CONTENTS

		Page
Co	ntents	(8)
Li	et of tables	(14)
Li	et of figures	(16)
Cł	apter	
1.	Introduction	1
	Literature review	3
	1. Chemical composition of fish and shellfish	3
	1.1 Proteins and nitrogenous compounds of fish and shellfish muscle	3
	1.1.1. Protein	3
	1.1.1.1 Sarcoplasmic protein	4
	1.1.1.2 Myofibrillar protein	4
	- Myosin and paramyosin	4
	- Actin	6
	- Tropomyosin	6
	- Troponin	7
	1.1.1.3 Stromal protein	8
	1.1.2 Non-protein nitrogenous compounds of fish and shellfish muscle	10
	1.2 Lipid and fatty acids in fish and shellfish muscle	10
	1.3 Carotenoid	12
	1.4 Mineral content	13
	1.5 Nucleotide	13
	1.6 DSC thermogram of fish muscle	15
	2. Postmortem changes of fish	16
	2.1 Changes of proteins	16
	2.2 Changes of biogenic amines	17
	2.3 Changes of lipids	18
	2.4 Changes in nucleotide	19

		Page
	2.5 Changes in melanosis	20
	2.6 Changes in microbiology	22
	2.7 Changes in sensory property	23
	3. Effect of thermal process on fish and shellfish quality	24
	4. Effect of freeze-thawing process on fish and shellfish quality	25
	Objectives	27
2.	Materials and Methods	28
	1. Materials	28
	1.1 Shrimp samples	28
	1.2 Chemicals	28
	1.3 Microbial media	28
	2. Instruments	29
	3. Methods	29
	3.1 Characterization of black tiger shrimp and white shrimp meats	29
	3.1.1 Proximate analysis	29
	3.1.2 Determination of protein and non-protein nitrogenous compounds	29
	3.1.3 Determination of collagen	30
	3.1.4 Amino acid analysis	30
	3.1.5 Determination of lipid and fatty acid profile	30
	3.1.6 Determination of mineral content	31
	3.2 Effect of heat treatment on physicochemical, physical properties and	31
	microstructure of black tiger shrimp and white shrimp	
	3.2.1 Thermal properties of muscle proteins	31
	3.2.1.1 Differential scanning colorimetry (DSC)	31
	3.2.1.2 Thermal stability	32
	3.2.2 Effect of heat treatment on physical properties of shrimp meats	32

		Page
	3.2.2.1 Determination of cooking loss	32
	3.2.2.2 Determination of shear force	32
	3.2.2.3 Determination of color	33
	3.2.3 Effect of heat treatment on microstructure of shrimp meats	33
3.3	Effect of freeze-thawing on physicochemical, physical properties and	33
	microstructure of black tiger shrimp and white shrimp meats	
	3.3.1 Determination of exudate loss	33
	3.3.2 α -glucosidase (AG) and β -N-acetyl-glucosaminidase (NAG) activity	34
	assay	
	3.3.3 Determination of Ca ²⁺ – ATPase activity	34
	3.3.4 Determination of total sulfhydryl content	34
	3.3.5 Determination of disulfide bond content	35
	3.3.6 Determination of surface hydrophobicity	35
	3.3.7 Determination of protein solubility	35
	3.3.8 Determination of shear force	36
	3.3.9 Effect of freeze-thawing process on microstructure of shrimp meats	36
3.4	Effect of ice storage on quality changes of black tiger shrimp and white	36
	shrimp meats	
	3.4.1 Chemical analysis	36
	3.4.1.1 pH determination	36
	3.4.1.2 Determination of TVB and TMA	37
	3.4.1.3 Determination of biogenic amines	37
	3.4.1.4 Determination of glycogen	38
	3.4.1.5 Determination of K-value	38

	Page
3.4.1.6 Determination of TBARS	38
3.4.1.7 Protein patterns by SDS – PAGE	39
3.4.1.8 Determination of TCA soluble peptides	39
3.4.2 Physical analysis	39
3.4.2.1 Determination of shear force	39
3.4.2.2 Determination of water holding capacity	39
3.4.2.3 Determination of melanosis	39
3.4.2.4 Determination of cooking loss	40
3.4.2.5 Determination of color	40
3.4.3 Microbiological analyses	40
3.4.3.1 Total viable count	40
3.4.3.2 Determination of coliforms bacteria and E. coli	40
3.4.3.3 Determination of Salmonella	40
3.4.4 Sensory evaluation	41
4. Statistical analysis	41
3. Results and Discussion	42
1. Characterization of black tiger shrimp and white shrimp meats	42
1.1 Proximate composition	42
1.2 Protein and non-protein nitrogenous compounds	43
1.3 Collagen	45
1.4 Amino acid compositions	46
1.5 Lipid composition and fatty acid profile of shrimp meat	48
1.6 Mineral content of shrimp meat	51
2.Effect of heat treatment on physicochemical, physical properties and	52
microstructure of black tiger shrimp and white shrimp meats	
2.1 Thermal properties of muscle proteins	52
2.1.1 Differential scanning colorimetry (DSC)	52

	Page
2.1.2 Thermal stability	52
2.2 Effect of heat treatment on physical properties of shrimp meats	53
2.2.1 Changes in cooking loss of black tiger shrimp and white shrimp	53
meats with different parts subjected to heat treatment	
2.2.2 Changes in shear force of black tiger shrimp and white shrimp meats	55
with different parts subjected to heat treatment	
2.2.3 Changes in color of black tiger shrimp and white shrimp meats with	55
different parts subjected to heat treatment	
2.3 Changes in microstructure of raw and cooked black tiger shrimp and white	59
shrimp meats with different parts	
3.Effect of freeze-thawing on physicochemical, physical properties and	62
microstructure of black tiger shrimp and white shrimp meats	
3.1 Effect of freeze-thawing on exudate loss	62
3.2 Effect of freeze-thawing on AG and NAG activities	63
3.3 Effect of freeze-thawing on Ca ²⁺ -ATPase Activity	63
3.4 Effect of freeze-thawing on sulfhydryl and disulfide bond contents	65
3.5 Effect of freeze-thawing on surface hydrophobicity	66
3.6 Effect of freeze-thawing on solubility	66
3.7 Effect of freeze-thawing on shear force	69
3.8 Effect of freeze-thawing on microstructure	70
4. Effect of ice storage on quality changes of black tiger shrimp and white shrimp	72
4.1 Chemical changes of black tiger shrimp and white shrimp meats during iced	72
storage	
4.1.1 Changes in pH	72
4.1.2 Changes in TVB-N and TMA-N	73
4.1.3 Changes in biogenic amines	77

	Page
4.1.4 Changes in glycogen	79
4.1.5 Changes in K-value	82
4.1.6 Changes in TBARS	83
4.1.7 Changes in protein patterns	84
4.1.8 Changes in TCA-soluble peptide	88
4.2 Physical changes of black tiger shrimp and white shrimp during iced storage	89
4.2.1 Changes in shear force	89
4.2.2 Changes in water holding capacity (WHC)	90
4.2.3 Changes in melanosis score	94
4.2.4 Changes in cooking loss	95
4.2.5 Changes in L*, a* and b*-values	96
4.3 Microbiological changes of black tiger shrimp and white shrimp meats	101
during iced storage	
4.3.1 Changes in total viable count	101
4.3.2 Changes in coliforms and E. coli	102
4.4. Sensorial changes of black tiger shrimp and white shrimp during iced	105
storage	
4. Conclusion	113
References	115
Appendix	139
Vitae	144

LIST OF TABLES

Tal	ole	Page
1.	Chemical composition (%) of lobster and shrimp at different season	3
2.	Contractile proteins in food myosystems	5
3.	Distribution (%) of non-protein nitrogenous (NPN) compounds in some seafoods	10
4.	Lipid compositions of shrimp meats (mg/100 g meat)	11
5.	Proximate composition of black tiger shrimp and white shrimp meats	42
6.	Nitrogenous constituents in black tiger shrimp and white shrimp meats	43
7.	Amino acid compositions of black tiger shrimp and white shrimp meat (mg/100 g)	48
8.	Lipid composition of black tiger shrimp and white shrimp meats	49
9.	Fatty acid composition (g/100g) of black tiger shrimp and white shrimp meats	50
10.	Mineral contents in black tiger shrimp and white shrimp meats (mg/kg)	51
11.	T_{max} and enthalpy of muscle proteins of black tiger shrimp and white shrimp meats	52
12.	Thermal inactivation rate constant $(K_D \times 10^{-5} \text{ S}^{-1})$ of natural actomyosin from black	53
	tiger shrimp and white shrimp meats	
13.	Exudate loss of black tiger shrimp and white shrimp meats subjected to different	62
	freeze- thaw cycles	
14.	Changes in biogenic amine contents (mg/kg) of whole and decapitated black tiger	79
	shrimp with different icing methods during the storage	
15.	Changes in biogenic amine contents (mg/kg) of whole and decapitated white shrimp	80
	with different icing methods during the storage	
16.	Changes in L*-value of raw meat of whole and decapitated black tiger shrimp and	98
	white shrimp with different icing methods during the storage	
17.	Changes in a*-value of raw meat of whole and decapitated black tiger shrimp and	98
	white shrimp with different icing methods during the storage	
18.	Changes in b*-value of raw meat of whole and decapitated black tiger shrimp and	99
	white shrimp with different icing methods during the storage	
19.	Changes in L*-value of cooked meat of whole and decapitated black tiger shrimp and	100
	white shrimp with different icing methods during the storage	

LIST OF TABLES (Continued)

Tal	Table	
20.	Changes in a*-value of cooked meat of whole and decapitated black tiger shrimp and	100
	white shrimp with different icing methods during the storage	
21.	Changes in b*-value of cooked meat of whole and decapitated black tiger shrimp and	101
	white shrimp with different icing methods during the storage	
22.	Changes in coliforms (MPN/g) of whole and decapitated black tiger shrimp and white	104
	shrimp with different icing methods during the storage	
23.	Changes in Escherichia coli (MPN/g) of whole and decapitated black tiger shrimp and	105
	white shrimp with different icing methods during the storage	

LIST OF FIGURES

Fig	ure	Page
1.	Model of myosin molecule	ϵ
2.	A thin filament of muscle formed by the filament of tropomyosin molecules wound in	7
	each of the two grooves of the actin helix. Proposed model for configuration of actin,	
	tropomysin and troponin (Tn) subunits	
3.	Collagen structures of shrimp	9
4.	Postmortem ATP degradation in fish	14
5.	Formation of biogenic amines	18
6.	Formation of melanin from tyrosine	21
7.	Electrophoretic pattern of black tiger shrimp and white shrimp meats	44
8.	Electrophoretic pattern of various protein fractions from black tiger shrimp and white	45
	shrimp meats	
9.	Electrophoretic pattern of PSC and ISC from black tiger shrimp and white shrimp	46
	meats	
10.	The influence of heat treatment (100°C) for different times on cooking loss of black	54
	tiger shrimp and white shrimp meats	
11.	The influence of heat treatment (100°C) for different times on shear force of black	56
	tiger shrimp and white shrimp meats	
12.	The influence of heat treatment (100°C) for different times on color of black tiger	57
	shrimp	
13.	The influence of heat treatment (100 $^{\circ}$ C) for different times on color of white shrimp	58
14.	SEM micrographs of longitudinal section of raw and cooked of black tiger shrimp	60
	and white shrimp with different parts	
15.	SEM micrographs of transverse section of raw and cooked of black tiger shrimp and	61
	white shrimp with different parts	
16.	Changes in $\alpha\text{-glucosidase}$ and $\beta\text{-N-acetyl-glucosaminidase}$ activities of black tiger	64
	shrimp and white shrimp subjected to different freeze-thaw cycles	

LIST OF FIGURES (Continued)

rıg	ure	Page
17.	Changes in Ca ²⁺ -ATPase activity of natural actomyosin extracted from black tiger	65
	shrimp and white shrimp subjected to different freeze-thaw cycles	
18.	Changes in sulfhydryl group content and disulfide bond content of natural	67
	actomyosin extracted from black tiger shrimp and white shrimp subjected to different	
	freeze-thaw cycles	
19.	Changes in surface hydrophobicity of natural actomyosin extracted from black tiger	68
	shrimp and white shrimp subjected to different freeze-thaw cycles	
20.	Changes in protein solubility of black tiger shrimp and white shrimp subjected to	68
	different freeze-thaw cycles	
21.	Changes in shear force of black tiger shrimp and white shrimp subjected to different	69
	freeze-thaw cycles	
22.	Microstructure of black tiger shrimp and white shrimp before and after subjecting to	71
	5 freeze-thaw cycles	
23.	Changes in pH of whole and decapitated black tiger shrimp and white shrimp with	73
	different icing methods during the storage	
24.	Changes in TVB-N of whole and decapitated black tiger shrimp (A) and white shrimp	75
	(B) with different icing methods during the storage	
25.	Changes in TMA-N of whole and decapitated black tiger shrimp and white shrimp	76
	with different icing methods during the storage	
26.	Changes in glycogen of whole and decapitated black tiger shrimp and white shrimp	81
	with different icing methods during the storage	
27.	Changes in K-value of whole and decapitated black tiger shrimp and white shrimp	83
	with different icing methods during the storage	
28.	Changes in TBARS contents of whole and decapitated black tiger shrimp and white	85
	shrimp with different icing methods during the storage	
29.	SDS-PAGE pattern of whole and decapitated black tiger shrimp with different icing	86
	methods during the storage	

LIST OF FIGURES (Continued)

rıg	ure	Page
30.	SDS-PAGE patterns of whole and decapitated white shrimp with different icing	87
	methods during the storage	
31.	Changes in TCA-soluble peptides of whole and decapitated black tiger shrimp and	89
	white shrimp with different icing methods during the storage	
32.	Changes in shear force of raw whole and decapitated black tiger shrimp and white	91
	shrimp with different icing methods during the storage	
33.	Changes in shear force of cooked whole and decapitated black tiger shrimp and white	92
	shrimp with different icing methods during the storage	
34.	Changes in WHC of whole and decapitated black tiger shrimp and white shrimp with	93
	different icing methods during the storage	
35.	Changes in melanosis score of whole black tiger shrimp and white shrimp with	95
	different icing methods during the storage	
36.	Changes in cooking loss of whole and decapitated black tiger shrimp and white	97
	shrimp with different icing methods during the storage	
37.	Changes in microbial load of whole and decapitated black tiger shrimp and white	103
	shrimp with different icing methods during the storage	
38.	Changes in total quality of raw and cooked whole and decapitated black tiger shrimp	106
	and white shrimp with different icing methods during the storage	
39.	Changes in appearance score of raw and cooked whole and decapitated black tiger	108
	shrimp and white shrimp with different icing methods during the storage	
40.	Changes in texture score of raw and cooked whole and decapitated black tiger shrimp	109
	and white shrimp with different icing methods during the storage	
41.	Changes in odor score of raw and cooked whole and decapitated black tiger shrimp	111
	and white shrimp with different icing methods during the storage	
42.	Changes in flavor score of cooked whole and decapitated black tiger shrimp and	112
	white shrimp with different icing methods during the storage	