Chapter 3

Results

3.1 Syntheses and characterizations of titanium dioxides

3.1.1 Syntheses of undoped TiO_2 and trivalent (Al, B)-doped TiO_2

In the present study, the undoped TiO_2 and trivalent (Al, B)-doped TiO_2 were prepared by sol-gel method. In the case of trivalent (Al, B)-doped TiO_2 , these samples were further studied for several parameters such as the amount of trivalent ion doping, type of acids (CH₃COOH, HCl, HNO₃, H₂SO₄, H₃PO₄), amount of distilled water (50, 100, 150, 200 mL), and calcined temperature (400, 500, 600, 700, 800^oC).

In sol-gel synthesis of titanium dioxide, the reaction consisted of hydrolysis and condensation reactions of titanium tetrachloride aqueous solution. Titanium tetrachloride was first diluted in cold-distilled water to reduce the high heat of exothermic reaction. The hydrolysis and condensation reaction started immediately upon heating the titanium tetrachloride solution at $95^{\circ}C$ as indicated by the rapid increase in turbidity and the formation of flocs which precipitated at the bottom of the reaction vessel. In this work, different additives such as CH₃COOH, HCl, HNO₃, H₂SO₄, H₃PO₄ were used as hydrolysis catalyst which added to the solution in order to affect the hydrolysis reaction of titanium tetrachloride in water.

3.1.2 Characterizations of titanium dioxides

3.1.2.1 X-ray powder diffraction patterns (XRD)

The crystalline structure of the phases and their crystallite size of each phase present in these samples were obtained by x-ray powder diffraction, using a diffractometer with CuK_{α} radiation. The identification of a species from its powder diffraction pattern is based upon the position of the lines (in terms of 2 θ) and their relative intensities (Skoog and Leary, 1992). The XRD pattern at 2 θ = 25.50 (101) and 48.0° in the spectrum of titanium dioxide are easily identified as the crystal of anatase form whereas the peak at 2 θ = 27.50 (110) and 54.5° arise from the crystal of rutile form (Yoshio, et al., 1998). The XRD intensities of the anatase (101) and the rutile (110) peaks were also analysed.

The crystallite size of each phase present can also be determined from the broadening of corresponding x-ray spectral peaks by the Scherrer formula ;

$$L = \kappa \lambda / (\beta \cos \theta) \qquad \dots \dots (12)$$

where L is the crystallite size, λ is the wavelength of the x-ray radiation (CuK_{α} = 0.15418), κ is a constant and usually taken as 0.89, and β is the line width at half-maximum height. This is a generally accepted method to estimate the mean crystallite size of nanoparticle (J. Liqiang, et al., 2004).

The powder XRD patterns of all Al-doped TiO_2 samples and B-doped TiO_2 samples are shown in Figure 18 and Figure 19, respectively.

a) amount_Al doped TiO₂

b) water_Al doped TiO_2

c) acid_Al doped TiO_2

d) calcined_ Al doped TiO₂

Figure 18 XRD patterns of Al-doped TiO₂ samples with various parameters varied :
a) amount_Al doped TiO₂, b) water_Al doped TiO₂, c) acid_Al doped TiO₂, and
d) calcined_Al doped TiO₂ samples.

a) amount_ B doped TiO₂

b) water_ B doped TiO_2

c) acid_ B doped TiO_2

d) calcined_ B doped TiO₂

Figure 19 XRD patterns of B-doped TiO₂ samples with various parameters varied :
a) amount_B doped TiO₂, b) water_B doped TiO₂, c) acid_B doped TiO₂, and
d) calcined_B doped TiO₂ samples.

The data of the crystalline phase present in each sample in all synthesized Al-doped TiO_2 samples and B-doped TiO_2 samples are shown in Table 6 and Table 7, respectively. The crystallite sizes of the sample were estimated by the Sherrer formula and these data are shown in Table 8 and Table 9 for Al-doped TiO_2 and B-doped TiO_2 samples, respectively. The crystallite sizes are found to be in nanometer region for all trivalent (Al, B)-doped TiO_2 samples.

Al doped TiO ₂ samples	Crystalline phase			
undoped TiO ₂	rutile			
a)amount_Al/TiO ₂				
1_Al/TiO ₂	anatase			
2_Al/TiO ₂	anatase + rutile			
3_Al/TiO ₂	anatase + aluminium oxonium sulfate hydrate			
4_Al/TiO ₂	anatase + aluminium oxonium sulfate hydrate			
b)water_Al/TiO ₂				
50w_Al/TiO ₂	anatase + rutile			
100w_Al/TiO ₂	anatase			
150w_Al/TiO ₂	anatase			
200w_Al/TiO ₂	anatase			
c)acid_Al/TiO ₂				
CH ₃ COOH_Al/TiO ₂	anatase			
HCl_Al/TiO ₂	anatase			
HNO ₃ _Al/TiO ₂	anatase + rutile			
H ₂ SO ₄ _Al/TiO ₂	anatase + rutile			
H ₃ PO ₄ _Al/TiO ₂	anatase			
d)calcined_Al/TiO ₂				
400c_Al/TiO ₂	anatase + rutile			
500c_Al/TiO ₂	anatase + rutile			
600c_Al/TiO ₂	anatase + rutile			
700c_Al/TiO ₂	anatase + rutile			
800c_Al/TiO ₂	anatase + rutile			

Table 6 The crystalline phase of Al-doped TiO_2 samples

Note : The formula of aluminium oxonium sulfate hydrate is $(H_2O)Al_3(SO_4)_2(OH)_6$.

B doped TiO ₂ samples	Crystalline phase
undoped TiO ₂	rutile
a)amount_B/TiO ₂	
0.50wt_B/TiO ₂	anatase + rutile
1.0 wtB/TiO ₂	anatase + rutile
2.0wt_B/TiO ₂	anatase + rutile
3.0wt_B/TiO ₂	anatase + rutile
4.0wt_B/TiO ₂	anatase + rutile
5.0wt_B/TiO ₂	anatase + rutile
10.0wt_B/TiO ₂	anatase + rutile
b)water_B/TiO ₂	
50w_B/TiO ₂	rutile
$100 \text{w}_B/\text{TiO}_2$	anatase + rutile
$150 \text{w}_B/\text{TiO}_2$	anatase + rutile
200w_B/TiO ₂	anatase + B_2O_3
c)acid_B/TiO ₂	
CH ₃ COOH_B/TiO ₂	anatase + rutile
HCl_B/TiO ₂	anatase + rutile
HNO ₃ _B/TiO ₂	anatase + rutile
H ₂ SO ₄ B/TiO ₂	anatase + rutile
H ₃ PO ₄ B/TiO ₂	anatase + rutile
d)calcined_B/TiO ₂	
400c_B/TiO ₂	anatase + rutile
500c_B/TiO ₂	anatase + rutile
600c_B/TiO ₂	anatase + rutile
700c_B/TiO ₂	anatase + rutile
800c_B/TiO ₂	anatase + rutile

Table 7 The crystalline phase of B-doped TiO_2 samples

	Crystallite size (nm)					
Aldoped $11O_2$ samples	Anatase	Rutile				
undoped TiO ₂	-	6.16				
a)amount_Al/TiO ₂						
1_Al/TiO ₂	7.04	-				
2_Al/TiO ₂	7.33	8.15				
3_Al/TiO ₂	6.51	-				
4_Al/TiO ₂	4.09	-				
b)water_Al/TiO ₂						
50w_Al/TiO ₂	5.85	6.42				
100w_Al/TiO ₂	7.04	-				
150w_Al/TiO ₂	5.85	-				
200w_Al/TiO ₂	6.27	-				
c)acid_Al/TiO ₂						
CH ₃ COOH_Al/TiO ₂	5.85	-				
HCl_Al/TiO ₂	7.04	-				
HNO3_Al/TiO2	6.76	5.78				
H ₂ SO ₄ _Al/TiO ₂	5.85	6.39				
H ₃ PO ₄ _Al/TiO ₂	5.17	-				
d)calcined_Al/TiO ₂						
400c_Al/TiO ₂	12.60	8.94				
500c_Al/TiO ₂	11.00	8.94				
600c_Al/TiO ₂	12.60	11.27				
700c_Al/TiO ₂	17.54	14.90				
800c_Al/TiO ₂	22.35	14.90				

Table 8 The crystallite size of Al-doped TiO_2 samples

	Crystallite size (nm)					
B doped TiO_2 samples	Anatase	Rutile				
undoped TiO ₂	-	6.16				
a)amount_B/TiO ₂						
0.50wt_B/TiO ₂	6.39	9.76				
$1.0 \text{wt}_B/\text{TiO}_2$	8.10	9.24				
2.0wt_B/TiO ₂	5.50	5.61				
3.0wt_B/TiO ₂	7.04	6.42				
4.0wt_B/TiO ₂	5.66	5.97				
5.0wt_B/TiO ₂	4.95	9.18				
$10.0 \text{wt}_B/\text{TiO}_2$	6.66	6.24				
b)water_B/TiO ₂						
50w_B/TiO ₂	-	5.95				
$100 \text{w}_B/\text{TiO}_2$	6.39	9.76				
$150 \text{w}_B/\text{TiO}_2$	6.27	7.49				
$200 \text{w}_B/\text{TiO}_2$	6.66	11.18				
c)acid_B/TiO ₂						
CH ₃ COOH_B/TiO ₂	5.90	6.24				
HCl_B/TiO ₂	6.39	9.76				
HNO ₃ B/TiO ₂	7.66	9.18				
H ₂ SO ₄ B/TiO ₂	6.66	5.57				
H ₃ PO ₄ B/TiO ₂	4.03	-				
d)calcined_B/TiO ₂						
$400c_B/TiO_2$	11.00	11.18				
500c_B/TiO ₂	12.83	12.05				
600c_B/TiO ₂	12.83	15.57				
700c_B/TiO ₂	22.00	12.05				
800c_B/TiO ₂	17.11	22.35				

Table 9 The crystallite size of B-doped TiO_2 samples

The content of anatase and rutile crystallines in the synthesized titanium dioxide samples were calculated from the equation (13) and (14), respectively.

- where $I_{unknown}$ = intensity of anatase peak in sample (2 θ = 25.50) $I_{unknown+anatase}$ = intensity of anatase peak in standard sample (2 θ = 25.50) x = percentage of anatase in sample
 - A = percentage of anatase in standard sample

$$\frac{I_{unknown}}{I_{unknown+rutile}} = \frac{y}{y+R\%} \qquad \dots \dots \dots (14)$$

where
$$I_{unknown}$$
 = intensity of rutile peak in sample (2 θ = 27.50)
 $I_{unknown+rutile}$ = intensity of rutile peak in standard sample (2 θ = 27.50)
y = percentage of rutile in sample
R = percentage of rutile in standard sample

The content of anatase and rutile in the trivalent (Al, B)-doped TiO_2 are shown in Table 10 and Table 11.

	Content of crystalline (%)					
Aldoped TiO_2 samples	Anatase	Rutile				
undoped TiO ₂	-	30.00				
a)amount_Al/TiO ₂						
1_Al/TiO ₂	13.98	-				
2_Al/TiO ₂	21.50	10.26				
3_Al/TiO ₂	19.06	-				
4_Al/TiO ₂	23.84	-				
b)water_Al/TiO ₂						
$50 \text{w}_{Al}/\text{TiO}_{2}$	9.09	11.47				
100w_Al/TiO ₂	13.98	-				
150w_Al/TiO ₂	23.38	-				
200w_Al/TiO ₂	20.88	-				
c)acid_Al/TiO ₂						
CH ₃ COOH_Al/TiO ₂	15.46	-				
HCl_Al/TiO ₂	13.98	-				
HNO3_Al/TiO2	12.77	9.21				
$H_2SO_4_Al/TiO_2$	7.34	13.55				
H ₃ PO ₄ _Al/TiO ₂	8.57	-				
d)calcined_Al/TiO ₂						
non-calcined_Al/TiO ₂	13.98	-				
400c_Al/TiO ₂	21.17	10.72				
500c_Al/TiO ₂	56.47	6.86				
600c_Al/TiO ₂	26.61	16.84				
700c_Al/TiO ₂	45.75	15.82				
800c_Al/TiO ₂	49.91	19.28				

Table 10 The content of anatase and rutile crystalline in Al-doped TiO_2 samples

	Content of crystalline (%)					
B doped 110_2 samples	Anatase	Rutile				
undoped TiO ₂	-	30.00				
a)amount_B/TiO ₂						
0.50wt_B/TiO ₂	6.16	10.87				
1.0wt_B/TiO ₂	7.02	10.00				
2.0wt_B/TiO ₂	6.69	9.59				
3.0wt_B/TiO ₂	5.03	11.33				
4.0wt_B/TiO ₂	7.36	8.64				
5.0wt_B/TiO ₂	4.77	9.20				
10.0wt_B/TiO ₂	6.37	8.46				
b)water_B/TiO ₂						
50w_B/TiO ₂	-	48.33				
100w_B/TiO ₂	6.16	10.87				
150w_B/TiO ₂	6.27	6.84				
200w_B/TiO ₂	10.00	-				
c)acid_B/TiO ₂						
CH ₃ COOH_B/TiO ₂	5.96	10.21				
HCl_B/TiO ₂	6.16	10.87				
HNO ₃ _B/TiO ₂	7.25	10.87				
H_2SO_4B/TiO_2	6.80	7.14				
H ₃ PO ₄ B/TiO ₂	6.92	-				
d)calcined_B/TiO ₂						
non-calcined_ B/TiO_2	6.16	10.87				
400c_B/TiO ₂	12.40	17.53				
500c_B/TiO ₂	18.87	38.18				
600c_B/TiO ₂	16.94	31.45				
700c_B/TiO ₂	21.98	24.83				
800c_B/TiO ₂	23.81	63.33				

Table 11 The content of anatase and rutile crystalline in B-doped ${\rm TiO}_2$ samples

3.1.2.2 Surface area and pore size

The surface area is an average measurement of the external surface of a large number of particles and expressed in term of the area per unit mass (m^2/g) . There are two main analysis techniques for measuring surface area; gas adsorption and gas permeability. In this work gas adsorption surface area analysis was used.

The gas adsorption approach starts with a clean surface achieved through vacuum or inert gas break-out. The clean powder surface is exposed to varying partial pressure of known adsorbing vapors. A measurement is made from the amount of gas adsorbed on the powder surface versus the partial pressure. The measurement is often referred to as the BET specific surface area after Brunauer, Emmett and Teller who developed the concept in 1938.

Under equilibrium, the rate of adsorption equals the rate of evaporation. Letting P equal the partial pressure of adsorbate, P_0 equal the saturation pressure of adsorbate (which depends on the gas and temperature), X equal the amount of gas adsorbed at a pressure P, X_m equal the monolayer capacity of the powder (the amount of gas nescessary to form a uniform surface coating one atomic layer thick), and C equal a constant relating to the adsorption enthalpy, gives

The linear relation between the term on the left of the equal sign and the partial pressure ratio P/ P_0 is noted. This is the BET equation , and is generally valid for powders in the range P/ P_0 from 0.05 to 0.30. Equation (15) can be rewritten in a general form as,

where

Giving A as the slope and B as the intercept of the linear equation. Finally, the surface area is calculated as

using M as the molecular weight of adsorbate, A_0 as the average occupational area of an adsorbate molecule, N_0 as Avogadro's number, and w as the sample weight (German, 1984).

The surface area of all synthesized Al-doped TiO_2 samples and B-doped TiO_2 samples are shown in Table 12 and Table 13, respectively. The other data of porosity of trivalent (Al, B)-doped TiO_2 samples are shown in Table 14 and Table 15. These data were compared between as-prepared undoped TiO_2 and commercial P25-TiO₂ product. Moreover, the porosity study of synthesized samples are in Figures 20-25.

Al doped TiO ₂ samples	Surface area ^a (m^2/g)		
undoped TiO ₂	115.90		
P25-TiO ₂	51.41		
a)amount_Al/TiO ₂			
1_Al/TiO ₂	229.55		
2_Al/TiO ₂	191.10		
3_Al/TiO ₂	223.97		
4_Al/TiO ₂	219.26		
b)water_Al/TiO ₂			
50w_Al/TiO ₂	227.50		
100w_Al/TiO ₂	229.55		
150w_Al/TiO ₂	266.91		
200w_Al/TiO ₂	266.56		
c)acid_Al/TiO ₂			
CH ₃ COOH_Al/TiO ₂	225.22		
HCl_Al/TiO ₂	229.55		
HNO ₃ _Al/TiO ₂	232.46		
H ₂ SO ₄ _Al/TiO ₂	191.50		
H ₃ PO ₄ _Al/TiO ₂	260.74		
d)calcined_Al/TiO ₂			
400c_Al/TiO ₂	80.27		
500c_Al/TiO ₂	63.38		
600c_Al/TiO ₂	55.60		
700c_Al/TiO ₂	45.53		
800c_Al/TiO ₂	23.77		

Table 12 Surface area of undoped TiO_2 , P25-TiO₂, and Al-doped TiO_2 samples

a Data were determined by using SA3100,Coulter.

B doped TiO ₂ samples	Surface area ^a (m^2/g)			
undoped TiO_2	115.90			
P25-TiO ₂	51.41			
a)amount_B/TiO ₂				
0.50 wtB/TiO ₂	190.94			
1.0wt_B/TiO ₂	197.65			
2.0wt_B/TiO ₂	192.89			
3.0wt_B/TiO ₂	173.69			
4.0wt_B/TiO ₂	200.07			
5.0wt_B/TiO ₂	186.00			
10.0 wtB/TiO ₂	198.54			
b)water_B/TiO ₂				
50w_B/TiO ₂	109.36			
100w_B/TiO ₂	190.94			
150w_B/TiO ₂	188.58			
200w_B/TiO ₂	204.00			
c)acid_B/TiO ₂				
CH ₃ COOH_B/TiO ₂	206.94			
HCl_B/TiO ₂	190.94			
HNO3_B/TiO2	186.20			
H_2SO_4B/TiO_2	229.21			
H ₃ PO ₄ B/TiO ₂	310.98			
d)calcined_B/TiO ₂				
400c_B/TiO ₂	63.01			
500c_B/TiO ₂	44.84			
600c_B/TiO ₂	31.42			
700c_B/TiO ₂	22.52			
800c_B/TiO ₂	14.25			

Table 13 Surface area of undoped TiO_2 , P25-Ti O_2 , and B-doped TiO_2 samples

	Pore volume (%) for pore diameter						Porosity		
Sample	<6	6-8	8-10	10-12	12-16	16-20	20-80	> 80	(ml/g)
Undoped-TiO ₂	15.20	7.17	4.24	5.13	6.05	7.10	39.53	15.57	0.0454
P25-TiO ₂	5.00	3.00	2.00	2.00	3.00	4.00	38.00	43.00	0.2350
a)amount_Al/TiO ₂									
1_Al/TiO ₂	41.55	16.87	6.52	4.72	4.27	3.34	14.11	8.62	0.0826
2_Al/TiO ₂	35.72	15.33	7.70	7.26	7.44	6.49	15.58	4.12	0.1084
3_Al/TiO ₂	35.01	7.06	3.36	4.08	4.54	5.07	26.20	14.68	0.0315
4_Al/TiO ₂	18.09	7.62	4.40	5.54	6.23	7.30	33.66	17.17	0.0257
b)water_Al/TiO ₂									
50w_Al/TiO ₂	41.18	19.01	8.35	7.61	5.53	3.39	11.00	3.93	0.0565
100w_Al/TiO ₂	41.55	16.87	6.52	4.72	4.27	3.34	14.11	8.62	0.0826
150w_Al/TiO ₂	32.02	15.96	10.15	10.80	10.19	6.56	11.72	2.60	0.1844
200w_Al/TiO ₂	26.47	17.15	11.32	13.26	12.25	8.50	9.74	1.30	0.3366
c)acid_Al/TiO ₂									
CH ₃ COOH_Al/TiO ₂	32.44	15.67	7.42	6.54	5.81	5.80	18.42	7.89	0.0839
HCl_Al/TiO ₂	41.55	16.87	6.52	4.72	4.27	3.34	14.11	8.62	0.0826
HNO ₃ _Al/TiO ₂	28.49	17.89	11.34	11.95	9.97	4.90	10.88	4.57	0.0848
H ₂ SO ₄ _Al/TiO ₂	34.97	10.56	4.69	4.71	4.74	4.73	23.79	11.82	0.0662
H ₃ PO ₄ _Al/TiO ₂	25.33	11.52	6.44	7.49	7.95	7.82	24.51	8.95	0.2665
d)calcined_Al/TiO ₂									
400c_Al/TiO ₂	20.05	20.21	9.86	8.06	11.57	18.22	10.56	1.47	0.1674
500c_Al/TiO ₂	8.96	12.63	12.20	12.57	13.67	19.39	16.23	4.36	0.1753
600c_Al/TiO ₂	5.49	8.28	9.81	14.10	14.83	12.55	31.58	3.36	0.1749
700c_Al/TiO ₂	3.24	3.96	4.37	9.20	20.57	14.73	41.88	2.04	0.1682
800c_Al/TiO ₂	2.00	1.49	1.25	2.11	3.88	7.80	75.82	5.64	0.1362

Table 14 Porosity of undoped TiO_2 , P25- TiO_2 , and A-doped TiO_2 samples

	Pore volume (%) for pore diameter					Porosity			
Sample	<6	6-8	8-10	10-12	12-16	16-20	20-80	> 80	(ml/g)
Undoped-TiO ₂	15.20	7.17	4.24	5.13	6.05	7.10	39.53	15.57	0.0454
P25-TiO ₂	5.00	3.00	2.00	2.00	3.00	4.00	38.00	43.00	0.2350
a)amount_B/TiO ₂									
0.5wt_B/TiO ₂	31.07	6.56	3.51	3.95	4.86	5.99	34.68	9.38	0.1875
1.0wt_B/TiO ₂	26.32	5.95	3.40	4.03	4.68	6.11	36.04	13.47	0.2385
2.0wt_B/TiO ₂	28.07	5.51	3.12	3.96	4.78	6.33	35.76	12.47	0.2270
3.0wt_B/TiO ₂	33.99	6.33	3.17	3.79	4.54	5.15	30.52	12.51	0.1907
4.0wt_B/TiO ₂	24.69	5.54	3.10	3.81	4.88	6.25	36.22	15.50	0.2515
5.0wt_B/TiO ₂	27.58	5.64	3.12	3.63	4.56	5.62	35.97	13.89	0.2129
10.0wt_B/TiO ₂	28.71	6.50	3.60	4.31	5.45	6.32	33.39	11.74	0.1457
b)water_B/TiO ₂									
50w_B/TiO ₂	17.17	8.66	5.52	6.08	7.29	7.92	31.83	15.53	0.0401
100w_B/TiO ₂	31.07	6.56	3.51	3.95	4.86	5.99	34.68	9.38	0.1875
150w_B/TiO ₂	16.16	6.76	3.55	5.05	6.39	9.00	48.09	5.01	0.4217
200w_B/TiO ₂	14.35	8.73	5.79	7.40	10.56	13.61	35.17	4.39	0.4603
c)acid_B/TiO ₂									
CH ₃ COOH_B/TiO ₂	20.44	4.83	2.71	3.52	4.52	6.06	41.61	16.31	0.3615
HCl_B/TiO ₂	31.07	6.56	3.51	3.95	4.86	5.99	34.68	9.38	0.1875
HNO ₃ _B/TiO ₂	23.28	6.48	3.44	4.00	5.26	6.93	42.82	7.79	0.3134
H ₂ SO ₄ B/TiO ₂	21.78	11.01	6.52	7.83	6.38	9.63	29.49	4.37	0.1332
H ₃ PO ₄ B/TiO ₂	67.65	15.12	4.92	3.07	1.79	1.36	4.60	1.49	0.0914
d)calcined_B/TiO ₂									
400c_B/TiO ₂	1.86	1.93	2.60	4.10	8.08	7.90	62.19	11.34	0.3832
500c_B/TiO ₂	1.30	1.09	0.96	1.71	3.11	5.66	70.70	15.47	0.3524
600c_B/TiO ₂	1.63	1.10	0.83	1.36	2.18	5.15	61.07	26.68	0.2282
700c_B/TiO ₂	1.88	1.11	0.79	1.12	1.83	2.93	55.635	34.70	0.1686
800c_B/TiO ₂	2.72	1.53	1.01	1.33	2.00	3.10	8.97	29.35	0.0876

Table 15 Porosity of undoped TiO_2 , P25- TiO_2 , and B-doped TiO_2 samples

Figure 20 Nitrogen adsorption isotherm of Al-doped TiO₂ samples : a) amount_Al doped TiO₂,
b) water_Al doped TiO₂, c) acid_Al doped TiO₂, and d) calcined_Al doped TiO₂ samples.

a) amount_B doped TiO₂

Figure 21 Nitrogen adsorption isotherm of B-doped TiO₂ samples : a) amount_B doped TiO₂, b) water_B doped TiO₂, c) acid_B doped TiO₂, and d) calcined_B doped TiO₂ samples.

Figure 22 t-plot of nitrogen adsorption isotherm of Al-doped TiO₂ samples : a) amount_Al doped TiO₂, b) water_Al doped TiO₂, c) acid_Al doped TiO₂, and d) calcined_Al doped TiO₂ samples.

a) amount_B doped TiO₂

Figure 23 t-plot of nitrogen adsorption isotherm of B-doped TiO₂ samples :a) amount_B doped TiO₂, b) water_B doped TiO₂, c) acid_B doped TiO₂, and d) calcined_B doped TiO₂ samples.

Figure 24 Pore size distribution curve of Al-doped TiO₂ samples : a) amount_Al doped TiO₂,
b) water_Al doped TiO₂, c) acid_Al doped TiO₂, and d) calcined_Al doped TiO₂ samples.

a) amount_ B doped TiO_2

Figure 25 Pore size distribution curve of B-doped TiO₂ samples : a) amount_B doped TiO₂,
b) water_B doped TiO₂, c) acid_B doped TiO₂, and d) calcined_B doped TiO₂ samples.

3.1.2.3 Fourier-transformed infrared spectroscopy (FT-IR)

Infrared spectroscopy is a technique for determining the functional groups within the compounds. The FT-IR spectrum range of the usage in the mid-infrared region, which covers the frequency from 400 to 4,000 cm⁻¹. In Figures 26 and 27 show the FT-IR spectrum of Al-doped TiO_2 samples and B-doped TiO_2 samples, respectively. The assigned modes of the functional groups corresponding to Figures 19 and 20 are listed in Tables 26 and 27, respectively.

Figure 26 FT-IR spectrum of Al-doped TiO_2 samples in the range $4,000 - 400 \text{ cm}^{-1}$.

a) undoped TiO_2

Figure 27 FT-IR spectrum of B-doped TiO_2 samples in the range 4,000 – 400 cm⁻¹.

Al-doped TiO ₂	Wave number	Assignment	Functional	Reference
samples	(cm ⁻¹)		groups/molecule	
Undoped TiO_2	3,500-3,000	-OH and –NH stretching	$\rm H_2O,$ Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	1,637	O-H bending	OH groups	Velasco et al., 1999
	1,432	N-H bending	$\rm NH_4^+$ (composite)	Sanobez et al., 1999
	908	OH out of plane	$\rm H_{2}O$ or OH groups	Sanobez et al., 1999
	462	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001
1_Al/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_2O,$ Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO ₂	John R. Dyer, 1965
	1,620	O-H bending	OH groups	Velasco et al., 1999
	1,115	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	552	Ti-O stretching	TiO_2	Harizannov et al., 2001
4_Al/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	1,623	O-H bending	OH groups	Velasco et al., 1999
	1,428	N-H bending	$\rm NH_4^+$ (composite)	Sanobez et al., 1999
	1,229 - 1,067	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	665	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	599	Ti-O stretching	TiO_2	Harizannov et al., 2001
50w_Al/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_{2}O,$ Ti-OH and $\rm NH_{4}^{+}$	Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,616	O-H bending	OH groups	Velasco et al., 1999
	1,185-1,015	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	665	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	595	Ti-O stretching	TiO ₂	Harizannov et al., 2001
100w_Al/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO ₂	John R. Dyer, 1965
	1,620	O-H bending	OH groups	Velasco et al., 1999
	1,115	S=O stretching	SO ₄ ²⁻	John R. Dyer, 1965
	552	Ti-O stretching	TiO ₂	Harizannov et al., 2001

Table 16 Assignment of the FT-IR bands of all Al-doped TiO_2 samples

Al-dopedTiO2	Wave number		Functional	D.C.
samples	(cm-1)	Assignment	groups/molecule	Reference
150w_Al/TiO ₂	3,500-3,000	-OH and –NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO ₂	John R. Dyer, 1965
	1,635	O-H bending	OH groups	Velasco et al., 1999
	1,015	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	576	Ti-O stretching	TiO ₂	Harizannov et al., 2001
	455	Ti-O stretching	TiO_2 (rutile)	Zhang et al., 2001
200w_Al/TiO ₂	3,500-3,000	-OH and –NH stretching	$\rm H_2O,$ Ti-OH and $\rm NH_4^{+}$	Wang et al., 2000
	2,332	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,631	O-H bending	OH groups	Velasco et al., 1999
	1,015	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	525	Ti-O stretching	TiO ₂	Harizannov et al., 2001
	436	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001
CH ₃ COOH_Al/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_2O,$ Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,631	O-H bending	OH groups	Velasco et al., 1999
	1,122	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	569	Ti-O stretching	TiO ₂	Harizannov et al., 2001
	455	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001
HCl_Al/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_2O,$ Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,620	O-H bending	OH groups	Velasco et al., 1999
	1,115	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	552	Ti-O stretching	TiO ₂	Harizannov et al., 2001
HNO3_Al/TiO2	3,500-3,000	-OH and –NH stretching	$\rm H_2O,$ Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,616	O-H bending	OH groups	Velasco et al., 1999
	1,185 - 1,036	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	665	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	591	Ti-O stretching	TiO_{2}	Harizannov et al., 2001
	484	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001

Al-doped TiO2	Wave number		Functional	D.C.
samples	(cm-1)	Assignment	groups/molecule	Reference
H ₂ SO ₄ _Al/TiO ₂	3,500-3,000	-OH and $-NH$ stretching H_2O , Ti-OH and NH_4^+		Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,620	O-H bending	OH groups	Velasco et al., 1999
	1,2031 - 1,056	S=O stretching	SO ₄ ²⁻	John R. Dyer, 1965
	639	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	517	Ti-O stretching	TiO ₂	Harizannov et al., 2001
	484	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001
H ₃ PO ₄ _Al/TiO ₂	3,500-3,000	-OH and –NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,339	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,631	O-H bending	OH groups	Velasco et al., 1999
	1,395	P=O stretching	PO ₄ ³⁻	John R. Dyer, 1965
	1,048	S=O stretching	SO ₄ ²⁻	John R. Dyer, 1965
	554	Ti-O stretching	TiO ₂	Harizannov et al., 2001
	473	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001
500c_Al/TiO ₂	3,500-3,000	-OH and –NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO ₂	John R. Dyer, 1965
	1,646 , 1,631	O-H bending	OH groups	Velasco et al., 1999
	1,376	C=O stretching	$CO_3^{2-}, HCO_3^{}$	Harizanov et al., 2001
	1,116 - 1,019	S=O stretching	SO ₄ ²⁻	John R. Dyer, 1965
	547	Ti-O stretching	TiO ₂	Harizannov et al., 2001
	462	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001

B-doped TiO ₂	Wave number		Functional	D. C. surger
samples	(cm ⁻¹)	Assignment	groups/molecule	Kelerence
Undoped TiO ₂	3,500-3,000	-OH and –NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	1,637	O-H bending	OH groups	Velasco et al., 1999
	1,432	N-H bending	NH_4^+ (composite)	Sanobez et al., 1999
	908	OH out of plane	H ₂ O or OH groups	Sanobez et al., 1999
	462	Ti-O streching	TiO ₂ (rutile)	Zhang et al., 2001
$0.5 wt_B/TiO_2$	3,500-3,000	-OH and –NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,620	O-H bending	OH groups	Velasco et al., 1999
	1,395	S=O stretching	SO ₄ ²⁻	John R. Dyer, 1965
	665	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	565	Ti-O stretching	TiO ₂	Harizannov et al., 2001
	436,411	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001
10.0wt_B/TiO ₂	3,500-3,000	-OH and –NH stretching	$\rm H_2O,$ Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,627	O-H bending	OH groups	Velasco et al., 1999
	613	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	506	Ti-O stretching	${\rm TiO}_2$	Harizannov et al., 2001
	466,411	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001
50w_B/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,623	O-H bending	OH groups	Velasco et al., 1999
	1,384-1,015	S=O stretching	TiO ₂ (anatase)	John R. Dyer, 1965
	599	Ti-O stretching	TiO ₂	Harizannov et al., 2001
	440	Ti-O stretching	TiO ₂ (rutile	Zhang et al., 2001
$100 \text{w}_B/\text{TiO}_2$	3,500-3,000	-OH and –NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO ₂	John R. Dyer, 1965
	1,620	O-H bending	OH groups	Velasco et al., 1999
	1,395	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	665	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	565	Ti-O stretching	TiO ₂	Harizannov et al., 2001
	436,411	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001

Table 17 Assignment of the FT-IR bands of all B-doped TiO_2 samples

B-doped TiO2	Wave number	Assignment	Functional	Deference
samples	(cm-1)	Assignment	groups/molecule	Kelerence
150w_B/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_2O,$ Ti-OH and $\rm NH_4^{+}$	Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,623	O-H bending	OH groups	Velasco et al., 1999
	1,384 - 1,015	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	661	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	422	Ti-O stretching	TiO_2 (rutile)	Zhang et al., 2001
200w_B/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_2O,$ Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,354	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,631	O-H bending	OH groups	Velasco et al., 1999
	1,015	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	665	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
CH ₃ COOH_B/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_2O,$ Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching,	CO_2	John R. Dyer, 1965
	1,631	$C \equiv N$ stretching	OH groups	Velasco et al., 1999
	1,384 - 1,019	O-H bending	SO_4^{2-}	John R. Dyer, 1965
	665	S=O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	481	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001
HCl_B/TiO ₂	3,500-3,000	Ti-O stretching	$\rm H_{2}O,$ Ti-OH and $\rm NH_{4}^{+}$	Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,620	S-H stretching	OH groups	Velasco et al., 1999
	1,395	O-H bending	SO_4^{2-}	John R. Dyer, 1965
	665	S=O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	565	Ti-O stretching	TiO_2	Harizannov et al., 2001
	436,411	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001
HNO3_B/TiO2	3,500-3,000	-OH and -NH stretching	$\rm H_{2}O,$ Ti-OH and $\rm NH_{4}^{+}$	Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,631	O-H bending	OH groups	Velasco et al., 1999
	1,384-1,019	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	635	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	422	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001

B-doped TiO2	Wave number	Antinum	Functional	Defense
samples	(cm-1)	Assignment	groups/molecule	Reference
H ₂ SO ₄ _B/TiO ₂	3,500-3,000	-OH and –NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,354	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,616	O-H bending	OH groups	Velasco et al., 1999
	1,380-1,015	S=O stretching	SO ₄ ²⁻	John R. Dyer, 1965
	606,632	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	470,422	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001
H ₃ PO ₄ B/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	2,361	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,623	O-H bending	OH groups	Velasco et al., 1999
	1,399 - 1,019	S=O stretching	SO4 ²⁻	John R. Dyer, 1965
	665	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	455,411	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001
500c_B/TiO ₂	3,500-3,000	-OH and -NH stretching	$\rm H_2O$, Ti-OH and $\rm NH_4^+$	Wang et al., 2000
	1,649	O=C=O stretching	CO_2	John R. Dyer, 1965
	1,380	C=O stretching	CO_3^{2-}, HCO_3^{-}	Harizannov et al., 2001
	1,019	S=O stretching	SO_4^{2-}	John R. Dyer, 1965
	661	Ti-O stretching	TiO ₂ (anatase)	Zhang et al., 2001
	440	Ti-O stretching	TiO ₂ (rutile)	Zhang et al., 2001

3.1.2.4 Thermogravimetric analysis (TGA)

Thermogravimetric analysis is used to measure variations in mass which recorded the loss in weight with time or temperature due to desorption, dehydration or desolvation, sublimation, decomposition, and solid-solid reactions. The TG curve of Al-doped TiO_2 samples and B-doped TiO_2 samples are shown in Figures 28 and 29, respectively.

Figure 28 TGA curve of Al-doped TiO₂ samples

a) amount_ B/TiO_2

Figure 29 TGA curve of B-doped T₁O₂ samples

The weight loss of Al-doped TiO_2 and B-doped TiO_2 samples are shown in Table 18 and Table 19, respectively

Al doped TiO ₂ samples	Temperature ([°] C)	Weight loss (%)
undoped TiO ₂	room temp. – 700	5.84
	> 700	-
a) amount_Al/TiO ₂		
1_Al/TiO ₂	room temp. – 165	8.50
	165-600	6.04
	> 600	0.53
4_Al/TiO ₂	room temp. – 500	20.55
	500-650	6.50
	650-850	5.75
	850-970	3.77
	> 970	1.95
b) water_Al/TiO ₂		
50w_Al/TiO ₂	room temp. – 650	14.46
	> 650	0.65
100w_Al/TiO ₂	room temp. – 165	8.50
	165-600	6.04
	> 600	0.53
150w_Al/TiO ₂	room temp. – 620	14.27
	> 620	0.16
200w_Al/TiO ₂	room temp. – 600	9.71
	> 600	-

Table 18 The data of weight loss of Al-doped TiO_2 samples

Al doped TiO ₂ samples	Temperature ([°] C)	Weight loss (%)
c) acid_Al/TiO ₂		
CH ₃ COOH_Al/TiO ₂	room temp. – 600	11.42
	600-1,000	1.68
	> 1,000	0.65
HCl_Al/TiO ₂	room temp. – 165	8.50
	165-600	6.04
	> 600	0.53
HNO ₃ _Al/TiO ₂	room temp. – 650	14.84
	> 650	0.94
H ₂ SO ₄ _Al/TiO ₂	room temp. – 550	15.30
	> 550	6.05
H ₃ PO ₄ _Al/TiO ₂	room temp. –500	14.83
	> 500	0.30
d) calcined_Al/TiO ₂		
500c_Al/TiO ₂	room temp. – 620	2.10
	> 620	0.60
800c_Al/TiO ₂	room temp. – 550	0.65
	> 550	-

B doped TiO ₂ samples	Temperature ([°] C)	Weight loss (%)
undoped TiO ₂	room temp. – 700	5.84
	> 700	-
a) amount_B/TiO ₂		
0.5 wtB/TiO ₂	room temp. – 800	8.08
	> 800	-
10.0wt_B/TiO ₂	room temp. – 600	12.00
	> 600	-
b) water_B/TiO ₂		
50w_B/TiO ₂	room temp. – 700	8.25
	> 700	-
$100 \text{w}_B/\text{TiO}_2$	room temp. – 800	8.08
	> 800	-
$150 \text{w}_B/\text{TiO}_2$	room temp. – 760	10.53
	> 760	-
$200 \text{w}_B/\text{TiO}_2$	room temp. – 900	10.52
	> 900	-
c) acid_B/TiO ₂		
CH ₃ COOH_B/TiO ₂	room temp. – 700	8.47
	> 700	-
HCl_B/TiO ₂	room temp. – 800	8.08
	> 800	-
HNO ₃ _B/TiO ₂	room temp. – 600	7.98
	> 600	-
H ₂ SO ₄ _B/TiO ₂	room temp. – 600	13.45
	600-900	1.81
	> 800	-

Table 19 The data of weight loss of B-doped TiO_2 samples

B doped TiO ₂ samples	Temperature ([°] C)	Weight loss (%)
H ₃ PO ₄ B/TiO ₂	room temp. – 700	19.51
	> 700	-
d) calcined_B/TiO ₂		
500c_B/TiO ₂	room temp. – 700	1.13
	> 700	-
800c_B/TiO ₂	-	-

3.1.2.5 Differential thermal analysis (DTA)

Differential thermal analysis is a thermal technique which determining the temperatures of possible decomposition and phase changes (Reddy, et al, 2000). The DTA curve records these differences during reactions in the sample, showing thermal effects as deviations from the zero line. Figures 30 and 31 show the DTA curves of Al-doped TiO_2 and B-doped TiO_2 samples, respectively.

Figure 30 DTA curve of Al-doped TiO₂ samples

Figure 31 DTA curve of B-doped TiO_2 samples

3.1.2.6 Scanning electron microscope (SEM)

Scanning electron microscope is a technique which used to investigate the network structure and the texture of sample as shown in Figures 32 and 33 for the synthesized trivalent ion (Al, B)-doped titanium dioxide samples.

a) amount_Al/TiO₂

1a) undoped TiO₂×1,500

2a) 1_Al/TiO₂×1,500

1b) undoped $TiO_2 \times 10,000$

2b) 1_ Al/TiO₂×10,000

3a) 2_ Al/TiO₂×1,500

8674 20kV 10um $\times 1.500$

5a) 4_ Al/TiO₂ ×1,500

b) water_Al/TiO₂

1a) 50w_Al/TiO₂×1,500

1b) 50w_Al/TiO₂×10,000

3b) 2_ Al/TiO₂×10,000

4b) 3_ Al/TiO₂×10,000

5b) 4_Al/TiO₂×10,000

c) acid_ Al/TiO₂

1a) CH₃COOH_Al/TiO₂×1,500

1b) CH₃COOH_ Al/TiO₂×10,000

2b) 100w_Al/TiO₂×10,000

3b) 150w_Al/TiO₂×10,000

4b) 200w_ Al/TiO₂ ×10,000

2b) HCl_Al/TiO₂×10,000

3b) HNO₃_Al/TiO₂×10,000

4b) H₂SO₄_Al/TiO₂×10,000

PSU 7348 20kV 1µm x10.000 5b) H₃PO₄_Al/TiO₂×10,000

2a) 800c_Al/TiO₂×1,500

Figure 32 SEM image of Al-doped TiO₂ samples

a) amount_B/TiO₂

1a) undoped $TiO_2 \times 1,500$

20kV

1um

10kV

2b) 800c_Al/TiO₂×10,000

8434

1um

x10,000

3a) 1.0wt_B/TiO₂×1,500

4a) 5.0wt_B/TiO₂×1,500

5a) 10.0wt_B/TiO₂ ×1,500

3b) 1.0wt_B/TiO₂×10,000

4b) 5.0wt_B/TiO₂×10,000

5b) 10.0wt_B/TiO₂ ×10,000

1a) 50w_B/TiO₂×1,500

2a) 100w_B/TiO₂×1,500

3a) 150w_B/T1O₂×1,500

4a) 200w_B/TiO₂×1,500

1b) 50w_B/TiO₂×10,000

2b) 100w_B/TiO₂×10,000

3b) 150w_B/T1O₂×10,000

1a) CH₃COOH_ B/TiO₂×1,500

2a) HCl_B/TiO₂×1,500

3a) HNO₃_B/TiO₂×1,500

4a) H_2SO_4 B/TiO₂×1,500

1b) CH₃COOH_B/TiO₂×10,000

2b) HCl_B/TiO₂×10,000

3b) HNO₃_B/TiO₂×10,000

4b) H₂SO₄_B/TiO₂×10,000

It can be seen that the photograph of the undoped TiO_2 sample appears regularly aggregated and uniform nearly spherical particles. For all case of Al-doped TiO_2 samples show dense of uniform spherical particle with higher aggregate than undoped TiO_2 sample. In the case of B-doped TiO_2 samples found that almost B-doped TiO_2 samples also have dense of uniform nearly spherical particle with higher aggregate than undoped TiO_2 sample. But for the H₃PO₄_B/TiO₂ sample shows non-uniform structure and the case of 50w_B/TiO₂ sample has similar appearance of the undoped TiO_2 sample.

Transmission electron microscope technique is used to estimate the particle size and the texture of crossed section particles. The TEM micrograph of synthesized undoped TiO_2 , Aldoped TiO_2 and B-doped TiO_2 samples are shown in Figure 34.

a) undoped TiO_2

b) undoped TiO₂

Figure 34 TEM images of synthesized TiO_2 samples (undoped TiO_2 sample : 27a and 27b, Al-doped TiO_2 sample : 27c and 27d and B-doped TiO_2 sample : 27e and 27f)

In Figure 34a and 34b, a TEM picture of the undoped TiO_2 consisted of tenuous fibers and the dark areas in these pictures were the result of aggregation of fibers. The TEM pictures of Al-doped TiO_2 sample that shown in Figure 34c and 34d appeared as highly aggregate of particles while the TEM picture in Figure 34d have small fibers of rutile particles. The B-doped TiO_2 structure consisted of rod-like rutile particles and also have small spherical particles.

3.1.2.8 Ultraviolet-Visible spectrophotometry (UV-Vis)

UV-Vis spectroscopy has been used to characterize the bulk structure of crystalline and amorphous titanium dioxide. TiO_2 is a semiconductor oxide with easily measured optical band-gap. UV-Vis diffused reflectance spectroscopy is used to probe the band structure or molecular energy levels in the materials since UV-Vis light excitation creates photogenerated electrons and holes (Q. Zhang et al., 2000). Figure 35 and Figure 36 show the UV absorption edge which determined by the linear extrapolation of the steep part of the UV absorption toward the baseline. The corresponding band gap energy of each titanium dioxide sample can be calculated from the following Plank' s equation :

where E_g is the band gap energy (eV), h is the Plank' s constant (6.67×10^{-34} J.S), c is the velocity of light (3×10^8 m.s⁻¹) and λ is the onset of absorption. The data of the onset of absorption and the band gap energy of Al-doped TiO₂ and B-doped TiO₂ samples are shown in Table 20 and Table 21, respectively. The diffused UV-Vis absorption spectra of Al doped TiO₂ and B-doped TiO₂ are shown in Figure 35 and Figure 36, respectively.

a) amount_Al/TiO₂

 Al/TiO_2 , b) water_ Al/TiO_2 , c) acid_ Al/TiO_2 and d) calcined_ Al/TiO_2 samples.

a) amount B/TiO_2

Figure 36 The diffused UV-Vis absorption spectra of B-doped TiO_2 samples : a) amount_ B/TiO₂, b) water_B/TiO₂, c) acid_B/TiO₂ and d) calcined_B/TiO₂ samples.

Al doped TiO ₂ samples	Onset of absorption, λ (nm)	Band gap energy (eV)
undoped TiO ₂	411	3.017
a)amount_Al/TiO ₂		
1_Al/TiO ₂	400	3.100
2_Al/TiO ₂	398	3.116
3_Al/TiO ₂	398	3.116
4_Al/TiO ₂	397	3.123
b)water_Al/TiO ₂		
50w_Al/TiO ₂	402	3.085
$100 w_{Al}/TiO_{2}$	400	3.100
$150 w_{Al}/TiO_{2}$	380	3.623
$200 w_{Al}/TiO_{2}$	378	3.280
c)acid_Al/TiO ₂		
CH ₃ COOH_Al/TiO ₂	399	3.108
HCl_Al/TiO ₂	400	3.100
HNO ₃ _Al/TiO ₂	403	3.077
H ₂ SO ₄ _Al/TiO ₂	401	3.092
H ₃ PO ₄ _Al/TiO ₂	383	3.238
d)calcined_Al/TiO ₂		
400c_Al/TiO ₂	411	3.017
500c_Al/TiO ₂	407	3.050
600c_Al/TiO ₂	412	3.010
700c_Al/TiO ₂	412	3.010
800c_Al/TiO ₂	411	3.017

Table 20 The onset of absorption and band gap energy of Al-doped TiO_2 samples

B doped TiO ₂ samples	Onset of absorption, λ (nm)	Band gap energy (eV)
undoped TiO ₂	411	3.017
a)amount_B/TiO ₂		
0.5 wt_B/TiO ₂	410	3.024
1.0wt_B/TiO ₂	408	3.039
2.0wt_B/TiO ₂	408	3.039
3.0wt_B/TiO ₂	406	3.054
4.0wt_B/TiO ₂	407	3.047
5.0wt_B/TiO ₂	407	3.047
10.0wt_B/TiO ₂	404	3.069
b)water_B/TiO ₂		
50w_B/TiO ₂	413	3.002
100w_B/TiO ₂	410	3.024
150w_B/TiO ₂	412	3.009
200w_B/TiO ₂	411	3.017
c)acid_B/TiO ₂		
CH ₃ COOH_B/TiO ₂	407	3.047
HCl_B/TiO ₂	410	3.024
HNO ₃ B/TiO ₂	410	3.024
H ₂ SO ₄ B/TiO ₂	405	3.062
H ₃ PO ₄ B/TiO ₂	405	3.062
d)calcined_B/TiO ₂		
$400c_B/TiO_2$	413	3.002
$500c_B/TiO_2$	416	2.981
600c_B/TiO ₂	415	2.988
700c_B/TiO ₂	416	2.981
800c_B/TiO ₂	419	2.959

Table 21 The onset of absorption and band gap energy of B-doped TiO_2 samples

In order to establish the type of band-to-band transition in these synthesized TiO_2 particles, the absorption data were fitted to equation for both indirect and direct band gap transitions (Kumar, et al., 2000).

Direct semiconductors are characterized by the minimum of the lowest conduction band positioned in k space directly under the maximum of the highest valence band. The optical absorption coefficient (α) near the absorption edge for direct interband transitions is given by equation (20);

where B_d is the absorption constant for a direct transition.

For indirect semiconductors, the minimum of the lowest conduction band is shifted relative to the maximum of the highest valence band and the lowest-energy interband transition must then be accompanied by phonon excitation. Indirect interband transitions are characterized by the stronger energy dependence of the optical absorption coefficient (α) nearer the absorption edge than is otherwise the case for direct transitions. The equation of indirect transition given by the following equation ;

where B_i is the absorption constant for an indirect transition, hv is the energy of excitation, E_g is the band gap energy (N. Serpone, et al., 1995).

The absorption coefficient (α) for reflectivity measurements could be calculated by the following equation (Zhao, et al., 1991);

where A is the measured absorbance and d_s ' is the thickness of sample in UV-Vis cell (0.4 cm).

Figure 37 and Figure 38 show the $\alpha^{1/2}$ versus E_{phot} plot for an indirect transition of Al-doped TiO₂ samples and B-doped TiO₂ samples, respectively. The plot for an direct transition of

the $(\alpha E_{phot})^2$ versus E_{phot} are shown in Figure 39 and Figure 40 for synthesized trivalent (Al, B)doped TiO₂ samples. Given that the α is the absorption coefficient and E_{phot} is the photon energy, $E_{phot} = (1239/\lambda)$ eV, where λ is the wavelength in nanometers. The value of E_{phot} extrapolated to $\alpha =$ 0 gives an absorption energy, which corresponds to a band gap energy (K. Madhusudan Reddy, et al., 2002). The band gap values calculated from Figures 37 – 40 are shown in Table 22 and Table 23 for Al-doped TiO₂ samples and B-doped TiO₂ samples, respectively.

Figure 37 Plot of $(\alpha h\nu)^{1/2}$ versus E_{phot} for an indirect transition of Al-doped TiO₂ samples. The band gap (E_g) are obtained by extrapolation to $\alpha = 0$.

Figure 38 Plot of $(\alpha h\nu)^{1/2}$ versus E_{phot} for an indirect transition of B-doped TiO₂ samples.

The band gap (E_g) are obtained by extrapolation to $\alpha = 0$.

a) amount_ Al/ TiO₂

Figure 39 Plot of $(\alpha h\nu)^2$ versus E_{phot} for an direct transition Al-doped TiO₂ samples. The band gap (E_g) are obtained by extrapolation to $\alpha = 0$.

Figure 40 Plot of $(\alpha h\nu)^2$ versus E_{phot} for an direct transition of B-doped TiO₂ samples. The band gap (E_g) are obtained by extrapolation to $\alpha = 0$.

Al doped TiO ₂	Band gap energy (eV)		
samples	Equation (8)	Indirect method	Direct method
undoped TiO ₂	3.017	2.92	3.07
a)amount_Al/TiO ₂			
1_Al/TiO ₂	3.100	2.97	3.17
2_Al/TiO ₂	3.116	3.01	3.18
3_Al/TiO ₂	3.116	3.00	3.19
4_Al/TiO ₂	3.123	3.02	3.16
b)water_Al/TiO ₂			
50w_Al/TiO ₂	3.085	2.99	3.14
$100 \text{w}_{Al}/\text{TiO}_{2}$	3.100	2.97	3.17
150 wAl/TiO ₂	3.263	3.08	3.36
200 wAl/TiO ₂	3.280	3.07	3.39
c)acid_Al/TiO ₂			
CH ₃ COOH_Al/TiO ₂	3.108	2.98	3.20
HCl_Al/TiO ₂	3.100	2.97	3.18
HNO3_Al/TiO2	3.077	2.95	3.15
H ₂ SO ₄ _Al/TiO ₂	3.092	2.94	3.14
H ₃ PO ₄ _Al/TiO ₂	3.238	3.02	3.44
d)calcined_Al/TiO ₂			
400c_Al/TiO ₂	3.017	2.90	3.06
500c_Al/TiO ₂	3.050	2.94	3.09
600c_Al/TiO ₂	3.010	2.92	3.06
700c_Al/TiO ₂	3.010	2.91	3.05
800c_Al/TiO ₂	3.017	2.90	3.04

Table 22 Band gap energy from direct and indirect method of Al-doped TiO_2 samples.

B doped TiO ₂	Band gap energy (eV)		
samples	Equation (8)	Indirect method	Direct method
undoped TiO ₂	3.017	2.92	3.07
a)amount_B/TiO ₂			
0.5wt_B/TiO ₂	3.024	2.92	3.10
1.0wt_B/TiO ₂	3.039	2.92	3.11
2.0wt_B/TiO ₂	3.039	2.93	3.13
3.0wt_B/TiO ₂	3.054	2.94	3.12
4.0wt_B/TiO ₂	3.047	2.93	3.14
5.0wt_B/TiO ₂	3.047	2.94	3.12
10.0wt_B/TiO ₂	3.069	2.95	3.12
b)water_B/TiO ₂			
50w_B/TiO ₂	3.002	2.91	3.06
$100 \text{w}_B/\text{TiO}_2$	3.024	2.92	3.10
150w_B/TiO ₂	3.009	2.92	3.09
$200 \text{w}_B/\text{TiO}_2$	3.017	2.93	3.17
c)acid_B/TiO ₂			
CH ₃ COOH_B/TiO ₂	3.047	2.91	3.07
HCl_B/TiO ₂	3.024	2.92	3.10
HNO3_B/TiO2	3.024	2.90	3.08
H_2SO_4B/TiO_2	3.062	2.96	3.14
H ₃ PO ₄ B/TiO ₂	3.062	2.87	3.19
d)calcined_B/TiO ₂			
400c_B/TiO ₂	3.002	2.88	3.04
500c_B/TiO ₂	2.981	2.87	3.04
600c_B/TiO ₂	2.988	2.86	3.00
$700c_B/TiO_2$	2.981	2.86	2.99
800c_B/TiO ₂	2.959	2.84	2.99

Table 23 Band gap energy from direct and indirect method of B-doped TiO_2 samples.

3.1.2.9 Wavelength dispersive x-ray fluorescence spectrometry (WDXRF)

X-ray fluorescence analysis is a rapid, non destructive, qualitative and quantitative method of determining element in solids. This technique is based on the measurement of wavelengths and intensities of x-rays emitted by a sample, when excited by the rays from a primary x-ray tube. It is essentially a surface technique, since the primary beam does not penetrate very far into the specimen. The XRF spectrum of Al-doped TiO_2 samples and B-doped TiO_2 samples are shown in Figures 41 and 42, respectively.

a) Ti peak of Al/ TiO_2

b) Al peak of Al/ TiO_2

c) Si peak of Al/ TiO_2

d) S, Cl peak of Al/ TiO_2

Figure 41 XRF spectrum of Al-doped TiO₂ sample

a) Ti peak of B/ TiO_{2}

Figure 42 XRF spectrum of B-doped TiO₂ sample

From Figure 41 it appeared that Al-doped TiO_2 sample contained trace amount of Si, S, and Cl (besides the two main elements: Ti and Al). From Figure 42, it was found that the B-doped TiO_2 sample contained trace amount of Ca, Si, and S element (besides the main element: Ti). In this study, the XRF technique could not determine the B element of B-doped TiO_2 sample because of the limitation of the element.

3.2 Photocatalytic activities of methylene blue (MB) by undoped TiO₂, comercial P25-TiO₂ and trivalent (Al,B)-doped TiO₂

3.2.1 Preparation of calibration standard solutions

Methylene blue concentrations were measured by using the standard calibration curve. In this work, the concentration of standard methylene blue solutions were prepared in the range 1.0×10^{-4} M to 1.0×10^{-7} M. in order to construct reliable standard calibration curve of methylene blue, the concentration devided into three ranges: 1.0×10^{-4} M to 1.0×10^{-5} M, 1.0×10^{-5} M to 1.0×10^{-6} M and 1.0×10^{-6} M to 1.0×10^{-7} M. The absorbance of methylene blue solution was measured with SPECORD S100 spectrophotometer. The spectra of methylene blue in these ranges are shown in Figures 43 – 45.

Figure 43 The absorbance of methylene blue in the concentration range of 1.0×10^{-4} M to

Figure 44 The absorbance of methylene blue in the concentration range of 1.0×10^{-5} M to 1.0×10^{-6} M.

Figure 45 The absorbance of methylene blue in the concentration range of 1.0×10^{-6} M to 1.0×10^{-7} M.

The standard calibration curves of methylene blue solution in the range of 1.0×10^{-4} M to 1.0×10^{-5} M and 1.0×10^{-5} M to 1.0×10^{-7} M are shown in Figures 46-47.

Figure 46 The standard calibration curve of methylene blue in the concentration range of 1.0×10^{-4} M to 1.0×10^{-5} M.

Figure 47 The standard calibration curve of methylene blue in the concentration range of 1.0×10^{-5} M to 1.0×10^{-7} M.

The standard calibration curve of methylene blue solution in the range of 1.0×10^{-6} M to 1.0×10^{-7} M does not conform to a good straight line due to large fluctuation in the measurement of concentration of methylene blue in 1.0×10^{-6} M to 1.0×10^{-7} M range which are almost colorless as shown in Figures 46-48.

Figure 48 The absorbance of methylene blue in the concentration range of 1.0×10^{-5} M to 1.0×10^{-7} M.

3.2.2 The experiment for photocatalytic degration of methylene blue by undoped

TiO₂, comercial P25-TiO₂ and trivalent (Al, B)-doped TiO₂

In the photocatalysis studies, the mixed synthesized TiO_2 with methylene blue solution (MB 2.5×10^{-5} M) it was found that the adsorption of methylene blue on the catalyst surface takes place instantly prior to the photocatalytic measurements. Since the purpose was to test and compare the photocatalytic activity alone, so the first adsorption stage must be excluded by allowing the TiO₂ samples (undoped TiO₂, comercial P25-TiO₂ and trivalent (Al, B)-doped TiO₂) to adsorbed MB until reaching their adsorption equilibrium prior to irradiation with UV light in tightly closed wooden compartment (0.5 m×0.5 m).The results from this photocatalytic experiment of Aldoped TiO₂ samples and B-doped TiO₂ samples are shown in Figures 49 and 50, respectively.

Figure 49 The UV-Vis spectral change of methylene blue in synthesized Al-doped TiO_2 samples suspension as a function of time of irradiation.

h) 5.0wt_B/TiO₂

Figure 50 The UV-Vis spectral change of methylene blue in synthesized B-doped TiO_2 samples suspension as a function of time of irradiation.

The relative MB remained C/C_0 of Al-doped TiO_2 samples and B-doped TiO_2 samples as a function of time of irradiation are shown in Figure 51 and Figure 52, respectively.

a) undoped TiO_{2}

irradiation time (h)

irradiation time (h)

b) P25- TiO₂

2) C/C_o at 656 nm

irradiation time (h)

c) 1_Al/ TiO₂ 1) C/C_o at 614 nm

2) C/C_o at 656 nm

irradiation time (h)

d) 2_Al/ TiO₂

irradiation time (h)

2) C/C_o at 656 nm

irradiation time (h)

e) 3_Al/ TiO₂ 1) C/C_o at 614 nm

3_AI/TiO2

f) 4_Al/ TiO₂

2) C/C_o at 656 nm

inadiation time (h)

g) 50w_Al/ TiO₂
1) C/C_o at 614 nm

irradiation time (h)

h) 100w_Al/ TiO₂ 1) C/C_o at 614 nm

2) C/C_o at 656 nm

irradiation time (h)
i) 150w_Al/ TiO_2

j) 200w_Al/ TiO₂ 1) C/C_o at 614 nm

2) C/C_o at 656 nm

k) CH₃COOH_Al/ TiO₂

2) C/C_o at 656 nm

m) HNO₃_Al/ TiO₂ 1) C/C_o at 614 nm

n) H_2SO_4 Al/ TiO_2 1) C/C_o at 614 nm

imadiation time (h)

o) H_3PO_4 Al/ TiO_2 1) C/C_o at 614 nm

p) 400c_Al/ TiO₂ 1) C/C_o at 614 nm

2) C/C_o at 656 nm

2) C/C_o at 656 nm

2) C/C_o at 656 nm

s) 700c_Al/ TiO_{2}

2) C/C_o at 656 nm

t) $800c_Al/TiO_2$

Figure 51 The reletive remained C/C_0 of methylene blue in synthesized Al-doped TiO₂ samples suspension as a function of time of irradiation.

175

a) undoped TiO_2

1) C/C_o at 614 nm

irradiation time (h)

Constant and a state of 70X

c) 0.5wt_B/TiO₂ 1) C/C_o at 614 nm

2) C/C_o at 656 nm

0.5wt_B/TiO2

d) 1.0wt_B/TiO₂

1) C/C_o at 614 nm

e) 2.0wt_B/TiO₂ 1) C/C_o at 614 nm

2) C/C_o at 656 nm

f) 3.0wt_B/TiO₂

2) C/C_o at 656 nm

g) 4.0wt_B/TiO₂

2) C/C_o at 656 nm

182

h) 5.0wt_B/TiO₂

i) 10.0wt_B/TiO₂

2) C/C_o at 656 nm

2) C/C_o at 656 nm

irradiation time (h)

k) 100w_B/TiO₂ 1) C/C_o at 614 nm

l) 150w_B/TiO₂

1) C/C_o at 614 nm

m) 200w_B/TiO₂

2) C/C_o at 656 nm

2) C/C_o at 656 nm

r) $H_3PO_4_B/TiO_2$ 1) C/C_o at 614 nm

2) C/C_o at 656 nm

2) C/C_o at 656 nm

v) $700c_B/TiO_2$

Figure 52 The reletive remained C/C_0 of methylene blue in synthesized B-doped TiO₂ samples suspension as a function of time of irradiation.