Contents

	Page
Contents	(7)
List of Tables	(9)
List of Figures	(10)
List of Abbreviations and Symbols	(14)
1. Introduction	
Introduction	1
Literature reviews	4
Objectives	10
2. Methods	
Chemicals	11
Instruments	12
Preparation of oxalato complexes	
Products characterizations	
3. Results	19
Characterization of products by other techniques	20
¹³ C-NMR	20
EPMA/EDX	23
XRD	25
Crystal density measurment	28
General formula of products	28
Single crystal X-ray diffraction	28
UV-Visible absorption spectroscopy	29

Contents (Continued)

3. Results (continued)		
Characterization of products obtained by varying %Cr		
Wavelength dispersive X-ray fluorescence		
spectrometer(WDXRF)		
Inductively-coupled plasma/atomic emission spectroscopy	37	
(ICP-AES)		
4. Discussion	39	
Characterization of products		
¹³ C-NMR	45	
EPMA/EDX	47	
XRD	48	
Crystal density measurment	49	
Single crystal X-ray diffraction	49	
UV-Visible absorption spectroscopy	50	
Characterization of products obtained by varying %Cr		
5. Conclusions		
References	68	
Appendix	78	
Vitae	82	

List of Tables

Table		Page		
1	Assignment of transitions in the $[Cr(C_2O_4)_3]^{3-}$ spectrum			
2	Summary of crystal data for selected compounds with the	8		
	Stoichiometry (BEDT-TTF) ₄ $[A^{I}M^{III}(C_2O_4)_3]$ ·PhCN)			
3	General formula of products			
4	The unit cell parameters of Blue, RedCubic, and AlCubic			
5	Absorption bands of products and other oxalate compounds.			
6	Chemical formula of products and precursors			
7	Properties of Cr ³⁺ gemstones			
8	¹³ C Chemical shifts (ppm from TMS) of detected binary species			
9	Effect of solvent to AN parameter and chemical shift			
10	Cell parameter of products and other oxalato complexes			
11	Visible absorption maxima for Cr(III) complexes in aqueous solution			
12	¹³ C Chemical shifts for organometallic compounds			

List of Figures

Figure		Page
1	Oxalato complexes	2
2	A stereoview of the $[Cr(C_2O_4)_3^{3^-}]$ anion and $[Al(C_2O_4)_3^{3^-}]$ anion	5
3	The anionic layer in $(BEDT-TTF)_4[AM(C_2O_4)_3]$ • PhCN for	8
	the monoclinic $C2/c$ (left) and orthorhombic <i>Pbcn</i> (right) structures.	
4	Crystal structure of RedHexagonal	9
5	(a) cell for solution sample, (b) cell for crystalline solid sample,	15
	and (c) cell for powder sample	
6	Pictures of sample (a) $K_3[Al(C_2O_4)_3] \cdot 3H_2O$, (b) $K_3[Cr(C_2O_4)_3] \cdot 3H_2O$,	19
	(c) AlCubic in saturated solution, (d) Blue in saturated solution,	
	(e) RedHexagonal in saturated solution, and (f) RedCubic in saturated	
	solution	
7	13 C-NMR spectrum of K ₂ C ₂ O ₄	20
8	13 C-NMR spectrum of $H_2C_2O_4$	21
9	¹³ C-NMR spectrum of $K_3Al(C_2O_4)_3 \cdot 3H_2O$	21
10	¹³ C-NMR spectrum of RedHexagonal	22
11	¹³ C-NMR spectrum of RedCubic	22
12	¹³ C-NMR spectrum of Blue	23
13	EPMA/EDX spectrum of $K_3Al(C_2O_4)_3 \cdot 3H_2O$ complex	24
14	EPMA/EDX spectrum of Blue complex	24
15	EPMA/EDX spectrum of AlCubic complex	25
16	EPMA/EDX spectrum of RedCubic complex	25
17	Powder X-ray diffraction diagrams of product Blue 5% and precursor	26
	$K_3Al(C_2O_4)_3$ ·3 H_2O	

List of Figures (Continued)

Figure		Page
18	Powder X-ray diffraction diagrams of product RedCubic 5% and	27
	precursor AlCubic	
19	Pictures of (a) powder of Blue, (b) powder of Redcubic, and (c)	29
	powder of $K_3[Cr(C_2O_4)_3] \cdot 3H_2O$	
20	UV-Visible absorption spectra of $K_2(C_2O_4)$, $H_2(C_2O_4)$, and	30
	$K_3Al(C_2O_4)_3$ ·3H ₂ O in aqueous solution	
21	UV-Visible absorption spectra of $K_2(C_2O_4)$, $H_2(C_2O_4)$, and	30
	$K_3Al(C_2O_4)_3 \cdot 3H_2O$ in powder form by diffused reflectance method	
22	UV-Visible absorption spectra of RedCubic, Blue, and	31
	$K_3Cr(C_2O_4)_3$ ·3H ₂ O in aqueous solution	
23	UV-Visible absorption spectra of RedCubic, Blue, and	31
	$K_3Cr(C_2O_4)_3$ ·3H ₂ O in powder form by diffused reflectance method	
24	UV-Visible absorption spectra of RedCubic and Blue in crystalline	32
	form	
25	Pictures of product varying %Cr (a) Blue1%, (b) Blue5%,	34
	(c) RedCubic 1%, and (d) RedCubic 5%	
26	Calibration curve from the standards prepared by mixing	35
	$K_3[Cr(C_2O_4)_3]$ ·3H ₂ O and $K_3[Al(C_2O_4)_3]$ ·3H ₂ O	
27	% element in Redcubic crystals prepared by varying the amount of Cr	36
	by WDXRF	
28	% element in Blue crystals prepared by varying the amount of Cr	36
	by WDXRF	

(11)

List of Figures (Continued)

Figure		Page
29	% element in RedCubic crystals prepared by varying the amount of Cr	37
	using ICP-AES	
30	% element in Blue crystals prepared by varying the amount of Cr using	38
	ICP-AES	
31	Preparation scheme for the doped Al-oxalato complexes	40
32	(a) Corundum, Al_2O_3 and (b) Beryl, $Be_3Al_2Si_6O_{18}$	44
33	<i>trans</i> - and <i>cis</i> -Al(C_2O_4) ²	46
34	Powder X-ray diffraction diagrams of (A) sample MgAlCrR and	48
	precursor MgAlC, and (B) sample MgAlCrI and sample MgAlN	
35	Absorption spectra of oxalic acid (), potassium oxalate (), and	50
	methyl oxalate ()	
36	Spectra of oxalate in other oxalato complexes () Be, () Mg, (-x-x)	52
	Al, () Zr, (-o-o) Th, and () Cu	
37	Tanabe-sugano diagram for d ³ octahedral complexes	54
38	Orgel diagram of Cr(III)	55
39	UV-Visible absorption spectra of RedCubic, Blue, RedHexagonal,	57
	and $K_3Cr(C_2O_4)_3 \cdot 3H_2O$ in powder form by diffused reflectance method	
40	The spectrum of electromagnetic radiation, including wavelength	58
	ranges for the various colors in the visible spectrum	
41	Absorption spectrum of 1% Cr^{3+} doped in NaMg[Al(C_2O_4) ₃]·8H ₂ O at	59
	Т=90К	
42	Absorption spectrum of ruby planar and 90° twisted oxalate anion	59

List of Figures (Continued)

Figure		Page
43	Absorption spectrum of beryl	60
44	UV-Visible absorption spectra of RedCubic, and Blue crystalline	60
45	Absorption spectrum of ruby	62
46	Pictures of alexandrite effect	63
47	Electronic absorption spectrum of alexandrite(BeAl ₂ O ₄ :Cr ³⁺)	64
48	Electronic absorption spectrum of $Rb_2NaTiCl_6(I)$, $Cs_2KTiCl_6(II)$, and	65
	Rb ₃ TiCl ₆ (III)	
49	The Bravais lattices	79

List of Abbraviations and Symbols

0	=	degree
Å	=	angstrom unit (1 Å = 10^{-10} meter)
A.R.	=	Analytical Reagent
cm ⁻¹	=	wavenumber
λ	=	wavelength
3	=	molar extinction coefficient
$D_{\rm c}$	=	calculated density
D_{m}	=	measured density
IR	=	Infrared
UV	=	Ultraviolet
L	=	ligand
g	=	gram
g/cm ³	=	gram per cubic centimeter
mg	=	milligram
mmol	=	millimole
mL	=	milliliter
nm	=	nanometer
h	=	hour
eV	=	electron volt