CONTENTS

		Page
Co	ntents	(viii)
Lis	t of tables	(xiii)
Lis	t of figures	(xiv)
Ch	Chapter	
1.	Introduction	1
	Literature review	2
	1. Black tiger shrimp and white shrimp	2
	2. Quality changes of shrimp during storage	3
	2.1. Degradation of shrimp muscle associated with proteinases	4
	2.2. Characteristics of shrimp proteinases	7
	2.3. Deterioration of shrimps by microorganisms	8
	2.4. Melanosis	9
	2.4.1. Polyphenol oxidase (PPO)	11
	2.4.2. Inhibition of melanosis	14
	2.4.2.1. Reducing agents/Antioxidants	15
	2.4.2.2. Acidulants	17
	2.4.2.3. Chelators	18
	2.4.2.4. Hexylresorcinol	19
	3. Modified atmosphere packaging	20
	4. Used of MAP for shelf-life extension of fishery products	22
	5. Use of MAP for shelf-life extension of shrimps	28
	Objectives	30
2.	Materials and Methods	31
	1. Chemicals and microbial media	31
	2. Instruments	31
	3. Shrimp samples	32
	4. Characterization of shrimp enzymes associated with the quality changes	32

viii

4.1. Preparation of shrimp enzyme extracts	32
4.2. Enzyme assay	33
4.2.1. Protease activity	33
4.2.2. Collagenase activity	33
4.2.3. PPO activity	33
4.3. characterization of shrimp enzymes	34
4.3.1. pH and temperature profiles	34
4.3.2. Thermal and pH stability	34
4.3.3. Inhibitor study	34
5. Effect of different MAP conditions on melanosis and quality of black tiger	35
shrimp and white shrimp	
5.1. Sample preparation	35
5.2. Chemical analyses	35
5.2.1. pH determination	35
5.2.2. Determination of TVB and TMA contents	35
5.2.3. Determination of thiobarbituric acid reactive substances	36
5.2.4. Determination of formaldehyde content	36
5.2.5. Determination of TCA soluble peptide content	37
5.3. Physical analyses	37
5.3.1. Determination of shear force	37
5.3.2. Determination of water holding capacity	37
5.3.3. Determination of melanosis	37
5.4 Microbiological analyses	38
5.4.1 Total viable count	38
5.4.2 Lactic acid bacteria count	38
5.5. Enzyme activities	38

	Page
6. Combination effect of melanosis inhibitors and MAP on the quality changes of	38
white shrimp	
6.1 Effect of phosphate and ascorbic acid pretreatment on quality of white	39
shrimp kept under MAP	
6.2 Effect of phosphate and 4-hexylresorcinol pretreatment on quality of	39
white shrimp	
6.2.1 Total viable count	40
6.2.2 Lactic acid bacteria count	40
6.2.3 Determination of coliforms bacteria and E. coli	40
6.2.4 Determination of Salmonella	40
6.2.5 Determination of Staphylocoous aureu	41
6.2.6 Determination of Vibrio parahaemolyticus	41
7. Statistical analysis	41
Results and discussion	42
1. Characterization of black tiger shrimp and white shrimp enzymes	42
1.1 Proteases from muscle	
1.1.1 Temperature and pH profiles	42
1.1.2 Temperature and pH stability	45
1.1.3 Effects of inhibitors	47
1.2 Collagenase from cephalothorax and muscle	48
1.2.1 Temperature and pH profiles	48
1.2.2 Temperature and pH stability.	52
1.2.3 Effects of inhibitors	55
1.3 PPO from cephalothorax	56
1.3.1 Temperature and pH profiles	56
1.3.2 Temperature and pH stability	59
1.3.3 Effects of inhibitors	61

3.

	Page
2. Effect of different MAP conditions on melanosis and quality of black tiger	63
shrimp and white shrimp during refrigerated storage	
Changes in total viable count	63
Changes in lactic acid bacteria count	66
Changes in pH	68
Changes in total volatile bases and trimethylamine contents	70
Changes in TBARS	75
Changes in TCA-soluble peptide content	78
Changes in formaldehyde	80
Changes in melanosis	82
Changes in water holding capacity	84
Changes in shear force	86
Changes in proteases, collagenase and PPO activity	88
3. Effect of phosphate and ascorbic acid pretreatment on the quality of white	90
shrimp kept under MAP	
Changes in total viable count	90
Changes in lactic acid bacteria count	91
Changes in pH	92
Changes in total volatile bases and trimethylamine contents	94
Changes in TBARS	96
Changes in TCA-soluble peptide content	97
Changes in formaldehyde	98
Changes in melanosis	100
Changes in water holding capacity	101
Changes in shear force	103
Changes in proteases, collagenase and PPO activity	105

	Page
4. Effect of phosphate and 4-hexylresorsinol pretreatment on quality of white	108
shrimp kept under MAP	
Changes in microbiological	108
Changes in pH	112
Changes in total volatile bases and trimethylamine contents	113
Changes in TBARS	116
Changes in TCA-soluble peptide content	117
Changes in formaldehyde	119
Changes in melanosis	120
Changes in water holding capacity	122
Changes in shear force	123
Changes in proteases, collagenase and PPO activity	125
Conclusions	128
Future works	129
References	130
Appendix	162
Vitae	169

4.

LIST OF TABLES

Table	Table I	
1.	Color scale used to describe the progression of melanosis (black spot) on shrimp	11
2.	Representative inhibitors of melanosis	14
3.	Shelf-life of fresh fishery products packaged under MA, vacuum or air	24
4.	Effect of various inhibitors on the activity of proteases from the muscles of white	48
	shrimp and black tiger shrimp	
5.	Effects of various inhibitors on the activity of collagense from cephalothorax and	56
	muscle of white shrimp and black tiger shrimp	
6.	Effect of various inhibitors on the activity of PPO from the cephalothorax of black	62
	tiger shrimp and white shrimp	
7.	Changes in coliforms (MPN/g) of whole or decapitated white shrimp with and	111
	without 2% pyrophosphate and/ or 0.25% 4-hexylresorcinol pretreatment stored	
	under different conditions at 4°C	

LIST OF FIGURES

Figu	re	Page
1.	Melanosis progression scale of shrimp	11
2.	Monophenol oxidase pathway producing the diphenol	12
3.	Diphenol oxidase pathway producing the quinones	13
4.	Mechanism of prevention of color formation by ascorbic acid	17
5.	Temperature profiles of proteases from black tiger shrimp and white shrimp	44
	muscles	
6.	pH profiles of proteases from black tiger shrimp and white shrimp muscles	44
7.	Thermal stability of proteases from black tiger shrimp and white shrimp muscles	46
8.	pH stability of proteases from black tiger shrimp and white shrimp muscles	46
9.	Temperature profiles of collagenase from the cephalothorax and muscle of black	50
	tiger shrimp and white shrimp	
10.	pH profiles of collagenase from the cephalothorax and muscle of black tiger shrimp	51
	and white shrimp	
11.	Thermal stability of collagenase from the cephalothorax and muscle of black tiger	53
	shrimp and white shrimp	
12.	pH stability of collagenase from the cephalothorax and muscle of black tiger	54
	shrimp and white shrimp	
13.	Temperature profiles of PPO from the cephalothorax of black tiger shrimp and	58
	white shrimp	
14.	pH profiles of PPO from the cephalothorax of black tiger shrimp and white shrimp	58
15.	Thermal stability of PPO from the cephalothorax of black tiger shrimp and white	60
	shrimp	
16.	pH stability of PPO from the cephalothorax of black tiger shrimp and white shrimp	61
17.	Changes in TVC (CFU/g) of black tiger shrimp and white shrimp with and without	65
	0.5 g/l ascorbic acid pretreatment stored under different conditions at 4° C	

Figu	re	Page
18.	Changes in Lactic acid bacteria (CFU/g) of black tiger shrimp and white shrimp	67
	with and without 0.5 g/l ascorbic acid pretreatment stored under different	
	conditions at $4^{\circ}C$	
19.	Changes in pH of black tiger shrimp and white shrimp with and without 0.5 g/l	69
	ascorbic acid pretreatment stored under different conditions at $4^{\circ}C$	
20.	Changes in TVB contents of black tiger shrimp and white shrimp with and without	73
	0.5 g/l ascorbic acid pretreatment stored under different conditions at $4^{\circ}C$	
21.	Changes in TMA contents of black tiger and white shrimp with and without 0.5 g/l $$	74
	ascorbic acid pretreatment stored under different conditions at $4^{\circ}C$	
22.	Changes in TBARS of black tiger shrimp and white shrimp with and without 0.5	77
	g/l ascorbic acid pretreatment stored under different conditions at $4^{\circ}C$	
23.	Changes in TCA-soluble peptides of black tiger shrimp and white shrimp with and	79
	without 0.5 g/l ascorbic acid pretreatment stored under different conditions at $4^{\circ}C$	
24.	Changes in formaldehyde of black tiger shrimp and white shrimp with and without	81
	0.5 g/l ascorbic acid pretreatment stored under different conditions at $4^{\circ}C$	
25.	Changes in melanosis score of black tiger shrimp and white shrimp with and	83
	without 0.5 g/l ascorbic acid pretreatment stored under different conditions at $4^{\circ}C$	
26.	Changes in WHC of black tiger shrimp and white shrimp with and without 0.5 g/l	85
	ascorbic acid pretreatment stored under different conditions at $4^{\circ}C$	
27.	Changes in shear force of black tiger shrimp and white shrimp with and without 0.5	87
	g/l ascorbic acid pretreatment stored under different conditions at $4^{\circ}C$	
28.	Changes in proteases, collagenase and PPO activity of black tiger shrimp and white	89
	shrimp with and without 0.5 g/l ascorbic acid pretreatment stored under different	
	conditions at $4^{\circ}C$	
29.	Changes in TVC (CFU/g) of white shrimp with and without pretreatment using 2%	91
	(w/v) pyrophosphate pretreatment and/ or 5.0 g/l ascorbic acid and stored under	
	different packaging atmospheres at 4°C	
		XV

Figu	Figure	
30.	Changes in lactic acid bacteria (CFU/g) of white shrimp with and without	92
	pretreatment using 2% (w/v) pyrophosphate pretreatment and/ or 5.0 g/l ascorbic	
	acid and stored under different packaging atmospheres at $4^{\circ}C$	
31.	Changes in pH in white shrimp with and without pretreatment using 2% (w/v)	93
	pyrophosphate pretreatment and/ or 5.0 g/l ascorbic acid and stored under different	
	packaging atmospheres at 4°C	
32.	Changes in TVB (A) and TMA (B) contents of white shrimp with and without	95
	pretreatment using 2% (w/v) pyrophosphate pretreatment and/ or 5.0 g/l ascorbic	
	acid and stored under different packaging atmospheres at $4^{\circ}C$	
33.	Changes in TBARS of white shrimp with and without pretreatment using 2% (w/v)	97
	pyrophosphate pretreatment and/ or 5.0 g/l ascorbic acid and stored under different	
	packaging atmospheres at 4°C	
34.	Changes in TCA-soluble peptide contents of white shrimp with and without	98
	pretreatment using 2% (w/v) pyrophosphate pretreatment and/ or 5.0 g/l ascorbic	
	acid and stored under different packaging atmospheres at $4^{\circ}C$	
35.	Changes in formaldehyde of white shrimp with and without pretreatment using 2%	99
	(w/v) pyrophosphate pretreatment and/ or 5.0 g/l ascorbic acid and stored under	
	different packaging atmospheres at 4°C	
36.	Changes in melanosis score of white shrimp with and without pretreatment using	101
	2% (w/v) pyrophosphate pretreatment and/ or 5.0 g/l ascorbic acid and stored under	
	different packaging atmospheres at 4°C	
37.	Changes in WHC of white shrimp with and without pretreatment using 2% (w/v)	103
	pyrophosphate pretreatment and/ or 5.0 g/l ascorbic acid and stored under different	
	packaging atmospheres at 4°C	
38.	Changes in shear force of white shrimp with and without pretreatment using 2%	105
	(w/v) pyrophosphate pretreatment and/ or 5.0 g/l ascorbic acid and stored under	

different packaging atmospheres at 4°C

xvi

Figure Page 39. Changes in proteases, collagenase and PPO activity of white shrimp with and 107 without pretreatment using 2% (w/v) pyrophosphate pretreatment and/ or 5.0 g/l ascorbic acid and stored under different packaging atmospheres at 4°C

- 40. Changes in mesophilic, psychrophilic bacteria and lactic acid bacteria (C) counts 111 (log CFU/g) of whole or decapitated white shrimp with and without 2% pyrophosphate and/ or 0.25% 4-hexylresorcinol pretreatment stored under different conditions at 4°C
- 41. Changes in pH of whole or decapitated white shrimp with and without 2% 113 pyrophosphate and/ or 0.25% 4-hexylresorcinol pretreatment stored under different conditions at 4°C
- 42. Changes in TVB and TMA contents of whole or decapitated white shrimp with and 115 without 2% pyrophosphate and/ or 0.25% 4-hexylresorcinol pretreatment stored under different conditions at 4°C
- 43. Changes in TBARS of whole or decapitated white shrimp with and without 2% 117 pyrophosphate and/ or 0.25% 4-hexylresorcinol pretreatment stored under different conditions at 4°C
- 44. Changes in TCA-soluble peptides of whole or decapitated white shrimp with and 118 without 2% pyrophosphate and/ or 0.25% 4-hexylresorcinol pretreatment stored under different conditions at 4°C
- 45. Changes in formaldehyde content of whole or decapitated white shrimp with and 120 without 2% pyrophosphate and/ or 0.25% 4-hexylresorcinol pretreatment stored under different conditions at 4°C
- 46. Changes in melanosis score of whole or decapitated white shrimp with and without 122
 2% pyrophosphate and/ or 0.25% 4-hexylresorcinol pretreatment stored under different conditions at 4°C

Figur	re	Page
47.	Changes water holding capacity of whole or decapitated white shrimp with and	123
	without 2% pyrophosphate and/ or 0.25% 4-hexylresorcinol pretreatment stored	
	under different conditions at 4°C	
48.	Changes shear force of whole or decapitated white shrimp with and without 2%	124
	pyrophosphate and/ or 0.25% 4-hexylresorcinol pretreatment stored under different	
	conditions at 4°C	
49.	Changes in proteases, collagenase and PPO activity of whole or decapitated white	127
	shrimp with and without 2% pyrophosphate and/ or 0.25% 4-hexylresorcinol	
	pretreatment stored under different conditions at 4°C	