สารบัญเรื่อง

	หน้า
บทคัดย่อ	I
กิตติกรรมประกาศ	Ш
สารบัญคาราง	VII
สารบัญภาพ	VIII
1. บทนำ	1
2. ลักษณะทางธรณีวิทยาที่เกี่ยวข้องกับพื้นที่ศึกษา	4
2.1 ลักษณะธรณีวิทยาของหินแกรนิตในคาบสมุทรไทย	4
2.2 ลักษณะทางภูมิศาสตร์ทั่วไปของอำเภอร่อนพิบูลย์	5
2.2.1 ลักษณะภูมิอากาศ	5
2.2.2 ลักษณะทางธรณีวิทยาของอำเภอร่อนพิบูลย์	5
2.3 การทำเหมืองแร่ในพื้นที่อำเภอร่อนพิบูลย์	7
2.3.1 พื้นที่ทำเหมืองแร่	7
2.3.2 โรงแต่งแร่	7
2.4 สมบัติทางเคมีของสารหนู (As)	8
2.4.1 ขบวนการออกซิเดชั่นและรีดักชั่น	8
2.5 พื้นที่วิจัย	9
3. ระเบียบวิธีธรณีฟิสิกส์	12
3.1 การวัดคำสภาพด้านทานใฟฟ้า	12
3.1.1 กุณสมบัติทางไฟฟ้าของหิน	12
3.1.2 คุณสมบัติทางไฟฟ้าของดินที่ปนเปื้อนสารหนู	13
3.1.3 วิธีการวัดค่าสภาพด้านทานไฟฟ้า	14
3.1.4 ข้อเค่นของวิธี resistivity pseudo-section ในงานวิจัยนี้	17
3.1.5 การจัดรูปแบบขบวนขั้วไฟฟ้า	17
3.1.6 Pole-Pole array	18
3.1.7 การออกแบบการวัดค่าสภาพด้านทานไฟฟ้าโดยใช้ Pole-Pole array	19
3.1.8 การประมวลผลข้อมูล	21
3.1.9 ผลและวิเคราะห์	23
3.1.9.1 Pseudodepth control	23
3.1.9.2 Resistivity pseudosection results	23
3.2 วิธีเรคาร์ทยั่งลึก (Ground Penetrating Radar method)	26
3.2.1 หลักการพื้นฐานของวิธีเรคาร์หยั่งล็ก	26
3.2.1.1 คุณสมบัติของคลื่นแม่เหล็กไพ่ฟ้า (Electromagnetic properties)	26
3.2.1.2 การแผ่และการลดทอนของกลื่นแม่เหล็กไฟฟ้า	28

	หน้า
3.2. 🗗 การอดทอน (Attenuation)	29
3.2.1.4 ความเร็วคลื่นแม่เหล็กไฟฟ้า	29
3.2.1.5 การสะท้อนและการหักเห (Reflection and refraction)	30
3.2.1.6 การหาค่ำความเร็วคลื่นและความลีกของตัวสะท้อนคลื่น	31
3.2.2 ระบบของเครื่อง GPR	32
3.2.3 รูปแบบของการสำรวจด้วย GPR	33
3.2.4 การเก็บข้อมูล	34
3.2.5 การประมวลผลข้อมูล (Data processing)	35
3.2.6 ผลและการวิเคราะห์ (Results and discussions)	36
3.3 ระเบียบวิธีกลื่นไหวสะเทือนชนิดหักเห	40
3.3.1 คุณสมบัติยึคหยุ่นและความเร็วคลื่น	40
3.3.1.1 Hooke's law	40
3.3.1.2 คลื่นยึคหยุ่น (Elastic waves)	40
3.3.1.3 ความเร็วของคลื่นในหิน	41
3.3.1.4 Velocity dispersion and attenuation of Seismic waves	43
3.3.1.5 การพัณหและการสะท้อน	44
3.3.1.6 Time – distance graph	45
3.3.2 Field survey	48
3.3.3 Data processing and interpretation	51
3.3.3.1 Delay time method	51
3.3.3.2 SIP program for data processing and interpretation	52
3.3.4 ผณเละวิเคราะห์	53
3.4 ระเบียบวิธีวัดค่าสนามโน้มถ่วง	56
3.4.1 ทฤษฎีพื้นฐาน	56
3.4.1.1 กฎแห่งแรงโน้มถ่วง	56
3.4.1.2 ความเร่งโน้มถ่วง	56
3.4.1.3 ความหนาแน่นของทิน	59
3.4.1.4 หน่วยของความเร่ง	59
3.4.1.5 การปรับแก ้ข้อมูด	59
3.4.1.5.1 การปรับแก้คริฟท์ (drift correction)	59
3.4.1.5.2 การปรับแก้ละคิจูค (Latitude correction)	60
3.4.1.5.3 การปรับแก้ฟรีแอร์ (Free – air correction)	60
3.4.1.5.4 การปรับแก้บูแกร์ (Bouguer Correction)	61
3.4.1.5.5 การปรับแก้ภูมิประเทศ (Terrain correction)	61
3.4.1.5.6 ความโน้มถ่วงผิดปกติบูแกร์ (Bouguer gravity anomaly)	61
3.4.1.6 แบบจำตองของค่าสนามโน้มถ่วงผิดปกติเนื่องจากรอยเลื่อน	61

	หน้า
3.4.2 การวัดค่ ะ สินามโน้มถ่วงและการปรับแก้ข้อมูล	62
3.4.3 ผลและการวิเคราะห์	65
3.5 ระเบียบวิธีวัดศักย์ไฟฟ้าตามธรรมชาติ	74
้ 3.5.1 แหล่งกำเนิดของ SP	74
3.5.1.1 Streaming potential	75
3.5.1.2 ความต่างศักย์การแพร่	77
3.5.1.3 แหล่งกำเนิดอื่นๆ ของ SP	77
3.5.2 การเปลี่ยนแปลงตามเวลาของ SP	77
3.5.3 การวัดค่า SP ในภาคสนาม	78
3.5.4 การประมวลผลข้อมูล	78
3.5.5 ผลและการวิเคราะห์	79
3.6 ระเบียบวิธีวัดคำสภาพรับไว้ได้ทางแม่เหล็ก	81
3.6.1 สภาพรับไว้ได้ทางแม่เหล็กของหิน	81
3.6.1.1 สารแม่เหล็กไดอา	81
3.6.1.2 สารแม่เหล็กพารา	82
3.6.1.3 ชารแม่เหล็กเฟอร์โร	82
3.6.2 การเก็บตัวอย่างและการวัดก่าสภาพรับไว้ได้ทางแม่เหล็ก	83
3.6.3 ผลและการวิเคราะท์	83
4. การแปลความหมายข้อมูลจากหลายวิธีร่วมกัน (Integrated interpretation)	85
4.1 การวิเคราะห์หาโครงสร้างทางธรณีวิทยาภายใต้แนววัด M	85
4.2 ความสัมพันธ์ระหว่างคุณสมบัติทางฟิสิกส์กับการปนเปื้อนสารหนู	88
4.3 ความสัมพันธ์ระหว่างค่าสภาพรับไว้ได้ทางแม่เหล็กกับการปนเปื้อนสารหนู	93
4.4 ความสัมพันธ์ระหว่างโครงสร้างทางธรณีวิทยาภายใต้ผิวดินกับการปนเปื้อนสารหนู	93
5. สรุปและข้อเสนอแนะ	95
บรรณานุกรม	97

สารบัญตาราง

ตาราง	ที่	หน้า
3.1-1	Conductivity of contaminated water and the content of arsenic, as determined	
	from membrane filtering by applying a pressure 2,800x10 ³ Pascal to drive the	
	dissolved ions in feed water to pass trough the membrane	14
3.2-1	Typical relative dielectric permittivity, electrical conductivity, velocity and attenuation	
	of electromagnetic waves as observed in common geological materials at 100 MHz	30
3.3-1	Approximate range of velocities of P-waves for materials found in the earth's crust.	42
3.4-1	Drift correction	64

สารบัญภาพ

รูปที่		หน้า
1-1	Regional setting of Ron Phibun District, showing the major granite province of SE Asia	2
2-1	Geological map of Peninsular Thailand	4
2-2	Simplified geology of the Ron Phibun District	6
2-3	Drainage networks of Ron Phibun District, showing the surface water pH conditions,	
	principal mining localities, dressing plants and potential As contaminant sources	7
2-4	Map of geophysical study in Ron Phibun sub-district	9
2-5	Arsenic contamination in auger water and in soil elution test at 0.3m and 1m depths	10
2-6	Hydrological and geological cross section (A – A')	11
3.1-1	Schematic of membrane filtering	13
3.1-2	Correlation between the conductivity (mS/m) and As content (mg/l)	14
3.1-3	A single current electrode on the surface of a homogeneous ground	15
3.1-4	Outline of four electrodes array for resistivity measurement on the surface	16
3.1-5	Common electrode arrays that are used in resistivity pseusection surveys	17
3.1-6	Pole-Pole array	18
3.1-7	Pole-Pole array for resistivity pseudosection, electrode A, B and N are fixed, electrode M is	
	moved to new positions. The black spots represents the position of determined resistivity	19
3.1-8	Schematic distribution of resistivity pseudo-sections as obtained by Pole-Pole array with	
	measuring positions at 10m intervals	20
3.1-9	Field survey of Pole-Pole resistivity pseudosection	20
3.1-10	Arrangement of model blocks an apparent resistivity datum points of the lower part	
	of the profile M (0-560m)	22
3.1-11	The inverse resistivity model of the lower part of profile M (0 -560m),	
	calculated with 8 iterations	22
3.1-12	The models of the subsurface layer that conducted by the inversion program	
	(a) and 4pole program (c) compare to logging data at the deep well JICA2 (b)	23
3.1-13	The resistivity sections of profile line F – S	25
3.2-1	Refraction and reflection of GPR wave	31

วูปที่	_	หน้า
3.2-2	The symbol S denotes the travel path of a reflected wave. The depth to the reflector (h)	
	can be calculated from the equations related to the travel time (t) of the reflected wave and	
•	antenna offset (x)	31
3.2-3	Diagram showing a) the antenna geometry for a common-offset GPR reflection survey and	
	b) hyperbola pattern shows in a time section as a result from diffraction of EM wave.	
	Tx_n is the transmitting antenna location: Rx_n is the receiving antenna location: x_n is the	
	midpoint between the antenna offset	32
3.2-4	A schematic diagram of the GPR system. The transmitter and receiver antenna are connected	
	to the control unit through optical fibers	33
3.2-5	GPR geometry (a) CMP survey and (b) WARR survey. Tx, is the transmitting antenna	
	location and Rx_a is the receiving antenna location	33
3.2-6	Field survey of common-offset GPR reflection with antenna offset 0.6m	34
3.2-7	Test profile close to the deep well, JICA2 using different antenna frequencies.	
	(a) 50 MHz, (b) 100 MHz and (c) 200 MHz	35
3.2-8	GPR-section of the main profile M. The calculation of depth a constant velocity of	
	106.78 m/µs has been used. A dashed line is represented the groundwater table	36
3.2-9	A GPR-section of a perpendicular profile that crosses the profile M at a distance 305 m from	
	JICA15 (a). The resistivity section (b), created from the resistivity data along a part of the	
	same profile (R-G)	37
3.2-10	A GPR-section (a) of a perpendicular profile (Q-K) that crosses the profile M at a distance	
	410 m from JICA15. For comparison with the resistivity pseusection (b), created from the	
	resistivity data along a part of the same profile (O-J) is shown below	38
3.2-11	A GPR-section of a profile that perpendicularly crosses the profile M at a distance 530 m	
	(a). For comparison a resistivity (b), which was created from resistivity data along a part of the	
	same profile (R-F) is shown below	38
3.3-1	Refraction and reflection of P-waves, (a) Snell's law and P-wave conversion	
	(b) Snell's law for critical angle condition	44
3.3-2	Raypath and travel time curve (a) two parallel plane layers, (b) three parallel plane layers	45
3.3-3	Raypath diagram and travel time curves of two dipping layers for a forward (S ₁) and	
	reversed shot point (S ₂)	46
3.3-4	Position of geophone spread and shotpoints	48

รูปที่		หน้า
3.3-5	The seismic wave is generated by the impact of sledgehammer on a steel plate.	49
3.3-6	Print out recorded data. In figure (a) and (c) the shot point are at the ends of spread and	
•	in figure (b) the Shotpoint is in the middle of spread	49
3.3-7	Travel time – distance graph of the spread 1 and 2, the data were collected by using 7	
	shotpoints per spread	50
3.3-8	Schematic of reversed seismic and delay-time methods for depth determinations	51
3.3-9	A time-distance graph and the model of subsurface layers along the main profile(M) are	
	plotted together with the geological sections of deep wells on the profile M.	
	Picture (a) is the section from 0m to 600m and (b) is the section from 600m to the end of	
	the profile	55
3.4-1	A force of masses attraction	56
3.4-2	The gravitational effect of a mass element	57
3.4-3	The gravitational effect of a large mass	58
3.4-4	The gravity anomaly of a sphere	58
3.4-5	The gravity anomaly across a vertical fault	62
3.4-6	The pattern of gravity survey which it performs as a loop measuring	62
3.4-7	Contour of relative garvity (Bouguer anomaly) after drift, latitude, free-air	
	and Bouguer correction (a) and the contour topography of the study area (b)	65
3.4-8	The gravity anomaly and estimated reginal gravity along the profiles G, I, K, M, O, Q and S	67
3.4-9	The gravity anomaly along the profiles G, I, K, M, O, Q and S after the reginal field is separated	68
3.4-10	The geological section model along Line I, a level of 0m refer to the level 34.67m (MSL)	
	at a deep weel JICA15	70
3.4-11	The geological model in the XY plane along Line l	70
3.4-12	The geological section model along Line M, a level of 0m refer to the level 34.67m (MSL)	
	at a deep weel JICA15	72
3.4-13	The geological model in the XY plane along Line M	72
3.4-14	The geological section model along Line Q, a level of 0m refer to the level 34.67m (MSL)	
	at a deep weel JICA15	73
3.4-15	The geological model in the XY plane along Line Q	73
3.5-1	Schematic representations of the pore wall double layer geometry. Note the fixed surface charge	
	and the excess of positive charges in the diffuse layer	75

วูปที		หน้า
3.5-2	The SP measurement system consists of two unpolarized electrodes, electrical wires and	
	a terra meter SAS 300 C	78
3.5-3	The result of SP survey is plotted on the topography of the area	79
3.5-4	Correlation between SP values and elevations of measuring positions within the study area	80
3.6-1	A sketch of magnetic dipoles that are aligned in the direction of an external magnetic field	81
3.6-2	The pattern magnetic moments within different magnetic materials	82
3.6-3	Contour magnetic susceptibility, (a) at the sureface and (b) at 0.3m in depth	83
4.1-1	The comparison of the geological section beneath the main profile M between the sections	
	that were created by JICA (a) and the sections were conducted by Bouguer anomaly data (b),	
	seismic refraction and resistivity data (c) and GPR data (d). The depth conversion in a GPR	
	section was calculated by using a constant velocity 106.78 m/µs	86
4.1-2	The comparison of the resistivity distribution at 34m in depth (a) and the overlaying contour	
	of the depth to a granite rock (density ~ 2600 kg/m ³ on the geological section model in the	
	XY plane that created from Bouguer anomaly along profile I, M and Q by GMM program (b)	87
4.2-1	Arsenic distribution in soil elution and resistivity data at (a) 0.3m and (b) 1m in depth	88
4.2-2	Arsenic distribution in auger water and resistivity distribution at (c) 1m and (d) 2m, (e) 3.5m	
	and (f) 5m in depth. Figure (g) shows the distribution of arsenic in auger water and SP data	89
4.2-3	Resistivity distribution at (h) 7.5m, (i) 10m, (j) 12.5m, (k) 15m, (l) 17.5m and (m) 20m in depth	90
4.2-4	Resistivity distribution at (n) 22.5m, (o) 25m, (p) 27.5m, (q) 30m, and (r) 34m in depth	91
4.3-1	The distribution of magnetic susceptibility and arsenic content in soils at 0.3m in depth	93
4.4-1	Arsenic distribution in auger water is plotted on the resistivity distribution at 34m in depth	93
5.1-1	A resistivity section of the area that is recommended to dig a well	96