Content

	Page
Abstract (thai)	(3)
Abstract (english)	(5)
Acknowledgement	(7)
Content	(8)
List of Tables	(12)
List of Figures	(14)
List of Abbreviations	(17)
Chapter	
1 Introduction	1
Literature Review	3
1. Mechanism of lipid oxidation	3
2. Factors affecting lipid oxidation	5
2.1 Fatty acid compositions	5
2.2 Photosensitization	5
2.3 Lipoxygenase	6
2.4 Metals: Iron and Copper	6
2.5 Other factors	7
3. Antioxidants	8
3.1 Classification of food antioxidants	9
3.1.1 Primary antioxidants	9
3.1.2 Synergistic antioxidant	10
3.1.3 Secondary antioxidants	10
3.1.4 Miscellaneous antioxidants	10
3.2 Mode of action of antioxidants in food	11
3.2.1 Radical scavenger	11
3.2.2 Peroxide decomposer	12

Contents (continued)

	Page
3.2.3 Singlet oxygen quenchers	12
3.2.4 Enzyme inhibitor	12
3.2.5 Synergists	13
3.3 Ideal food grade antioxidant	13
4. Sources of food antioxidants	14
4.1 Synthetic antioxidants	14
4.2 Natural antioxidants	14
5. Extraction of antioxidants from natural plants	28
6. Some properties of antioxidants from plants	29
6.1 Heat stability	29
6.2 Effect of pH	30
6.3 Effect of concentration	31
6.4 Synergistic effect	31
7. Mode of action of natural antioxidants	31
7.1 Reducing power	32
7.2 Scavenging effect on 1,1-diphenyl-2-picrylhydracyl (DPPH)	32
7.3 Scavenging effect on hydroxyl radical	33
8. Application of natural antioxidants	34
9. Low-Density Lipoprotein (LDL) oxidation with mulberry	37
green tea extract	
9.1 Lipoprotein structure	37
9.2 Plasma lipoproteins and coronary heart disease	38
9.3 Characteristics of oxidized LDL	38
9.4 Antioxidants and their protection against LDL oxidation	40
Objectives	43
2 Materials and Methods	44

Contents (continued)

		Page
Ma	terials	44
Ме	thods	47
1. F	Preparation of mulberry green tea extracts	47
2. F	Primary screening of antioxidant activities in water extracts of	47
r	nulberry green tea	
3. E	Extraction of antioxidants from selected mulberry green tea	49
4. §	Some properties of the extracts from selected mulberry green tea	50
5. N	Mode of action	51
6. 8	Separation of antioxidative compounds in	52
r	nulberry green tea ethyl acetate extract	
7. <i>F</i>	Application of mulberry green tea ethyl acetate extracts	52
i	n lard and partially purified fish oil	
8. <i>A</i>	Application of mulberry green tea extract on inhibition	53
c	of Low Density Lipoprotein (LDL) oxidation	
3 Res	sults and Discussion	55
1. F	Primary screening of antioxidant activities in water extracts	55
c	of mulberry green teas	
2. E	extraction of antioxidants from selected mulberry green tea	58
2	2.1 Effect of extraction temperature, time and repetition	58
	on antioxidant activity of mulberry green tea water extract	
2	2.2 Effects of extracting solvents on the antioxidant activities,	64
	total phenolic content and reducing power	
2	2.3 Effect of extraction time on the extraction of mulberry	67
	green tea ethyl acetate extract	
3. 8	Some properties of mulberry green tea extracts	68

Contents (continued)

	Page
3.1 Effect of mulberry green tea water and ethyl acetate	68
extracts at different concentrations on antioxidant activities	
3.2 Effect of pH on antioxidant activities of mulberry green tea	71
water and ethyl acetate extracts	
3.3 pH stability of mulberry green tea water and	73
ethyl acetate extracts	
3.4 Synergistic effect of mulberry green tea extract	75
with some compounds	
4. Mode of action	82
4.1 Radical-scavenging activity of mulberry green tea	82
water and ethyl acetate extracts	
4.2 Hydroxyl radical scavenging activity of	85
mulberry green tea water and ethyl acetate extracts	
4.3 Reducing power of mulberry green tea water	88
and ethyl acetate extracts	
5. Separation of antioxidants from mulberry green tea	92
ethyl acetate extract	
6. Application of mulberry green tea ethyl acetate extract	95
in lard and partially purified fish oil	
7. Inhibition of Low Density Lipoprotein (LDL) oxidation	99
by mulberry green tea extracts.	
4 Conclusion	103
References	104
Appendix	123
Vitae	127

List of Tables

Table	Page
1 Antioxidants permitted in foods	9
2 Advantages and disadvantages of natural antioxidants	15
in comparison with synthetic antioxidants	
3 Flavanol content of selected beverages	24
4 Exogenous antioxidants and their protection against oxidation of LDL	40
5 Antioxidant activities, total phenolic content and reducing power	58
of mulberry green tea water extracts	
6 Antioxidant activity, phenolic content and reducing power of mulberry	66
green tea extracts prepared with different organic solvent	
7 Antioxidant activity of mulberry green tea extracted with ethyl acetate	67
under different extracting times	
8 Scavenging effects of mulberry green tea water extract at different	83
concentrations on the 1,1 diphenyl-2-picrylhydrazyl (DPPH) radical	
9 Scavenging effects of mulberry green tea ethyl acetate extract	84
at different concentrations on the 1,1 diphenyl-2-picrylhydrazyl	
(DPPH) radical	
10 Scavenging effect of mulberry green tea water extract at different	87
concentrations on the hydroxyl radical in the deoxyribose assay	
11 Scavenging effect of mulberry green tea ethyl acetate extract	88
at different concentrations on the hydroxyl radical in the	
deoxyribose assay	
12 Reducing power and antioxidant activity of mulberry green tea	89
water extract at different concentrations	
13 Reducing power and antioxidant activity of mulberry green tea	90
ethyl acetate extract at different concentrations	

List of Tables (continued)

Table	Page
14 Identification of antioxidant compounds in mulberry green tea	92
ethyl acetate extract	
15 Antioxidant activity, phenolic content and reducing power	
of components extracted from bands appeared on	
thin-layer chromatography	

List of Figures

Figure	Page
1 Delocalization of the unpaired electron in the	11
aromatic ring of phenoxy radicals	
2 Chemical conversion of catechins during tea processing	21
3 Basic structure of flavonoid	23
4 Structure of catechins	25
5 Structures of thearubigin, theaflavin, epitheaflavin,	26
and related compounds	
6 Shape of mulberry leaves	27
7 Stability of individual epicatechin isomers in	30
sodium phosphate buffer (pH = 7.4)	
8 Antioxidative activity of tea polyphenols in lard	35
9 Effect of solubilized ascorbic acid (AA), rosemary extract (RM),	36
and δ -tocopherol (Toc) on the oxidation of fish oil stored	
in uncovered Petri dish at 30 °C	
10 Lipoprotein structure	37
11 Schematic representation of seven steps in the formation of	39
an atherosclerotic plaque	
12 Extraction of antioxidants from mulberry green tea	47
13 The decrease in absorbance of β -carotene in the presence	55
of mulberry green tea water extract assayed by the eta -carotene	
bleaching method	
14 Antioxidant activity of mulberry green tea water extracts prepared	59
at different extraction temperatures, times and repetitions	
15 Total phenolic content of mulberry green tea water extracts prepared	60
at different extraction temperatures, times and repetitions	

List of Figures (continued)

Fi	gure	Page
16	Reducing power of mulberry green tea water extracts prepared	61
	at different extaction temperatures, times and repetitions	
17	The decrease in absorbance of $\boldsymbol{\beta}$ -carotene in the presence	64
	of mulberry green tea extracts prepared with different	
	organic solvents assayed by the eta -carotene bleaching method	
18	Antioxidant activity of mulberry green tea water extract at different	69
	concentrations	
19	Antioxidant activity of mulberry green tea ethyl acetate extract	70
	at different concentrations	
20	Effect of pH on antioxidant activity of mulberry green tea water extract	72
21	Effect of pH on antioxidant activity of mulberry green tea	72
	ethyl acetate extract	
22	pH stability of antioxidant activity of mulberry green tea water extract	74
23	pH stability of antioxidant activity of mulberry green tea	74
	ethyl acetate extract	
24	Synergistic antioxidant activity of mulberry green tea water extract with	77
	lpha-tocopherol in eta -carotene/linoleic acid emulsion	
25	Synergistic antioxidant activity of mulberry green tea ethyl acetate	77
	extract with $lpha$ -tocopherol in eta -carotene/linoleic acid emulsion	
26	Synergistic antioxidant activity of mulberry green tea water extract	79
	with citric acid in eta -carotene/linoleic acid emulsion	
27	Synergistic antioxidant activity of mulberry green tea ethyl acetate	79
	extract with citric acid in β -carotene/linoleic acid emulsion	
28	Synergistic antioxidant activity of mulberry green tea water extract with	81
	ascorbic acid in β -carotene/linoleic acid emulsion	
	•	

List of Figures (continued)

Figure		Page
29	Synergistic antioxidant activity of mulberry green tea ethyl acetate	81
	extract with ascorbic acid in β -carotene/linoleic acid emulsion	
30	Relationship between antioxidant activity and reducing power	90
	of mulberry green tea water extract	
31	Relationship between antioxidant activity and reducing power	91
	of mulberry green tea ethyl acetate extract	
32	Thin-layer chromatography (TLC) pattern of mulberry green tea	93
	ethyl acetate extract	
33	Antioxidant activity of components extracted from bands appeared	94
	on thin-layer chromatography	
34	TBARS of lard added with mulberry green tea ethyl acetate extract	96
	and other commercial antioxidants during storage	
	at 37 °C for 18 days	
35	Peroxide value of lard added with mulberry green tea ethyl acetate	97
	extract and other commercial antioxidants during storage	
	at 37 °C for 18 days	
36	TBARS of fish oil added with mulberry green tea ethyl acetate	98
	extract and other commercial antioxidants during storage	
	at 37 °C for 18 days	
37	Peroxide value of fish oil added with mulberry green tea ethyl acetate	99
	extract and other commercial antioxidants during storage	
	at 37 °C for 18 days	
38	TBARS of LDL in presence of mulberry green tea water extact,	101
	ethyl acetate extract and α-tocopherol	

List of Abbreviations

°C = degree Celcius

g = Gram

h = Hour

min = Minute

mg/ml = Milligram per milliliter

 μ g/ml = Microgram per milliliter

w/v = Weight per volume

nm = Nanometer

OD = Optical density

In = Natural log

TBARS = Thiobarbituric acid substances

PV = Peroxide value

BHA = Butylated hydroxyanisole

BHT = Butylated hydroxytoluene

TBHQ = tert-butyl hydroquinone

DPPH = 1,1-diphenyl-2-picrylhydrazyl radicals

ROS = Reactive oxygen species

LDL = Low density lipoprotein