Please use this identifier to cite or link to this item: http://kb.psu.ac.th/psukb/handle/2016/17164
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRonnason Chinram-
dc.contributor.authorThananya Kaewnoi-
dc.date.accessioned2021-07-24T06:29:14Z-
dc.date.available2021-07-24T06:29:14Z-
dc.date.issued2020-
dc.identifier.urihttp://kb.psu.ac.th/psukb/handle/2016/17164-
dc.descriptionThesis (M.Sc., Mathematics)--Prince of Songkla University, 2020en_US
dc.description.abstractAn element a of a semigroup S is called a left (right) magnifying element if there exists a proper subset M of S such that aM = S (Ma = S). Let T(X) and P(X) denote the semigroup of the full and partial transformations on a nonempty set X, respectively. For an equivalence relation E and a partition P = {X; | i E A} on the set X, let TE(X) = {a e T(X)(x,y) E E implies (xa, ya) € E}, PE(X) = {a e P(X)(x,y) € E implies (2a, ya) € E}, T(X,P) = {a ET(X) Xịa CX, for all i E A}, and P(X,P) = {a e P(X) Xịa CX; for all i E A} Then TE(X), PE(X), T(X, P) and P(X, P) are semigroups under the composition of functions, as well. The main purpose of this thesis is to provide the properties of magnifying elements in the semigroups TE(X), PE(X), TE(X,P) = TE(X) n T(X,P) and PE(X,P) = PE(X) n P(X,P). Futhermore, the necessary and sufficient conditions for elements in these semigroups to be a left or right magnifying element are established.-
dc.language.isoenen_US
dc.publisherPrince of Songkla Universityen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Thailand*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/th/*
dc.subjectSemigroupsen_US
dc.titleMagnifying Elements in the Generalized Semigroups of Transformations Preserving an Equivalence Relationen_US
dc.title.alternativeสมาชิกขยายในกึ่งกรุปการแปลงวางนัยทั่วไปคงสภาพความสัมพันธ์สมมูลen_US
dc.typeThesisen_US
dc.contributor.departmentFaculty of Science (Mathemetics and Statistics)-
dc.contributor.departmentคณะวิทยาศาสตร์ ภาควิชาคณิตศาสตร์และสถิติ-
Appears in Collections:322 Thesis

Files in This Item:
File Description SizeFormat 
440718.pdf672.44 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons