CONTENTS

	Page
Contents	(viii)
List of tables	(xii)
List of figures	(xiii)
Chapter	
1. Introduction	1
Literature review	3
1. Lipid oxidation	3
1.1 Initiation	3
1.2 Propagation	3
1.3 Termination	4
1.4 Factors influencing the rate of lipid oxidation	4
2. Antioxidants	7
2.1 Classification of food antioxidants	7
2.2 Mode of action of antioxidants in food	8
2.3 Type of antioxidants	11
3. The utilization of shrimp wastes	13
4. Protein concentrate	15
4.1 Type of protein concentrate	15
4.2 The production of fish protein concentrate	15
5. Protein hydrolysate	17
5.1 The production of fish protein hydrolysate	17
5.2 Enzymatic hydrolysis process of fish proteins	19
5.3 Functional properties of protein hydrolysate	23
6. Antioxidative activity of protein hydrolysate	28
6.1 Mode of action of fish protein hydrolysates	28
6.2 Amino acids and peptides with antioxidative activity	30
Objective	34

CONTENTS (Coninued)

	Page
2. Materials and methods	35
1. Materials/Chemicals/Enzyme	35
2. Instruments	36
3. Methods	36
3.1 Proximate analysis and determination of physical properties of Mungoong	36
3.2 Study on the extraction of soluble fraction with antioxidative activity from	38
Mungoong	
3.3 Effect of the concentration of Mungoong soluble fraction on the antioxidative	40
activities and the correlation between antioxidative activities teste by	
different assays	
3.4 Study on stability of soluble fraction from Mungoong	40
3.5 Antioxidative acivity and oxidation stability of Mungoong during storage	41
3.6 Antioxidative activity of soluble fraction from Mungoong in different systems	42
3.7 Study on the use of Flavourzyme on the yield and antioxidative activity	42
of Mungoong	
4. Statistical analysis	47
3. Results and Discussion	48
1. Composition and some property of Mungoong	48
1.1 Chemical compositions and physical property	48
1.2 Fatty acid profile	49
1.3 Mineral content of Mungoong	50
1.4 Amino acid compositions	52
2. Effect of extracting media on characteristics and antioxidative activity of	54
soluble fraction from Mungoong	
2.1 UV-absorbance and browning intensity	54
2.2 Fluorescence intensity	55
2.3 DPPH radical scavenging activity	55

CONTENTS (Coninued)

	Page
2.4 ABTS radical scavenging activity	56
2.5 Ferric reducing antioxidant power (FRAP)	56
3. Effect of concentrations of water soluble fraction from Mungoong on	58
antioxidative activity and the correlation between antioxidant activities tested by	
different assays	
4. pH and thermal stability of water soluble fraction from Mungoong	62
5. Antioxidative activity and oxidative stability of Mungoong during storage	64
5.1 Antioxidative activities	64
5.2 TBA value	66
6. Antioxidative activity of water soluble fraction from Mungoong in different	67
systems	
6.1 Antioxidative activity in lecithin liposome system	67
6.2 Antioxidative activity in β -carotene linoleic system	69
6.3 Antioxidative activity in comminuted fish model system	70
7. Effect of Flavourzyme on the yield composition and antioxidative activity of	72
Mungoong	
7.1 Yield of Mungoong from the cephalothorax of white shrimp prepared by	72
different processes	
7.2 Chemical compositions and physical properties of Mungoong from the	73
cephalothorax of white shrimp prepared by different processes	
7.3 Nitrogen soluble index of Mungoong from the cephalothorax of white shrimp	75
prepared by different processes	
7.4 Formal nitrogen content, ammonia nitrogen content and amino nitrogen	76
content of Mungoong from the cephalothorax of white shrimp prepared by	
different processes	
7.5 Antioxidative activity of water extract of Mungoong from the cephalothorax	78
of white shrimp prepared by different processes	

CONTENTS (Coninued)

	Page
7.6 Fatty acid composition of Mungoong T and Mungoong RF15	80
7.7 Mineral content of Mungoong T and Mungoong RF15	83
4. Conclusion	85
References	86
Appendix	105
Vitae	114

LIST OF TABLES

Table	Page
1. Amino acid sequence of antioxidative peptides from various protein sources	32
2. Chemical compositions and some physical properties of Mungoong from the	49
cephalothorax of white shrimp	
3. Fatty acid composition of Mungoong from the cephalothorax of white shrimp	51
4. Mineral contents of Mungoong from the cephalothorax of white shrimp	52
5. Amino acid compositions of Mungoong from the cephalothorax of white shrimp	53
6. A ₂₈₀ , A ₂₉₅ , browning intensity and fluorescence intensity of different soluble	55
fractions of Mungoong produced from the cephalothorax of white shrimp	
7. Atioxidative activities of soluble fractions of Mungoong produced from the	57
cephalothorax of white shrimp determined by different assays	
8. Yield of Mungoong prepared by different processes	73
9. Chemical compositions and physical properties of Mungoong from the	74
cephalothorax of white shrimp prepared by different processes	
10. Formal nitrogen, ammonia nitrogen and amino nitrogen contents of Mungoong	78
from the cephalothorax of white shrimp prepared by different processes	
11. Fatty acid composition of Mungoong T and Mungoong RF15 from the	82
cephalothorax of white shrimp	
12. Mineral contents of Mungoong T and Mungoong RF15 from the cephalothorax of	84
white shrimp	

LIST OF FIGURES

Figure	
1. Delocalization of the unpaired electron in the aromatic ring of phenoxy radicals	10
2. Chemical structure of synthetic antioxidants	12
3. Schematic diagram of the process used in the production of protein hydrolysate	21
from spiny dogfish (Squalus acanthias) shark	
4. Scheme for Mungoong production	44
5. Antioxidative activities of water soluble fraction from Mungoong produced from	59
the cephalothorax of white shrimp at different concentration as determined by the	
ABTS radical scavenging activity, DPPH radical scavenging activity and FRAP	
6. Correlation between ABTS and DPPH radical scavenging activity, correlation	61
between FRAP and ABTS radical scavenging activity and correlation between	
FRAP and DPPH radical scavenging activity of water soluble fraction from	
Mungoong produced from the cephalothorax of white shrimp	
7. pH stability of water soluble fraction from Mungoong produced from the	62
cephalothorax of white shrimp	
8. Thermal stability of water soluble fraction from Mungoong produced from white	63
shrimp cephalothorax	
9. Changes in DPPH radical-scavenging activity, ABTS radical-scavenging activity	65
and FRAP of water extract obtained from Mungoong stored at room temperature	
$(28 - 30^{\circ}C)$ and $4^{\circ}C$ for 8 weeks	
10. Changes in TBA value of Mungoong during storage at room temperature (28-30°C)	66
and 4° C.	
11. Change in TBARS value and conjugated diene in lecithin liposome system in the	68
absence or presence of water soluble fraction from Mungoong at different levels	

LIST OF FIGURES (Continued)

Fig	ure	Page
12.	Change in β -carotene bleaching in the absence or presence of water soluble fraction	70
	from Mungoong at different levels	
13.	Change in TBARS values of comminuted round scad mince model system in the	71
	absence or presence of water soluble fraction from Mungoong at different levels	
14.	Nitrogen solubility index of Mungoong from the cephalothorax of white shrimp	76
	prepared by different processes.	
15.	Antioxidative activities of Mungoong from the cephalothorax of white shrimp	81
	prepared by different processes.	