≥ 2. Let

γ =
⋃
j≥2

γj . Then γ is a surjection from
⋃
C∈B

C \ (Xi, t1) to
⋃
C∈B

C. Next, define a

function α ∈ PE(X,P) by

xα =


xγ if x ∈

⋃
C∈B

C \ (Xi, t1),

x if x ∈ X \
⋃
C∈B

C.

Clearly, dom α 6= X, α is a onto and for any (x, y) ∈ E, there exists (a, b) ∈ E such

that x = aα and y = bα. By Theorem 3.2.26 , α is a right magnifying element.
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