Appendix 1

Analytical Methods

1. Total nitrogen (AOAC, 2000)

Sample preparation

Samples (20 ml) were diluted with 180 ml of distilled water

Reagents

- Kjedahl catalyst: Mix 10 part of potassium sulphate (K₂SO₄) anhydrous, nitrogen free with 1 part of copper sulphate (CuSO₄)
- 2. Sulfuric acid (H₂SO₄)
- 3. 40% Sodium hydroxide (NaOH) solution (w/v)
- 4. 0.02 N Hydrochloric (HCl) solution
- 5. 4% Boric acid (H_3BO_3) solution (w/v)
- 6. indicator solution: Mix 100 ml of 0.125g methyl red and 0.082g methylene blue (in 95% ethanol) with 20 ml of 0.1g bromocresol green (in 95% ethanol)

- Pipette sample 1 ml in digestion flask (use 1 ml of distilled water as blank).
- 2. Add 5 g Kjeldahl catalyst, and 20 ml of conc. H₂SO₄.
- 3. Place flasks in inclined position and heat gently until frothing ceases.
- 4. Boil briskly until solution clears.

- 5. Cool and add 50 ml distilled water cautiously.
- Immediately connect flask to digestion bulb on condenser, and with tip of condenser immersed in standard acid and 3-5 indicator in receiver. Rotate flask to mix content thoroughly; then heat until all NH₃ has distilled.
- 7. Remove receiver, wash tip of condenser, and titrate excess standard acid in distilled with standard HCl solution.

Calculation

Total nitrogen =		n =	<u>(A – B) x 14.007 x N</u>
			W
Where:	А	=	volume (ml) of 0.02 N HCl used sample titration
	В	=	volume (ml) of 0.02 N HCl used blank titration
	Ν	=	Normality of HCl
	W	=	weight (g) of sample
	14.00)7 =	atomic weight of nitrogen

2. Formol nitrogen content (Thai Industrial Standard, 1983)

Sample preparation

Samples (20 ml) were diluted with 180 ml of distilled water

Reagents

- 1. Formaline solution (38% v/v; pH9)
- 2. 0.1 N NaoH
- 3. Phenolphthalein

Method

- 1. Pipette 10 ml of sample with an appropriate dilution
- 2. Titrate to pH 7.0 with 0.1 N NaOH
- 3. Add 10 ml of formalin solution (38% v/v, pH 9)
- 4. Titrate to obtain pH of 9 with 0.1 NaOH
- 5. Calculate formal nitrogen content

Calculation

Formol nitrogen content (mg N/ml) = ml of A (pH 7-pH 9) \times N \times 14

Where:	А	=	volume (ml) of 0.1 N NaOH used sample titration
	Ν	=	Normality of NaOH
	14	=	atomic weight of nitrogen

3. Ammonia nitrogen content (Thai Industrial Standard, 1983)

Sample preparation

Samples (20 ml) were diluted with 180 ml of distilled water

Reagents

- 1. Magnesium oxide (MgO)
- 2. 0.05 N Sulfuric acid (H₂SO₄) solution
- 3. 4% Boric acid (H₃BO₃) solution (w/v)
- Indicator solution: Mix 100 ml of 0.125g methyl red and 0.082g methylene blue (in 95% ethanol) with 20 ml of 0.1g bromocresol green (in 95% ethanol)

Method

- 1. Transfer sample with an appropriate dilution (50 ml) in 400 ml Kjeldahl flask containing 100 ml of distilled water and 3 g of MgO.
- Distill the sample and collect the distillate in 50 ml of 4% boric acid consisting of the mixed indicator (methyl red: bromocresol green: methylene blue).
- 3. Titrate with $0.05 \text{ N} \text{ H}_2\text{SO}_4$ to reach the end-point.
- 4. Calculate ammonia nitrogen content

Calculation

Ammonia nitrogen content (mg N/ml) = $5.6 \times N \times (ml \text{ of } A)$

Where: A = volume (ml) of $0.05 \text{ N H}_2\text{SO}_4$ used sample titration N = Normality of H_2SO_4

4. Amino nitrogen content (Thai Industrial Standard, 1983)

Amino nitrogen was calculated based on the formol and ammonia nitrogen contents.

Calculation

Amino nitrogen content (mg N/ml) = Formal nitrogen content – Ammonia nitrogen content.

5. pH determination (Benjakul et al., 1997)

Method

- 1. Weight 5 g of sample. Add 10 volumes of distilled water (w/v).
- 2. Homogenize for 2 min.
- 3. Measure pH using pH meter.

6. Measurement of TCA-soluble peptide (Morrissey et al., 1993)

Reagents

- 1. 5% Trichloroacetic acid (TCA) (w/v)
- 2. Tyrosine

- 1. Weight 3 g of sample and homogenize in 27 ml of 5% TCA.
- 2. Keep in ice for 1 hr, and centrifuge at 7,500xg for 5 min.
- Measure the peptides in the supernatant and express as µmole tyrosine
 / g sample.

7. Lowry (Lowry et al., 1951)

Reagents

- 1. A: 2 % sodium carbonate in 0.1 N NaOH
- 2. B: 0.5 % CuSO₄.5H₂O in 1 % sodium citrate
- 3. C: 1 N Folin Phenol reagent
- 4. D: 2 ml reagent B + 100 ml reagent A
- 5. Standard reagent: Tyrosine at concentration 1 mM

- 1. Add 2 ml reagent D to each of the standards and sample 200 μl
- 2. Incubate precisely 10 min at room temperature.
- 3. Add 0.2 ml reagent C (previously diluted 1:1 with distilled water) and vortex immediately.
- 4. Incubate 30 min at room temperature
- 5. Read absorbance at 750 nm.

8. Biuret method (Robinson and Hodgen, 1940)

Reagents

- Biuret reagent: Combine 1.50 g CuSO₄.5H₂O, 6.00 g sodium potassium tartrate, and 500 ml distilled water in a beaker and stir, add while stirring 300 ml of 10 % NaOH (w/v), transfer to a 1 liter volumetric flask and bring to 1 liter with distilled water.
- 2. Standard reagent: 10 mg/ml bovine serum albumin (BSA)

- 1. To 0.5 ml of sample, 2.0 ml of the biuret reagent were added and mixed well.
- 2. The mixture was incubated at room temperature for 30 min, then the absorbance at 540 nm was read.

Tube number	water (µl)	$10 \text{ mg/ml BSA} (\mu l)$	BSA concentration (mg/ml)
1	500	0	0
2	400	100	2
3	300	200	4
4	200	300	6
5	100	400	8
6	0	500	10

Table: Experimental set up for the biuret's assay.

9. Determination of trimethylamine (TMA-N) and total volatile basic nitrogen (TVB-N) by Conway's method (Conway and Byrne, 1936) Reagents

- Inner ring solution (1 % boric acid solution containing indicator): Take
 g of boric acid in 1 liter flask, add 200 ml of ethanol. After dissolving with distilled water.
- 2. Mixed indicator solution: Dissolve bromocresol green (BCG) 0.01 g and methyl red (MR) 0.02 g in 10 ml of ethanol.
- 3. 0.02 N HCl
- Saturated K₂CO₃ solution: Take 60 g of potassium carbonate, and add 50 ml of distilled water. Boil gently for 10 min. After cooling down, obtain filtrate through filter paper.
- 4 % trichloroacetic acid (CCl₃COOH), TCA, solution: Dissolve 40 g of TCA in 960 ml of distilled water.
- Sealing agent: Take 3 g of Trangacanth gum, add 30 ml of distilled water, 15 ml of glycerine and 15 ml of 50 % saturated K₂CO₃ solution and mix well.
- Neutralized 10 % formaldehyde solution: Add 10 g of MgCO₃ to 100 ml of formaline (35 % formaldehyde solution) and shake in order to neutralize the acidity of formaline. Filter and dilute filtrate 3 volume with distilled water.

Method

Sample extraction:

- 1. Take 4 ml of sample in a beaker and stir.
- 2. Add 16 ml of 4 % TCA solution and stir.
- 3. Stand for 30 min at ambient temperature with occasional grinding.
- 4. Filter through filter paper (Whatman No. 41) or centrifuge at 3,000 rpm, for 10 min.
- 5. Keep the filtrate in -20°C freezing if necessary.

9.1 Determination of TVB-N

- 1. Apply sealing agent to Conway's unit.
- 2. Pipette 1 ml of inner ring solution into inner ring.
- 3. Pipette 1 ml of sample extract into outer ring.
- 4. Slant the Conway's unit with cover.
- 5. Pipette 1 ml of saturated K₂CO₃ solution into outer ring.
- 6. Close the unit.
- 7. Mix gently.
- 8. Stand for 60 min at 37°C in incubator.
- 9. Titrated inner ring solution with 0.02 N HCl using a micro-burette until green color turns pink.
- 10. Do blank test using 1 ml of 4 % TCA instead of sample extract.

9.2 Determination of TMA-N

- 1. Apply sealing agent to Conway's unit.
- 2. Pipette 1 ml of inner ring solution into inner ring.
- 3. Pipette 1 ml of sample extract into outer ring.
- 4. Pipette 1 ml of neutralized 10 % formaldehyde unto outer ring.
- 5. Slant the Conway's unit with cover.
- 6. Pipette 1 ml of saturated K₂CO₃ solution into outer ring.
- 7. Close the unit.
- 8. Mix gently.
- 9. Stand for 60 min at 37°C in incubator.
- 10. Titrated inner ring solution with 0.02 N HCl using a micro-burette until green color turns pink.
- 11. Do blank test using 1 ml of 4 % TCA instead of sample extract.

Calculation

TMA-N or TVB-N (mg N/100g) =
$$(V_{S}-V_{B})x(N_{HCl}xA_{N})xV_{E}x100$$

W_S

where:	$\mathbf{V}_{\mathbf{S}}$	= Titration volume of 0.02 N HCl for sample extract (ml)
	V_{B}	= Titration volume
	N _{HCl}	= Normality of HCl (0.02 Nxf, facter of HCl)
	$A_{\rm N}$	= Atomic weight of nitrogen (x 14)
	Ws	= Weight of muscle sample (g)
	\mathbf{V}_{E}	= Volume of 4 % TCA used in extraction

10. Total aerobic bacteria counts (Tanasupawat et al., 1992)

Chemicals / Media

- 1. Sodium chloride (NaCl)
- 2. Standard plate count agar
- 3. Peptone

Method

- 1. Transfer sample (15 g or ml) aseptically to a stomacher bag.
- Add 135 ml of 0.1% (w/v) peptone solution having 10% (w/v) NaCl (0.1% peptone solution) and blend for 1 min by stomacher.
- Dilute mixture to 1:10, 1:100, 1:1,000 and 1:10,000 in 0.1 % peptone solution.
- 4. Pipette 1 ml of diluted mixture into sterilized plate. Add 20 ml of plate count agar (PCA) containing 10% NaCl.
- 5. Incubate at 37°C for 48h.
- 6. Express the microbial counts as log colony-forming unit (CFU)/g.

Calculation

CFU/g sample = Average number of colonies X dilution factor

11. Proteolytic bacteria (Tanasupawat et al., 1992)

Chemicals / Media

- 1. Sodium chloride (NaCl)
- 2. Standard plate count agar
- 3. Peptone
- 4. Casein

Method

- 1. Transfer sample (15 g or ml) aseptically to a stomacher bag.
- Add 135 ml of 0.1% (w/v) peptone solution having 10% (w/v) (0.1% peptone solution) and blend for 1 min by stomacher.
- 3. Dilute mixture to 1:10, 1:100, 1:1,000 and 1:10,000 in 0.1 % peptone solution.
- 4. Pipette 0.1 ml of diluted mixture into sterilized plate (spread on the surface of media).
- 5. Incubate at 37°C for 72h.
- 6. Express the microbial as log colony-forming unit (CFU)/g.

Calculation

CFU/g sample = Average number of colonies X dilution factor

12. Halophilic bacteria (Namwong et al., 2005)

Chemicals / Media

- 1. Sodium chloride (NaCl)
- 2. Standard plate count agar
- 3. Peptone
- 4. casamino acid
- 5. yeast extract
- 6. sodium glutamate
- 7. Trisodium citrate
- 8. $MgSO_4 \cdot 7 H_2O$
- 9. KCl
- 10. $FeCl_2 \cdot 4H_2O$
- 11. $MnCl_2 \cdot 4 H_2O$
- 12. agar

- 1. Transfer sample (15 g or ml) aseptically to a stomacher bag.
- Add 135 ml of 0.1% (w/v) peptone solution having 10% (w/v) (0.1% peptone solution) and blend for 1 min by stomacher.
- 3. Dilute mixture to 1:10, 1:100, 1:1,000 and 1:10,000 in 0.1 % peptone solution.
- 4. Pipette 0.1 ml of diluted mixture into sterilized plate (spread on the surface of media).
- 5. Incubate at 37°C for 96h.

6. Express the microbial counts as log colony-forming unit (CFU)/g.

Calculation

CFU/g sample = Average number of colonies X dilution factor

Appendix 2

% Weight Organ

Organs	%
Liver	14.4047 ± 5.5565
Pancreas	3.9140 ± 1.2839
Intestine	12.8680 ± 3.7108
Stomach	17.6508 ± 0.6713
Bile sac	2.8476 ± 0.6713
Spleen	42.8886 ± 3.6189
Etc.	5.4263 ± 7.5820