Contents

Contents			
List of Figures			
List of Tables			
List of Abbreviations and Symbols	xiv		
1. Introduction			
Introduction	1		
Literature reviews	8		
Objectives	21		
2. Methods			
Materials	22		
Instruments	24		
Principles of techniques in this study	24		
Preparation of curcumin-metal solutions for	28		
UV-Vis Spectrophotometric study	28		
Electrochemical study	30		
NMR study	33		
FT-IR and XRF study	34		
3. Results	35		
UV-Visible spectroscopy	36		
Cyclic voltammetry	41		
¹ H NMR and ¹³ C-NMR spectroscopy	56		
FT-IR spectroscopy	73		
XRF spectroscopy	76		

Content (Continued)

4. Discussion 7		
Products Characterizations		
UV-Visible spectroscopy	78	
Cyclic voltammetry	79	
¹ H NMR and ¹³ C-NMR spectroscopy	81	
FT-IR spectroscopy	84	
XRF spectroscopy	87	
5. Conclusions		
References		
Vitae		

List of Figures

Figure		Page		
1	Structure of curcumin and curcuminoids	2		
2	Keto-enol equilibrium of curcumin molecule	3		
3	Structure of the curcumin gold complex	9		
4	Structure of curcumin boron complex	9		
5	Structure of curcumin boron complexes			
6	Structures of bis-curcuminoids 3 and 4			
7	Structures of the ligands of manganese complexes			
8	Structure of vanadyl curcumin, bis(1,7-bis[4-hydroxy-3-	15		
	methyoxyphenyl]-1,6-heptadiene-3,5-dionato) oxovanadium(IV),			
	$C_{42}H_{38}O_{13}V$			
9	Structure of the metal complexes of 1,7diarylheptanoids $(HL^1 - HL^4)$	17		
10	Structure of curcumin copper complex	17		
11	1 The structures of the metal complexes prepared by Mohammadi, et al.,			
	(2005)			
12	Structure of curcumin and curcumin derivatives	20		
13	Proposed structure of the complex $[Cu(L1)_2]$	20		
14	Proposed structure of the complex [Cu(L2)Cl] & [Cu(L3)Cl]	20		
15	Typical cyclic voltammogram for a reversible redox process	26		
16	UV-Vis absorption spectra of Fe^{3+} , curcumin and curcumin- Fe^{3+}	36		
17	UV-Vis absorption spectra of Pb^{2+} , curcumin and curcumin- Pb^{2+}	37		
18	UV-Vis absorption spectra of Cd^{2+} , curcumin and curcumin- Cd^{2+}	37		
19	UV-Vis absorption spectra of Fe ³⁺ , curcumin and curcumin-Fe ³⁺ (MeOH)	38		

Figure		Page
20	UV-Vis absorption spectra of Pb ²⁺ , curcumin and curcumin-Pb ²⁺ (MeOH)	39
21	UV-Vis absorption spectra of Cd^{2+} , curcumin and curcumin- Cd^{2+} (MeOH)	39
22	UV-Vis absorption spectra of Mn^{2+} , curcumin and curcumin- Mn^{2+}	40
23	UV-Vis absorption spectra of Bi^{2+} , curcumin and curcumin- Bi^{2+}	40
24	UV-Vis absorption spectra of Cr^{3+} , curcumin and curcumin- Cr^{3+}	41
25	Cyclic voltammogram of the curcumin $[1 \times 10^{-3} \text{ M}]$ in basic medium;	42
	pH 10.30 at GCE, at a scan rate of 100 mV/s (cathodic direction)	
26	Cyclic voltammogram of the curcumin $[1 \times 10^{-3} \text{ M}]$ in basic medium;	43
	pH 10.30 at GCE, at a scan rate of 100 mV/s (anodic direction)	
27	Cyclic voltammogram of the curcumin $[1 \times 10^{-3} \text{ M}]$ in acid medium;	43
	pH 3.3 at GCE, at a scan rate of 100 mV/s (cathodic direction)	
28	Cyclic voltammogram of the curcumin $[1 \times 10^{-3} \text{ M}]$ in acid medium;	44
	pH 3.3 at GCE, at a scan rate of 100 mV/s (anodic direction)	
29	Cyclic voltammogram of the curcumin $[1 \times 10^{-3} \text{ M}]$ in basic medium;	44
	pH 10.77 at CPE, at a scan rate of 100mV/s (cathodic direction)	
30	Cyclic voltammogram of the curcumin $[1 \times 10^{-3} \text{ M}]$ in basic medium;	45
	pH 10.77 at CPE, at a scan rate of 100mV/s (anodic direction)	
31	Cyclic voltammogram of the curcumin $[1 \times 10^{-3} \text{ M}]$ in acid medium;	45
	pH 3.65 at CPE, at a scan rate of 100 mV/s (cathodic direction)	
32	Cyclic voltammograms of the curcumin $[1 \times 10^{-3} \text{ M}]$ in acid medium;	46
	pH 3.65 at CPE, at a scan rate of 100 mV/s (anodic direction)	

Figur	e	Page		
33	Cyclic voltammogram of ammonium acetate buffer at scan rate 100 mV/s	47		
34	Cyclic voltammogram of $1.0 \times 10^{-4} \text{ M Pb}^{2+}$ at GCE in ammonium acetate			
	buffer at scan rate 100 mV/s			
35	Cyclic voltammogram of $1.0 \times 10^{-4} \text{ M Hg}^{2+}$ at GCE in ammonium acetate	49		
	buffer at scan rate 100 mV/s			
36	Cyclic voltammogram of 1.0×10^{-4} M Cu ²⁺ at GCE in ammonium acetate	49		
	buffer at scan rate 100 mV/s			
37	Cyclic voltammogram of Ni ²⁺ -curcumin system at HMDE in ammonium	50		
	acetate buffer at scan rate 100 mV/s			
38	Plots of i_p versus ligand to metal molar ratio for Ni ²⁺ -curcumin and	51		
	systems at scan rate 100 mV/s			
39	Cyclic voltammogram of Pb ²⁺ -curcumin system at HMDE, at scan rate	52		
	100 mV/s			
40	Cyclic voltammogram of Cd ²⁺ -curcumin system at HMDE, at scan rate	53		
	100 mV/s			
41	Plots of i_p versus ligand to metal molar ratio for Pb ²⁺ -curcumin systems	53		
	at scan rate 100 mV/s			
42	Plots of i_p versus ligand to metal molar ratio for Cd ²⁺ -curcumin systems	54		
	At scan rate 100 mV/s			
43	Plots of i_p versus ligand to metal molar ratio for Pb ²⁺ -curcumin systems	54		
	at scan rate 100 mV/s			
44	¹ H NMR spectrum of curcumin in CDCl ₃	59		

Figur	e	Page		
45	¹ H NMR spectrum of curcumin in d_6 -DMSO			
46	¹ H- ¹ H COSY NMR spectrum of curcumin in CDCl ₃			
47	¹³ C NMR spectrum of curcumin in d_6 -DMSO	61		
48	¹ H NMR spectrum of curcumin-Hg ²⁺ in CDCl ₃	62		
49	¹ H NMR spectrum of curcumin-Zn ²⁺ in CDCl ₃	63		
50	¹ H NMR spectrum of curcumin-Mg ²⁺ in CDCl ₃	63		
51	¹ H NMR spectrum of curcumin-Pb ²⁺ in CDCl ₃	64		
52	¹ H NMR spectrum of curcumin-Pb ²⁺ in d_6 -DMSO	64		
53	¹ H NMR spectrum of curcumin-Mg ²⁺ in d_6 -DMSO	65		
54	¹ H NMR spectrum of curcumin-Zn ²⁺ in d_6 -DMSO	65		
55	¹ H-NMR spectrum of curcumin-Co ²⁺ in d_{δ} -DMSO	66		
56	¹ H NMR spectrum of curcumin-Cu ²⁺ in d_6 -DMSO	66		
57	¹ H NMR spectrum of curcumin-Mn ²⁺ in d_6 -DMSO	67		
58	¹ H NMR spectrum of curcumin-Hg ²⁺ in d_6 -DMSO	67		
59	¹³ C NMR spectrum of curcumin-Mn ²⁺ in d_6 -DMSO	68		
60	¹³ C NMR spectrum of curcumin-Hg ²⁺ in d_6 -DMSO	68		
61	Keto-enol equilibrium of acetylacetone molecule	69		
62	¹ H NMR spectrum of acetylacetone in CDCl ₃	70		
63	¹ H NMR spectrum of acetylacetone in d_6 -DMSO	70		
64	¹ H NMR spectrum of Pb(II)-acetylacetone system	71		
65	¹ H NMR spectrum of Hg(II)-acetylacetone system	72		

Figure

Page

66	Infrared spectra of the curcumin-lead complex and curcumin	75
67	Infrared spectra of the curcumin-copper complex and curcumin	75
68	XRF spectrum of curcumin-lead complex	76
69	XRF spectrum of curcumin-copper complex	77
70	Electro-oxidation of the curcumin molecule	80
71	Potential solution structures of curcumin	81
72	Four forms of metal interaction known for the β -diketo moiety	85

List of Tables

Tabl	e	Page
1	The preparation of curcumin-metal solutions for the mole ratio study	29
2	The preparation of Ni ²⁺ -curcumin solutions for the mole ratio study	31
3	The preparation of curcumin- M^{2+} (M = Pb, Cd) solutions for the mole	32
	ratio study	
4	The preparation of curcumin-Pb ²⁺ solutions for the mole ratio study	33
5	Cyclic voltammetric data of Pb^{2+} , Hg^{2+} , and Cu^{2+} ions in ammonium	47
	acetate buffer at scan rate 100 mV/s	
6	Peak current of Pb ²⁺ -curcumin, Cd ²⁺ -curcumin, and Ni ²⁺ -curcumin system	55
7	Peak current of Pb ²⁺ -curcumin system	56
8	¹ H NMR spectroscopic data of curcumin (CDCl ₃)	57
9	¹ H NMR and ¹³ C NMR spectroscopic data of curcumin (d_6 -DMSO)	58
10	¹ H NMR spectroscopic data of acetylacetone	69
11	The physical properties of curcumin, curcumin-Pb(II) and	72
	curcumin-Cu(II) complexes	
12	Infrared spectroscopic data of the curcumin and curcumin complexes	74

List of Abbraviations and Symbols

А	=	Area of electrode
Ag/AgCl	=	Silver/Silver chloride
A.R.	=	Analytical Reagent
cm^{-1}	=	wavenumber
λ	=	wavelength
δ	=	chemical shift
CDCl ₃	=	deuterochloroform
CPE	=	Carbon Paste Electrode
cur	=	curcumin
CV	=	Cyclic Voltammetry (Method), Cyclic Voltammogram
DMSO	=	dimethylsulfoxide
d_6 -DMSO	=	hexadeutero-dimethyl sulfoxide
g	=	gram
GCE	=	Glassy carbon electrode
HMDE	=	Hanging mercury drop electrode
Hz	=	herzt
i _p	=	peak current
IR	=	Infrared
J	=	coupling constant
L	=	ligand
mg	=	milligram
mL	=	milliliter
nm	=	nanometer
MHz	=	Megaherzt

List of Abbraviations and Symbols (Continued)

Pt	=	Platinum
ppm	=	part per million
NHE	=	Normal hydrogen electrode
NMR	=	Nuclear magnetic resonance
S	=	Standard deviation
SCE	=	Standard Calomel Electrode
TMS	=	tetramethylsilane
UV	=	Ultraviolet
XRF	=	X-ray fluorescence spectrometry