Contents

	Page
บทคัดย่อ	(iii)
Abstract	(iv)
Acknowledgement	
Contents	
List of Tables	
List of Figures	
1. Introduction	
Introduction	1
Review of Literatures	3
Objectives	45
2. Methods of study	46
Materials	46
Instruments	46
Methods	47
Preparation of undoped TiO_2 and trivalent (Al, B)-doped TiO_2	48
Characterization of undoped TiO_2 and trivalent (Al, B)-doped TiO_2	53
Photocatalytic activities of methylene blue (MB) by undoped TiO_2 and	55
trivalent (Al, B)-doped TiO ₂	
3. Results	56
Synthesis and characterization of titanium dioxides	56
Photocatalytic activities of methylene blue (MB) by undoped TiO_2 ,	138
comercial P25-TiO ₂ , and trivalent (Al,B)-doped TiO ₂	
4. Discussions	199
Synthesis of titanium dioxides	199
Characterization of titanium dioxides	201

Contents (Continued)

	Page
Photocatalytic activities of methylene blue (MB) by undoped TiO_2	221
and trivalent (Al, B)-doped TiO ₂	
5. Summary	
References	233
Vitae	244

List of Tables

Table)	Page
1	Properties of titanium	2
2	X-ray data on TiO_2 modifications	5
3	Properties of the three modifications of titanium dioxide	6
4	Structure and UV-Vis absorption characteristics of methylene blue and	33
	its common reduced and oxidised forms	
5	Photophysical properties of methylene blue	34
6	The crystalline phase of Al-doped TiO_2 samples	62
7	The crystalline phase of B-doped TiO_2 samples	63
8	The crystallite size of Al-doped TiO_2 samples	64
9	The crystallite size of B-doped TiO_2 samples	65
10	The content of anatase and rutile crystalline in Al-doped TiO_2 samples	67
11	The content of anatase and rutile crystalline in B-doped TiO_2 samples	68
12	Surface area of undoped TiO_2 , P25-TiO ₂ , and Al-doped TiO ₂ samples	71
13	Surface area of undoped TiO_2 , P25-TiO ₂ , and B-doped TiO_2 samples	72
14	Porosity of undoped TiO_2 , P25-TiO ₂ , and A-doped TiO_2 samples	73
15	Porosity of undoped TiO_2 , P25-TiO ₂ , and B-doped TiO_2 samples	74
16	Assignment of the FT-IR bands of all Al-doped ${\rm TiO}_2$ samples	93
17	Assignment of the FT-IR bands of all B-doped TiO_2 samples	96
18	The data of weight loss of Al-doped TiO_2 samples	102
19	The data of weight loss of B-doped TiO_2 samples	104
20	The onset of absorption and band gap energy of Al-doped TiO_2 samples	122
21	The onset of absorption and band gap energy of B-doped ${\rm TiO}_2$ samples	123
22	Band gap energy from direct and indirect method of Al-doped TiO_2 samples	132
23	Band gap energy from direct and indirect method of B-doped TiO_2 samples	133
24	Phase of these trivalent (Al, B)-doped TiO_2 samples by adding synthesis	206
	additives	

List of Tables (Continued)

Table		Page
25	IUPAC classification of the pore	208
26	The isotherm type and porosity type of Al-doped TiO_2 samples	210
27	The isotherm type and porosity type of B-doped TiO_2 samples	211
28	The relative remained of MB solution C/C_0 as a time of adsorption (1 h)	222
	for Al-doped TiO_2 samples	
29	The relative remained of MB solution C/C_0 as a time of adsorption (1 h)	223
	for B-doped TiO_2 samples	
30	The amount of MB molecule adsorbed on the surface of Al-doped TiO_2	224
	samples (At 656 nm)	
31	The amount of MB molecule adsorbed on the surface of B-doped TiO_2	225
	samples (At 656 nm)	
32	The percentage degradation of MB under irradiation time (3 h) for	226
	Al-doped TiO ₂ samples (including adsorption)	
33	The percentage degradation of MB under irradiation time (3 h) for	227
	B-doped TiO_2 samples (including adsorption)	

List of Figures

Figure		Page
1	Crystal sturcture of TiO_2 , (a) Anatase, (b) Rutile, (c) Brookite	4
2	TiO_2 pigment manufactured by the sulfate process	7
3	TiO_2 pigment manufactured by the chloride process	7
4	An overview of products prepared by Sol-Gel methods.	10
5	The heterogeneous photocatalytic oxidation processes of titanium dioxide	30
	photocatalyst	
6	The structure of methylene blue	32
7	UV-Vis absorption spectrum of MN aqueoua solution (solid line) and the	35
	relative emitted light intensity (dotted line) for 8W blacklight bulb	
8	Photocatalytic degradation pathway of methylene blue	38
9	Tautomeric forms of Acid Orange 7 in solution	41
10	Schematic presentation of the mechanisms of generation of oxidative	41
	species, following excitation of the AO-7/ $\rm TiO_2$ system with solar light	
11	Photolysis mechanism of dye/visible light system	43
12	Dye photosensitization mechanism of TiO_2 nanocrystallites.	43
13	Photosensitized photocatalysis mechanism of Ce^{4+} -TiO ₂ sol System.	44
14	Interband photocatalysis mechanism of Ce^{4+} -TiO ₂ nanocrystallites.	44
15	Flow chart of the preparation of undoped TiO_2 powder by sol-gel method	50
16	Flow chart of the preparation of Al-doped TiO_2 powder by sol-gel method	51
17	Flow chart of the preparation of B-doped TiO_2 powder by sol-gel method	52
18	XRD patterns of Al-doped TiO_2 samples which studying in various	59
	parameters : a) amount_Al doped TiO_2 , b) water_Al doped TiO_2 ,	
	c) acid_Al doped TiO_2 , and d) calcined_Al doped TiO_2 samples	
19	XRD patterns of B-doped TiO_2 samples which studying in various	61
	parameters : a) amount_B doped TiO_2 , b) water_B doped TiO_2 ,	
	c) acid_ B doped TiO_2 , and d) calcined_ B doped TiO_2 samples	

List of Figures (Continued)

Figur	·e	Page
20	Nitrogen adsorption isotherm of Al-doped TiO_2 samples : a) amount_	76
	Al doped TiO_2 , b) water_Al doped TiO_2 , c) acid_Al doped TiO_2 , and	
	d) calcined_Al doped TiO_2 samples.	
21	Nitrogen adsorption isotherm of B-doped TiO_2 samples : a) amount_	77
	B doped TiO ₂ , b) water_B doped TiO ₂ , c) acid_B doped TiO ₂ , and	
	d) calcined_ B doped TiO_2 samples	
22	t-plot of nitrogen adsorption isotherm of Al-doped TiO_2 samples :	79
	a) amount_Al doped TiO_2 , b) water_Al doped TiO_2 , c) acid_Al doped	
	TiO_2 , and d) calcined_ Al doped TiO_2 samples	
23	t-plot of nitrogen adsorption isotherm of B-doped TiO_2 samples :	80
	a) amount_B doped TiO_2 , b) water_B doped TiO_2 , c) acid_B doped	
	TiO_2 , and d) calcined_ B doped TiO_2 samples	
24	Pore size distribution curve of Al-doped TiO_2 samples : a) amount_	82
	Al doped TiO_2 , b) water_Al doped TiO_2 , c) acid_Al doped TiO_2 , and	
	d) calcined_Al doped TiO_2 samples	
25	Pore size distribution curve of B-doped TiO_2 samples : a) amount_	83
	B doped TiO ₂ , b) water_B doped TiO ₂ , c) acid_B doped TiO ₂ , and	
	d) calcined_B doped TiO ₂ samples	
26	FT-IR spectrum of Al-doped TiO_2 samples in the range $4,000 - 400 \text{ cm}^{-1}$	88
27	FT-IR spectrum of B-doped TiO_2 samples in the range 4,000 – 400 cm ⁻¹	92
28	TGA curve of Al-doped TiO_2 samples	100
29	TGA curve of B-doped TiO_2 samples	101
30	DTA curve of Al-doped TiO_2 samples	106
31	DTA curve of B-doped TiO_2 samples	108
32	SEM image of Al-doped TiO ₂ samples	112
33	SEM image of B-doped TiO_2 samples	116

List of Figures (Continued)

Figure		Page
34	TEM images of synthesized ${\rm TiO}_2$ samples (undoped ${\rm TiO}_2$ sample :	118
	27a and 27b, Al-doped ${\rm TiO_2}$ sample : 27c and 27d and B-doped ${\rm TiO_2}$	
	sample : 27e and 27f)	
35	The diffused UV-Vis absorption spectra of Al-doped TiO_2 samples :	120
	a) amount_Al/TiO $_2$, b) water_Al/TiO $_2$, c) acid_Al/TiO $_2$ and	
	d) calcined_Al/TiO ₂ samples	
36	The diffused UV-Vis absorption spectra of B-doped TiO_2 samples :	121
	a) amount_B/TiO ₂ , b) water_B/TiO ₂ , c) acid_B/TiO ₂ and	
	d) calcined_B/TiO ₂ samples	
37	Plot of $(\alpha h\nu)^{1/2}$ versus E_{phot} for an indirect transition of Al-doped TiO ₂	126
	samples. The band gap (E_g) are obtained by extrapolation to $\alpha = 0$.	
38	Plot of $(\alpha h\nu)^{1/2}$ versus E_{phot} for an indirect transition of B-doped TiO ₂	128
	samples. The band gap (E_g) are obtained by extrapolation to $\alpha = 0$.	
39	Plot of $(\alpha h\nu)^2$ versus E_{phot} for an direct transition Al-doped TiO ₂	129
	samples. The band gap (E_g) are obtained by extrapolation to $\alpha = 0$.	
40	Plot of $(\alpha h\nu)^2$ versus E_{phot} for an direct transition of B-doped TiO ₂	131
	samples. The band gap (E_g) are obtained by extrapolation to $\alpha = 0$.	
41	XRF spectrum of Al-doped TiO_2 sample	136
42	XRF spectrum of B-doped TiO ₂ sample	137
43	The absorbance of methylene blue in the concentration range of	138
	1.0×10^{-4} M to 1.0×10^{-5} M.	
44	The absorbance of methylene blue in the concentration range of	138
	1.0×10^{-5} M to 1.0×10^{-6} M.	
45	The absorbance of methylene blue in the concentration range of	139
	1.0×10^{-6} M to 1.0×10^{-7} M.	

List of Figures (Continued)

Figure		Page
46	The standard calibration curve of methylene blue in the concentration	139
	range of 1.0×10^{-4} M to 1.0×10^{-5} M.	
47	The standard calibration curve of methylene blue in the concentration	140
	range of 1.0×10^{-5} M to 1.0×10^{-7} M.	
48	The absorbance of methylene blue in the concentration range of	140
	1.0×10^{-5} M to 1.0×10^{-7} M.	
49	The UV-Vis spectral change of methylene blue in synthesized Al-doped	147
	TiO_2 samples suspension as a function of time of irradiation.	
50	The UV-Vis spectral change of methylene blue in synthesized B-doped	155
	TiO_2 samples suspension as a function of time of irradiation.	
51	The reletive remained C/C_0 of methylene blue in synthesized Al-doped	175
	TiO_2 samples suspension as a function of time of irradiation.	
52	The reletive remained C/C_0 of methylene blue in synthesized B-doped	198
	TiO_2 samples suspension as a function of time of irradiation.	
53	XRD patterns of the titania powders with various additives after being	203
	calcined at a) 900°C and b) 1200°C for 1 h.	
54	IUPAC classification of adsorption isotherms	207
55	The structures proposed for the physisorbed water on TiO_2 surface	212
56	The SEM images of Al_2O_3 / TiO_2 samples : a) Al_2O_3 / TiO_2 sample from	215
	Lee et al., (2004), b) H_2SO_4 Al/ TiO ₂ sample (this work), c) Al_2O_3 / TiO ₂	
	sample from Zhang et al.,(2003), and d) H_3PO_4 Al/ TiO ₂ sample (this work)	•
57	SEM images of TiO_2 from the study of Yu et al., 2003	216
58	TEM images of rutile TiO_2 ; Wang et al., 2001 (a) tenuous fiber of	217
	rutile phase (b) : higher magnification of the dark area in (a).	
59	TEM photos of TiO_2 ; a-c (Yang et al., 2002) and d-e (Seo et al., 2001).	218
60	Possible steps involved in MB degradation by TiO ₂ photocatalyst	228