CHAPTER 3

RESULTS AND DISCUSSION

3.1 Screening of biological activities of ethanolic extract and each fraction of *Smilax* corbularia Kunth

From the previous research (Tewtrakul *et al.*, 2006), it was found that the ethanolic extract of *Smilax corbularia* possessed the most potent inhibitory activity against HIV-1 integrase with an IC₅₀ value of 1.9 μ g/ml, whereas the water extract showed less effect (IC₅₀ = 5.4 μ g/ml). The ethanolic extract exhibited the activity approximately two-fold lower than that of a positive control, suramin (IC₅₀ = 3.4 μ g/ml).

The ethanolic extract of *Smilax corbularia* was prepared as described in section 2.3. Table 3-1 showed the percent yield of each fraction of ethanolic extract (separated by VLC).

 Table 3-1
 Percent yield of each fraction of ethanolic extract from the rhizome of Smilax

 corbularia (separated by VLC)

Fractions	% Yield (w/w)	
Hexane	0.05	
Hexane:CHCl ₃ (1:1)	0.68	
CHCl ₃	0.44	
CHCl ₃ : MeOH 1:1(Supernatant)	70.23	
CHCl ₃ : MeOH 1:1(Precipitate)	5.04	
MeOH	23.31	

The results showed that the $CHCl_3$: MeOH (1:1) supernatant fraction showed the highest percentage of yield (70.23 %)

3.1.1 Free radical scavenging activity

The antioxidant activity of the ethanolic extract and each fraction were tested by DPPH radical scavenging assay as described in section 2.4.1 and the results are shown in Table 3-2. The results of antioxidant activity by lipid peroxidation with liposome was described in section 2.4.2 and the results are showe in Table 3-3.

Fractions	EC ₅₀ (μg/ml)	
Crude ethanolic extract	4.1 ± 0.2	
Hexane	>100	
Hexane: CHCl ₃ (1:1)	>100	
CHCl ₃	>100	
CHCl ₃ : MeOH 1:1(Supernatant)	2.1 ± 1.0	
CHCl ₃ : MeOH 1:1(Precipitate)	11.1 ± 0.9	
MeOH	8.9 ± 0.1	
BHT (Positive control)	11.2 ± 2.4	

Table 3-2 EC_{50} (µg/ml) of crude ethanolic extract and each fraction tested by DPPH assay

(n=3), n= number of independent experiment which was performed in 3 replicates

The CHCl₃: MeOH (1:1) supernate fraction showed the highest antioxidant activity by DPPH assay (EC₅₀=2.1 \pm 1.0 µg/ml) followed by the ethanolic extract with the EC₅₀ value of 4.1 \pm 0.2 µg/ml. The CHCl₃: MeOH (1:1) precipitate and MeOH fractions possessed their EC₅₀ values of 11.1 \pm 0.9 and 8.9 \pm 0.1 µg/ml, respectively. Interestingly, crude ethanolic extract and CHCl₃: MeOH (1:1) supernate, CHCl₃: MeOH (1:1) precipitate and MeOH fractions possessed high antioxidant activites with their value of EC₅₀ less than 11.2 µg/ml, which were

lower than that of the standard antioxidant as BHT (EC₅₀ = $11.2 \pm 2.40 \ \mu$ g/ml). The hexane, hexane: CHCl₃ (1:1) and CHCl₃ fractions had the lowest antioxidant activity with the EC₅₀ values of >100 μ g/ml.

3.1.2 Lipid peroxidation of liposome assay

Table 3-3 EC_{50} (µg/ml) of crude ethanolic extract and each fraction of ethanolic extract(separated by VLC) on lipid peroxidation assay

Fractions	EC ₅₀ (μg/ml)	
Crude ethanolic extract	3.4 ± 0.3	
Hexane	>100	
Hexane: $CHCl_3$ (1:1)	>100	
CHCl ₃	>100	
CHCl ₃ : MeOH 1:1(Supernatant)	1.1 ± 0.1	
CHCl ₃ : MeOH 1:1(Precipitate)	6.4 ± 0.2	
MeOH	5.5 ± 0.0	
BHT (Positive control)	6.9 ± 0.5	

(n=3), n= number of independent experiment which was performed in 3 replicates

The results showed that the CHCl₃: MeOH (1:1) supernate fraction exhibited the highest antioxidant activity by this test with the EC_{50} value of $1.1 \pm 0.1 \ \mu$ g/ml, followed by the ethanolic extract with the EC_{50} value of $3.4 \pm 0.3 \ \mu$ g/ml. The CHCl₃: MeOH (1:1) precipitate and MeOH fractions possessed EC_{50} values of 6.4 ± 0.2 and $5.5 \pm 0.0 \ \mu$ g/ml respectively. Interestingly, crude ethanolic extract and each fraction of ethanolic extract possessed high antioxidant activites with their values of EC_{50} less than 6.5 μ g/ml which were lower than that of

BHT (EC₅₀ = $6.9 \pm 0.5 \,\mu$ g/ml), the standard antioxidant. The hexane, hexane: CHCl₃ (1:1) and CHCl₃ fractions showed the lowest antioxidant activity in this test with the EC₅₀ values more than 100 μ g/ml.

3.1.3 Anti HIV-1 integrase activity

The anti HIV-1 integrase activity of crude ethanolic extract and each fraction from the rhizome of *Smilax corbularia* (separated by VLC) were evaluated by multiplate integration assay as described in section 2.5. The results are shown in Table 3-4.

Table 3-4% inhibition of crude ethanolic extract and each fraction on anti HIV-1 INactivity

Fractions	% Inhibition at 100 μ g/ml \pm S.D.
Crude ethanolic extract	99.4 \pm 0.4
Hexane	12.8 ± 1.5
Hexane: CHCl ₃ (1:1)	-2.0 ± 0.2
CHCl ₃	-14.1 ± 0.8
CHCl ₃ : MeOH 1:1(Supernatant)	99.8 \pm 0.4
CHCl ₃ : MeOH 1:1(Precipitate)	99.4 ± 0.1
MeOH	91.9 ± 1.1

The results showed that the CHCl₃: MeOH (1:1) supernate fraction had the highest anti HIV-1 integrase activity in this test with the % inhibition value of 99.8 \pm 0.4 µg/ml, followed by the ethanolic extract, CHCl₃: MeOH (1:1) precipitate and MeOH fractions with the %

inhibition values of 99.4 \pm 0.4, 99.4 \pm 0.1 and of 91.9 \pm 1.1 µg/ml respectively. Interestingly, crude ethanolic extract and each fraction of ethanolic extract possessed high anti HIV-1 integrase activity with their values of % inhibition more than 90 %. The hexane, hexane: CHCl₃ (1:1) and CHCl₃ fractions had the lowest anti HIV-1 integrase activity in this test with the % inhibition values of 12.8 \pm 1.5, -2.0 \pm 0.2 and -14.1 \pm 0.8 respectively.

3.2 Analysis of chemical composition and structure determination of the isolated compounds

3.2.1 Structure elucidation of the isolated compounds

Results from the bioassay-guided fractionation for antioxidant and anti HIV-1 integrase activity were shown in section 3.1.1, 3.1.2 and 3.1.3. Thus, the separation of the active extracts was carried out as shown in section 2.7 to give the pure compounds as follows.

3.2.1.1 SC1

SC1 (β -sitosterol): C₂₉H₅₀O (1.5 mg, 0.011 %w/w); white crystal solids. SC1 was the compound isolated from the ethanolic extract of the rhizome of *Smilax corbularia*, obtained as white needle crystal solids. Analysis of chemical shifts, integration and coupling pattern from ¹H-NMR data indicate that SC1 was a sterol. The ¹H-NMR spectrum are shown in Table 3-6 and Figure 3-3. The TLC analysis of this compound was compared with authentic sample β -sitosterol (Sigma). It was strongly supported that this compound is β -sitosterol. The structure was showed below.

3.2.1.2 SC2

SC2 (β -sitosterol-3-*O*- β -D-glucopyranoside): C₃₅H₆₀O₆ (3.0 mg, 0.022 %w/w); white amorphous solids. SC2 was compound isolated from the ethanolic extract of the rhizome of *Smilax corbularia* Kunth obtained as white solid and the ¹H-NMR spectrum shown in Table 3-5 and Figure 3-4. The ¹H-NMR of SC2 was similar to SC1. The difference was ¹H-NMR of SC2 showed more signals at δ between 3.24-4.36. This signal could be signal of major moiety and signal δ 4.36 (J= 7.5 Hz) should be signal of anomeric proton. Analysis of sugar part from splitting pattern compared with published paper, this sugar could be glucose (Agrawal, 1985; Shujiro *et al.*, 1978 and Blonquist and Wesserman, 1972). ¹H-NMR and TLC analysis of this compound compared with an authentic sample got from Srisopa Ruangnoo (Ruangnoo, 2007). It was strongly supported that this compound is β -sitosterol-3-*O*- β -D-glucopyranoside. The structure was showed below.

Figure 3-2 Structure of β -sitosterol-3-*O*- β -D-glucopyranoside

Table 3-5	NMR spectral data (500 MHz for ¹ H) of SC1 (β -sitosterol) in CDCl ₃ and SC2
(β-sitosterol-3-	O - β -D-glucopyranoside) in CDCl ₃ :CD ₃ OD

Carbon position	Chemic	cal shift (δ) of 1 H	H (mult, J in Hz)	
	SC1	β -sitosterol	SC2	β -sitosterol-3- O -
				β-D-
				glucopyranoside
3	3.52 (m)	3.43 (m)	3.52 (m)	3.43 (m)
6	5.35 (br d)	5.33 (dt)	5.31 (br d)	5.40 (br d)
18	0.68 (s)	0.66 (s)	0.62 (s)	0.69 (s) 19
1.00 (s)	0.97	' (s)	1.19 (s) 1.05 (s)
21	0.92 (d, 6.5)	0.91 (d, 6.5)	0.86 (d, 6)	0.95 (d, 6.6)
26	0.81 (d, 7.5)	0.80 (d, 6.8)	0.75 (d, 7)	0.82 (d, 7.0)
27	0.83 (d, 7)	0.80 (d, 6.8)	0.83 (d, 7)	0.84 (d, 7.5)
29	0.85 (t, 8.5)	0.83 (t, 6.5)	0.85 (t, 7.5)	0.85 (t, 7.5)
Glucose-1	-		4.36 (d, 7.5	5) 4.40 (d, 7.5)
2	-		3.69-3.72 (m)	3.55-3.62 (m)
3			3.50-3.53 (m)	3.45-3.48 (m)
4	-		3.20-3.24 (m)	3.36-3.40 (m)
5	-		3.77-3.80 (m)	3.75-3.88 (m)
6	-		3.24 (m)	3.28 (m)

Note: β -sitosterol in CDCl₃ from Ali *et al.*, 2002; β -sitosterol-3-*O*- β -D-glucopyranoside in CDCl₃:CD₃OD from Ruangnoo, 2007

Figure 3-3 ¹H-NMR spectrum of β -sitosterol in CDCl₃

3.2.1.3 SC3

SC3 (quercetin): $C_{15}H_{10}O_7$ Yellow crystal solids (12.6 mg, 0.19 %w/w); specific optical rotation $[\mathbf{\alpha}]_D = +28.07$ (c 0.27, MeOH).

SC3 was the major compound isolated from the ethanolic extract of the rhizome of *Smilax corbularia*, obtained as yellow crystal solids. The ¹H-NMR spectrum is shown in Table 3-6 and Figure 3-6. Analysis of chemical shifts and integration of these functional groups indicate that SC3 was a quercetin. The ¹H-NMR analysis of this compound compared with spectrum in previous journol (Ogundipe *et al.*, 2001). It was strongly supported that this compound is quercetin. The structure was showed below.

Carbon position	$\delta_{\!\scriptscriptstyle m H}$ (mult., J in Hz)	$\delta_{\!\scriptscriptstyle m H}$ (mult., J in Hz)		
	(SC3)	quercetin		
6	6.38 (d, 2.0)	6.36 (d, 2.11)		
8	6.17 (d, 2.0)	6.16 (d, 2.11)		
2'	7.72 (d, 2.5)	7.73 (d, 2.11)		
5'	6.87 (d, 8.0)	6.89 (d, 8.54)		
6'	7.62 (dd, 8.5, 2.5)	7.63 (dd, 8.56, 2.08)		

Table 3-6NMR spectral data (500 MHz for 1 H) of SC3 quercetin in CD₃OD

Note: Quercetin in CD₃OD from Ogundipe et al., 2001

Figure 3-6 ¹H-NMR spectrum of quercetin in CD_3OD

SC4 (astilbin): $C_{18}H_{22}O_{11}$ white crystal (49.00 mg, 0.27 %w/w); optical rotation $[\alpha]D = -2.92$ (c 0.25, MeOH), UV (MeOH) λ max (log ϵ) 330.44 (4.41), 290.73 (4.99), 226.60 (5.02) and 214.94 (5.11) nm (Figure 3-12). IR (KBr disc) λ max 3400.53, 2922.50, 1638.07, 1601.84, 820.57 cm⁻¹ (Figure 3-11). The EI-MS m/z 450.1167 (Calc. for $C_{21}H_{22}O_{11}$ 450.1167).

SC4 was the major compound isolated from the ethanolic extract of the rhizome of *Smilax corbularia*, obtained as white crystals and showed protonated molecular ion peak in EI mass spectrum at m/z 450.1167 (Figure 3-10), corresponding with a molecular formula of $C_{21}H_{22}O_{11}$ (MW= 450).

The ¹H-NMR and ¹³C-NMR spectra of SC4 showed in Figure 3-8 and Figure 3-9. Analysis of chemical shifts and integration of these functional groups indicate that SC4 was an astilbin (Table 3-7). The ¹H-NMR and ¹³C-NMR analysis of this compound compared with an authentic sample from the previous publication (Du *et al.*, 2005). It was strongly supported that this compound is astilbin. The structure was showed below.

Figure 3-7 Structure of astilbin

Table 3-7NMR spectral data (500 MHz for 1 H and 125 MHz for 13 C) of SC4 astilbin inCD₃OD

Carbor	1 position	δ	б		$\delta_{\!\scriptscriptstyle \mathrm{H}}$ (mult.,	,	$\delta_{\!\scriptscriptstyle \mathrm{H}}$ (mul	t.,	
		(SC4)	(astil	bin)	J in Hz)		J in	ı Hz)	
					(SC4)		(astilbin)	
	2	82.0	Q 1	5	5 07 (4 10	(5)	5 2	4 (4 0 8)	
	2	03.9 78.6	75.6	.5	$\frac{5.07}{(0.105)}$		J.2.	(u, 9.8)	
	1	106.0	75.0	104.2	(u, 10.3)		4.0.	5 (u, 9.8)	
	4	196.0	1 (2 2	194.3					
	5	165.4	163.3			_ /			
	6	96.2	96.0	5.90) (d, 2.0)	5.9	90 (d, 2.1)		
	7	168.0	166.9						
	8	97.4	95.0	5.92	2 (d, 2.0)	5.8	38 (d, 2.1))	
	9	164.1	162.1						
	10	102.5	101.0						
	1′	129.1	126.8						
	2′	115.5	114.7	6	.95 (s)		6.88 (s)	
	3′	147.3	145.8						
	4 ′	146.5	145.1						5'
116.4	115.3	6.81	(d, 8.0)			6.74	(s)		
	6'	120.5		118.7	6.84 (0	ld, 8.0), 2.0)	6.74 (s)	
	1 ″′	102.1	100.0		4.03 (s)		4.07	(s)	
	2″	71.7	70.1	3	3.50 (br,s)			3.36 (br,s)	
	3″	72.1		70.4	3.65 (0	ld, 9.5	5, 3.0) 3.	42 (dd, 9.4, 2.	8)
	4 ''	73.7	71.6	3.30	(dd, 9.4, 9	.4) 3	8.15 (dd, 9	9.4, 9.4)	
	5″	70.5	68.9	4.23	(dq, 9.5, 6	.5) 3	3.88 (dq, 9	9.4, 6.2)	
	6″	17.8	17.6	1	.17 (d, 5.5))	1.05 (d	, 6.2)	

Note: Astilbin in DMSO from Du et al., 2005

Figure 3-8 ¹H-NMR spectrum of astilbin in CD_3OD

107

Figure 3-9 ¹³C-NMR spectrum of astilbin in CD₃OD

3.2.1.5 SC5

SC5 (engeletin): $C_{21}H_{22}O_{10}$, Brown powder; (26.30 mg, 0.15 %w/w); specific optical rotation [α]D = +11.50 (c 0.20, MeOH), UV (MeOH) λ max (logE) 329.80 (4.76), 292.50 (5.30), 217.92 (5.46) nm (Figure 3-18). IR (KBr disc) λ max 3369.91, 2922.50, 1638.73, 1587.09, 826.56 cm⁻¹ (Figure 3-17). EI-MS m/z 434.1204 (Calc. for $C_{21}H_{22}O_{10}$ 434.1204).

SC5 was the major compound isolated from the ethanolic extract of the rhizome of *Smilax corbularia*, obtained as brown powder and showed protonated molecular ion peak in EI mass spectrum at m/z 434.1204 (Figure 3-16), corresponding with a molecular formula of $C_{21}H_{22}O_{10}$ (MW= 434).

The ¹H-NMR and ¹³C-NMR spectra of SC5 was showed in Figure 3-14 and Figure 3-15. Analysis of chemical shifts, integration and spin coupling patterns of these functional groups indicate that SC5 was an engeletin (Table 3-8). The ¹H-NMR and ¹³C-NMR analysis of this compound compared with spectrum of the previous publication (Lu and Foo, 1999). It was strongly supported that this compound is engeletin. The structure was showed below.

Figure 3-13 Structure of engeletin

Table 3-8NMR spectral data (500 MHz for 1 H and 125 MHz for 13 C) of SC5 engeletin inCD₃OD

Carbon position	ι δ ε	б с	$\delta_{\!\scriptscriptstyle \mathrm{H}}$ (mult.,	$\delta_{\!\scriptscriptstyle m H}$ (mult.,	
	(SC5)	(engeletin)	J in Hz)	J in Hz)	
			(SC	(engel	etin)
2	83.9	81.28	5.13 (d, 11)	5.28 (d, 10.3)	
3	78.7	7 75.75	4.60 ((d, 11) 4.73 (d,	10.3)
4	196.0 19	94.32			
5	165.	0 163.21			
6	96.2 9	95.97	5.89 (d, 2.5)	5.87 (d, 1.9)	
7	168	.6 167.28			
8	97.	4 94.97	5.92	(d, 2.0) 5.90 (d	l, 1.9)
9	164	.1 161.99			
10	102.5	100.61			
1 ′	128	.6 126.32			
2′	130	.1 128.82	7.35	(d, 8.5) 7.33 (d, 8.5)
3'	116	.4 114.96	6.84	(d, 8.5) 6.79 (d,	8.5)
4 ′	159	.4 157.63			
5'	116	.4 114.96	6.84	4 (d, 8.5) 6.79	(d, 8.5)
6 ′	130	.1 128.82	7.35	5 (d, 8.5) 7.33 (d,	8.5)
1 ″′	102.2	100.10	3.90 (s)	3.98 (s)	
2 ''	71.7	70.20	3.49 (br,s)	-	
3″	72.1	69.95	3.64 (dd, 9.5,	3.0) -	
4 ''	73	.7 71.42	3.29 (dd,	9.5, 9.5) -	
5″	70	.5 68.77	4.24	(dq, 9.5, 6.5)	
6 ''	17.9	17.52	1.17 (d, 6.0)	1.05 (d, 6.2)

Note: Engeletin in DMSO from Lu and Foo, 1999

UV spectrum of engeletin

3.3 Discussion on phytochemical investigation

The ethanolic extract of the rhizome of *Smilax corbularia* Kunth was separated by column chromatography using an isocratic solvents: chloroform and methanol. Five compounds were isolated. All pure compounds were detected by application of the general spraying reagent anisaldehyde in sulphuric acid, giving different colours after heating. SC1 and SC2 were violet colour. SC3, SC4 and SC5 were yellow colour. Only three compounds (SC3, SC4 and SC5) could be detected by UV 254 nm.

The five pure compounds could be divided into two chemical groups. They were two sterols (β -sitosterol and β -sitosterol-3-O- β -D-glucopyranoside) and three flavonoids (quercetin, astilbin and engeletin). The structures are shown in Figure 3-19. The investigation on chemical constituents of the rhizome of *Smilax corbularia* Kunth was found that quercetin, astibin and engeletin, the major antioxidant compound, are the main compounds and normally were also found in *Smilax glabra* (Chien and Adam, 1979, Cao *et al.*, 1993, Ng *et al.*, 2001, Du *et al.*, 2005). β -sitosterol and β -sitosterol-3-O- β -D-glucopyranoside were found in small amount in ethanolic extract and these compounds are commonly sterols and found in higher plants and have also been found in many plant species.

Astilbin

Engeletin

 β -sitosterol

β-sitosterol-3-0-β-D-glucopyranoside

Figure 3-19The chemical structures of five compounds isolated from the ethanolic extractof the rhizome of *Smilax corbularia* Kunth

3.4 Activities of the isolated compounds

The β -sitosterol, β -sitosterol-3-O- β -D-glucopyranoside, quercetin, astilbin and engeletin were isolated from the ethanolic extract of *Smilax corbularia*. They were assessed for testing antioxidant and anti-HIV-1 integrase activities.

3.4.1 Antioxidant activity

Quercetin exhibited high antioxidant activity on both antioxidant assay (DPPH and lipid peroxidation assay) with EC₅₀ of 0.6 and 0.3 µg/ml, respectively. These results related with the previous study which showed that quercetin possessed antioxidant effect by the DPPH radical scavenging assay (EC₅₀ = 4.9 ± 0.6 µM) (Rao *et al.*, 2007), followed by astilbin (EC₅₀= 2.5 µg/ml) and engeletin (EC₅₀= 3.9 µg/ml), whereas β -sitosterol-3-*O*- β -D-glucopyranoside and β -sitosterol were >100 µg/ml. Moreover antioxidant test was determined by the lipid peroxidation of liposome assay. The EC₅₀ of astilbin and engeletin were found to be 0.8 and 1.2 µg/ml, respectively. The resuls also related with the previous study which found that quercetin, astilbin and engeletin showed high antioxidant activity (Closa *et al.*, 1997; Sanches *et al.*, 2005). β -sitosterol-3-*O*- β -D-glucopyranoside and β -sitosterol (EC₅₀ >100 µg/ml) showed less antioxidant activity (Table 3-9). These results indicated that quercetin, astilbin and engeletin are markers for antioxidant assay of the ethanolic extract and they will be useful for quality control of this extract in terms of chemical finger print.

Table 3-9Antioxidant activity of compounds isolated from *Smilax corbularia* by DPPHassay and lipid peroxidation assay

	ЕС ₅₀ (µ g/ml)			
Compounds	DPPH assay	Lipid peroxidation		
β-sitosterol	>100	>100		
β -sitosterol-3- O - β -D-glucopyranoside	>100	>100		
Quercetin	0.6 ± 0.1	0.3 ± 0.1		
Astilbin	2.5 ± 0.3	0.8 ± 9.1		
Engeletin	3.9 ± 0.2	1.2 ± 0.1		

(n=3), n= number of independent experiment which was performed in 3 replicates and NT= not test

3.4.2 Anti HIV-1 integrase activity

The results indicated that quercetin possessed the most potent inhibitory activity against HIV-1 integrase with an IC₅₀ value of $8.9 \pm 1.2 \,\mu$ M, followed by astilbin (IC₅₀= 50.3 ± 0.9 μ M), β -sitosterol-3-*O*- β -D-glucopyranoside (IC₅₀= 80.5 ± 1.0 μ M), β -sitosterol (IC₅₀= 80.8 ± 0.9 μ M) and engeletin (IC₅₀= 174.3 ± 0.8 μ M), respectively (Table 3-10). These results related with the previous study which showed that quercetin exhibited HIV-1 integrase inhibitory activity with an IC₅₀ value of 15 μ M (Tewtrakul *et al.*, 2001). The structure-activity findings for flavones in the current study of the inhibition of HIV-1 integrase can be summarized as follows (1) activity required the presence of at least three hydroxyl groups and (2) activity was reduced or eliminated by the presence of glycosyl or methoxy substituents. The planarity, aromaticity and polarity may allow quercetin to bind by stacking with adenine or guanine, or to compete with purine moieties for binding to enzyme sites. Many of the molecules also have oxidation-reduction and metal chelation capacities (Fesen *et al.*, 1994).

 Table 3-10
 Inhibitory effect against HIV-1 integrase of compounds isolated from Smilax

 corbularia

Compounds	IC ₅₀ (µM)± S.D.	
β -sitosterol-3- O - β -D-glucopyranoside	80.5 ± 1.0	
β -sitosterol	80.8 ± 0.9	
Quercetin	8.9 ± 1.2	
Astilbin	50.3 ± 0.9	
Engeletin	174.3 ± 0.8	

The results are the mean \pm S.D (n=4)

3.5 Determination of astilbin and engeletin

3.5.1 Standardization of astilbin and engeletin

For quantitative determination, astilbin and engeletin were used as the marker substances evaluate the quantity of an active compound from the crude extract. The content of astilbin and engeletin were determined in chapter 2.8. The retention time and the peak area were calculated as percentage for astilbin and engeletin. To determine the linearity equations and linear scope for the analysis, a series of mixed standard solutions ranged from 1.0-5.0 μ g/ml were tested for astilbin whereas those of engeletin ranged from 0.81-4.05. The results were summarized in Table 3-11 for astilbin and engeletin. The chromatogram of crude extract and CHCl₃:MeOH (1:1) supernate fraction showed in Figure 3-22. Astilbin and engeletin were also indicated in its chromatogram.

3.5.2 Analysis of astilbin and engeletin content by HPLC

The contents of astilbin and engeletin in crude ethanolic extract of the rhizome of *Smilax corbularia* and CHCl₃:MeOH (1:1) supernate fraction were determined as described in the chapter 2.8. The results were obtained within 9 min and 13 min respectively, for the HPLC separation. During sample analysis, the UV absorbance of the targeted peak was compared with standard for confirmation. The contents of astilbin in crude ethanolic extract and CHCl₃:MeOH (1:1) supernate were 0.218 and 0.216 %w/w, respectively and the contents of engeletin in crude ethanolic extract and CHCl₃:MeOH (1:1) supernate were 0.021 and 0.016 %w/w, respectively.

The results are showed in Table 3-13.

Table 3-11 The regression equation for astilbin and engeletin

Compound	Regression equation	Correlation	Linear range (µg/ml)
		coefficient	
Astilbin	y= 54948x-10711	0.9908	1.0-5.0
Engeletin	y= 46388x-5268.9	0.9946	0.81-4.05

Concentration (μ g/ml)

Figure 3-20 Standard curve of astilbin, the "y" value is the peak area of analysis and the "x" value is the concentration of the analysis (µg/ml)

Concentration (μ g/ml)

Figure 3-21 Standard curve of engeletin, the "y" value is the peak area of analysis and the "x" value is the concentration of the analysis (μ g/ml)

Table 3-12Astilbin and engeletin contents of crude extract and CHCl3:MeOH 1:1 S byHPLC analysis

	Astilbin % content (w/w)	Engeletin % content (w/w)
crude ethanolic extract	0.218	0.021
CHCl ₃ :MeOH 1:1) S	0.216	0.016

ethanolic extract (c) and $CHCl_3$:MeOH 1:1 S (d) recorded at 291 nm