Contents

	Page
Abstract (Thai)	(5)
Abstract (English)	(3)
Acknowledgement	(7)
Contents	(9)
List of Tables	(10)
List of Figures	(11)
List of Abbreviations	(15)
Chapter	
1. Introduction	
Introduction	1
Review of literature	4
Objectives	41
2. Materials and Methods	42
3. Results	75
4. Discussion	133
5. Conclusion	149
References	150
Appendix	167
Publications	172
Vitae	173

List of Tables

Table		Page
1	Events involved in the coordination of defense	
	responses in plants to challenged by pathogens	12
2	Examples of phytoalexins produced by higher plants	20
3	Comparative properties of elicitin isoforms	37
4	Sequences and properties of the forward and reverse primers	74
5	Yield during purification of elicitin from 1 litre culture filtrate	
	of Phytophthora palmivora	107
6	Approximated and determined amino acid compositions	
	of Phytophthora palmivora elicitin and comparison to other	
	α - elicitins	109

List of Figures

Fi	gure	Page	
1	Leaves, flowers, fruits and seeds of Hevea brasiliensis	5	
2	The appearance of black stripe on leaf petiole		
	and stem in Hevea brasiliensis	7	
3	The life-cycle of <i>Phytophthora</i> spp.	9	
4	Suggested pathway for lignin biosynthesis in healthy		
	and plants	16	
5	Sequence of events leading to the hypersensitive		
	reaction in plants	18	
6	Main phytoalexins and their hosts	22	
7	Pathways for the biosynthesis of some phytoalexins	23	
8	Model outline the roles of chitinase and glucanase		
	in plant's defense of bean against pathogen attacks	26	
9	Gene-for-Gene interactions specify plant disease		
	resistance	31	
10	Structures of Llipid-transfer proteins and elicitins	33	
11	The one-week mycelium of Phytophthora palmivora		
	on potato dextrose agar		42
12	2 Micrograph of sporangium and zoospores of		
	Phytophthora palmivora. (x10)	43	
13	3 The diagram of leaf patterns and various stages of rubber leaves.	45	

List of Figures (continued)

Fig	jures	Page
14	Plot of standard scopoletin versus intensity using	
	spectrofluorophotometer excitation wavelength at	
	340 nm and emission wavelength at 440 nm.	48
15	Standard curve of Bovine Serum Albumin at absorbance	
	595 nm using the Bradford technique.	52
16	Standard curve of glucose using the absorbance at 540 nm.	54
17	Standard curve of N-acetyl-D-glucosamine using the	
	absorbance at 420 nm.	56
18	Standard curve of Bovine Serum Albumin at absorbance	
	562 nm using the Bicinchoninic acid method.	61
19	The agarose gel electrophoresis pattern of Hevea glucanase	
	and chitinase cDNAs digested with Bam HI and Hind III.	67
20	Comparison of restriction patterns of the ITSI-5.8S-ITSII	
	region of the ribosomal RNA between Krabi isolate and	
	Phytophthora palmivora UQ 230.	75
21	Necrotic lesions observed at 48 hours after inoculation with	
	Phytophthora palmivora, 5x10 ⁶ zoospores/ml on rubber	
	leaves of four different clones of rubber leaves.	77
22	Lesion diameters of rubber resistant (BPM-24) and	
	susceptible (RRIM600) leaves inoculated with	
	$5x10^5$. $5x10^6$ and $5x10^7$ zoospores/ml of <i>P. palmiyora</i> .	80

	with 20 μl of <i>Phytophthora palmivora</i> , (5x10 ⁶ zoospores/ml),	
	on the resistant (BPM-24) and susceptible (RRIM600) clones.	81
24	Lignin, shown as a red color, was markedly deposited in the	
	veins and veinlets of BPM-24	82
25	Thin layer chromatography of standard scopoletin	83
26	Synthesis of scopoletin by different resistant rubber clones	85
	List of Figures (continued)	
Fig	jures	Page
27	Speed and extent of scopoletin biosynthesis in inoculum	
	droplets of resistant (BPM-24) and susceptible (RRIM600)	
	rubber clone leaflets inoculated with different concentrations	
	of Phytophthora palmivora (5x10 ⁵ , 5x10 ⁶ and 5x10 ⁷ zoospores/n	nl). 8
28	Scopoletin biosynthesis in inoculum droplets of resistant	
	(BPM-24) and susceptible (RRIM600) rubber clone	88
29	Growth inhibition of various concentrations of Scp	
	to Phytophthora palmivora	89
30	The effect of scopoletin on mycelium growth (5 days incubation))
	of Phytophthora palmivora and Phytophthora botryosa	90
31	The zoospore germination of Phytophthora palmivora after	
	2 hours incubation with each scopoletin concentration	91
32	Evolution of total protein of rubber leaves from a resistant	

23 Necrotic lesions observed at 48 hours after inoculation

	(BPM-24) and a susceptible (RRIM600) clones inoculated	
	with <i>Phytophthora palmivora</i> (5×10 ⁷ zoospores/ml)	93
33	Electrophoresis of proteins from crude leaf extracts	
	with and without (control) inoculated with zoospores of	
	Phytophthora palmivora in BPM-24 (a) and RRIM600 (b).	95
34	Evolution of β –1,3-glucanase of rubber leaves from a resistant	
	(BPM-24) and a susceptible (RRIM600) clones inoculated	
	with <i>Phytophthora palmivora</i> (5×10 ⁷ zoospores/ml).	97
35	Evolution of chitinase activity of rubber leaves from	
	a resistant (BPM-24) and a susceptible (RRIM600) clones	
	inoculated with <i>Phytophthora palmivora</i> (5×10 ⁷ zoospores/ml)	99
36	Time course of induction of chitinase in (a) BPM-24	
	and (b) RRIM600 after inoculation with Phytophthora	
	palmivora (5x10 ⁷ zoospores/ml). X, Y and Z were	
	Hevea chitinase isozymes.	101
37	The 20-day old in 300 ml culture filtrate of Phytophthora	
	palmivora.	102
38	Extracellular proteins secreted by Phytophthora palmivora	104

List of Figures (continued)

Fig	Figures		
39	Extracellular proteins secreted by Phytophthora palmivora	104	
40	DEAE-cellulose chromatography of the culture filtrate of		
	Phytophthora palmivora.	106	
41	Sephadex G-50 chromatography of bound proteins from DEAE		
	column.	106	
42	Comparision of the N-terminal sequences of Phytophthora		
	palmivora elictin to other α - elictins	111	
43	Silver stained Tricine-SDS-PAGE of purified elicitin	113	
44	Induction of leaf necrosis by palmivorein in		
	Nicotiana tabacum (a), RRIM600 (b) and BPM-24 (c).	115	
45	Distal necrosis caused by palmivorein (a); treated RRIM600,		
	control RRIM600 and treated BPM-24 leaves, from left to		
	right, and treated tobacco (b).		116
46	Toxicity of the PD-10 fractions from the ammonium sulfate		
	precipitate of Phytophthora palmivora culture filtrate and		
	purified palmivorein after passing through Sephadex		
	G-50 column.	118	

47	47 Lightication were obtained in BPM-24 (a) and RRIM600 (b)		
	at 24 hours after elicited with palmivorein.	119	
48	The necrosis effect of palmivorein on the resistant		
	(BPM-24) and susceptible (RRIM600) rubber leaves.	121	
49	The scopoletin production in the inoculum droplet over		
	the resistant (a) and susceptible (b) rubber leaves which		
	were treat with water (leaf side of each leaf) with palmivorein		
	(12.5 μ g/30 μ l/1 g leaf weight) (right side).	123	
50	The effect of palmivorein (12.5 μg/30 μl/1 g leaf weight)		
	on scopoletin production of the resistant and susceptible		
	rubber clone.	123	
51	Evolution of total protein contents of rubber leaves from		
	the resistant (BPM-24) and the susceptible (RRIM600)		
	clones treated with 1.5 μ g / 5 μ l of palmivorein	124	
52	Evolution of β -1,3-glucanase activity of rubber leaves		
	from the resistant (BPM-24) and the susceptible (RRIM600) clor	nes	
	treated with 1.5 μ g/5 μ l of palmivorein at 0, 12, 24, 48 and 72 hour	rs.	125
53	Evolution of chitinase activity of rubber leaves from		
	the resistant (BPM-24) and the susceptible (RRIM600) clones		
	treated with 1.5 μ g/5 μ l of palmivorein at 0, 12, 24, 48 and 72 hours	S.	126

List of Figures (continued)

Fig	ures	Page	
54	Chitinase activity staining of crude leaf extracts from		
	the resistant (a) and susceptible (b) rubber clones.	128	
55	Agarose gel electrophoresis of total RNA isolated from		
	BPM-24 leaves which were elicited with 5 $\mu g/10~\mu l$ of		
	palmivorein at 48 hours.	130	
56	RT - PCR analysis of chitinase gene expression at		
	4 hours after elicitation BPM-24 leaves with palmivorein		
	$1 \mu g/5 \mu l/1 g$ leaf weight and distilled water was used as control.		132

List of Abbreviation

A = Absorbance

aa = Amino acid

ATP = Adenosine triphosphate

bp = Base pair

BSA = Bovine serum albumin

°C = Degrees celsius

cDNA = Complementary DNA

DEAE = Diethylaminoethyl

DEPC = Diethyl pyrocarbonate

DNA = Deoxyribonucleic acid

dNTPs = Deoxyribonucleotide triphosphates

E. coli = Escherichia coli

EDTA = Ethylenediaminetetra acetic acid

EtBr = Ethidium bromide

ER = Endoplasmic reticulum

g = Gram

kb = Kilobases

kDa = Kilodalton

LB medium = Luria-Bertani medium

M = Molar

MA = Milliampere

mg = Milligram

min = Minute

ml = Milliliter

MOPS = 3-[N-Morpholino]propane-sulfonic acid

List of Abbreviation (continued)

mRNA = Messenger ribonucleic acid

 μg = Microgram

 μ I = Microliter

 μ M = Micromolar

nt = Nucleotide

OD. = Optical density

Pal = Palmivorein

pH = -log hydrogen ion concentration

PCR = Polymerase chain reaction

PDA = Potato dextrose

pl = Isoelectric point

RNA = Ribonucleic acid

rRNA = Ribosomal ribonucleic acid

RNase = Ribonuclease

rpm = Round per minute

RT = Reverse transcriptase

Scp = Scopoletin

SDS = Sodium dodecyl sulphate

SDS-PAGE = Sodium dodecyl sulphate polyacrylamide gel electrophoresis

Sp/ml = Spore per milliter

TAE = Tris-acetate EDTA

TE = Tris EDTA

TEMED = N, N, N-tetramethylenediamine

Tris-HCl = Tris (hydroxy methyl aminomethane) hydrochloride

tRNA = Transfer ribonucleic acid

List of Abbreviation (continued)

UV = Ultraviolet

v/v = Volume/volume

w/v = Weight/volume

 μ mole/min/ml = Micromole per minute per milliter

 α = Alpha

 β = Beta

% = Percent