CONTENTS

	Page
บทคัดย่อ	iii
ABSTRACT	V
ACKNOWLEDGEMENT	vii
CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
CHAPTER	
1. INTRODUCTION	1
2. LITERATURE REVIEW	3
2.1 Botanical description of Senna alata	3
2.2 Thai traditional use of S. alata	4
2.2.1 Used as laxative	4
2.2.2 Treatment of ringworm or Tinea versicolor	5
2.3 Ethnomedical uses	5
2.4 Chemical constituents of S. alata	6
2.5 Determination of hydroxyanthracene derivatives	8
2.6 Biological activities of S. alata extracts	9
2.7 Biological activity of anthraquinones	13
2.7.1 Aloe-emodin	13
2.7.2 Rhein	15
2.7.3 Emodin	16
2.7.4 Chrysophanol	18
2.8 Biosynthesis of anthraquinones	18
2.9 Standardized of herbal extract	21
3. MATERIALS AND METHODS	27
3.1 Materials	27
3.1.1 Plant material	27
3.1.2 Chemicals and reagents	27

CONTENTS (Continued)

	Page
3.2 Instrumentations	29
3.3 Methods	30
3.3.1 Optimization of the solvent system for extraction	30
3.3.1.1 Determination of optimum hydrochloric acid	
concentration	30
3.3.1.2 Determination of optimum ferric chloride concentration	30
3.3.1.3 Determination of optimum water in extraction solvent	30
3.3.2 Increase of anthraquinone content by chromatographic techniques	31
3.3.3 Quantitative analysis of anthraquinones	33
3.3.4 Evaluation of antifungal activity against dermatophytes	36
3.3.5 Determination of the moisture content	37
3.3.6 Determination of the total ash content	37
3.3.7 Determination of the microbial contamination	37
3.3.8 Determination of solubility	38
3.3.9 Partition coefficient	40
3.3.10 Stability test	41
3.3.10.1 Effect of light on stability of the extract	41
3.3.10.2 Effect of temperature stability of the extract	41
3.3.10.3 Effect of accelerated condition for stability of the extract	41
3.3.10.4 Effect of pH on stability of the extract	42
3.3.11 Statistic	42
4. RESULTS AND DISCUSSION	43
4.1 Suitable solvent for extraction	43
4.2 Increase of anthraquinone content by chromatographic techniques	49
4.3 Antifungal activity of the anthraquinone high-yeilding S. alata leaf extract	51
4.4 Establishment of the standard information of S. alata leaf extract	52
4.4.1 Quantitative analysis of anthraquinones	52

CONTENTS (Continued)

	Page
4.4.2 Determination of the moisture content	55
4.4.3 Determination of the total ash content	56
4.4.4 Determination of the microbial contamination	57
4.5 Solubility of the anthraquinone high-yielding S. alata leaf extract	59
4.6 Partition coefficient	59
4.7 Stability tests	60
4.7.1 Effect of light on the stability of the extract	60
4.7.2 Effect of temperature on the stability of the extract	62
4.7.3 Effect of accelerated condition on the stability of the extract	64
4.7.4 Effect of pH on the stability of the extract	65
5. CONCLUSIONS	68
BIBLIOGRAPHY	70
VITAE	83

LIST OF TABLES

Table	Page
2-1 Chemical constituents of S. alata	6
3-1 General instrumentation equipment	29
3-2 Linear ranges and correlation coefficients of the calibration curves	34
3-3 Solubility criteria of the extract in various solvents	39
4-1 Anthraquinone content in S. alata leaf extracts extracted under reflux with various	
concentrations of hydrochloric acid in methanol	43
4-2 Anthraquinone content in S. alata leaf extracts extracted under reflux with various	
concentrations of ferric chloride in 5 %v/v hydrochloric acid in methanol	46
4-3 Anthraquinone content in S. alata leaf extracts extracted under reflux with various	
concentrations of water in 5 %v/v hydrochloric acid and 5 %w/v ferric chloride in	
methanol	48
4-4 Anthraquinone content in S. alata leaf extracts isolated by two different	
chromatographic methods	50
4-5 Antifungal activity of anthraquinone high-yielding S. alata leaf extract and standard	
anthraquinones	52
4-6 Anthraquinone content of the anthraquinone high-yielding S. alata leaf extracts	55
4-7 Moisture content of the anthraquinone high-yielding S. alata leaf extract	56
4-8 Total ash content of the anthraquinone high-yielding S. alata leaf extract	57
4-9 Determination of microbial contamination in the anthraquinone high-yielding S. alata	
leaf extracts	57
4-10 Solubility of the anthraquinone high-yielding S. alata leaf extract	59
4-11 Partition coefficient values of anthraquinone in anthraquinone high-yielding	
S. alata leaf extract	60
4-12 Anthraquinone content of the anthraquinone high-yielding S. alata leaf extracts	
stored under light and protected from light conditions	61
4-13 Anthraquinone content of the anthraquinone high-yielding S. alata leaf extracts	
stored under 4 °C and 30 °C	63

LIST OF TABLES (Continued)

Table	Page
4-14 Anthraquinone content of the anthraquinone high-yielding S. alata leaf extracts	
stored under accelerated condition	64
4-15 Anthraquinone content of the anthraquinone high-yielding S. alata leaf extracts	
in the solution at pH 5.5, 7.0, and 8.0	66

LIST OF FIGURES

Figure	Page
2-1 Senna alata (L.) Roxb.	3
2-2 Chemical structures of anthraquinones	12
2-3 Biogenesis pathways of anthraquinones	20
3-1 Silica gel vacuum column chromatography	31
3-2 Anion exchange chromatography	33
3-3 Calibration curves of standards; rhein (A), aloe-emodin (B), emodin (C), and	
chrysophanol (D)	35
4-1 HPLC chromatograms of standard anthraquinones (A), methanolic extract (B), and	
the 5 %v/v HCl in methanol extract (C)	44
4-2 Anthraquinone content in S. alata leaf extracts extracted under reflux with various	
concentrations of hydrochloric acid in methanol	45
4-3 Hydrolysis of emodin-8-glucoside in acid condition	45
4-4 Oxidation of sennoside A	46
4-5 Anthraquinone content in S. alata leaf extracts extracted under reflux with various	
concentrations of ferric chloride in 5 %v/v hydrochloric acid in methanol	47
4-6 Anthraquinone content in S. alata leaf extracts extracted under reflux with various	
concentrations of water in 5 %v/v hydrochloric acid and 5 %w/v ferric chloride in	
methanol	48
4-7 HPLC chromatograms of S. alata leaf extract isolated by silica gel vacuum	
column chromatography (A) and anion exchange chromatography (B)	50
4-8 Anthraquinone content in S. alata leaf extracts isolated by two different	
chromatographic methods	51
4-9 Anthraquinone high-yielding S. alata leaf extract	53
4-10 HPLC chromatograms of standard; aloe-emodin, rhein, emodin, and	
chrysophanol (A) and anthraquinone high-yielding S. alata leaf extract (B)	54
4-11 Determination of microbial contaminations in the anthraquinone	
high-yielding S. alata leaf extract; aerobic bacteria(A), Escherichia coli (B),	
and fungi(C)	58

xiii

LIST OF FIGURES

Figure	Page
4-12 Physical appearance of the anthraquinone high-yielding S. alata leaf extracts	
kept in well-closed containers protected from light (A) and exposed to light (B)	61
4-13 Anthraquinone content of the anthraquinone high-yielding S. alata leaf extracts	
stored under light and protected from light conditions	62
4-14 Anthraquinone content of the anthraquinone high-yielding S. alata leaf extracts	
stored under 4 °C and 30 °C	63
4-15 Anthraquinone content of the anthraquinone high-yielding S. alata leaf extracts	
stored under accelerated condition	65
4-16 Anthraquinone content of the anthraquinone high-yielding S. alata leaf extracts	
in the solution at pH 5.5, 7.0, and 8.0	66
4-17 HPLC chromatograms of the anthraquinone high-yielding S. alata extracts	
in alkali solution (pH 8.0) at the initial time (A) and after 12 weeks (B)	67