CONTENTS

	Page
CONTENTS	vi
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS SYMBOLS	xxi
CHAPTER	
1 Introduction	1
1.1 Introduction	1
1.2 Literature reviews	4
1.2.1 Turmeric	4
1.2.2 Curcumin	7
1.2.2.1 Safety evaluation of turmeric and curcumin	9
1.2.2.2 Influence of pH	9
1.2.2.3 Stability of curcumin solution	12
1.2.3 Curcumin-Metal complexes	13
1.2.3.1 Curcumin-boron complex	15
1.2.3.2 Curcumin-iron complex	18
1.2.3.3 Curcumin-copper complex	20
1.2.3.4 Curcumin-other metal complexes	22
1.2.4 Composition and stability constant of the complex	28
1.3 Objectives	35
2 Methodology	37
2.1 Chemicals	37
2.2 Instruments	38
2.3 Software	39

vi

			Page
2.4	Method	ds	39
	2.4.1	Determination of the composition of complexes	39
		2.4.1.1 The mole-ratio method	39
		2.4.1.2 The continuous variation method (Job's method)	39
	2.4.2	Spectrophotometric determination of the overlapped	40
		absorptions	
2.5	Prepara	ation of curcumin and metal ions	44
	2.5.1	Preparation of stock solution of curcumin	44
	2.5.2	Preparation of stock solution of metal ions and other	44
		substances	
2.6	Spectra	al studies by UV-Vis spectrophotometry	44
	2.6.1	Curcumin spectra	44
		2.6.1.1 Determining suitable concentration of curcumin	44
		2.6.1.2 Calibration curve of curcumin	45
	2.6.2	Effect of some metal ions on curcumin spectra	45
	2.6.3	Studying stability of curcumin-metal ions spectra with time	46
	2.6.4	Studying the stoichiometry of curcumin metal ions complex	46
		2.6.4.1 Curcumin-Hg(II) complex	46
		2.6.4.1.1 Studying the stoichiometry of curcumin-	46
		Hg(II) complex by the mole-ratio method	
		2.6.4.1.2 Studying the stoichiometry of curcumin-	48
		Hg(II) complex by the continuous	
		variation method (Job's method)	

		Page
	2.6.4.2 Curcumin-Cu(II) complex	49
	2.6.4.2.1 Studying the stoichiometry of curcumin-	49
	Cu(II) complex by the mole-ratio method	
	2.6.4.2.2 Studying the stoichiometry of curcumin-	50
	Cu(II) complex by the continuous variation	
	method (Job's method)	
	2.6.4.3 Curcumin-Ni(II) complex	51
	2.6.4.3.1 Studying the stoichiometry of curcumin-	51
	Ni(II) complex by the mole-ratio method.	
	2.6.4.3.2 Studying the stoichiometry of curcumin-	52
	Ni(II) complex by the continuous variation	
	(Job's method) method	
	2.6.5 Studying the complex formation constant of curcumin metal	53
	ions complex	
	2.6.5.1 Complex formation constant of 1:1 complex	53
	2.6.5.2. Complex formation constant of 2:1 complex	53
	2.6.6 Studying the absorption spectra of ferulic acid-metal ions	53
	(metal ions = Cu(II), Hg(II), Ni(II))	
	2.6.7 Studying the absorption spectra of vanillin-metal ions (metal	54
	ions = Cu(II), Hg(II), Ni(II))	
	2.6.8 Studying the absorption spectra of acetylacetone-metal ions	54
	(metal ions = Cu(II), Hg(II), Ni(II))	
2.7	Studying the neutral pH of curcumin and after addition of metal	54
	ions (Cu(II), Ni(II), and Hg(II))	

		Page
3 Results		56
3.1 UV-Vis spectroscopy		56
3.1.1 Determining suitable concern	ntration of curcumin	56
3.1.2 Effect of some metal ions or	n curcumin spectra	57
3.1.3 Effect of time on curcumin-1	metal spectra	65
3.2 Study on the stoichiometry of curcui	min-metal ion complexes	71
3.2.1 Study on the stoichiometry of	of curcumin-Cu(II), curcumin-	71
Hg(II), curcumin-Ni(II) com	plexes by the mole-ratio method	
3.2.2 Study on the stoichiometry of	of curcumin-Cu(II), curcumin-	75
Hg(II), curcumin-Ni(II) com	plexes by the mole-ratio method	
after subtraction of the residu	ual free curcumin absorption	
3.2.3 Study on the stoichiometry of	of curcumin-Cu(II), curcumin-	78
Hg(II), curcumin-Ni(II) com	plexes by the continuous	
variation method		
3.2.4 Study on the stoichiometry of	of curcumin-Cu(II), curcumin-	82
Hg(II), curcumin-Ni(II) com	plexes by the continuous	
variation method after subtra	acted the residual free curcumin	
3.3 Studying spectra of curcumin analogous	ogous	86
3.3.1 Ferulic acid		86
3.3.2 Vanillin		88
3.3.3 Acetylacetone		89

	Page
3.4 Complex formation constant	91
3.4.1 For the 1:1 complex	91
3.4.1.1 Curcumin-Hg(II)	91
3.4.2 For the 2:1 complex	93
3.4.2.1 Curcumin-Cu(II)	93
3.4.2.2 Curcumin-Ni(II)	94
3.5 Trends of pH changes for curcumin-metal system (with Cu(II),	95
Ni(II), and Hg(II))	
4 Discussions	97
4.1 UV-Vis spectral studies	97
4.1.1 Curcumin	97
4.1.2 Spectrophotometric studies of curcumin-metal complexes	99
4.1.2.1 Curcumin-Hg(II)	99
4.1.2.2 Curcumin-Cu(II)	99
4.1.2.3 Curcumin-Ni(II)	100
4.1.3 Curcumin with Fe ions (Fe(II) and Fe(III))	100
4.1.4 Curcumin analogues	101
4.1.4.1 Ferulic acid and vanillin	101
4.1.4.2 Acetylacetone spectra	102
4.2 Stability constant of the complex formation	103
4.2.1 Curcumin-Hg(II) complex (1:1 complex)	105
4.2.2 Curcumin-Cu(II) and curcumin-Ni(II) complexes	105
(2:1 complexes)	
4.3 Changes of pH of the reaction solution	108

	Page
5 Conclusions	109
REFERENCES	110
APPENDICES	118
VITAE	122

LIST OF TABLES

Гable		Page
1	Medicinal properties of turmeric	6
2	Biological activity of turmeric and its compounds	6
3	UV-Vis and IR spectral data of some synthetic curcuminoid analogues	25
	and their Cu(II) complexes	
4	UV-Vis and IR spectral data of curcumin and dimethoxycurcumin and	26
	their metal chelated complexes	
5	UV-Vis spectral data of some synthetic curcuminoids	27
6	Complex formation constant of some metal-curcumin complexes and	34
	relatives.	
7	Concentrations of curcumin and Hg(II) in the mole-ratio method	47
8	Concentrations of curcumin and Hg(II) in the continuous variation	48
	method	
9	Concentrations of curcumin and Cu(II) in the mole-ratio method	49
10	Concentrations of curcumin and Cu(II) in the continuous variation	50
	method	
11	Concentrations of curcumin and Ni(II) in the mole-ratio method	51
12	Concentrations of curcumin and Ni(II) in the continuous variation method	52
13	The composition of curcumin-Hg(II) system from the mole-ratio method	91
14	The composition of curcumin-Hg(II) system from the mole-ratio method	93
15	The composition of curcumin-Ni(II) system from the mole-ratio method	94
16	The complex formation constants of curcumin complexes	105
17	The complex stability of acetylacetone with some metal ions	107

LIST OF TABLES (Continued)

Гable		Page
18	Reading comparison of the absorbance of potassium permanganate and	119
	the reference	
19	Reading comparison of the absorbance of standard cells and the reference	120
20	Complex formation of curcumin-metal complexes from three experiments	120
21	Formation constants of metal ion complexes of EDTA ⁴⁺	121
22	Stability constants of aqueous complex Ions	122

LIST OF FIGURES

Figure		Page
1	Structure of curcumin in the ketone and enol forms, ferulic acid, and	2
	vanillin	
2	Chemical structures of curcumin and curcumin derivatives	5
3	Chemical structure of β -carotene	8
4	The absorbance of curcumin in a 1:1 water-ethanol solution	10
	measured at different pH values	
5	The behavior of curcumin at different pH stages	11
6	Enolization and ionization pattern of β -ketoenolato ligand	13
7	Possible binding sites of acetylacetone ligand to metal ion	14
8	Structure of dehydrozingerone; 4-(4-hydroxy-3-methoxyphenyl)-3-buten	15
	-2-one	
9	Complexing mechanism for boron with curcumin	16
10	The structure of boron complex	17
11	Structure of curcumin-boron complex	18
12	The three possible binding positions in curcumin molecule	35
13	The analogous molecules (acetylacetone for β -diketone moiety, and,	36
	ferulic acid and vanillin for the terminal methoxylphenyl ring) of	
	curcumin moieties	
14	Illustration of two overlapped absorptions and their overlay	41
15	Single calibration curve	41
16	Model of corrected calibration curves	42
17	Flowchart of subtracted the residual free ligand	43
18	UV-Vis spectra of curcumin solution at various concentrations (1.0×10 ⁻⁶ -	56
	$9.0 \times 10^{-5} \mathrm{M})$	

Figure		Page
19	Plot of curcumin concentrations versus its measured absorbances	57
20	The UV-Vis spectra of curcumin and curcumin with added Ag(I) ion at	58
	various concentrations	
21	The UV-Vis spectra of curcumin and curcumin with added Cd(II) ion at	58
	various concentrations	
22	The UV-Vis spectra of curcumin and curcumin with added Ag(I) ion at	59
	various concentrations	
23	The UV-Vis spectra of curcumin and curcumin with added Cd(II) ion at	59
	various concentrations	
24	The UV-Vis spectra of curcumin and curcumin with added Fe(II) ion at	60
	various concentrations	
25	The UV-Vis spectra of curcumin and curcumin with added Fe(III) ion at	60
	various concentrations	
26	The UV-Vis spectra of curcumin and curcumin with added Hg(II) ion at	61
	various concentrations	
27	The UV-Vis spectra of curcumin and curcumin with added La(III) ion	61
	(La(CH ₃ COO) ₃) at various concentrations	
28	The UV-Vis spectra of curcumin and curcumin with added La(III) ion	62
	(LaCl ₃) at various concentrations	
29	The UV-Vis spectra of curcumin and curcumin with added Mn(II) ion at	62
	various concentrations	
30	The UV-Vis spectra of curcumin and curcumin with added Ni(II) ion	63
	(NiCl ₂) at various concentrations	

Figure		Page
31	The UV-Vis spectra of curcumin and curcumin with added Ni(II) ion	63
	(Ni(SO ₄) ₂) at various concentrations	
32	The UV-Vis spectra of curcumin and curcumin with added Pb(II) ion at	64
	various concentrations	
33	The UV-Vis spectra of curcumin and curcumin with added Zn(II) ion at	64
	various concentrations	
34	UV-Vis spectra of curcumin (2.0×10 ⁻⁵ M) after addition of Cu(II)	66
	$(1.0 \times 10^{-5} \text{ M})$ at various times in 50% MeOH	
35	Plot of time versus maximum absorbance and the shoulder from Figure	66
	34	
36	UV-Vis spectra of curcumin (2.0×10 ⁻⁵ M) after addition of Fe(II)	67
	$(2.0\times10^{-5} \text{ M})$ at various times in 50% MeOH	
37	Plot of time versus maximum absorbance the shoulder, and the new	67
	absorption from Figure 36	
38	UV-Vis spectra of curcumin (2.0×10 ⁻⁵ M) after addition of Fe(III)	68
	$(1.0 \times 10^{-5} \text{ M})$ at various times in 50% MeOH	
39	Plot of time versus maximum absorbance and the shoulders from Figure	68
	38	
40	UV-Vis spectra of curcumin (2.0×10 ⁻⁵ M) after addition of Hg(II)	69
	$(2.0 \times 10^{-5} \text{ M})$ at various times in 50% MeOH	
41	Plot of time versus maximum absorbance and the shoulder from Figure	69
	40	

Figure		Page
42	UV-Vis spectra of curcumin (2.0×10 ⁻⁵ M) after addition of Ni(II)	70
	$(1.0 \times 10^{-5} \text{ M})$ at various times in 50% MeOH	
43	Plot of time versus maximum absorbance and the shoulder from Figure	70
	42	
44	Changes of curcumin spectra when added Cu(II) at various	72
	concentrations	
45	The mole-ratio plot of absorbance versus the added concentration of	72
	Cu(II) ion from Figure 44	
46	Changes of curcumin spectra when added Hg(II) at various	73
	concentrations	
47	The mole-ratio plot of absorbance versus the added concentration of	73
	Hg(II) ion from Figure 46	
48	Changes of curcumin spectra when added Ni(II) at various	74
	concentrations	
49	The mole-ratio plot of absorbance versus the added concentration of	74
	Ni(II) ion from Figure 48	
50	UV-Vis spectra of curcumin-Cu(II) complex (after subtracted the	75
	residual free curcumin from Figure 39)	
51	Mole-ratio plot of curcumin-Cu(II) complex (after subtracted the	76
	residual free curcumin from Figure 50, see Figure 45 for comparison)	
52	UV-Vis spectra of curcumin-Hg(II) complex (after subtracted the	76
	residual free curcumin from Figure 46)	
53	Mole-ratio plot of curcumin-Hg(II) complex (after subtracted the	77
	residual free curcumin from Figure 52, see Figure 47 for comparison)	

Figure		Page
54	UV-Vis spectra of curcumin-Ni(II) complex (after subtracted the	77
	residual free curcumin from Figure 48	
55	Mole-ratio plot of curcumin-Ni(II) complex (after subtracted the residual	78
	free curcumin from Figure 54, see Figure 49 for comparison	
56	UV-Vis spectra of the continuous variation method for curcumin-Cu(II)	79
	system	
57	Continuous variation plot of absorbance at 423 nm versus mole fraction	79
	of Cu(II) ion	
58	UV-Vis spectra of the continuous variation method for curcumin-Hg(II)	80
	system	
59	Continuous variation plot of absorbance at 358 nm versus mole fraction	80
	of Hg(II) ion	
60	UV-Vis spectra of the continuous variation method for curcumin-Ni(II)	81
	system	
61	Continuous variation plot of absorbance at 423 nm versus mole fraction	81
	of Ni(II) ion	
62	UV-Vis spectra of continuous variation method for the curcumin-Cu(II)	82
	system (after subtracted free residual curcumin from Figure 56)	
63	Continuous variation plot of absorbance at 423 and 445 nm versus mole	83
	fraction of Cu(II) ion from Figure 62 (see Figure 57 for comparison)	
64	UV-Vis spectra of continuous variation method for the curcumin-Hg(II)	83
	system (after subtracted free residual curcumin from Figure 58)	
65	Continuous variation plot of absorbance at 359 nm versus mole fraction	84
	of Hg(II) ion from Figure 64 (see Figure 59 for comparison)	

Figure		Page
66	UV-Vis spectra of continuous variation method for the curcumin-Ni(II)	84
	system (after subtracted free residual curcumin from Figure 65)	
67	Continuous variation plot of absorbance at 423 and 445 nm versus mole	85
	fraction of Ni(II) ion from Figure 66 (see Figure 61 for comparison)	
68	Changes in absorption spectra of ferulic acid when added with Cu(II) ion	86
69	Changes in absorption spectra of ferulic acid when added with Hg(II) ion	87
70	Changes in absorption spectra of ferulic acid when added with Ni(II) ion	87
71	Changes in absorption spectra of vanillin when added with Cu(II) ion	88
72	Changes in absorption spectra of vanillin when added with Hg(II) ion	88
73	Changes in absorption spectra of vanillin when added with Ni(II) ion	89
74	Changes in absorption spectra of acetylacetone when added with Cu(II)	89
	ion	
75	Changes in absorption spectra of acetylacetone when added with Hg(II)	90
	ion	
76	Changes in absorption spectra of acetylacetone when added with Ni(II)	90
	ion	
77	The Benesi-Hildebrand plot	92
78	pH of curcumin solution when added Cu(II) solution	95
79	pH of curcumin solution when added Hg(II) solution	96
80	pH of curcumin solution when added Ni(II) solution	96
81	UV-Vis absorption spectrum of curcumin in 50% MeOH	97
82	UV-Vis spectra of curcumin in various solvents	98

Figure		Page
83	(a) Spectrum of mixed curcumin and Hg(II) ion, (b) estimated spectrum	104
	of residual unreacted curcumin, and (c) the clean spectrum of the	
	complex (after subtraction (b))	
84	Replacement of metal ion on the enolic moiety of curcumin molecule	109

List of Abbreviations and Symbols

A = absorbance

abs. = absorbance

acac = acetylacetone

Cur = curcumin

d = cell length, centimeter (must be 1)

EtOH = ethanol

K = complex formation constant

K = Kelvin

L = ligand

IR = Infrared

M = molar (mole/liter)

MeOH = methanol (methyl alcohol)

NMR = nuclear magnetic resonance

SOD = superoxide dismutase

UV-Vis = ultraviolet and visible

°C = degree Celsius

E = molar extinction coefficient

 λ = wavelength

concentration 2.0e-4M = concentration 2.0×10^{-4} M