บทที่ 3

ผลและวิจารณ์ผลการทดลอง

3.1 สังเคราะห์ซิลิกาโดยใช้ CTAB เป็นแม่แบบ

สมบัติของซิลิกาที่สังเคราะห์โดยใช้ CTAB เป็นแม่แบบที่ได้จากการวิเคราะห์ด้วย เครื่องวิเคราะห์พื้นที่ผิวและขนาดรูพรุนและเปอร์เซ็นต์น้ำหนักที่หายไป แสดงในตารางที่ 3.1 โดย ปริมาตรรูพรุนขนาดไมโคร (V_{micro}) (สมการที่ 1.6) เปอร์เซ็นต์ปริมาตรรูพรุนขนาดไมโคร (% V_{micro}) (สมการที่ 1.7) ปริมาตรรูพรุนมีโซ (V_{meso}) (สมการที่ 1.9) ปริมาตรรูพรุนรวม (V_{por}) สามารถ คำนวณได้จากปริมาตรแก๊สไนโตรเจนที่ถูกดูดซับที่ P/P₀ = 0.95 (สมการที่ 1.8) ค่ารัสมีรูพรุนของซิ ลิกา (r_p) สามารถคำนวณได้จากผลบวกของความหนาของผนังของรูพรุนของซิลิกากับรัสมีส่วนใจ กลาง (core) ของรูพรุน (สมการที่ 1.10) และเปอร์เซ็นต์น้ำหนักที่หายไปสามารถคำนวณได้ผลของ การเปลี่ยนแปลงของน้ำหนักของซิลิกาก่อนเผาและหลังเผา (สมการที่ 1.13)

พบว่าซิลิกาที่สังเคราะห์ได้จากวิธีการสังเคราะห์ทั้ง 2 วิธีจะให้ผลที่แตกต่างกัน กือ ซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 คือกวนสารละลาย 24 ชั่วโมง ค่าพื้นที่ผิวและเปอร์เซ็นต์น้ำ หนักที่หายไปมีค่าน้อย แต่มีค่าปริมาตรรูพรุนรวม (P/P₀)_{step} และค่ารัสมีรูพรุนของซิลิกา มากกว่าวิธี ที่ 2 ที่กวนสารละลายเพียง 3 ชั่วโมง เพราะซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 มีรูพรุนขนาดใหญ่กว่าที่ สังเคราะห์ได้จากวิธีที่ 2 เนื่องจากการเกิดการควบแน่น (condensation) ของซิลิกาก่อนเผาที่ได้จาก วิธีที่ 1 จะเกิดได้ดีกว่าวิธีที่ 2 (Tattershall et al, 2002) และซิลิกาที่สังเคราะห์โดยวิธีที่ 2 เกิดการหด ด้วหลังเผามากกว่าวิธีที่ 1 และจากค่าเปอร์เซ็นต์ปริมาตรรูพรุนขนาดไมโครของซิลิกาที่สังเคราะห์ ได้จากการสังเคราะห์ทั้ง 2 วิธีจะให้ผลที่เหมือนกัน คือ เท่ากับ 0 แสดงให้เห็นว่าซิลิกาที่สังเคราะห์ โดยใช้ CTAB เป็นแม่แบบทั้ง 2 วิธี มีรูพรุนขนาดมีโซ ซึ่งสอดกล้องกับกราฟ adsorption isotherms ที่ได้จากซิลิกาที่สังเคราะห์โดยใช้ CTAB เป็นแม่แบบของทั้ง 2 วิธีเป็นกราฟไอโซเทอร์มชนิดที่ 4 ซึ่งเป็นลักษณะของวัสดุที่มีรูพรุนขนาดมีโซดังแสดงในภาพประกอบที่ 3.1

ชื่อที่กำหนดขึ้น	วิธี	A^{a}	V _{micro} ^b	%V _{micro} ^c	V _{meso} ^d	V _{pore} ^e	$(P/P_0)_{step}^{f}$	r_p^{g}	Weight loss
		(m ² /g)	(cm^3/g)		(cm^3/g)	(cm^3/g)		(nm)	(%)
KCTAB	1	652	0	0	0.61	0.61	0.44	1.9	22
KCTABY	2	941	0	0	0.42	0.42	0.42	1.7	36

ตารางที่ 3.1 สมบัติพื้นที่ผิว รัศมีรูพรุน และเปอร์เซ็นต์น้ำหนักที่หายไปของซิลิกาที่สังเกราะห์โดยใช้ CTAB เป็นแม่แบบ

" ค่าพื้นที่ผิว ^bปริมาตรรูพรุนขนาคไมโคร [°]เปอร์เซ็นต์ปริมาตรรูพรุนขนาคไมโคร ^dปริมาตรรูพรุนขนาคมีโซ [°]ปริมาตรรูพรุนรวม ^f จุดหักที่เกิดการเปลี่ยนแปลงความชันในกราฟไอโซเทอร์ม ⁸ค่ารักมีรูพรุนของซิลิกา

ภาพประกอบที่ 3.1 Adsorption isotherms ของซิลิกาที่สังเคราะห์ โดยใช้ CTAB เป็นแม่แบบ โดยใช้วิธีที่ 1 และวิธีที่ 2 ในการสังเคราะห์

ภาพประกอบที่ 3.2 แสดงภาพ SEM ของซิลิกาสังเคราะห์โดยใช้ CTAB เป็นแม่ แบบโดยวิธีการสังเคราะห์ที่แตกต่างกัน โดยภาพประกอบที่ 3.2(a) เป็นซิลิกาที่ได้จากการ สังเคราะห์โดยวิธีที่ 1 รูปร่างที่ได้มีลักษณะม้วนคล้ายก้นหอย ผิวไม่เรียบ และภาพประกอบที่ 3.2(b) เป็นซิลิกาที่ได้จากการสังเคราะห์โดยวิธีที่ 2 รูปร่างที่ได้มีลักษณะม้วนคล้ายก้นหอยและมีผิวเรียบ ซิลิกาที่สังเคราะห์จากวิธีที่ 2 มีผิวเรียบกว่าซิลิกาที่สังเคราะห์จากวิธีที่ 1 ซึ่งเป็นผลมาจากการเกิด ปฏิกิริยาระหว่างสารลดแรงตึงผิวกับซิลิกาไอออน ที่เกิดผ่านปฏิกิริยา S⁺I⁻ เมื่อ S⁺ คือ สารลดแรง ตึงผิวที่มีประจุบวก และ I คือ ซิลิกาไอออน (Lin et al, 2001) วิธีที่ 2 ใช้เวลากวนสารละลายน้อย กว่าวิธีที่ 1 คือ กวนสารละลายเป็นเวลา 3 ชั่วโมง ส่งผลให้ปฏิกริยาระหว่างสารลดแรงตึงผิวกับซิลิ กาไอออนเกิดได้ดีขึ้น แต่การกวนสารละลายเป็นเวลานาน เช่นเดียวกับวิธีที่ 1 คือ กวนสารละลาย
24 ชั่วโมง ส่งผลให้การเกิดปฏิกริยาระหว่างสารลดแรงตึงผิวกับซิลิกาไอออนเกิดได้ไม่ดี ซิลิกาที่ สังเคราะห์ได้จากวิธีที่ 1 จึงมีผิวไม่เรียบ (Voort et al, 2002)

ภาพประกอบที่ 3.2 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้ CTAB เป็นแม่แบบโดยใช้ (a) วิธี ที่ 1 (b) วิธีที่ 2 ในการสังเคราะห์

ผล XRD ของซิลิกาที่สังเคราะห์โดยใช้ CTAB เป็นแม่แบบ แสดงในภาพประกอบ ที่ 3.3 พีกที่ได้จากวิธีสังเคราะห์ทั้ง 2 วิธีจะให้ผลที่คล้ายคลึงกัน คือ พีกจะมีลักษณะกว้าง ซึ่งแสดง ให้เห็นว่า โครงสร้างของซิลิกาที่สังเคราะห์ได้มีความเป็นระเบียบต่ำ และซิลิกาที่สังเคราะห์จากวิธี ที่ 1 มีค่า d-spacing มากกว่าวิธีที่ 2 โดยค่า d-spacing สอดคล้องกับขนาดรูพรุนเมื่อค่าd-spacing มากขึ้น รูพรุนจะมีขนาดใหญ่ (Kang et al, 2005)

ตารางที่ 3.2 ค่า d-spacing ของซิลิกาที่สังเคราะห์ โดยใช้ CTAB เป็นแม่แบบ

ชื่อที่กำหนดขึ้น	ค่า d-spacing (nm)
KCTAB	4.3
KCTABY	3.2

ภาพประกอบที่ 3.3 ผล XRD ของซิลิกาที่สังเคราะห์โดยใช้ CTAB เป็นแม่แบบโดยใช้ วิธีที่ 1 และวิธี ที่ 2

3.2 สังเคราะห์ซิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด E_B,และ E_B,E_ เป็นแม่แบบ

3.2.1 สังเคราะห์ชิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด E_mB_nและ E_mB_nE_m เป็นแม่แบบเพียงอย่าง เดียว

3.2.1.1 สังเคราะห์ซิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด $\mathbf{E}_{45}\mathbf{B}_{10}$ เป็นแม่แบบ

จากงานวิจัยของ Tattershall และคณะ (Tattershall et al, 2001) สังเคราะห์ซิลิกา โดยใช้บล็อกโคพอลิเมอร์ชนิด $E_{45}B_{10}$ เป็นแม่แบบและใช้ TEOS เป็นแหล่งให้ซิลิกา โดยใช้อัตรา ส่วนโดยน้ำหนักของ TEOS: $E_{45}B_{10} = 5.2$, 2M HCl 6 กรัม และ H_2O 1.5 กรัม กวนสารละลาย 24 ชั่วโมง ที่อุณหภูมิ 60 องศาเซลเซียส มีค่าพื้นที่ผิวเท่ากับ 805 ตารางเมตรต่อกรัม ค่า d-spacing ของ พิกแรกเท่ากับ 6.8 นาโนเมตร(nm) และ r_p มีค่าเท่ากับ 1.8 นาโนเมตร ซึ่งอัตราส่วนและวิธีการ สังเคราะห์เหมือนกับการสังเคราะห์ KE45B10C โดยค่า d-spacing และ r_p ของ KE45B10C มีค่าใกล้ เคียงกับซิลิกาที่สังเคราะห์ได้จากงานวิจัยของ Tattershall แต่ KE45B10C มีค่าพื้นที่ผิวเท่ากับ 640 ตารางเมตรต่อกรัม(m^2/g) ซึ่งมีค่าน้อยกว่าซิลิกาที่สังเคราะห์ได้จากงานวิจัยของ Tattershall ตารางที่ 3.3 แสดงสมบัติของซิลิกาที่สังเกราะห์โดยใช้ ${f E}_{45}{f B}_{10}$ เป็นแม่แบบที่ได้จาก

การวิเคราะห์ด้วยเครื่องวิเคราะห์พื้นที่ผิวและขนาดรูพรุนและเปอร์เซ็นต์น้ำหนักที่หายไป พบว่าซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 มีค่าพื้นที่ผิวและเปอร์เซ็นต์น้ำหนักที่หาย ไปมีค่าน้อย แต่มีค่าปริมาตรรูพรุนรวม (P/P₀)_{step} และค่ารัศมีรูพรุนของซิลิกา มากกว่าวิธีที่ 2 เล็ก น้อยเพราะซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 มีรูพรุนขนาดใหญ่กว่าที่สังเคราะห์ได้จากวิธีที่ 2 เนื่อง จากการเกิดการควบแน่น (condensation) ของซิลิกาก่อนเผาที่ได้จากวิธีที่ 1 จะเกิดได้ดีกว่าวิธีที่ 2 (Tattershall et al, 2002) และยังแสดงให้เห็นว่าซิลิกาที่สังเคราะห์โดยวิธีที่ 2 เกิดการหดตัวหลังเผา มากกว่าวิธีที่ 1 และจากค่าเปอร์เซ็นต์ปริมาตรรูพรุนขนาดไมโครของซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 และวิธีที่ 2 คือ 32 เปอร์เซ็นต์ และ 34 เปอร์เซ็นต์ ตามลำดับ และค่าปริมาตรรูพรุนขนาดมีโซของ ซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 และวิธีที่ 2 คือ 0.25 ลูกบาศก์เซนติเมตรต่อกรัม (cm³/g) (68 เปอร์เซ็นต์) และ 0.23 ลูกบาศก์เซนติเมตรต่อกรัม (66 เปอร์เซ็นต์) ตามลำดับ แสดงให้เห็นว่าซิลิกา ที่สังเคราะห์ได้จากวิธีที่ 1 และวิธีที่ 2 มีรูพรุนส่วนใหญ่เป็นรูพรุนขนาดมีโซ แต่วิธีที่ 1 มีรูพรุนที่ เป็นรูพรุนขนาดมีโซมากกว่าซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 มีรูพรุนที่

กราฟ adsorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบ และ สังเคราะห์โดยวิธีที่ 1 และวิธีที่ 2 แสดงในภาพประกอบที่ 3.4 เป็นกราฟไอโซเทอร์มชนิดที่ 4 ซึ่ง เป็นลักษณะของวัสดุที่มีรูพรุนขนาดมีโซ

ตารางที่ 3.3 สมบัติพื้นที่ผิว รัศมีรูพรุน และเปอร์เซ็นต์น้ำหนักที่หายไปของซิลิกาที่สังเคราะห์โดย ใช้ E₄₅B₁₀ เป็นแม่แบบ

ชื่อที่กำหนด	วิธี	A^{a}	V _{micro} ^b	%V _{micro} ^c	V _{meso} ^d	V _{pore} ^e	(P/P ₀) ^f _{step}	r_p^{g}	Weight loss
ขึ้น		(m ² /g)	(cm^3/g)		(cm^3/g)	(cm^3/g)		(nm)	(%)
KE45B10C	1	640	0.12	32	0.25	0.37	0.43	1.9	28
KE45B10YC	2	683	0.12	34	0.23	0.35	0.41	1.8	43

ี้ ค่าพื้นที่ผิว ^b ปริมาตรรูพรุนขนาดไมโคร `เปอร์เซ็นต์ปริมาตรรูพรุนขนาดไมโคร ^dปริมาตรรูพรุนขนาดมีโซ `ปริมาตรรูพรุนรวม ^fจุดหักที่เกิดการเปลี่ยนแปลงความชันในกราฟไอโซเทอร์ม ^ร์ค่ารัศมีรูพรุนของซิลิกา

ภาพประกอบที่ 3.4 Adsorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบ โดยใช้วิธีที่ 1 และวิธีที่ 2 ในการสังเคราะห์

ภาพประกอบที่ 3.5 แสดงภาพ SEM ของซิลิกาสังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่ แบบ โดยภาพประกอบที่ 3.5(a) เป็นซิลิกาที่ได้จากการสังเคราะห์โดยวิธีที่ 1 รูปร่างได้มีลักษณะ เป็นทรงกลมแต่มีซิลิกาอสัณฐาน (amorphous silica) มาก เส้นผ่านศูนย์กลางเฉลี่ยของอนุภาคกือ 5.45 ± 2.79 ไมโครเมตร(μm) ภาพประกอบที่ 3.6(b) เป็นซิลิกาที่ได้จากการสังเคราะห์โดยวิธีที่ 2 รูปร่างที่ได้มีลักษณะเป็นทรงกลม ผิวเรียบและมีซิลิกาอสัณฐานน้อย เส้นผ่านศูนย์กลางเฉลี่ยของ อนุภาคกือ 2.45 ± 0.74 ไมโครเมตร และมีขนาดที่ใกล้เคียงกันมากกว่าวิธีที่ 1

ตารางที่ 3.4 เส้นผ่านศูนย์กลางภายนอกของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบโดยใช้วิธี ที่ 1 และวิธีที่ 2 ในการสังเคราะห์

ชื่อที่กำหนดขึ้น	วิธี	เส้นผ่านศูนย์กลางภายนอก
		(µm)
KE45B10C	1	5.45 ± 2.79
KE45B10YC	2	2.45 ± 0.74

ภาพประกอบที่ 3.5 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบโดยใช้ (a) วิธีที่ 1 (b) วิธีที่ 2 ในการสังเคราะห์

ตารางที่ 3.5 แสดงก่า d-spacing ของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบ และสังเคราะห์โดยวิธีที่ 1 มีค่าเท่ากับ 6.4 นาโนเมตร และลักษณะพีก XRD ที่ได้มีลักษณะค่อนข้าง กว้างดังแสดงในภาพประกอบที่ 3.6 ซึ่งแสดงให้เห็นว่าโครงสร้างของซิลิกาที่สังเคราะห์ได้ความ เป็นระเบียบต่ำ (Kang et al, 2005) แต่ซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบและสังเคราะห์ โดยวิธีที่ 2 ไม่ได้ทำการวิเคราะห์ด้วยเทคนิค XRD

ตารางที่ 3.5 ค่า d-spacing ของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบและสังเคราะห์ โดยวิธีที่ 1

ชื่อที่กำหนดขึ้น	ค่า d-spacing (nm)
KE45B10C	6.4

ภาพประกอบที่ 3.6 ผล XRD ของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบและวิธีที่ 1 ในการ สังเคราะห์

ภาพประกอบที่ 3.7 ผล TGA ของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบและ สังเคราะห์ โดยวิธีที่ 1

จากกราฟ TGA ของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบและสังเคราะห์ โดยวิธีที่ 1 แสดงในภาพประกอบที่ 3.7 เปอร์เซ็นต์น้ำหนักที่หายไปที่อุณหภูมิ 200-600 องศา เซลเซียส เป็นช่วงอุณหภูมิที่เกิดการสลายตัวของทั้ง E₄₅B₁₀ และการเกิดการควบแน่นต่อเนื่องของ หมู่ OH ของ Si-OH ที่อยู่บริเวณผนังรูพรุนของซิลิกา (Kao et al, 2006)

3.2.1.2 สังเคราะห์ซิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด $\mathbf{E}_{18}\mathbf{B}_{10}$ เป็นแม่แบบ

ตารางที่ 3.6 แสดงเปอร์เซ็นต์น้ำหนักที่หายไป และสมบัติของซิลิกาที่สังเคราะห์ โดยใช้ E₁₈B₁₀ เป็นแม่แบบที่ได้จากการวิเคราะห์ด้วยเกรื่องวิเคราะห์พื้นที่ผิวและขนาครูพรุน

โดยก่อนหน้านี้ได้สังเคราะห์ซิลิกาโดยใช้ $E_{1s}B_{10}$ เป็นแม่แบบ สังเคราะห์จากวิธีที่ 1 ที่อุณหภูมิ 60 องสาเซลเซียส ซิลิกาที่สังเคราะห์ได้จะไม่เกิดเป็นตะกอนแต่จะเกิดเจล ซึ่งงานวิจัย ของ Antonisและคณะ (Antonis et al, 2002) ที่ศึกษาการเกิดไมเซลล์ในสารละลายน้ำของ $E_{1s}B_{10}$ พบว่าที่อุณหภูมิต่ำกว่า 50 องสาเซลเซียส ไมเซลล์จะมีรูปร่างแบบทรงกลม (spherical) แต่เมื่อ อุณหภูมิสูงกว่า 50 องสาเซลเซียส ไมเซลล์จะมีรูปร่างแบบตัวหนอน (worm-like) ดังนั้นในงานวิจัย นี้จึงทำการสังเคราะห์ซิลิกาโดยใช้ $E_{1s}B_{10}$ เป็นแม่แบบที่อุณหภูมิ 30 องสาเซลเซียส และพบว่าซิลิกา ที่สังเคราะห์ได้เกิดเป็นตะกอนโดยเปลี่ยนแปลงอัตราส่วนโดยน้ำหนักของ TEOS: $E_{1s}B_{10}$ คือ TEOS: $E_{1s}B_{10} = 5.2$ และ 2.6 สังเคราะห์โดยวิธีที่ 1 เขียนแทนด้วย KE18B101C และ KE18B107C ตามลำดับ จากตารางที่ 3.6 พบว่าเมื่ออัตราส่วนโดยน้ำหนักของ TEOS: $E_{1s}B_{10}$ ลดลง ค่าปริมาตรรู พรุนขนาดมีโซ และก่าปริมาตรรูพรุนรวม จะมีก่ามากขึ้น

นอกจากนี้กราฟ adsorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ E₁₈B₁₀ เป็น แม่แบบ แสดงในภาพประกอบที่ 3.8 เป็นกราฟไอโซเทอร์มชนิด 4 ซึ่งเป็นลักษณะของวัสดุที่มีรู พรุนขนาดมีโซ

ชื่อที่กำหนดขึ้น	A^{a}	V _{micro} ^b	%V _{micro} ^c	V _{meso} ^d	V _{pore} ^e	$(P/P_0)_{step}^{f}$	r_p^{g}	Weight loss
	(m ² /g)	(cm^3/g)		(cm^3/g)	(cm^3/g)		(nm)	(%)
KE18B101C	409	0	0	0.24	0.24	0.37	1.7	43
KE18B107C	581	0	0	0.39	0.39	0.37	1.7	52

ตารางที่ 3.6 สมบัติพื้นที่ผิว รัศมีรูพรุน และเปอร์เซ็นต์น้ำหนักที่หายไปของซิลิกาที่สังเคราะห์โดย ใช้ E₁₈B₁₀ เป็นแม่แบบ

ภาพประกอบที่ 3.8 Adsorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ $E_{18}B_{10}$ เป็นแม่แบบ และใช้อัตราส่วนโดยน้ำหนัก TEOS: $E_{18}B_{10} = 5.2$ และ 2.6

จากภาพประกอบที่ 3.9 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้ E₁₈B₁₀ เป็นแม่ แบบและเปรียบเทียบซิลิกาที่ได้จากการสังเคราะห์โดยใช้อัตราส่วนของ TEOS:E₁₈B₁₀= 5.2 และ 2.6 พบว่าที่อัตราส่วนทั้ง 2 ซิลิกาที่สังเคราะห์ได้มีรูปร่างที่มีลักษณะกลม แต่ที่อัตราส่วน 5.2 มี ซิลิกาอสัณฐานมากกว่าที่อัตราส่วน 2.6 เส้นผ่านศูนย์กลางเฉลี่ยของอนุภาคที่อัตราส่วน 5.2 และ 2.6 เท่ากับ 2.56 ± 0.75 ไมโครเมตร และ 4.22 ± 1.39 ไมโครเมตร ตามลำคับ จากภาพประกอบที่ 3.10 และภาพประกอบที่ 3.11 เป็นภาพ TEM ของซิลิกาที่สังเคราะห์ได้จากอัตราส่วนทั้ง 2 พบว่ามี โครงสร้างภายในเป็นโครงสร้างแบบ hexagonal

ตารางที่ 3.7 เส้นผ่านศูนย์กลางภายนอกของซิลิกาที่สังเกราะห์โดยใช้ $\mathbf{E}_{18}\mathbf{B}_{10}$ เป็นแม่แบบ

ชื่อที่กำหนดขึ้น	อัตราส่วน โคยน้ำหนัก	เส้นผ่านศูนย์กลางภายนอก
	$TEOS:E_{18}B_{10}$	(µm)
KE18B101C	5.2	2.56 ± 0.75
KE18B107C	2.6	4.22 ± 1.39

(a) $\text{TEOS:E}_{18}\text{B}_{10} = 5.2$ (b) $\text{TEOS:E}_{18}\text{B}_{10} = 2.6$

ภาพประกอบที่ 3.11 ภาพ TEM ของซิลิกาที่สังเคราะห์โดยใช้ E₁₈B₁₀ เป็นแม่แบบ และอัตราส่วนโดยน้ำหนักของ TEOS:E₁₈B₁₀ = 2.6 (a) ระนาบ [100] (b) ระนาบ [001]

ภาพประกอบที่ 3.12 ผล XRD ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนของ TEOS:E₁₈B₁₀= 5.2 และ 2.6

ตารางที่ 3.8 ค่า d₁₀₀ , ค่า a₀ , เส้นผ่านศูนย์กลางของรูพรุน(D_p) และค่าความหนาของผนังรูพรุน (h_w) ของซิลิกาที่สังเคราะห์โดยใช้ E₁₈B₁₀ เป็นแม่แบบ

ชื่อที่กำหนดขึ้น	ค่า d ₁₀₀	a ₀	D_p^{a}	h _w ^b
	(nm)	(nm)	(nm)	(nm)
KE18B101C	5.0	5.8	3.7	2.0
KE18B107C	5.3	6.1	3.7	2.3
a h	מ			

^a $D_p = 2r_p + 0.3$, ^b $h_w = a_0 - \frac{D_p}{1.050}$ (Kruk et al, 2000)

พีก XRD ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนของ TEOS:E₁₈B₁₀= 5.2 และ 2.6 พบว่าที่อัตราส่วน TEOS:E₁₈B₁₀= 2.6 พีกจะมีลักษณะแคบและแหลมกว่า สำหรับที่อัตราส่วน 5.2 พีกที่ได้จะมีลักษณะกว้าง แสดงให้เห็นว่าโครงสร้างของซิลิกาที่สังเคราะห์โดยใช้ E₁₈B₁₀ เป็นแม่ แบบและใช้อัตราส่วน TEOS:E₁₈B₁₀= 2.6 จะมีความเป็นระเบียบมากกว่าซิลิกาที่สังเคราะห์โดยใช้ TEOS:E₁₈B₁₀= 5.2 จากตารางที่ 3.8 แสดงค่า d₁₀₀ ค่า a₀ เส้นผ่านศูนย์กลางของรูพรุน และค่าความ หนาของผนังรูพรุน ของซิลิกาที่สังเคราะห์โดยใช้ E₁₈B₁₀ เป็นแม่แบบ โดยค่า d₁₀₀ คือค่า d-spacing ของพีกแรกของวัสดุที่มีโครงสร้างแบบ hexagonal ค่า a₀ คือ หน่วยเซลล์ (unit call) ซึ่งคำนวณได้ จากสมการ $a_0 = \frac{2}{\sqrt{3}} \times d_{100}$ (Han et al, 2003) พบว่าเมื่ออัตราส่วนของ TEOS:E₁₈B₁₀ ลดลง ค่า ความหนาของผนังรูพรุนจะเพิ่มขึ้น ซึ่งสอดกล้องกับงานวิจัยของ Voort และคณะ (Voort et al, 2002) ที่สังเคราะห์วัสดุ SBA-16 และศึกษาอิทธิของอัตราส่วนของ TEOS:Surfactant ที่มีผลต่อ ขนาดของรูพรุนและความหนาของผนังรูพรุน

3.2.1.3 สังเคราะห์ซิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด $\mathbf{E}_{33}\mathbf{B}_{10}\mathbf{E}_{33}$ เป็นแม่แบบ

จากงานวิจัยของ Yaser และคณะ (Yaser et al, 1998) สังเคราะห์ซิลิกาโดยใช้ บล็อกโคพอลิเมอร์ชนิด $E_{33}B_{10}E_{33}$ เป็นแม่แบบและใช้ TEOS เป็นแหล่งให้ซิลิกา โดยใช้อัตราส่วน โดยน้ำหนักของ TEOS: $E_{45}B_{10} = 1.16$, กรด HCl เข้มข้นปรับค่า pH ของสารละลายจนมีค่าท่ากับ 1 และ H₂O 17.6 กรัม กวนสารละลาย 3 ชั่วโมงที่อุณหภูมิห้อง และวางสารละลายในตู้อบที่อุณหภูมิ 60 องศาเซลเซียส โดยไม่กวนสารละลายเป็นเวลา 21 ชั่วโมง มีค่าพื้นที่ผิวเท่ากับ 505 ตารางเมตร ต่อกรัม ค่า d-spacing เท่ากับ 4.8 นาโนเมตร และเส้นผ่านศูนย์กลางภายนอกเท่ากับ 2.6 ไมโครเมตร สำหรับงานวิจัยนี้สังเคราะห์ซิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด $E_{33}B_{10}E_{33}$ เป็นแม่แบบ คือ KE33B104C และ KE33B103C ซึ่งซิลิกาทั้ง 2 ชนิดนี้มีค่าพื้นที่ผิวเท่ากับ 599 และ 542 ตารางเมตร ต่อกรัม ตามลำดับ (ตารางที่ 3.9) และเส้นผ่านศูนย์กลางภายนอกของซิลิกาที่สังเคราะห์จากวิธีที่ 2 มีค่าเท่ากับ 2.98 ± 0.98 ไมโครเมตร(ตารางที่ 3.10) มากกว่าซิลิกาที่สังเคราะห์ได้จากงานวิจัยของ Yaser

ตารางที่ 3.9 แสดงสมบัติของซิลิกาที่สังเคราะห์ โดยใช้ $\mathbf{E}_{33}\mathbf{B}_{10}\mathbf{E}_{33}$ เป็นแม่แบบที่ได้

จากการวิเคราะห์ด้วยเครื่องวิเคราะห์พื้นที่ผิวและขนาดรูพรุนและเปอร์เซ็นต์น้ำหนักที่หายไป พบว่าซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 มีค่าเปอร์เซ็นต์น้ำหนักที่หายไปมีค่าน้อย แต่มีค่าพื้นที่ผิวค่าปริมาตรรูพรุนรวม และค่ารัศมีรูพรุนของซิลิกา มากกว่าวิธีที่ 2 เพราะซิลิกาที่ สังเคราะห์ได้จากวิธีที่ 1 มีรูพรุนขนาดใหญ่กว่าที่สังเคราะห์ได้จากวิธีที่ 2 เนื่องจากการเกิดการ ควบแน่น (condensation) ของซิลิกาก่อนเผาที่ได้จากวิธีที่ 1 จะเกิดได้คีกว่าวิธีที่ 2 (Tattershall et al, 2002) และซิลิกาที่สังเคราะห์โดยวิธีที่ 2 เกิดการหดตัวหลังเผามากกว่าวิธีที่ 1 และจากค่าเปอร์เซ็นต์ ปริมาตรรูพรุนขนาดไมโครของซิลิกาที่สังเคราะห์โดยใช้ E₃₃B₁₀E₃₃ เป็นแม่แบบที่สังเคราะห์จากวิธี ที่ 1 และวิธีที่ 2 จะมีค่ามาก คือ 61 เปอร์เซ็นต์และ 72 เปอร์เซ็นต์ ตามลำดับ ซึ่งแสดงให้เห็นว่าซิลิกาที่สังเคราะห์โดยใช้ E₃₃B₁₀E₃₃ เป็นแม่แบบนั้นรูพรุนที่ได้ ส่วนใหญ่เป็นรูพรุนขนาดไมโคร ซึ่งสอดคล้องกับชนิดของกราฟ adsorption isotherms เป็นกราฟ ไอโซเทอร์มชนิดที่ 1 ซึ่งเป็นลักษณะของวัสดุที่มีรูพรุนขนาดไมโคร ดังแสดงในภาพประกอบที่ 3.13

ตารางที่ 3.9 สมบัติพื้นที่ผิว รัศมีรูพรุน และเปอร์เซ็นต์น้ำหนักที่หายไปของซิลิกาที่สังเกราะห์โดยใช้ E₃₃B₁₀E₃₃เป็นแม่แบบ

ชื่อที่กำหนดขึ้น	วิธี	A^{a}	V _{micro} ^b	%V _{micro} ^c	V _{meso} ^d	V _{pore} ^e	(P/P ₀) ^f _{step}	r_p^{g}	Weight loss
		(m^2/g)	(cm^3/g)		(cm^3/g)	(cm^3/g)		(nm)	(%)
KE33B104C	1	599	0.17	61	0.11	0.28	0.28	1.4	28
KE33B103C	2	542	0.18	72	0.07	0.25	0.24	1.3	31

" ค่าพื้นที่ผิว ^bปริมาตรรูพรุนขนาดไมโคร [°]เปอร์เซ็นด์ปริมาตรรูพรุนขนาดไมโคร ^dปริมาตรรูพรุนขนาดมีโซ [°]ปริมาตรรูพรุนรวม

^เจุดหักที่เกิดการเปลี่ยนแปลงความชั่นในกราฟไอโซเทอร์ม ^รี่ค่ารัศมีรูพรุนของซิลิกา

ภาพประกอบที่ 3.13 Adsorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ E₃₃B₁₀E₃₃เป็นแม่แบบ โดยใช้วิธีที่ 1 และวิธีที่ 2 ในการสังเคราะห์

จากภาพ SEM ในภาพประกอบที่ 3.14 พบว่าซิลิกาที่สังเคราะห์โดยใช้ E₃₃B₁₀E₃₃ เป็นแม่แบบและสังเคราะห์โดยวิธีที่ 1 แสดงในภาพประกอบที่ 3.14(a) รูปร่างที่ได้ คือ มีลักษณะ กลมเล็กน้อยและมีรูปร่างส่วนใหญ่เป็นซิลิกาอสัณฐานซึ่งให้ผลที่ตรงกันข้ามกับภาพประกอบที่ 3.14(b) เป็นซิลิกาที่สังเคราะห์ได้จากวิธีที่ 2 โดยรูปร่างส่วนใหญ่ที่มีลักษณะกลม มีซิลิกาอสัณฐาน เพียงเล็กน้อยและมีเส้นผ่านศูนย์กลางเฉลี่ยของอนุภาค เท่ากับ 2.79 ± 0.98 ไมโครเมตร จากภาพ SEM พบว่าซิลิกาที่สังเคราะห์โดยวิธีที่ 2 ซึ่งกวนสารละลายเพียง 3 ชั่วโมง จะมีรูปร่างที่มีลักษณะ กลมมากกว่าซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 ที่กวนสารละลาย 24 ชั่วโมง เนื่องจากการกวนสาร ละลายเพียง 3 ชั่วโมงจะเพิ่มเวลาการรวมตัวของซิลิกาส่งผลให้รูปร่างที่ได้มีลักษณะกลมมากขึ้น (Yu et al, 2004)

ภาพประกอบที่ 3.14 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้ E₃₃B₁₀E₃₃เป็นแม่แบบโดยใช้ (a) วิธีที่ 1 (b) วิธีที่ 2 ในการสังเคราะห์

ตารางที่ 3.10 เส้นผ่านศูนย์กลางภายนอกของซิลิกาที่สังเคราะห์โดยใช้ E₃₃B₁₀E₃₃ เป็นแม่แบบโดย ใช้วิธีที่ 1 และวิธีที่ 2 ในการสังเคราะห์

ชื่อที่กำหนดขึ้น	วิธี	เส้นผ่านศูนย์กลางภายนอก
		(µm)
KE33B104C	1	* -
KE33B103C	2	2.79 ± 0.98

* ไม่สามารถวัดขนาดเส้นผ่านศูนย์กลางภายนอกของซิลิกาได้

IR สเปกตรัมของซิลิกาที่เผาแล้วโดยใช้ E₃₃B₁₀E₃₃ เป็นแม่แบบและสังเคราะห์โดย วิธีที่ 2 แสดงในภาพประกอบที่ 3.15 พบว่าที่ความถี่ 800 cm⁻¹ และ 1079 cm⁻¹เป็นลักษณะของ Si-O-Si ที่เกิดการควบแน่น (condensation) แต่ที่ความถี่ 1644 cm⁻¹ และ 3477 cm⁻¹ เป็นลักษณะของ O-H และที่ความถี่ 967 cm⁻¹ เป็นลักษณะของ Si-OH ซึ่งเป็นพืกที่เกิดจากซิลิกาที่ไม่เกิดปฏิกิริยา ควบแน่น (Kao et al, 2006)

ภาพประกอบที่ 3.15 IR สเปกตรัมของซิลิกาที่เผาแล้วโดยใช้ E₃₃B₁₀E₃₃ เป็นแม่แบบและสังเคราะห์ โดยวิธีที่ 2

ตารางที่ 3.11 ความถี่ของหมู่ฟังก์ชั่นต่างๆของซิลิกาที่สังเคราะห์โดยใช้ E₃₃B₁₀E₃₃ เป็นแม่แบบและ สังเคราะห์โดยวิธีที่ 2

หมู่ฟังก์ชั่น	ความถี่ (cm ⁻¹)
Si-O-Si (condensation)	800 และ 1079
$\mathrm{Si-OH}_{(\mathrm{non-condensation})}$	967
О-Н	1644 และ 3477

กราฟ TGA ของซิลิกาที่สังเคราะห์โดยใช้ $E_{_{33}}B_{_{10}}E_{_{33}}$ เป็นแม่แบบและสังเคราะห์ โดยวิธีที่ 2 แสดงในภาพประกอบที่ 3.16 พบว่าเปอร์เซ็นต์น้ำหนักที่หายไปมีการเปลี่ยนแปลงเกิด ขึ้น 3 ตำแหน่งคือ ตำแหน่งที่ 1 เป็นเปอร์เซ็นต์น้ำหนักที่หายไปที่อุณหภูมิระหว่าง 20-100 องศา เซลเซียส เป็นช่วงอุณหภูมิที่เกิดการระเหยของน้ำและสารที่ระเหยได้ที่ถูกดูดซับในรูพรุน (Shi et al, 2004) ตำแหน่งที่ 2 อุณหภูมิระหว่าง 250-370 องศาเซลเซียส เป็นช่วงอุณหภูมิที่เกิดการสลายตัว ของ $E_{_{33}}B_{_{10}}E_{_{33}}$ และตำแหน่งที่ 3 อุณหภูมิมากกว่า 370 องศาเซลเซียส เป็นการเกิดการกวบแน่นต่อ เนื่องของหมู่ OH ของ Si-OH ที่อยู่บริเวณผนังรูพรุนของซิลิกา (Kao et al, 2006)

ภาพประกอบที่ 3.16 ผล TGA ของซิลิกาที่สังเคราะห์โดยใช้ E₃₃B₁₀E₃₃ เป็นแม่แบบและสังเคราะห์ โดยวิธีที่ 2

3.2.1.4 สังเคราะห์ซิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด $\mathbf{E}_{43}\mathbf{B}_{14}\mathbf{E}_{43}$ เป็นแม่แบบ

จากงานวิจัยของ Yaser และคณะ (Yaser et al, 1998) สังเคราะห์ซิลิกาโดยใช้ TEOS เป็นแหล่งให้ซิลิกา และบล็อกโคพอลิเมอร์ชนิด E₄₃B₁₄E₄₃ เป็นแม่แบบ โดยใช้อัตราส่วนโดย น้ำหนักของ TEOS: E₄₅B₁₀ = 1.16, กรค HCl เข้มข้นปรับค่า pH ของสารละลายจนมีค่าเท่ากับ 1 และ H₂O 17.6 กรัม กวนสารละลาย 3 ชั่วโมงที่อุณหภูมิห้อง และวางสารละลายในตู้อบที่อุณหภูมิ 60 องศาเซลเซียส โดยไม่กวนสารละลายเป็นเวลา 21 ชั่วโมง มีค่าพื้นที่ผิวเท่ากับ 520 ตารางเมตร ต่อกรัม ค่า d-spacing เท่ากับ 3.8 นาโนเมตร รูปร่างที่ได้ไม่มีลักษณะเป็นทรงกลม สำหรับงานวิจัย นี้สังเคราะห์ซิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด E₄₃B₁₄E₄₃ เป็นแม่แบบ คือ KE43B144C และ KE43B143C ซึ่งซิลิกาทั้ง 2 ชนิดนี้มีค่าพื้นที่ผิว คือ 652 และ 707 ตารางเมตรต่อกรัม ตามลำดับ (ตา รางที่ 3.12) มากกว่าซิลิกาที่สังเคราะห์ได้จากงานวิจัยของ Yaser และ KE43B143C มีรูปร่างเป็น ทรงกลม (ภาพประกอบที่ 3.18(b))

ตารางที่ 3.12 แสดงสมบัติของซิลิกาที่สังเคราะห์โดยใช้ E₄₃B₁₄E₄₃ เป็นแม่แบบที่ ได้จากการวิเคราะห์ด้วยเครื่องวิเคราะห์พื้นที่ผิวและขนาดรูพรุนและเปอร์เซ็นต์น้ำหนักที่หายไป

พบว่าซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 มีค่าพื้นที่ผิวและค่าเปอร์เซ็นต์น้ำหนักที่ พบว่าซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 มีค่าพื้นที่ผิวและค่าเปอร์เซ็นต์น้ำหนักที่ หายไปมีค่าน้อยกว่าวิธีที่ 2 เพราะซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 มีรูพรุนขนาดใหญ่กว่าที่ สังเคราะห์ได้จากวิธีที่ 2 เนื่องจากการเกิดการควบแน่น (condensation) ของซิลิกาก่อนเผาที่ได้จาก วิธีที่ 1 จะเกิดได้ดีกว่าวิธีที่ 2 (Tattershall et al, 2002)

นอกจากนี้กราฟ adsorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ E₄₃B₁₄E₄₃ เป็นแม่แบบแสดงในภาพประกอบที่ 3.17 เป็นกราฟไอโซเทอร์มที่มีลักษณะร่วมกันของกราฟไอโซ เทอร์มชนิดที่ 1 และชนิดที่ 4 แต่มีลักษณะคล้ายชนิดที่ 4 มากกว่า ซึ่งแสดงให้เห็นว่าวัสดุที่ สังเคราะห์ได้มีแนวโน้มที่มีรูพรุนขนาดมีโซมากกว่ารูพรุนขนาดไมโครเล็กน้อย

ตารางที่ 3.12 สมบัติพื้นที่ผิว รัศมีรูพรุน และเปอร์เซ็นต์น้ำหนักที่หายไปของซิลิกาที่สังเคราะห์โดยใช้ E₄₃B₁₄E₄₃เป็นแม่แบบ

ชื่อที่กำหนดขึ้น	วิธี	A^{a}	V _{micro} ^b	%V _{micro} ^c	V _{meso} ^d	V _{pore} ^e	(P/P ₀) ^f _{step}	r_p^{g}	Weight loss
		(m^2/g)	(cm^3/g)		(cm^3/g)	(cm^3/g)		(nm)	(%)
KE43B144C	1	652	0.13	40	0.19	0.32	0.36	1.6	35
KE43B143C	2	707	0.12	33	0.24	0.36	0.36	1.6	38

[°] ก่าพื้นที่ผิว ^bปริมาตรรูพรุนขนาดไมโกร ์เปอร์เซ็นต์ปริมาตรรูพรุนขนาดไมโกร ^dปริมาตรรูพรุนขนาดมีโซ [°]ปริมาตรรูพรุนรวม

^fจุดหักที่เกิดการเปลี่ยนแปลงความชั่นในกราฟไอโซเทอร์ม ^s้ค่ารัศมีรูพรุนของซิลิกา

ภาพประกอบที่ 3.17 Adsorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ E₄₃B₁₄E₄₃เป็นแม่แบบ โดยใช้วิธีที่ 1 และวิธีที่ 2 ในการสังเคราะห์

ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้ E₄₃B₁₄E₄₃เป็นแม่แบบ แสดงในภาพ ประกอบที่ 3.18 จากภาพประกอบที่ 3.18(a) เป็นซิลิกาที่สังเคราะห์โดยใช้ E₄₃B₁₄E₄₃ เป็นแม่แบบ และสังเคราะห์โดยวิธีที่ 1 มีลักษณะเป็นทรงกลมเล็กน้อยและมีรูปร่างส่วนใหญ่เป็นซิลิกา อสัณฐาน ซึ่งให้ผลที่ตรงกันข้ามกับซิลิกาที่สังเคราะห์ได้จากวิธีที่ 2 ในภาพประกอบที่ 3.18(b) ที่มี รูปร่างส่วนใหญ่ที่มีลักษณะกลมและมีซิลิกาอสัณฐานเพียงเล็กน้อยและมีเส้นผ่านศูนย์กลางเฉลื่ย ของอนุภาค เท่ากับ 3.01 ± 0.89 ไมโครเมตร ดังแสดงในตารางที่ 3.13

ภาพประกอบที่ 3.18 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้ E₄₃B₁₄E₄₃เป็นแม่แบบโดยใช้วิธีที่ 1 และวิธีที่ 2 ในการสังเคราะห์ (a) วิธีที่ 1 (b) วิธีที่ 2

ตารางที่ 3.13 เส้นผ่านสูนย์กลางภายนอกของซิลิกาที่สังเคราะห์โดยใช้ E₄₃B₁₄E₄₃ เป็นแม่แบบโดย ใช้วิธีที่ 1 และวิธีที่ 2 ในการสังเคราะห์

ชื่อที่กำหนดขึ้น	วิธี	เส้นผ่านศูนย์กลางภายนอก (μm)			
KE43B144C	1	* -			
KE43B143C	2	3.01 ± 0.89			

้ไม่สามารถวัดขนาดเส้นผ่านศูนย์กลางภายนอกของซิลิกาได้

3.2.2 สังเคราะห์ชิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด E_B,และ E_B,E_ เป็นแม่แบบร่วมกับ สารลดแรงตึงผิวอื่น ๆ

3.2.2.1 สังเคราะห์ซิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด E₄₅B₁₀ เป็นแม่แบบร่วมกับ CTAB ตารางที่ 3.14 แสดงสมบัติของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ ร่วมกับ CTAB เป็นแม่แบบที่ได้จากการวิเคราะห์ด้วยเครื่องวิเคราะห์พื้นที่ผิวและขนาดรูพรุนและเปอร์เซ็นต์น้ำ หนักที่หายไป ผลการศึกษาการสังเคราะห์ซิลิกาโดยใช้ CTAB และ E₄₅B₁₀ เป็นแม่แบบที่อัตราส่วน ต่างๆ แสดงผลการสังเคราะห์ดังตารางที่ 3.14 จากตารางพบว่าซิลิกาที่สังเคราะห์โดยใช้ CTAB ร่วมกับ $E_{4s}B_{10}$ เป็นแม่แบบ ที่ อัตราส่วนโดยโมลของ CTAB: $E_{4s}B_{10} = 0:100, 30:70, 50:50, 70:30$ และ 100:0 ที่สังเคราะห์จากทั้ง 2 วิธีจะให้ผลที่คล้ายคลึงกัน คือ เมื่อ CTAB มีอัตราส่วนมากขึ้นจะให้ค่าปริมาตรรูพรุนขนาด ใมโคร และค่าเปอร์เซ็นต์ปริมาตรรูพรุนขนาดไมโครลดลง แต่ค่าปริมาตรรูพรุนขนาดมีโซ ปริมาตรรูพรุนรวม (P/P₀)_{step} และค่า r_p มากขึ้น จึงแสดงให้เห็นว่าเมื่อ CTAB มีอัตราส่วนมากขึ้นซิลิ กาที่สังเคราะห์ได้จะมีแนวโน้มที่มีรูพรุนขนาดไมโครลดลงและจะมีรูพรุนขนาดมีโซเพิ่มขึ้น แต่ อย่างไรก็ตามค่าเปอร์เซ็นต์น้ำหนักที่หายไปของวิธีที่ 2 จะมีค่ามากกว่าวิธีที่ 1 เนื่องจากการเกิดการ ควบแน่น (condensation) ของซิลิกาก่อนเผาที่ได้จากวิธีที่ 1 จะเกิดได้ดีกว่าวิธีที่ 2 (Tattershall et al, 2002) และซิลิกาที่สังเคราะห์โดยวิธีที่ 2 เกิดการหดตัวหลังเผามากกว่าวิธีที่ 1

ตารางที่ 3.14 สมบัติพื้นที่ผิว รัศมีรูพรุน และเปอร์เซ็นต์น้ำหนักที่หายไปของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบร่วมกับ CTAB

อัตราส่วนโมล	วิธี	A^{a}	V _{micro} ^b	%V _{micro} ^c	V _{meso} ^d	V _{pore} ^e	(P/P ₀) ^f _{step}	r_p^{g}	Weight loss
CTAB:E ₄₅ B ₁₀		(m ² /g)	(cm^3/g)		(cm^3/g)	(cm^3/g)		(nm)	(%)
0:100	1	640	0.12	32	0.25	0.37	0.43	1.9	28
	2	683	0.12	34	0.23	0.35	0.42	1.8	34
30:70	1	475	0.07	27	0.19	0.26	0.36	1.6	34
	2	905	0.14	27	0.38	0.52	0.47	2.0	37
50:50	1	637	0.09	27	0.24	0.33	0.37	1.7	38
	2	586	0.04	13	0.27	0.31	0.36	1.6	39
70:30	1	686	0.03	8	0.35	0.38	0.45	1.9	19
	2	836	0.05	12	0.38	0.43	0.37	1.7	44
100:0	1	652	0	0	0.61	0.61	0.44	1.9	22
	2	941	0	0	0.42	0.42	0.42	1.8	36

ิ ค่าพื้นที่ผิว ^bปริมาตรรูพรุนขนาดไมโกร ์เปอร์เซ็นต์ปริมาตรรูพรุนขนาดไมโกร ^dปริมาตรรูพรุนขนาดมีโซ [°]ปริมาตรรูพรุนรวม

^fจุดหักที่เกิดการเปลี่ยนแปลงความชั่นในกราฟไอโซเทอร์ม ^รี่ค่ารัศมีรูพรุนของซิลิกา

ภาพประกอบที่ 3.19 Adsorption isotherms ของซิลิกาที่สังเคราะห์ โดยวิธีที่ 1 และใช้ CTAB ร่วมกับ E₄₅B₁₀ เป็นแม่แบบที่อัตราส่วนต่างๆ

ภาพประกอบที่ 3.20 Adsorption isotherms ของซิลิกาที่สังเคราะห์โดยวิธีที่ 2 และใช้ CTAB ร่วมกับ E₄₅B₁₀ เป็นแม่แบบที่อัตราส่วนต่างๆ

นอกจากนี้กราฟ adsorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ CTAB และ E₄₅B₁₀ เป็นแม่แบบที่อัตราส่วนต่างๆ จะเป็นกราฟไอโซเทอร์มชนิดที่ 4 ซึ่งเป็นลักษณะของวัสดุที่มี รูพรุนขนาคมีโซ ดังแสดงในภาพประกอบที่ 3.19 และ 3.20

ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้ CTAB ร่วมกับ E₄₅B₁₀ เป็นแม่แบบ แสดง ในภาพประกอบที่ 3.21-3.23 โดยเปรียบเทียบวิธีสังเคราะห์และอัตราส่วนของ CTAB และ E₄₅B₁₀ ที่ มีผลต่อรูปร่างของซิลิกา ซิลิกาที่สังเคราะห์โดยวิธีที่ 2 จะให้รูปร่างที่คล้ายคลึงกัน คือ เป็นรูปร่างที่ มีลักษณะกลม มีขนาดใกล้เคียงกัน มีซิลิกาอสัณฐานน้อยและมีเส้นผ่านศูนย์กลางเฉลี่ยของอนุภาค มีค่าอยู่ระหว่าง 2.34-3.60 ไมโครเมตร (ตารางที่ 3.15) และสำหรับซิลิกาที่สังเคราะห์โดยวิธีที่ 1 มี รูปร่างที่มีลักษณะกลมแต่มีขนาดอนุภาคที่แตกต่างกัน เส้นผ่านศูนย์กลางเฉลี่ยของอนุภาคมีค่าอยู่ ระหว่าง 1.78-5.45 ไมโครเมตร

(a) (b) ภาพประกอบที่ 3.21 ภาพ SEM ของซิลิกาที่สังเคราะห์ โดยใช้ CTAB และ E₄₅B₁₀ เป็นแม่แบบ ที่อัตราส่วน โดยโมลของ CTAB:E₄₅B₁₀ = 30:70 (a) วิธีที่ 1 (b) วิธีที่ 2

10k

PSU

x7,500

PSU

3976

10kV

2um

(a) (b) ภาพประกอบที่ 3.23 ภาพ SEM ของซิถิกาที่สังเคราะห์โดยใช้ CTAB และ E₄₅B₁₀ เป็นแม่แบบ ที่อัตราส่วนโดยโมลของ CTAB:E₄₅B₁₀ = 70:30 (a) วิธีที่ 1 (b) วิธีที่ 2

x2 50

อัตราส ่วน โมล	រិតី	เส้นผ่านศูนย์กลางภายนอก
CTAB:E ₄₅ B ₁₀		(µm)
0:100	1^{a}	5.45 ± 2.79
	2^{a}	2.45 ± 0.74
30:70	1	3.81 ± 1.86
	2	2.51 ± 0.85
50:50	1	1.78 ± 0.39
	2	2.34 ± 0.76
70:30	1	5.32 ± 1.32
	2	3.60 ± 1.06
100:0	1	b
	2	b

ตารางที่ 3.15 เส้นผ่านศูนย์กลางภายนอกของซิลิกาที่สังเคราะห์โดยใช้CTAB และ E45B10 เป็นแม่ แบบที่อัตราส่วนต่างๆ โดยใช้วิธีที่ 1 และวิธีที่ 2 ในการสังเคราะห์

^a ข้อมูลจากตารางที่ 3.4, ^b ไม่สามารถวัดขนาดเส้นผ่านศูนย์กลางภายนอกของซิลิกาได้

ภาพประกอบที่ 3.24 ผล XRD ของซิลิกาที่สังเคราะห์จากวิธีที่ 1 โดยใช้ CTAB และ ${
m E_{45}B_{10}}$

เป็นแม่แบบที่อัตราส่วนต่างๆ

ภาพประกอบที่ 3.25 ผล XRD ของซิลิกาที่สังเคราะห์จากวิธีที่ 2 โดยใช้ CTAB และ E₄₅B₁₀ เป็นแม่แบบที่อัตราส่วนต่างๆ

ตารางที่ 3.16 ค่า d-spacing ของซิลิกาที่สังเคราะห์โดยใช้ CTAB และ ${f E}_{45}{f B}_{10}$ เป็นแม่แบบ

อัตราส่วนโมล	ិតី	ค่า d-spacing
$CTAB:E_{45}B_{10}$		(nm)
30:70	1	6.4
	2	6.4
50:50	1	6.4
	2	6.4
70:30	1	5.9
	2	5.9

ภาพประกอบที่ 3.24 และภาพประกอบที่ 3.25 แสคงผล XRD ของซิลิกาที่ สังเคราะห์โดยใช้ CTAB และ E₄₅B₁₀ เป็นแม่แบบที่อัตราส่วนต่างๆ ที่ได้จากวิธีสังเคราะห์ที่แตกต่าง กัน พบว่าทั้ง 2 วิธีให้ผลที่แตกต่างกัน คือ ที่อัตราส่วนโดยโมลของ CTAB:E₄₅B₁₀ = 30:70 ที่ สังเคราะห์โดยวิธีที่ 2 พีกที่ได้จะมีลักษณะแคบและแหลม ที่อัตราส่วนโดยโมล CTAB:E₄₅B₁₀ = 70:30 และ CTAB:E₄₅B₁₀ = 50:50 ที่สังเคราะห์โดยวิธีที่ 1 และ 2 และที่อัตราส่วนโดยโมลของ CTAB:E₄₅B₁₀ = 30:70 ที่สังเคราะห์โดยวิธีที่ 1 พีกที่ได้จะมีลักษณะกว้าง ซึ่งแสดงให้เห็นว่าที่อัตราส่วนดังกล่าว โครงสร้างที่ได้จะมีความเป็นระเบียบต่ำกว่าที่อัตราส่วนโดยโมลของ CTAB:E₄₅B₁₀ = 30:70 ที่ สังเคราะห์โดยวิธีที่ 2

นอกจากนี้พบว่าเมื่ออัตราส่วนของ E₄₅B₁₀ มากขึ้นพีกที่ได้จะมีแนวโน้มเลื่อนไป ด้านที่มีค่า 20 ลดลงจากค่า 20 ที่ลดลงนี้แสดงให้เห็นว่าค่า d-spacing มีค่ามากขึ้น ซึ่งสอดคล้องกับ สมการ nλ=2dsinθ เมื่อ n=1 จะได้ d=λ/2sinθ ดังนั้น d ∝ 1/sinθ

จากตารางที่ 3.16 พบว่าซิถิกาที่ได้จากการสังเคราะห์ทั้ง 2 วิธีได้ค่า d-spacing ที่ เท่ากัน โดยเมื่อ E₄₅B₁₀ มีอัตราส่วนที่มากขึ้นสอดคล้องกับ ก่า d-spacing มีก่ามากขึ้น

กราฟ TGA ของซิลิกาที่สังเคราะห์โดยใช้ CTAB และ $E_{45}B_{10}$ เป็นแม่แบบที่อัตรา ส่วนโดยโมล CTAB: $E_{45}B_{10} = 50:50$ และสังเคราะห์โดยวิธีที่ 1 แสดงในภาพประกอบที่ 3.26 เปอร์เซ็นต์น้ำหนักที่หายไปที่อุณหภูมิระหว่าง 250-340 องศาเซลเซียส เป็นช่วงอุณหภูมิที่เกิดการ สลายตัวของ CTAB (Boonamnuayuitaya et al, 2006) อุณหภูมิระหว่าง 340-500 องศาเซลเซียส เป็นช่วงอุณหภูมิที่เกิดการสลายตัวของ $E_{45}B_{10}$ และที่อุณหภูมิมากกว่า 500 องศาเซลเซียส เป็นการ เกิดการควบแน่นต่อเนื่องของหมู่ OH ของ Si-OH ที่อยู่บริเวณผนังรูพรุนของซิลิกา (Kao et al, 2006)

ภาพประกอบที่ 3.26 ผล TGA ของซิลิกาที่สังเคราะห์โดยใช้ CTAB และ E₄₅B₁₀ เป็นแม่แบบที่ อัตราส่วนโดยโมลของ CTAB:E₄₅B₁₀ = 50:50 และสังเคราะห์โดยวิธีที่ 1

ภาพประกอบที่ 3.27 และ 3.28 เปรียบเทียบ IR สเปกตรัมที่ได้จากซิลิกาที่ สังเคราะห์โดยใช้ CTAB และ $E_{45}B_{10}$ เป็นแม่แบบที่อัตราส่วน CTAB: $E_{45}B_{10} = 50:50$ และ สังเคราะห์โดยวิธีที่ 1 ทั้งก่อนและหลังเผา ภาพประกอบที่ 3.27 เป็นซิลิกาที่ยังไม่ผ่านการเผา สเปกตรัมที่ได้ประกอบด้วยพีก 2885 - 2967 cm⁻¹ ซึ่งเป็นลักษณะของการยืดของ CH₂ และ CH₃ และที่ความถี่ 1359 cm⁻¹ และ 1469 cm⁻¹ เป็นลักษณะของการงอของ CH₂ และ CH₃ ซึ่งเป็นพีกเหล่า นี้เป็นพีกของสารประกอบไฮโดรการ์บอนที่เป็นองค์ประกอบของ CTAB และ $E_{45}B_{10}$ และภาพ ประกอบที่ 3.26(a) ยังประกอบด้วยพีกต่างๆ ที่เป็นลักษณะของซิลิกาคือ ที่ความถี่ 794 cm⁻¹ และ 1078 cm⁻¹ เป็นลักษณะของ Si-O-Si ที่เกิดการควบแน่น ที่ความถี่ 1655 cm⁻¹ และ 3406 cm⁻¹ เป็น ลักษณะของ O-H และที่ความถี่ 951 cm⁻¹ เป็นลักษณะของ Si-OH ซึ่งเป็นพีกที่เกิดจากซิลิกาที่ไม่ เกิดปฏิกิริยาควบแน่น แต่ภาพประกอบที่ 3.28 เป็นซิลิกาที่ผ่านการเผาแล้ว พบว่ามีเพียงพีกที่เป็น ลักษณะของซิลิกาปรากฏอยู่เท่านั้น คือ ที่ความถี่ 802 cm⁻¹, 961 cm⁻¹, 1088 cm⁻¹, 1640 cm⁻¹ และ 3469 cm⁻¹ ดังนั้นแสดงให้เห็นว่าหลังจากการเผาแล้วจะเหลือเพียงซิลิกาเท่านั้น

ภาพประกอบที่ 3.27 IR สเปกตรัมของซิลิกาก่อนเผาที่สังเคราะห์โดยใช้ CTAB และ E₄₅B₁₀ เป็นแม่ แบบที่อัตราส่วนโดยโมลของ CTAB:E₄₅B₁₀ = 50:50 และสังเคราะห์โดยวิธีที่

1

- ภาพประกอบที่ 3.28 IR สเปกตรัมของซิลิกาหลังเผาที่สังเคราะห์โดยใช้ CTAB และ E₄₅B₁₀ เป็น แม่แบบที่อัตราส่วนโดยโมลของ CTAB:E₄₅B₁₀ = 50:50 และสังเคราะห์ โดยวิธีที่ 1
- ตารางที่ 3.17 ความถี่ของหมู่ฟังก์ชั่นต่างๆของซิลิกาก่อนเผาที่สังเคราะห์โดยใช้ CTAB และ E₄₅B₁₀ เป็นแม่แบบที่อัตราส่วนโดยโมลของ CTAB:E₄₅B₁₀ = 50:50 และสังเคราะห์ โดยวิธีที่ 1

หมู่ฟังก์ชั่น	ความถี่ (cm ⁻¹)
Si-O-Si (condensation)	794 และ 1078
Si-OH _(non-condensation)	951
О-Н	1655 และ 3406
การยึดของ C-H ใน CH ₂ , CH ₃	2885, 2930 ແລະ 2967

ตารางที่ 3.18 ความถี่ของหมู่ฟังก์ชั่นต่างๆของซิลิกาหลังเผาที่สังเคราะห์โดยใช้ CTAB และ E₄₅B₁₀ เป็นแม่แบบที่อัตราส่วนโดยโมลของ CTAB:E₄₅B₁₀ = 50:50 และสังเคราะห์โดยวิธี ที่ 1

หมู่ฟังก์ชั่น	เลขคลื่น (cm ⁻¹)
Si-O-Si (condensation)	802 และ 1088
Si-OH _(non-condensation)	951
О-Н	1640 และ 3459

3.2.2.2 สังเคราะห์ซิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด $\mathbf{E}_{45}\mathbf{B}_{10}$ เป็นแม่แบบร่วมกับ

$E_{33}B_{10}E_{33}$

สมบัติของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ ร่วมกับ E₃₃B₁₀E₃₃ เป็นแม่แบบที่ได้จาก การวิเคราะห์ด้วยเครื่องวิเคราะห์พื้นที่ผิวและขนาดรูพรุนและเปอร์เซ็นต์น้ำหนักที่หายไป แสดงใน ตารางที่ 3.19

จากตารางที่ 3.19 พบว่าซิลิกาที่สังเคราะห์ โดยใช้ $\mathbf{E}_{33}\mathbf{B}_{10}\mathbf{E}_{33}$ ร่วมกับ $\mathbf{E}_{45}\mathbf{B}_{10}$ เป็นแม่ แบบที่อัตราส่วนโดยโมลของ $E_{33}B_{10}E_{33}:E_{45}B_{10} = 0:100, 30:70, 50:50, 70:30$ และ 100:0 เมื่อ E₃₃B₁₀E₃₃ มีอัตราส่วนมากขึ้น ค่าปริมาตรรูพรุนขนาคไมโกร และค่าเปอร์เซ็นต์ปริมาตรรูพรุนขนาค ้ไมโคร จะมีค่ามากขึ้น แต่ค่าปริมาตรรูพรุนขนาคมีโซ (P/P_o)_{step} และค่ารัศมีรูพรุนของซิลิกา มีแนว ์ โน้มลคลง ซึ่งแสดงให้เห็นว่าเมื่อ ${
m E}_{{
m 33}}{
m B}_{{
m 10}}{
m E}_{{
m 33}}$ มีอัตราส่วนมากขึ้น รูพรุนที่ได้จะเปลี่ยนจากรูพรุนที่มี ้งนาคมีโซไปเป็นรูพรุนที่มีขนาคไมโคร ซึ่งสอคกล้องกับกราฟ adsorption isotherms ที่ได้จากซิลิ กาที่สังเคราะห์โดยใช้ $\mathbf{E}_{33}\mathbf{B}_{10}\mathbf{E}_{33}$ และ $\mathbf{E}_{45}\mathbf{B}_{10}$ เป็นแม่แบบที่สังเคราะห์ได้จากวิธีที่ 1 และวิธีที่ 2 เมื่อ อัตราส่วนโดยโมลของ $E_{_{33}}B_{_{10}}E_{_{33}}$ มากขึ้นคือ $E_{_{33}}B_{_{10}}E_{_{33}}:E_{_{45}}B_{_{10}}=70:30$ และ 100:0 กราฟไอโซ เทอร์มที่ได้จะเป็นกราฟไอโซเทอร์มชนิดที่ 1 ซึ่งเป็นลักษณะของวัสดุที่มีรูพรุนขนาดไมโคร แต่ $\mathbf{E}_{_{33}}\mathbf{B}_{_{10}}\mathbf{E}_{_{33}}$ มีอัตราส่วนโดยโมลของ $\mathbf{E}_{_{33}}\mathbf{B}_{_{10}}\mathbf{E}_{_{33}}$ ลดลง คือ ที่อัตราส่วนโดยโมลของ เมื่อ E₃₃B₁₀E₃₃:E₄₅B₁₀ = 50:50, 30:70 และ 0:100 จะเป็นกราฟไอโซเทอร์มชนิดที่ 4 ซึ่งเป็นลักษณะของ วัสดุที่มีรูพรุนขนาคมีโซ ดังแสดงในภาพประกอบที่ 3.29 และ 3.30 ซึ่งผลที่ได้สอดคล้องกับภาพ ้ประกอบที่ 1.3 โดยการเกิดไมเซลล์ของ $\mathbf{E}_{45}\mathbf{B}_{10}$ ซึ่งเป็นพอลิเมอร์ชนิดไดบล็อก นั้นส่วนไม่ชอบน้ำ หรือส่วน B บล็อกจะอยู่บริเวณส่วนใจกลาง (core) ของไมเซลล์ และส่วนชอบน้ำหรือส่วน E บล็อกจะอยู่บริเวณส่วนรอบนอก (corona) ของไมเซลล์ ดังนั้น core ของไมเซลล์จึงมีขนาดเท่ากับ ความยาวของของส่วน B บล็อก (B₁₀) แต่การเกิดไมเซลล์ของ E₃₃B₁₀E₃₃ ซึ่งเป็นพอลิเมอร์ชนิดไตร บล็อก ปลายทั้งสองข้างของส่วนที่ชอบน้ำของไตรบล็อกจะอยู่บริเวณ corona ของไมเซลล์ ดังนั้น กวามยาวของส่วนไม่ชอบน้ำของไตรบล็อกจะลดลงเหลือครึ่งหนึ่ง (B₅) ส่งผลให้รัศมีของ core ของไมเซลล์ของ $E_{33}B_{10}E_{33}$ มีความยาวเป็นครึ่งหนึ่งของไมเซลล์ของ $E_{45}B_{10}$ จึงเป็นสาเหตุที่ทำให้ซิ ลิกาที่สังเคราะห์โดยใช้ $E_{33}B_{10}E_{33}$ เป็นแม่แบบมีรูพรุนขนาดไมโคร และ $E_{45}B_{10}$ มีรูพรุนขนาดมีโซ ดังนั้นการสังเคราะห์ซิลิกาโดยใช้ $E_{45}B_{10}$ ร่วมกับ $E_{33}B_{10}E_{33}$ เป็นแม่แบบจะได้ซิลิกาที่มีรูพรุนขนาด ใหญ่กว่าการใช้ $E_{33}B_{10}E_{33}$ เป็นแม่แบบเพียงอย่างเดียว และสำหรับค่าเปอร์เซ็นต์น้ำหนักที่หายไป พบว่าทุกอัตราส่วนที่สังเคราะห์โดยวิธีที่ 2 มีค่าเปอร์เซ็นต์น้ำหนักที่หายไปมากกว่าวิธีที่ 1 เนื่องจาก การเกิดการควบแน่น (condensation) ของซิลิกาก่อนเผาที่ได้จากวิธีที่ 1 จะเกิดได้ดีกว่าวิธีที่ 2 (Tattershall et al, 2002) และซิลิกาที่สังเคราะห์โดยวิธีที่ 2 เกิดการหดตัวหลังเผามากกว่าวิธีที่ 1

ตารางที่ 3.19 สมบัติพื้นที่ผิว รัศมีรูพรุน และเปอร์เซ็นต์น้ำหนักที่หายไปของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบร่วมกับ E₃₃B₁₀E₃₃

อัตราส่วน โมล	วิธี	A^{a}	V _{micro} ^b	%V _{micro} ^c	V _{meso} ^d	V _{pore} ^e	$(P/P_0)_{step}^{f}$	r_p^{g}	Weight loss
$E_{33}B_{10}E_{33}:E_{45}B_{10}$		(m^2/g)	(cm^3/g)		(cm^3/g)	(cm^3/g)		(nm)	(%)
0:100	1	640	0.12	32	0.25	0.37	0.43	1.9	28
	2	683	0.12	34	0.23	0.35	0.42	1.8	34
30:70	1	582	0.09	30	0.21	0.30	0.37	1.7	38
	2	542	0.11	38	0.18	0.29	0.40	1.8	40
50:50	1	556	0.09	32	0.19	0.28	0.33	1.5	40
	2	587	0.08	27	0.22	0.30	0.37	1.7	41
70:30	1	577	0.14	52	0.13	0.27	0.29	1.4	34
	2	549	0.12	56	0.14	0.26	0.32	1.5	40
100:0	1	599	0.17	61	0.11	0.28	0.28	1.4	28
	2	542	0.18	72	0.07	0.25	0.24	1.3	31

[°] ค่าพื้นที่ผิว ^bปริมาตรรูพรุนขนาดไมโกร ์เปอร์เซ็นด์ปริมาตรรูพรุนขนาดไมโกร ^dปริมาตรรูพรุนขนาดมีโซ [°]ปริมาตรรูพรุนรวม

^fจุดหักที่เกิดการเปลี่ยนแปลงความชันในกราฟไอโซเทอร์ม ^ะค่ารัศมีรูพรุนของซิลิกา

ภาพประกอบที่ 3.29 Adsorption isotherms ของซิลิกาที่สังเคราะห์โดยวิธีที่ 1 และใช้ $E_{33}B_{10}E_{33}$ ร่วมกับ $E_{45}B_{10}$ เป็นแม่แบบที่อัตราส่วนต่างๆ

ภาพประกอบที่ 3.30 Adsorption isotherms ของซิลิกาที่สังเคราะห์โดยวิธีที่ 2 และใช้ $E_{33}B_{10}E_{33}$ ร่วมกับ $E_{45}B_{10}$ เป็นแม่แบบที่อัตราส่วนต่างๆ

ผลการศึกษาวิธีสังเคราะห์และอัตราส่วนของ E₃₃B₁₀E₃₃:E₄₅B₁₀ ที่มีผลต่อรูปร่าง ของซิลิกา แสดงในภาพประกอบที่ 3.31-3.33 พบว่าซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 มีลักษณะรูป ร่างที่มีลักษณะกลมเพียงเล็กน้อย แต่มีซิลิกาอสัณฐานมาก วิธีที่ 2 จะได้โครงสร้างซิลิกาที่มีลักษณะ กลม มีขนาดใกล้เกียงกันและมีซิลิกาอสัณฐานน้อยกว่าที่สังเคราะห์ได้จากวิธีที่ 1 และจากตารางที่ 3.20 ขนาดเส้นผ่านศูนย์กลางภายของซิลิกาที่สังเคราะห์โดยวิธีที่ 2 และใช้ $E_{33}B_{10}E_{33}$ และ $E_{45}B_{10}$ เป็นแม่แบบเพียงอย่างเดียว คือ 2.79 ± 0.98 ไมโครเมตร และ 2.45 ± 0.74 ไมโครเมตร ตามลำดับ มีขนาดเล็กกว่าซิลิกาที่สังเคราะห์โดยใช้ $E_{33}B_{10}E_{33}$ ร่วมกับ $E_{45}B_{10}$ เป็นแม่แบบ ซึ่งมีขนาดเส้นผ่าน ศูนย์กลางภายนอก คือ 3.87 ± 1.00 ไมโครเมตร, 3.68 ± 0.83 ไมโครเมตร และ 4.07 ± 0.80 ไมโครเมตร ที่อัตราส่วนโดยโมลของ $E_{33}B_{10}E_{33}:E_{45}B_{10} = 70:30, 50:50$ และ 30:70 ตามลำดับ

(a) (b) ภาพประกอบที่ 3.31 ภาพ SEM ของซิลิกาที่สังเคราะห์ โดยใช้ E₃₃B₁₀E₃₃และ E₄₅B₁₀ เป็นแม่แบบ ที่อัตราส่วน โดยโมลของ E₃₃B₁₀E₃₃:E₄₅B₁₀ = 30:70 (a) วิธีที่ 1 (b) วิธีที่ 2

(a) (b) ภาพประกอบที่ 3.32 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้ E₃₃B₁₀E₃₃และ E₄₅B₁₀ เป็นแม่แบบ

ที่อัตราส่วนโดยโมลของ E₃₃B₁₀E₃₃:E₄₅B₁₀ = 50:50 (a) วิธีที่ 1 (b) วิธีที่ 2

ภาพประกอบที่ 3.33 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้ $E_{33}B_{10}E_{33}$ และ $E_{45}B_{10}$ เป็นแม่แบบ ที่อัตราส่วนโดยโมลของ $E_{33}B_{10}E_{33}$: $E_{45}B_{10}$ = 70:30 (a) วิธีที่ 1 (b) วิธีที่ 2

(b)

(a)

ตารางที่ 3.20 เส้นผ่านศูนย์กลางภายนอกของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀และ E₃₃B₁₀E₃₃ เป็น แม่แบบที่อัตราส่วนต่างๆ โดยใช้วิธีที่ 1 และวิธีที่ 2 ในการสังเคราะห์

อัตราส่วนโมล	រិតី	เส้นผ่านศูนย์กลางภายนอก
$E_{33}B_{10}E_{33}:E_{45}B_{10}$		(µm)
0:100	1^{a}	5.45 ± 2.79
	2^{a}	2.45 ± 0.74
30:70	1	_b
	2	4.07 ± 0.8
50:50	1	_b
	2	3.68 ± 0.83
70:30	1	_b
	2	3.87 ± 1.00
100:0	1°	_b
	2 [°]	2.79 ± 0.98

^a ข้อมูลจากตารางที่ 3.4, ^b ไม่สามารถวัดขนาดเส้นผ่านศูนย์กลางภายนอกของซิลิกาได้,

์ ข้อมูลจากตารางที่ 3.10

3.2.2.3 สังเคราะห์ซิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด $\mathbf{E}_{45}\mathbf{B}_{10}$ เป็นแม่แบบร่วมกับ

 $E_{43}B_{14}E_{43}$

สมบัติของซิถิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ ร่วมกับ E₄₃B₁₄E₄₃ เป็นแม่แบบที่ได้จาก การวิเคราะห์ด้วยเครื่องวิเคราะห์พื้นที่ผิวและขนาดรูพรุนและเปอร์เซ็นต์น้ำหนักที่หายไป แสดงใน ตารางที่ 3.21

ตารางที่ 3.21 สมบัติพื้นที่ผิว รัศมีรูพรุน และเปอร์เซ็นต์น้ำหนักที่หายไปของซิลิกาที่สังเคราะห์ โดยใช้ E₄₅B₁₀ เป็นแม่แบบร่วมกับ E₄₃B₁₄E₄₃

อัตราส่วนโมล	วิธี	A^{a}	V _{micro} ^b	%V _{micro} ^c	V _{meso} ^d	V _{pore} ^e	(P/P ₀) ^f _{step}	r_p^{g}	Weight loss
$E_{43}B_{14}E_{43}:E_{45}B_{10}$		(m^2/g)	(cm ³ /g)		(cm^3/g)	(cm ³ /g)		(nm)	(%)
0:100	1	640	0.12	32	0.25	0.37	0.43	1.9	28
	2	683	0.12	34	0.23	0.35	0.42	1.8	34
30:70	1	577	0.09	30	0.21	0.30	0.42	1.8	37
	2	614	0.11	33	0.22	0.33	0.42	1.8	47
50:50	1	632	0.09	26	0.25	0.34	0.44	1.9	42
	2	581	0.09	30	0.21	0.30	0.36	1.6	48
70:30	1	610	0.10	23	0.33	0.43	0.39	1.7	25
	2	626	0.10	31	0.22	0.32	0.32	1.5	43
100:0	1	652	0.36	40	0.19	0.32	0.36	1.6	35
	2	707	0.36	33	0.24	0.36	0.36	1.6	38

้ค่าพื้นที่ผิว ^bปริมาตรรูพรุนขนาดไมโกร ์เปอร์เซ็นต์ปริมาตรรูพรุนขนาดไมโกร ^dปริมาตรรูพรุนขนาดมีโซ [°]ปริมาตรรูพรุนรวม

^เจุดหักที่เกิดการเปลี่ยนแปลงความชั่นในกราฟไอโซเทอร์ม ^ร์ค่ารัศมีรูพรุนของซิลิกา

จากตารางพบว่าซิลิกาที่สังเคราะห์โดยใช้ $E_{4_3}B_{1_4}E_{4_3}$ และ $E_{4_5}B_{10}$ เป็นแม่แบบที่ อัตราส่วนโดยโมลของ $E_{4_3}B_{14}E_{4_3}$: $E_{4_5}B_{10} = 0:100, 30:70, 50:50, 70:30$ และ 100:0 ที่ได้จากวิธีที่ 1 และวิธีที่ 2 เมื่อ $E_{4_3}B_{14}E_{4_3}$ มีอัตราส่วนมากขึ้นค่าปริมาตรรูพรุนขนาดไมโคร และค่าเปอร์เซ็นต์ ปริมาตรรูพรุนขนาดไมโครจะมีค่ามากขึ้นเล็กน้อย และค่าปริมาตรรูพรุนขนาดมีโซ (P/P₀)_{sep} และ ค่ารัศมีของรูพรุนมีแนวโน้มลดลงเล็กน้อย เนื่องจากในการเกิดไมเซลล์ของ $E_{43}B_{14}E_{43}$ ความยาวของ ส่วนไม่ชอบน้ำของไตรบล็อกจะลดลงเหลือครึ่งหนึ่ง ส่งผลให้ core ของไมเซลล์ของ $E_{43}B_{14}E_{43}$ มี ความยาวเป็นครึ่งหนึ่งของความยาวของส่วน B บล็อก (B₇) แต่ในการเกิดไมเซลล์ของ $E_{43}B_{14}E_{43}$ มี ความยาวของของส่วน B บล็อก คือเท่ากับ B₁₀ ดังนั้นซิลิกาที่สังเคราะห์โดยใช้บล็อกโคพอลิเมอร์ ชนิด $E_{45}B_{10}$ เป็นแม่แบบร่วมกับ $E_{43}B_{14}E_{43}$ เมื่อ $E_{45}B_{10}$ มีอัตราส่วนมากขึ้นส่งผลให้ซิลิกาที่ สังเคราะห์ได้มีรูพรุนที่มีขนาดใหญ่ขึ้น

พบว่าทุกอัตราส่วนที่สังเคราะห์โดยวิธีที่ 2 มีค่าเปอร์เซ็นต์น้ำหนักที่หายไปมาก กว่าวิธีที่ 1 เนื่องจากการเกิดการควบแน่น (condensation) ของซิลิกาก่อนเผาที่ได้จากวิธีที่ 1 จะเกิด ได้ดีกว่าวิธีที่ 2 (Tattershall et al, 2002) และซิลิกาที่สังเคราะห์โดยวิธีที่ 2 เกิดการหดตัวหลังเผามาก กว่าวิธีที่ 1

นอกจากนี้พบว่าซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบร่วมกับ E₃₃B₁₀E₃₃ จะ มีค่ารัศมีของรูพรุน (ตารางที่ 3.19) ที่มีขนาดเล็กกว่า ซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀ เป็นแม่แบบ ร่วมกับ E₄₃B₁₄E₄₃ เนื่องจาก E₄₃B₁₄E₄₃ มีความยาวเป็นครึ่งหนึ่งของความยาวของส่วน B บล็อกเท่า กับ B₇ ซึ่งมากกว่า ความยาวครึ่งหนึ่งของส่วน B บล็อกของ E₃₃B₁₀E₃₃ ที่เท่ากับ B₅

กราฟ adsorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ E₄₃B₁₄E₄₃ และ E₄₅B₁₀ เป็นแม่แบบที่อัตราส่วนต่างๆ แสดงในภาพประกอบที่ 3.34 และ 3.35 เป็นกราฟไอโซเทอร์มชนิดที่ 4 ซึ่งเป็นลักษณะของวัสดุที่มีรูพรุนขนาดมีโซ

ภาพประกอบที่ 3.34 Adsorption isotherms ของซิลิกาที่สังเคราะห์โดยวิธีที่ 1 และใช้ $E_{_{43}}B_{_{14}}E_{_{43}}$ ร่วมกับ $E_{_{45}}B_{_{10}}$ เป็นแม่แบบที่อัตราส่วนต่างๆ

ภาพประกอบที่ 3.35 Adsorption isotherms ของซิลิกาที่สังเคราะห์ โดยวิธีที่ 2 และใช้ E₄₃B₁₄E₄₃ ร่วมกับ E₄₅B₁₀ เป็นแม่แบบที่อัตราส่วนต่างๆ

ผลการศึกษาวิธีสังเคราะห์และอัตราส่วนของ E₄₃B₁₄E₄₃:E₄₅B₁₀ ที่มีผลต่อรูปร่าง ของซิลิกา แสดงในภาพประกอบที่ 3.36-3.38 พบว่าซิลิกาที่สังเคราะห์ได้จากวิธีที่ 1 จะปรากฏรูป ร่างที่มีลักษณะกลมเพียงเล็กน้อยและมีซิลิกาอสัณฐานมาก แต่ซิลิกาที่สังเคราะห์ได้จากวิธีที่ 2 จะ ได้ซิลิกาที่มีลักษณะกลมและมีซิลิกาอสัณฐานน้อยกว่าที่สังเคราะห์ได้จากวิธีที่ 1

จากตารางที่ 3.22 พบว่าขนาดเส้นผ่านศูนย์กลางภายนอกของซิลิกาที่สังเคราะห์ โดยวิธีที่ 2 และใช้ $E_{45}B_{10}$ และ $E_{43}B_{14}E_{43}$ เป็นแม่แบบที่อัตราส่วนโดยโมลของ $E_{43}B_{14}E_{43}:E_{45}B_{10} =$ 30:70, 50:50 และ 70:30 คือ 3.01 ± 1.11 ไมโครเมตร, 3.86 ± 3.30 ไมโครเมตร และ2.93 ± 0.13 ไมโครเมตร ตามลำคับ จะมีขนาดใหญ่กว่าซิลิกาที่สังเคราะห์โดยใช้ $E_{45}B_{10}$ หรือ $E_{43}B_{14}E_{43}$ เป็นแม่ แบบเพียงอย่างเดียว คือ ที่อัตราส่วนโดยโมลของ $E_{43}B_{14}E_{43}:E_{45}B_{10} = 0:100$ และ 100:0 มีขนาดเส้น ผ่านศูนย์กลางภายนอกเท่ากับ 2.45 ± 0.74 ไมโครเมตร และ 3.01 ± 0.89 ไมโครเมตร ตามลำดับ

(a) (b) ภาพประกอบที่ 3.36 ภาพ SEM ของซิลิกาที่สังเคราะห์โคยใช้ E₄₃B₁₄E₄₃และ E₄₅B₁₀ เป็นแม่แบบ อัตราส่วนโคยโมลของ E₄₃B₁₄E₄₃:E₄₅B₁₀ = 30:70 (a) วิธีที่ 1 (b) วิธีที่ 2

(a)
 (b)
 ภาพประกอบที่ 3.37 ภาพ SEM ของซิลิกาที่สังเคราะห์โคยใช้ E₄₃B₁₄E₄₃และ E₄₅B₁₀ เป็นแม่แบบ
 อัตราส่วนโคยโมลของ E₄₃B₁₄E₄₃:E₄₅B₁₀ = 50:50 (a) วิธีที่ 1 (b) วิธีที่ 2

(a) (b) ภาพประกอบที่ 3.38 ภาพ SEM ของซิลิกาที่สังเคราะห์ โดยใช้ E₄₃B₁₄E₄₃และ E₄₅B₁₀ เป็นแม่แบบ อัตราส่วน โดยโมลของ E₄₃B₁₄E₄₃:E₄₅B₁₀ = 70:30 (a) วิธีที่ 1 (b) วิธีที่ 2

ตารางที่ 3.22 เส้นผ่านศูนย์กลางภายนอกของซิลิกาที่สังเคราะห์โดยใช้ E₄₅B₁₀และ E₄₃B₁₄E₄₃ เป็น แม่แบบที่อัตราส่วนต่างๆ โดยใช้วิธีที่ 1 และวิธีที่ 2 ในการสังเคราะห์

อัตราส่วนโมล	រិតី	เส้นผ่านศูนย์กลางภายนอก
$E_{43}B_{14}E_{43}:E_{45}B_{10}$		(µm)
0:100	1^{a}	5.45 ± 2.79
	2^{a}	2.45 ± 0.74
30:70	1	_b
	2	3.01 ± 1.11
50:50	1	b
	2	3.86 ± 3.30
70:30	1	_b
	2	2.93 ± 0.13
100:0	1 [°]	b
	2^{c}	3.01 ± 0.89

^{*}ข้อมูลจากตารางที่ 3.4, ^b ไม่สามารถวัดขนาดเส้นผ่านศูนย์กลางภายนอกของซิลิกาได้,

์ ข้อมูลจากตารางที่ 3.13

3.3 สังเคราะห์ซิลิกาโดยใช้บล็อกโคพอลิเมอร์ชนิด E_P_E_ เป็นแม่แบบ

3.3.1 สังเคราะห์ชิลิกาโดยใช้ E₂₀P₇₀E₂₀ (P123) และ E₁₀₆P₇₀E₁₀₆ (F127) เป็นแม่แบบและใช้เกลือ 2 ชนิดคือ [KCl] = 0.15M และ [Na,SO₄] = 0.15M และ [HCl] = 2M

Kim และคณะ (Kim et al, 2004) สังเคราะห์วัสดุ SBA-16 โดยใช้ F127 ร่วมกับ P123 เป็นแม่แบบ ที่อัตราส่วนโดยโมลของ F127:P123 = 1:0, 1:0.2, 1:0.4 และ 1:0.7 ภายใต้สภาวะ ที่เป็นกรด และใช้ TEOS เป็นแหล่งให้ซิลิกา โดยในการสังเคราะห์จะศึกษาอิทธิพลที่มีผลทำให้ วัสดุ SBA-16 มีรูพรุนที่มีขนาดใหญ่ขึ้น ในการสังเคราะห์จะให้ความร้อน 2 ขั้นตอน คือ ขั้นตอนที่ 1 ทำการสังเคราะห์ที่อุณหภูมิ 35 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง สารละลายที่ได้นำมาให้ความ ร้อนในขั้นตอนที่ 2 ที่อุณหภูมิ 333, 353, 373 หรือ 403 เคลวิน เพื่อทำไฮโดรเทอร์มัล ทรีทเมนท์ (hydrothermal treatment) โดยเปลี่ยนแปลงเวลาจาก 1 ชั่วโมง ถึง 7 วัน จากผลการสังเคราะห์พบว่า นอกจากการเพิ่มอุณหภูมิและเวลาในการทำไฮโดรเทอร์มัล ทรีทเมนท์จะทำให้รูพรุนมีขนาดใหญ่ ขึ้นแล้ว อัตราส่วนของ P123 ที่เพิ่มขึ้นก็มีผลทำให้รูพรุนมีขนาดใหญ่ขึ้นเช่นกัน

การทำไฮโดรเทอร์มัล ทรีทเมนท์จะทำให้ซิลิกามีรูพรุนที่มีขนาดใหญ่ขึ้น และ จำนวนรูพรุนขนาดไมโครลดลง เนื่องจากเมื่ออุณหภูมิสูงขึ้นส่วน E บล็อกของพอลิเมอร์ จะเกิด ปฏิกิริยากับน้ำได้น้อยลง ซึ่งจะเป็นการเพิ่มส่วนไม่ชอบน้ำในไมเซลล์ ทำให้ core ของไมเซลล์มี ขนาดใหญ่ขึ้น (Voort et al, 2002)

แต่อย่างไรก็ตามยังไม่มีการสังเคราะห์ซิลิกาที่มีรูพรุน โดยใช้ P123 ร่วมกับ F127 เป็นแม่แบบ และใช้เกลือในการสังเคราะห์ เนื่องจากเกลือจะทำให้ค่า cmc ลดลง ทำให้พอลิเมอร์ รวมตัวกันเกิดเป็นไมเซลล์ได้ดีขึ้น และทำให้โครงผลึกที่ได้มีความเป็นระเบียบมากขึ้น ดังนั้นใน งานวิจัยนี้จึงสังเคราะห์ซิลิกาโดยใช้ P123 ร่วมกับ F127 เป็นแม่แบบและศึกษาผลของเกลือ 2 ชนิด คือ KCI และ Na₂SO₄

สมบัติของซิลิกาที่สังเคราะห์โดยใช้ P123 ร่วมกับ F127 เป็นแม่แบบและใช้เกลือ 2 ชนิคคือ [KCl] = 0.15M และ [Na₂SO₄] = 0.15M ที่ได้จากการวิเคราะห์ด้วยเครื่องวิเคราะห์พื้นที่ ผิวและขนาดรูพรุนและเปอร์เซ็นต์น้ำหนักที่หายไป แสดงในตารางที่ 3.23

ผลการศึกษาการสังเคราะห์ซิลิกาโดยใช้ P123 ร่วมกับ F127 เป็นแม่แบบที่อัตรา ส่วนต่างๆและใช้เกลือ 2 ชนิด คือ Na₂SO₄ และ KCl แสดงผลการสังเคราะห์ดังตารางที่ 3.23 พบว่า ซิลิกาที่สังเคราะห์โดยใช้เกลือชนิด Na₂SO₄ จะมีค่าปริมาตรรูพรุนขนาดไมโคร และเปอร์เซ็นต์ ปริมาตรรูพรุนขนาดไมโครลดลง แต่ปริมาตรรูพรุนขนาดมีโซเพิ่มขึ้น เมื่ออัตราส่วนของ P123 มาก ขึ้น

ชื่อตัวอย่าง	P123:F127	วิธี	ชนิด	A^{a}	V _{micro} ^b	%V _{micro} ^c	V _{meso} ^d	V_{pore}^{e}	(P/P ₀) ^f _{step}	r_p^{g}
	molar ratio		ของ	(m^2/g)	(cm^3/g)		(cm^3/g)	(cm^3/g)		(nm)
			เกลือ							
P12301F2C	10:90	3	KCl	710	*	-*	-*	0.58	0.69	3.6
P12303F2C	30:70	3	KCl	727	*	-*	-	0.59	0.80	5.4
P12305F2C	50:50	3	KCl	674	*	-*	-*	0.62	0.86	7.6
P12307F2C	70:30	3	KCl	648	*	-*	-*	0.63	0.8	5.4
P12309F2C	90:10	3	KCl	632	* -	-*	*	0.70	0.74	4.2
P12301FNC	10:90	3	Na ₂ SO ₄	701	0.06	11.8	0.45	0.51	0.71	3.8
P12303FNC	30:70	3	Na_2SO_4	834	0.08	12.1	0.58	0.66	0.74	4.2
P12305FNC	50:50	3	Na_2SO_4	620	0.07	13.7	0.44	0.51	0.74	4.2
P12307FNC	70:30	3	Na_2SO_4	559	0.06	10.7	0.50	0.56	0.78	5.0
P12309FNC	90:10	3	Na ₂ SO ₄	507	0.05	8.5	0.54	0.59	0.72	4.0

ตารางที่ 3.23 สมบัติพื้นที่ผิว รัศมีรูพรุน และเปอร์เซ็นต์น้ำหนักที่หายไปของซิลิกาที่สังเคราะห์โดยใช้ P123 และ F127 เป็นแม่แบบ

[°] ค่าพื้นที่ผิว ^bปริมาตรรูพรุนขนาคไมโกร ์เปอร์เซ็นต์ปริมาตรรูพรุนขนาคไมโกร ^dปริมาตรรูพรุนขนาคมีโซ [°]ปริมาตรรูพรุนรวม

^fจุดหักที่เกิดการเปลี่ยนแปลงความชั่นในกราฟไอโซเทอร์ม ⁸ค่ารัศมีรูพรุนของซิลิกา ^{*}Software Version 1.5.1ไม่รายงานค่า V_{micro}

ซิลิกาที่สังเคราะห์โดยใช้ F127 เป็นแม่แบบเพียงอย่างเดียว กราฟ adsorptiondesorption isotherms ที่ได้จะเป็นชนิดที่ 4 ที่มี hysteresis loop ของกราฟ adsorption และ desorption ไม่สมมาตรกัน ซึ่งเป็นลักษณะของวัสดุที่มีโครงสร้างแบบ cubic (Kleitz et al, 2004) แต่ กราฟ adsorption-desorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ P123 เป็นแม่แบบเพียงอย่าง เดียว จะเป็นชนิดที่ 4 ที่มี hysteresis loop ของกราฟ adsorption และ desorption ที่ค่อนข้างสมมาตร กัน ซึ่งเป็นลักษณะของวัสดุที่มีโครงสร้างแบบ hexagonal (Zhao et al, 2000) จากภาพประกอบที่ 3.39-3.43 เป็นกราฟ adsorption-desorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ P123 ร่วมกับ F127 เป็นแม่แบบและใช้เกลือชนิด KCI พบว่าที่อัตราส่วนโดยโมลของ P123:F127 = 10:90, 30:70, 50:50 และ 70:30 เป็นลักษณะกราฟ adsorption-desorption isotherms ชนิดที่ 4 ที่มี hysteresis loop ที่ไม่สมมาตรกัน ซึ่งเป็นผลที่เกิดจากอิทธิพลของ F127 ที่อัตราส่วน P123:F127 = 90:10 ที่เป็น กราฟ adsorption-desorption isotherms ชนิคที่ 4 และมีกราฟ adsorption และ desorption ที่ค่อนข้าง สมมาตรกัน ซึ่งเป็นผลที่เกิดจากอิทธิพลของ P123

นอกจากนี้กราฟ adsorption isotherms ของซิลิกาที่สังเคราะห์โดยใช้ P123 ร่วมกับ F127 เป็นแม่แบบและใช้เกลือชนิด Na₂SO₄ จะเป็นกราฟไอโซเทอร์มชนิดที่ 4 ซึ่งเป็นลักษณะของ วัสดุที่มีรูพรุนขนาคมีโซ (ภาพประกอบที่ 3.44)

ภาพประกอบที่ 3.39 Adsorption-desorption isotherm ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วน โดยโมลของ P123:F127 = 10:90 **II ล ะ** [KCl] = 0.15M

ภาพประกอบที่ 3.40 Adsorption-desorption isotherm ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วน โดยโมลของ P123:F127 = 30:70 **II ล ะ** [KCl] = 0.15M

ภาพประกอบที่ 3.41 Adsorption-desorption isotherm ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วน โดยโมลของ P123:F127 = 50:50 **และ** [KCl] = 0.15M

ภาพประกอบที่ 3.42 Adsorption-desorption isotherm ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วน โดยโมลของ P123:F127 = 70:30 **และ** [KCl] = 0.15M

ภาพประกอบที่ 3.43 Adsorption-desorption isotherm ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วน โดยโมลของP123:F127 = 90:10 **และ** [KCl] = 0.15M

ภาพประกอบที่ 3.44 Adsorption isotherm ของซิลิกาที่สังเคราะห์โดยใช้ P123 และ F127 เป็น แม่แบบที่อัตราส่วนต่างๆ ร่วมกับ [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.45-3.49 แสดงภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้ P123 และ F127 เป็นแม่แบบ โดยเกลือทั้ง 2 ชนิดจะให้ผลที่เหมือนกัน คือ ที่อัตราส่วนโดยโมลของ P123:F127 = 10:90, 30:70, 50:50 และ 70:30 ซิลิกาที่สังเคราะห์ได้มีรูปร่างเป็นผลึก แต่ที่อัตราส่วน โดยโมลของ P123:F127 = 90:10 รูปร่างที่ได้เป็นแบบเส้น เนื่องจากในการสังเคราะห์ซิลิกาโดยใช้ P123 เป็นแม่แบบเพียงอย่างเดียวจะได้รูปร่างแบบเส้น (Zhao et al, 2004) และซิลิกาที่สังเคราะห์ โดยใช้ F127 เป็นแม่แบบเพียงอย่างเดียว จะได้รูปร่างแบบผลึก (Voort et al, 2002)

ภาพประกอบที่ 3.45 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 10:90 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.46 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 30:70 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.47 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 50:50 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.48 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 =

70:30 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.49 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 90:10 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพ TEM ของซิลิกาที่สังเคราะห์โดยใช้ P123 และ F127 เป็นแม่แบบ แสดงใน ภาพประกอบที่ 3.50-3.54 พบว่าโครงสร้างภายในของซิลิกาที่ใช้ P123 ร่วมกับ F127 เป็นแม่แบบที่ อัตราส่วนโดยโมลของ P123:F127 = 10:90, 30:70 และ 50:50 ของเกลือทั้ง 2 ชนิดที่แสดงในภาพ ประกอบที่ 3.50, 3.51 และ 3.52 มีโครงสร้างแบบ cubic และที่อัตราส่วนโดยโมลของ P123:F127 = 70:30 และ 90:10 ของเกลือทั้ง 2 ชนิดที่แสดงในภาพประกอบที่ 3.53 และ 3.54 มีโครงสร้างแบบ hexagonal ร่วมกับ cubic แต่ที่อัตราส่วนโดยโมลของ P123:F127 = 90:10 ของเกลือ Na₂SO₄ จะมี โครงสร้างแบบ hexagonal มากกว่าเกลือ KCl ที่อัตราส่วนเดียวกัน ในการสังเคราะห์ชิลิกาเมื่อใช้ P123 เป็นแม่แบบเพียงอย่างเดียวโครงสร้างภายในจะมีลักษณะแบบ hexagonal และซิลิกาที่ สังเคราะห์โดยใช้ F127 เป็นแม่แบบเพียงอย่างเดียวจะมีโครงสร้างภายในเป็นแบบ cubic (Yu et al, 2004) ดังนั้นแสดงให้เห็นว่าเมื่อสังเคราะห์ซิลิกาโดยใช้ P123 ร่วมกับ F127 เป็นแม่แบบ ในบาง อัตราส่วนโครงสร้างภายในที่ได้จะปรากฏลักษณะของทั้ง P123 และ F127 ร่วมกัน โดยเกลือทั้ง 2 ชนิดให้ผลที่คล้ายกลึงกัน

(a) (b) ภาพประกอบที่ 3.50 ภาพ TEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 10:90 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

(a) (b) ภาพประกอบที่ 3.51 ภาพ TEM ของซิลิกาที่สังเคราะห์ โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 30:70 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.52 ภาพ TEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 50:50 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

(a) (b) ภาพประกอบที่ 3.53 ภาพ TEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 70:30 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.54 ภาพ TEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 90:10 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.55 และภาพประกอบที่ 3.56 แสดงความสัมพันธ์ระหว่างค่า dspacing และค่าเศษส่วนโมลของ P123 และ F127 ที่ได้จาก XRD พบว่าเมื่อ F127 มีเศษส่วนโมล เพิ่มขึ้นคือจาก 0.1 เป็น 0.3 ที่มีอัตราส่วนโดยโมลของ P123:F127 = 90:10 และ 70:30 ตามลำดับ ค่า d-spacing จะมีค่ามากขึ้น เนื่องจากอัตราส่วนของ F127 ที่มากขึ้นนี้ทำให้ส่วน E บล็อกในไมเซลล์ (ส่วนใหญ่ประกอบด้วย P123) มีความยาวเฉลี่ยมากขึ้น ส่งผลให้ค่า d-spacing มากขึ้น (Kim et al, 2004)

แต่อย่างไรก็ตามเมื่อ F127 มีเศษส่วนโมลเพิ่มขึ้นเป็น 0.5, 0.7 และ 0.9 ที่มีอัตรา ส่วนโดยโมลของ P123:F127 = 50:50, 30:70 และ 10:90 ตามลำคับ ค่า d-spacing จะลดลง โดยค่า d-spacing ที่ลดลงสามารถอธิบายได้จากสมการ _{N «} α 1/√m เมื่อ N_« คือ จำนวนของบล็อกโคพอลิ เมอร์ในไมเซลล์ และ m คือ ส่วนที่ซ้ำกันของ E บล็อกของ E_mB_nE_m จากสมการดังกล่าวเมื่อ F127 (E₁₀₆P₇₀E₁₀₆) มีอัตราส่วนมากขึ้น (m มากขึ้น) จำนวนของบล็อกโคพอลิเมอร์ในไมเซลล์ลดลง (N_« ลดลง) ทำให้ไมเซลล์มีขนาดเล็กลงส่งผลให้ค่า d-spacing ลดลง

ภาพประกอบที่ 3.55 ความสัมพันธ์ระหว่างค่า d-spacing และค่า mole fraction ของซิลิกาที่ยังไม่ เผาและสังเคราะห์โดยใช้ P123 ร่วมกับ F127 เป็นแม่แบบ

ภาพประกอบที่ 3.56 ความสัมพันธ์ระหว่างค่า d-spacing และค่า mole fraction ของซิลิกาที่เผาแล้ว และสังเคราะห์โดยใช้ P123 ร่วมกับ F127 เป็นแม่แบบ

จากตารางที่ 3.24 พบว่าซิลิกาที่ยังไม่เผาจะมีค่า d-spacing มากกว่าซิลิกาที่เผาแล้ว เนื่องจากการเผาซิลิกาที่อุณหภูมิสูง (540 องศาเซลเซียส) จะมีผลทำให้เกิดการควบแน่นต่อเนื่อง ของหมู่ OH ของ Si-OH ที่อยู่บริเวณผนังรูพรุนของซิลิกา (Kao et al, 2006) และทำให้โครงสร้าง ของซิลิกาหคตัวเล็กน้อย (Yu et al, 2003)

ชื่อตัวอย่าง	P123:F127	រិតី	ชนิดของเกลือ	ค่า d-spacing ของ	ค่า d-spacing ของ
	molar ratio		[0.15M]	พิกแรกที่ยังไม่เผา	พืกแรกที่เผาแล้ว
				(nm)	(nm)
F12722	0:100	3	KC1	11.61	10.41
P12301F2	10:90	3	KC1	12.32	10.89
P12303F2	30:70	3	KC1	12.32	11.31
P12305F2	50:50	3	KC1	12.42	11.61
P12307F2	70:30	3	KC1	11.92	10.89
P12309F2	90:10	3	KC1	10.50	9.91
P12322	100:0	3	KC1	9.10	9.01
P12301FN	10:90	3	Na_2SO_4	11.31	10.75
P12303FN	30:70	3	Na_2SO_4	11.03	11.18
P12305FN	50:50	3	Na_2SO_4	12.32	11.18
P12307FN	70:30	3	Na_2SO_4	12.32	11.61
P12309FN	90:10	3	Na_2SO_4	11.31	10.38

ตารางที่ 3.24 ค่า d-spacing ที่ได้จาก XRD ของซิลิกาที่สังเคราะห์ โดยใช้ P123 และ F127 เป็นแม่แบบ และใช้เกลือ 2 ชนิดคือ [KCl] = 0.15M และ [Na₂SO₄] = 0.15M

จากตารางที่ 3.25 แสดงความสัมพันธ์ระหว่างค่า d-spacing และค่า r_p ของซิลิกาที่ เผาแล้วสังเคราะห์โดยใช้ P123 และ F127 เป็นแม่แบบและใช้เกลือ 2 ชนิด คือ [KCI] = 0.15M และ[Na₂SO₄] = 0.15M ทั้งค่า d-spacing และค่า r_p จะบ่งบอกถึงขนาดของรูพรุนของซิลิกาที่ สังเคราะห์ได้ โดยค่า d-spacing คือระยะห่างระหว่างจุดกึ่งกลางของ 2 รูพรุนและค่า r_p คือค่ารัศมี ของรูพรุนที่เกิดจากการรวมกันของผนังรูพรุนและ core ของรูพรุน (ภาพประกอบที่ 1.11) จากตา รางพบว่าค่า d-spacing และค่า r_p มีแนวโน้มเปลี่ยนแปลงไปในทิศทางเดียวกัน คือเมื่อค่า d-spacing มีค่ามากขึ้น ค่า r_p มีค่ามากขึ้นเช่นกัน แสดงให้เห็นว่ารูพรุนที่ได้มีขนาดใหญ่ แต่เมื่อค่า d-spacing มี ค่าลดลง ค่า r_p มีค่าลดลง ซึ่งแสดงให้เห็นว่ารูพรุนที่ได้มีขนาดเล็กลง

ตารางที่ 3.25 ความสัมพันธ์ระหว่างค่า d-spacing และค่า r_p ของซิลิกาที่เผาแล้วสังเคราะห์โคยใช้ P123 และ F127 เป็นแม่แบบและใช้เกลือ 2 ชนิด คือ [KCl] = 0.15M และ [Na₂SO₄] = 0.15M

ชื่อตัวอย่าง	P123:F127	រិតី	ชนิดของเกลือ	ค่า d-spacing	r _p
	molar ratio			ของพิกแรก	(nm)
				(nm)	
P12301F2C	10:90	3	KCl	10.89	3.6
P12303F2C	30:70	3	KC1	11.31	5.4
P12305F2C	50:50	3	KC1	11.61	7.6
P12307F2C	70:30	3	KCl	10.89	5.4
P12309F2C	90:10	3	KCl	9.91	4.2
P12301FNC	10:90	3	Na ₂ SO ₄	10.75	3.8
P12303FNC	30:70	3	Na_2SO_4	11.18	4.2
P12305FNC	50:50	3	Na_2SO_4	11.18	4.2
P12307FNC	70:30	3	Na ₂ SO ₄	11.61	5.0
P12309FNC	90:10	3	Na_2SO_4	10.38	4.0

ภาพประกอบที่ 3.59 แสดงผล XRD ของซิลิกาที่เผาแล้วสังเคราะห์โดยใช้ P123

และ F127 เป็นแม่แบบและใช้เกลือชนิด [KCI] = 0.15M พบว่าที่อัตราส่วนโดยโมลของ P123:F127 = 100:0 ประกอบด้วยพีก 3 พีก ซึ่งเป็นลักษณะเด่นของซิลิกาที่มีโครงสร้างแบบ hexagonal (Fulvio et al, 2005) แต่เมื่ออัตราส่วนโดยโมลของ P123 มีค่าลดลง คือ P123:F127 = 70:30 และ 90:10 พีกที่ได้จะก่อยๆเปลี่ยนจาก 3 พีกเป็นพีกเดียว แสดงให้เห็นว่ามีการเปลี่ยนแปลง ของโครงสร้าง คือ เปลี่ยนจากโครงสร้างแบบ hexagonal ไปเป็นโครงสร้างที่มีทั้งโครงสร้างแบบ hexagonal ร่วมกับโครงสร้างแบบ cubic แต่ที่อัตราส่วนโดยโมลของ P123:F127 = 50:50, 30:70 และ 10:90 โครงสร้างที่ได้จะเป็นโครงสร้างแบบ cubic เนื่องจาก F127 มีอัตราส่วนมากขึ้น ซึ่งสอด กล้องกับผลที่ได้จาก TEM สำหรับภาพประกอบที่ 3.60 แสดงผล XRD ของซิลิกาที่เผาแล้ว สังเคราะห์โดยใช้ P123 และ F127 เป็นแม่แบบและใช้ [Na₂SO₄] = 0.15M ให้ผลไปในทิศทางเดียว กันกับเกลือชนิด KCI

ภาพประกอบที่ 3.57 ผล XRD ของซิลิกาที่ยังไม่เผาสังเคราะห์โดยใช้ P123 และ F127 เป็นแม่แบบ และใช้ [KCl] = 0.15M

ภาพประกอบที่ 3.58 ผล XRD ของซิลิกาที่ยังไม่เผาสังเคราะห์โดยใช้ P123 และ F127 เป็นแม่แบบ และใช้ [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.59 ผล XRD ของซิลิกาที่เผาแล้วสังเคราะห์ โดยใช้ P123 และ F127 เป็นแม่แบบ และใช้ [KCl] = 0.15M

ภาพประกอบที่ 3.60 ผล XRD ของซิลิกาที่เผาแล้วสังเคราะห์โดยใช้ P123 และ F127 เป็นแม่แบบ และใช้ [Na₂SO₄] = 0.15M

3.3.2 สังเคราะห์ชิลิกาโดยใช้ P123 และ F127 เป็นแม่แบบและใช้เกลือ 2 ชนิดคือ [KCI] =

0.15M !!az $[Na_2SO_4] = 0.15M$!!az [HCl] = 0.6M

จากภาพประกอบที่ 3.61-3.65 แสดงภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้ P123 และF127 เป็นแม่แบบ โดยใช้เกลือ Na₂SO₄ และ KCl และใช้ [HCl] = 0.6M พบว่าที่อัตราส่วน โดยโมลของ P123:F127 = 10:90, 30:70 และ 50:50 และใช้เกลือ Na₂SO₄ รูปร่างที่ได้ส่วนใหญ่จะมี ลักษณะเป็นผลึกที่ชัดเจนกว่าที่อัตราส่วนโดยโมลของ P123:F127 = 70:30 และ 90:10 สำหรับเกลือ ชนิด KCl ที่อัตราส่วนโดยโมลของ P123:F127 = 30:70 และ 50:50 รูปร่างที่ได้มีลักษณะเป็นทรง กลม แต่ที่อัตราส่วนโดยโมลของ P123:F127 = 10:90, 70:30 และ 90:10 จะมีลักษณะเป็นผลึก

ดังนั้นเมื่อเปรียบเทียบรูปร่างของซิลิกาที่สังเคราะห์ด้วยวิธีเดียวกันและใช้เกลือ ชนิดเดียวกัน แต่เปลี่ยนจาก [HCI] = 2M (แสดงในภาพประกอบที่ 3.45-3.49) เป็น [HCI] = 0.6M พบว่าเมื่อกรดมีความเข้มข้นลดลง ซิลิกาที่สังเคราะห์ได้จะมีรูปร่างดีขึ้น เนื่องจากในการเกิด ปฏิกิริยาระหว่างสารลดแรงตึงผิวกับแหล่งให้ซิลิกา กรดจะทำหน้าที่เป็นตัวเร่งปฏิกริยา (catalyst) ดังนั้นเมื่อกรดมีความเข้มข้นลดลง ส่งผลให้พอลิเมอร์ที่ใช้เป็นแม่แบบมีเวลาในการรวมตัวเกิดเป็น ใมเซลล์มากขึ้นและการเกิดปฏิกิริยาระหว่างสารลดแรงตึงผิวกับแหล่งให้ซิลิกาเกิดได้ดีขึ้น ทำซิลิ กาที่สังเคราะห์ได้มีรูปร่างที่ดีกว่าซิลิกาที่สังเคราะห์ได้จากวิธีเดียวกันและใช้เกลือชนิดเดียวกัน แต่ ใช้กรดที่มีความเข้มข้นสูง (Yu et al, 2004)

ภาพประกอบที่ 3.61 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 10:90 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.62 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 30:70 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.63 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 50:50 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.64 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 70:30 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M

ภาพประกอบที่ 3.65 ภาพ SEM ของซิลิกาที่สังเคราะห์โดยใช้อัตราส่วนโดยโมลของ P123:F127 = 90:10 (a) [KCl] = 0.15M (b) [Na₂SO₄] = 0.15M