Contents

Contents	Page (8)
List of Tables	
List of Figures	(11)
Chapter	
1. Introduction	1
Literature review	
Browning reaction	3
1. Enzymatic browning reaction	3
2. Non-enzymatic browning reaction	12
3. The control of enzymatic browning	25
Objectives	33
2.Materials and methods	
1. Chemicals	34
2. Instruments	35
3. Methods	35
3.1. Extraction of black tiger prawn PO	35
3.2. Characterization of black tiger prawn PO	36
3.3. Effect of cysteine concentration on the PO activity	37

Contents (Continued)

	2.4. Effect of types of amine said and sugar	Page
	5.4. Effect of types of animo acid and sugar	
	in model system on inhibition of PO	38
	3.5. Effect of heating time of fructose/glycine	
	model system on inhibition of PO	41
	3.6. Effect of temperature on the PO inhibitory activity	
	of MRPs from fructose/glycine model system	42
	3.7. Effect of reactant concentration of	
	fructose/glycine model system on inhibition of PO	42
	3.8. Effect of pHs of fructose/glycine model system	
	on inhibition of PO	43
	3.9. Decolorization of fructose/glycine MRPs	43
	3.10. Effect of MRPs on changes in chemical and	
	sensory properties of black tiger prawn during iced storage	44
4. Stati	istical analysis	46
3. Result and discussion		47
4. Conclusion		121
References		123
Appendix		147
Vitae		153

List of Tables

Table		Page
1.	Characteristic of PO from crustaceans	8
2.	Effect of chemicals on black tiger prawn PO activity	54

List of Figures

Figure		Page
1.	Coordination of copper to six histidine residues in active site of PO	4
2.	Enzymatic oxidation induced by PO	5
3.	Scheme of Maillard reaction	14
4.	Formation of Amadori compound from glucose and amine	16
5.	Scheme of advanced Maillard reaction from glucose/glycine.	
	AMP (Advanced Maillard Products)	17
6.	Selected sugar degradation reaction	24
7.	pH and temperature profile of black tiger prawn PO activity	49
8.	pH and temperature stability of black tiger prawn PO activity	51
9.	Inhibitory activity of cysteine with various concentrations	
	towards PO from black tiger prawn	55
10.	. Changes in pH of MRPs derived from various amino acids and	
	reducing sugars at the concentrations of 0.5 or 0.75 mM heated	
	at 100°C for 8 h.	56
11.	. Changes in fluorescence intensity, A_{294} and A_{420} of MRPs derived	
	from various amino acids and reducing sugars at the concentrations	
	of 0.5 or 0.75 mM heated at 100°C for 8 h.	58
12.	The loss of reducing sugar and free amino group contents of MRPs	
	derived from various amino acids and reducing sugars at the	
	concentrations of 0.5 or 0.75 mM heated at 100°C for 8 h.	60

Figure	Page
13. Reducing power of MRPs derived from various amino acids and	
reducing sugars at the concentrations of 0.5 or 0.75 mM	
heated at 100°C for 8 h.	62
14. Copper chelating property of MRPs derived from various amino acids	
and reducing sugars at the concentrations of 0.5 or 0.75 mM	
heated at 100°C for 8 h.	63
15. Inhibitory activity towards black tiger prawn PO of MRPs derived	
from various amino acids and reducing sugars at the concentrations	
of 0.5 or 0.75 mM heated at 100°C for 8 h.	65
16. Changes in pH of fructose/glycine MRPs prepared with various	
heating times at 100 °C.	66
17. Changes in fluorescence intensity, A_{294} and A_{420} of fructose/glycine	
MRPs prepared with various heating times at 100 °C.	68
18. The loss of reducing sugar and free amino group contents of	
fructose/glycine MRPs prepared with various heating times at 100 °C	C. 70
19. Reducing power of fructose/glycine MRPs prepared with various	
heating times at 100 °C.	71
20. Copper chelating property of fructose/glycine MRPs prepared with	
various heating times at 100 °C.	72

Figure	Page
21. Inhibitory activity towards black tiger prawn PO of fructose/glycine	
MRPs prepared with various heating times at 100 °C.	74
22. Changes in pH of fructose/glycine MRPs prepared with various	
heating temperatures for 12 h.	75
23. Changes in fluorescent intensity, A_{294} and A_{420} of fructose/glycine	
MRPs prepared with various heating temperatures for 12 h.	77
24. The loss of reducing sugar and free amino group contents of	
fructose/glycine MRPs prepared with various heating	
temperatures for 12 h.	79
25. Reducing power of fructose/glycine MRPs prepared with various	
heating temperatures for 12 h.	80
26. Copper chelating property of fructose/glycine MRPs prepared with	
various heating temperatures for 12 h.	81
27. Inhibitory activity towards black tiger prawn PO of fructose/glycine	
MRPs prepared with various heating temperatures for 12 h.	82
28. Changes in pH of fructose/glycine MRPs prepared with various	
reactant concentrations at 100 °C for 12 h.	83
29. Changes in fluorescent intensity, A_{294} and A_{420} of fructose/glycine	
MRPs prepared with various concentrations for 12 h.	86
30. Changes in A_{294}/A_{420} of fructose-glycine MRPs prepared with	
various reactant concentrations at 100 °C for 12 h.	87

Figure	Page
31. The loss of reducing sugar and free amino group content of	
fructose/glycine MRPs prepared with various reactant	
concentrations at 100 °C for 12 h.	90
32. Reducing power of fructose/glycine MRPs prepared with	
various reactant concentrations at 100 °C for 12 h.	91
33. Copper chelating property of fructose-glycine MRPs prepared	
with various reactant concentrations at 100 °C for 12 h.	92
34. Inhibitory activity towards black tiger prawn PO of fructose/glycine	
MRPs prepared with various reactant concentrations	
at 100 °C for 12 h.	94
35. Changes in pH of fructose/glycine MRPs prepared with various	
initial pHs at 100 °C for 12 h.	95
36. Changes in fluorescence intensity, A_{294} and A_{420} of	
fructose/glycine MRPs prepared with various initial pHs	
at 100 °C for 12 h.	98
37. The loss of reducing sugar and free amino group contents of	
fructose/glycine MRPs prepared with various initial	
pHs at 100 °C for 12 h.	100

Figure	Page
38. Reducing power of fructose/glycine MRPs prepared with various	
initial pHs at 100 °C for 12 h.	101
39. Copper chelating property of fructose/glycine MRPs prepared	
with various initial pHs at 100 °C for 12 h.	102
40. Inhibitory activity towards black tiger prawn PO of fructose/glycine	
MRPs prepared with various initial pHs at 100 °C for 12 h.	103
41. L*, a*, b*-values of MRPs and MRPs decolorized by activated	
carbon or Sep-Pak Cartridge C18.	105
42. Browning intensity, A_{294} and fluorescence intensity of MRPs	
decolorized by activated carbon and Sep-Pak Cartridge C18.	107
43. Reducing power of MRPs decolorized by activated carbon and	
Sep-Pak Cartridge C18.	109
44. Copper chelating property of MRPs decolorized by activated	
carbon and Sep-Pak Cartridge C18.	111
45. PO inhibitory activity of MRPs decolorized by activated carbon	
and Sep-Pak Cartridge C18.	112
46. Changes in pH of black tiger prawn muscle treated with	
MRPs or Na-metabisulfite during iced storage.	114
47. Changes in TVB content of black tiger prawn muscles	
treated with MRPs or Na- metabisulfite during iced storage.	116

Fig	ure	Page
48.	Changes in melanosis score of black tiger prawn treated	
	with MRPs or Na-metabisulfite during iced storage.	118
49.	Changes in sensory property of black tiger prawn treated	
	with MRPs or Na-metabisulfite during iced storage.	120