CONTENTS

]	Page
Contents		viii
List of Tables	xi	
List of Illustrations		xiii
List of Abbreviations and symbols		XV
Chapter		
1. Introduction		
1.1 Introduction		1
1.1.1 Rationale and background for investigation	1	
1.1.2 HIV-1 integrase assay		2
1.1.3 Relative of antioxidants with AIDS patients	4	
1.2 Review of literatures		13
1.2.1 Description and literature search of Smilax corbularia Kunth	13	
1.2.2 General data of the Genus Smilax	15	
1.2.3 Smilax species in Thailand	16	
1.3 Biological activity of Smilax species		24
1.4 Chemical constituents of Smilax species		41
1.5 Objectives	65	
2. Research methodology	66	
2.1 Instruments		66
2.2 Plant materials		67
2.3 Preparation of plant extracts		67
2.3.1 Ethanolic extract		67
2.4 Assay for antioxidant activity		68
2.4.1 DPPH radical scavenging assay		68
2.4.2 Lipid peroxidation of liposome assay		69
2.5 Assay for HIV-1 IN inhibitory activity		72
		viii

2.5.1 Enzyme		72
2.5.2 Oligonucleotide substrates	72	
2.5.3 Multiplate Integration Assay (MIA) Procedure		73

CONTENTS (Continued)

]	Page
2.5.3.1 Annealing of the substrate DNA	73	
2.5.3.2 Pretreatment of the multiplate		73
2.5.3.3 Integration reaction		74
2.6 Bioassay-guided fractionation		76
2.7 Isolation of chemical constituents from Smilax corbularia Kunth	77	
2.7.1 Isolation method for astilbin and engeletin	77	
2.7.2 Isolation method of quercetin, β -sitosterol-3- O - β -D	78	
glucopyranoside and β -sitosterol		
2.8 Quantitative determination of astilbin and engeletin using HPLC	82	
2.8.1 Reagents		82
2.8.2 Chromatographic conditions		82
2.8.3 Preparation of plant samples		82
3. Results and discussion	83	
3.1 Screening of biological activities of ethanolic extract and	83	
each fraction of Smilax corbularia Kunth		
3.1.1 Free radical scavenging activity		84
3.1.2 Lipid peroxidation of liposome assay		85
3.1.3 HIV-1 integrase activity		86
3.2 Analysis of chemical composition and structure determination of the	87	
isolated compounds		
3.2.1 Structure elucidation of the isolated compounds		87
3.2.1.1 SC1		87
3.2.1.2 SC2		88
3.2.1.3 SC3		92
		ix

ix

3.2.1.4 SC4		95
3.2.1.5 SC5		102
3.3 Discussion on phytochemical investigation	109	
3.4 Activities of the isolated compounds		112

CONTENTS (Continued)

	Page
3.4.1 Antioxidant activity	112
3.4.2 Anti HIV-1 integrase activity	114
3.5 Determination of astilbin and engeletin	115
3.5.1 Standardization of astilbin and engeletin	115
3.5.2 Analysis of astilbin and engeletin content by HPLC	115
4. Conclusions	119
Bibliography	121
Vitae	136

LIST OF TABLES

Table]	Page
1-1	Thai medicinal plants for inhibition of HIV-1 IN	7	
1-2	Anti-HIV-1 integrase activity of compounds from the plants		10
1-3	Smilax species in Thailand, their vernacular names and uses		17
1-4	Anti-HIV-1 integrase activity of different species of		25
	Hua-Khao-Yen (Tewtrakul et al., 2006).		
1-5	Smilax species and biological activity		26
1-6	Chemical investigation of Smilax species	42	
3-1 Pe	ercent yield of each fraction of ethanolic extract from the	83	
	rhizome of Smilax corbularia (separated by VLC)		
3-2 E	C_{50} (µg/ml) of crude ethanolic extract and each fraction	84	
	tested by DPPH assay		
3-3 E	C_{50} (µg/ml) of crude ethanolic extract and each fraction	85	
	of ethanolic extract (separated by VLC) on lipid peroxidation assay		
3-4	% inhibition of crude ethanolic extract and each fraction on anti	86	
	HIV-1 IN activity		
3-5	NMR spectral data (500 MHz for ¹ H) of SC1 (β -sitosterol) in	89	
	$CDCl_3$ and $SC2$ (β -sitosterol-3- O - β -D-glucopyranoside) in		
	CDCl ₃ :CD ₃ OD		
3-6	NMR spectral data (500 MHz for 1 H) of SC3 quercetin in CD ₃ OD	93	
3-7 N	MR spectral data (500 MHz for ¹ H and 125 MHz for ¹³ C) of SC4	96	
	astilbin in CD ₃ OD		
3-8 N	MR spectral data (500 MHz for ¹ H and 125 MHz for ¹³ C) of SC5	103	
	engeletin in CD ₃ OD		
3-9	Antioxidant activity of compounds isolated from Smilax corbularia by		113
	DPPH assay and lipid peroxidation assay		
3-10	Inhibitory effect against HIV-1 integrase of compounds isolated	114	

xi

LIST OF TABLES (Continued)

Table			Page
3-11	The regression equation for astilbin and engeletin	116	
3-12	Astilbin and engeletin contents of crude extract and		117
	CHCl ₃ :MeOH 1:1 S by HPLC analysis		

LIST OF ILLUSTRATIONS

Figure			Page
1-1	HIV-1 life cycle	4	
1-2	Smilax corbularia Kunth; 1. branch; 2. fruit; 3. rhizome	14	
1-3	Smilax corbularia Kunth leaves and flowers		16
1-4	Smilax corbularia Kunth		16
1-5	Structures of some chemical constituents of Smilax species	51	
2-1	Rhizomes of Smilax corbularia Kunth		67
2-2	The reaction between thiobarbituric acid (TBA) and malonaldehyde		70
	(MDA) to produce the pink coloured product		
2-3	Diagram of the multiplate integration assay using the 96-well plate	75	
2-4	VLC column packing		77
2-5 Fl	ow chart of separated compounds from E1 of the ethanolic	80	
	extract of Smilax corbularia Kunth		
2-6 Fl	ow chart of separated compounds from CHCl ₃ :MeOH (1:1)	81	
	supernate of Smilax corbularia Kunth		
3-1	Structure of β -sitosterol	87	
3-2	Structure of β -sitosterol-3- O - β -D-glucopyranoside		88
3-3	¹ H-NMR spectrum of β -sitosterol in CDCl ₃		90
3-4	¹ H-NMR spectrum of β -sitosterol-3- <i>O</i> - β -D-glucopyranoside	91	
	in CDCl ₃ :CD ₃ OD		
3-5 St	ructure of quercetin		92
3-6 ¹ H	-NMR spectrum of quercetin in CD ₃ OD	94	
3-7	Structure of astilbin		95
3-8	¹ H-NMR spectrum of astilbin in CD ₃ OD	97	
3-9	¹³ C-NMR spectrum of astilbin in CD ₃ OD	98	
3-10	EIMS spectrum of astilbin		99
3-11	IR spectrum of astilbin		100

3-12	UV spectrum of astilbin	101
3-13	Structure of engeletin	102

LIST OF ILLUSTRATIONS (Continued)

Figu	re		Page
3-14	¹ H-NMR spectrum of engeletin in CD ₃ OD	104	
3-15	¹³ C-NMR spectrum of engeletin in CD ₃ OD		105
3-16	EIMS spectrum of engeletin		106
3-17	IR spectrum of engeletin	107	
3-18	UV spectrum of engeletin		108
3-19	The chemical structures of five compounds isolated from	111	
	the ethanolic extract of the rhizome of Smilax corbularia Kunth		
3-20	Standard curve of astilbin, the "y" value is the peak area of	116	
	analysis and the "x" value is the concentration of the analysis (μ g/r	nl)	
3-21	Standard curve of engeletin, the "y" value is the peak area of		117
	analysis and the "x" value is the concentration of the analysis (μ g/r	nl)	
3-22	Typical HPLC chromatograms of astilbin (a), engeletin (b),		118
	crude ethanolic extract (c) and $CHCl_3$:MeOH 1:1 S (d)		
	recorded at 291 nm		

LIST OF ABBREVIATIONS AND SYMBOLS

А	=	absorbance (for DPPH assay)
AP	=	alkaline phosphatase
В	=	absorbance of blank
BHT	=	butylated hydroxytoluene
br	=	broad (for NMR spectra)
br d	=	broad doublet (for NMR spectra)
°C	=	degree celsius
CC	=	column chromatography
CDCl ₃	=	deuterochloroform
CD ₃ OD	=	deuteromethanol
CHCl ₃	=	chloroform
¹³ C-NMR	=	carbon-13 nuclear magnetic resonance
CO ₂	=	carbondioxide
cm	=	centimeter
d	=	doublet (for NMR spectra)
dd	=	doublet of doublet (for NMR spectra)
DIG	=	digoxigenin
DMSO	=	dimethyl sulphoxide
DNA	=	deoxyribonucleic acid
DPPH	=	1,1-diphenyl-2-picrylhydrazyl
EA	=	absorbance due to the extract alone (for liposome assay)
EC ₅₀	=	concentration causing 50 % effective activity
EDTA	=	ethylenediamine tetraacetic acid
EI-MS	=	electron impact mass spectroscopy
ET	=	absorbance of the extract test mixture (for liposome assay)
EtOH	=	ethanol
EtOAc	=	ethyl acetate

FeCl ₃	=	ferric chloride
g	=	gram

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

FRM	=	absorbance of the full reaction mixture (liposome and iron source		
	plus s	plus solvent without the test substance)		
FTNMR	=	fourier transform nuclear magnetic resonance		
¹ H-NMR	=	proton nuclear magnetic resonance		
HC1	=	hydrochloric acid		
Hex	=	hexane		
H_2O	=	water		
H_2O_2	=	hydrogen peroxide		
hr	=	hour		
Hz	=	hertz		
IC_{50}	=	concentration causing 50% inhibitory effect		
In	=	inch		
IR	=	infrared		
KBr	=	potassium bromide		
IN	=	integrase		
J	=	nuclear spin-spin coupling constant (in Hz)		
Kg	=	kilogram		
1	=	litre		
LTR-D	=	long terminal repeat donor		
М	=	molar (concentration)		
M+	=	molecular ion		
m	=	the weight of plant extract (mg)		
m	=	meter		
m	=	multiplet (for NMR spectra)		

MDA	=	malonaldehyde
MeOH	=	methanol
mg	=	milligram
MHz	=	megahertz
MIA	=	multiplate integration assay
ml	=	milliliter

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

mm	=	millimeter
mM	=	millimolar
mol	=	mole
MS	=	mass spectrometry
MW	=	molecular weight
m/z	=	mass to charge ratio
$\mu_{ m g}$	=	microgram
μı	=	microliter
μм	=	micromolar
μ m	=	micrometre
NCI	=	national cancer institute
nm	=	nanometer
nM	=	nanomolar
NMR	=	nuclear magnetic resonance
O ₂	=	oxygen
OD	=	optical density
PBS	=	phosphate buffer saline
ppm	=	part per million
pmol	=	picomole
pN	=	p-nitrophenol
<i>p</i> -NP	=	p-nitrophenyl phosphate
ROS	=	reactive oxygen species

rpm	=	round per minute
S	=	singlet (for NMR spectra)
sec	=	second
SEM	=	standard error of the mean
t	=	triplet (for NMR spectra)
TBA	=	thiobarbituric acid
TLC	=	thin-layer chromatography
TMS	=	tetramethylsilane

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

TS	=	target substrate
UV	=	ultraviolet
UV-vis	=	ultraviolet and visible spectrometry
V	=	the volume of extract (ml)
VLC	=	vacuum liquid chromatography
w/w	=	weight/weight
δ	=	chemical shift (in ppm, for NMR spectra)
λ	=	wavelength (for UV spectra)
3	=	molar absorptivity (for UV spectra)
ν	=	wavenumber (for IR spectra)