Contents

Abstract			(3)
Acknowledgement			
Contents			(6)
List of Illu	ustrati	ons	(9)
List of Ta	bles		(14)
Abbreviat	ions a	and Symbols	(15)
Chapter			
I Intro	oducti	on	1
1.	Rati	onale for development of ester of NSAIDs	1
2.	Abs	orption across intestinal membrane	6
	2.1	Mechanisms of intestinal membrane permeation	6
		2.1.1 Passive Transcellular Transport	7
		2.1.2 Passive Paracellular Transport	8
		2.1.3 Carrier mediated transport and efflux	8
	2.2	Factors affecting gastrointestinal absorption	10
		2.2.1 Physicochemical parameters: pKa and lipophilicity	11
		2.2.2 Physiological parameters	14
	2.3	Cell culture model used in assessing intestinal absorption	15
	2.4	Drug Efflux Transporters as an absorption barrier	17
3.	Fund	ctional activity assay for drug efflux transporters	21
	3.1	ATPase assay	22

(6)

Page

Contents (Continued)

					Page
		3.2	Calcei	n AM efflux inhibition assay	22
	Obj	ectives o	of the re	esearch	24
II	Exp	eriment	als		25
	Res	earch ou	ıtlines		25
	1.	Mater	ials		26
		1.1	Esters	of mefenamic acid	26
		1.2	Chem	icals	26
		1.3	Chem	icals and reagents used for cell cultures	26
	2.	Metho	ods		27
		2.1	Solubi	ility determination	27
		2.2	Chem	ical Stability	28
		2.3	Enzyn	natic Stability	28
			2.3.1	Caco-2 homogenate preparation	30
			2.3.2	Rat liver homogenate preparation	30
			2.3.3	Human plasma	31
			2.3.4	Protein content determination	31
		2.4	Cell c	ulture	31
			2.4.1	Preparation of culture medium	32
		2.5	Sampl	e Analysis	33
			2.5.1	HPLC systems	33

(7)

Contents (Continued)

			2.5.2 S	ample preparation	34
		2.6	Transepi	thelial transport studies of mefenamic ester	
			prodrugs	across Caco-2 monolayer	35
		2.7	Data Ana	alysis	37
		2.8	Efflux in	hibition studies	38
		2.9	Calcein A	AM inhibition assay	40
		2.10	Colorime	etric MTT toxicity assay	40
III	Resu	lts and	Discussio	ns	42
	1.	Solubi	ity		42
	2.	Chemi	cal Stabil	ity	44
	3.	Enzym	atic Stabi	lity	45
	4.	Transp	ort study		49
		4.1	Efflux in	hibition study	52
		4.2	Calcein A	AM inhibition assay	55
IV	Conc	clusions			61
Bibliography		63			
App	endix				88
Vita	e				115

List of Illustrations

Figure		Page
1	Arachidonic acid metabolism	3
2	Chemical structures of esters of mefenamic acid used in this study	5
3	Transport pathways across intetinal epithelium	7
4	Schematic representation of drug transport from a solid dosage form into systemic circulation.	11
5	Relationship between log D at pH 7.4 and the logarithm of apparent permeability across Caco-2 cell monolayers, (A) and fraction absorbed in human, (B).	13
6	Relationship between the absorbed fraction of structurally diverse sets of orally administered drugs and permeability coefficients obtained in cell monolayers.	13
7	Asymmetric distribution of ABC transporters in polarized intestinal absorptive cells	19
8	Chemical structures of calcein AM (A) and calcein (B)	23
9	Chemical structures of verapamil and indomethacin used in efflux inhibition studies	39
10	Degradation profile of $\underline{1}$ in human plasma	47
11	Degradation profile of $\underline{2}$ in human plasma and Caco-2 homogenate with and without protease inhibitor, PMSF.	48

Figure		Page
12	Cytotoxicity of phenylmethyl sulfonyl fluoride (PMSF) to Caco-2 monolayer using MTT assay.	50
13	Bidirectional transport across Caco-2 monolayers of four ester derivatives of mefenamic acid.	52
14	Inhibition effects on calcein efflux in Caco-2 cells	57
15	Effect of inhibitors on calcein accumulation in Caco-2 cells, presented as percentage of the maximum response obtained from verapamil.	58
16	Hydrolysis of profiles of the esters $\underline{2}$, $\underline{3}$, and $\underline{6}$ in phosphate buffer pH 7.4 at 37° C	92
17	Hydrolysis of $\underline{1}$ in human plasma and phosphate buffer pH 7.4 at $37^{\circ}C$	92
18	Hydrolysis of $\underline{2}$ in human plasma and phosphate buffer pH 7.4 at 37° C	93
19	Hydrolysis of $\underline{3}$ in human plasma and phosphate buffer pH 7.4 at $37^{\circ}C$	93
20	Hydrolysis of $\underline{4}$ in human plasma and phosphate buffer pH 7.4 at $37^{\circ}C$	94
21	Hydrolysis of 5 in human plasma and phosphate buffer pH 7.4 at 37° C	94
22	Hydrolysis of <u>6</u> in human plasma and phosphate buffer pH 7.4 at $37^{\circ}C$	95

(10)

Figure		Page
23	Hydrolysis of $\underline{7}$ in human plasma and phosphate buffer pH 7.4 at $37^{\circ}C$	95
24	Degradation profiles of $\underline{1}$ in human plasma (pH 7.4, 37°C)	96
25	Degradation profiles of $\underline{1}$ in Caco-2 homogenate (pH 7.4, 37°C)	96
26	Degradation profiles of $\underline{1}$ in rat liver homogenate (pH 7.4, 37°C)	97
27	Degradation profiles of $\underline{2}$ in human plasma (pH 7.4, 37°C)	97
28	Degradation profiles of $\underline{2}$ in Caco-2 homogenate (pH 7.4, 37°C)	98
29	Degradation profiles of $\underline{2}$ in rat liver homogenate (pH 7.4, 37°C)	98
30	Degradation profiles of $\underline{3}$ in human plasma (pH 7.4, 37°C)	99
31	Degradation profiles of $\underline{3}$ in Caco-2 homogenate (pH 7.4, 37°C)	99
32	Degradation profiles of $\underline{3}$ in rat liver homogenate (pH 7.4, 37°C)	100
33	Degradation profiles of $\underline{4}$ in human plasma (pH 7.4, 37°C)	100
34	Degradation profiles of $\underline{4}$ in Caco-2 homogenate (pH 7.4, 37°C)	101
35	Degradation profiles of $\underline{4}$ in rat liver homogenate (pH 7.4, 37°C)	101
36	Degradation profiles of 5 in human plasma (pH 7.4, 37°C)	102

(11)

Figure		Page
37	Degradation profiles of $\underline{5}$ in Caco-2 homogenate (pH 7.4, 37°C)	102
38	Degradation profiles of $\underline{5}$ in rat liver homogenate (pH 7.4, 37°C)	103
39	Degradation profile of <u>6</u> in human plasma (pH 7.4, 37° C)	103
40	Degradation profile of <u>6</u> in Caco-2 homogenate (pH 7.4, 37° C)	104
41	Time course of $\underline{5}$ in human plasma, Caco-2 homogenate, and rat liver homogenate (pH 7.4, 37°C)	104
42	Representative chromatograms of degradation of $\underline{1}$ in rat liver homogenate.	105
43	Representative chromatograms of transport of $\underline{1}$ across Caco-2 monolayer.	106
44	Representative chromatograms of BL to AP transport of $\underline{3}$ across Caco-2 monolayer.	107
45	Representative chromatograms of transport of <u>3</u> with 100 μ M indomethacin	108
46	Representative chromatograms of transport of <u>3</u> with 100 μ M verapamil	110
47	Representative chromatograms of hydrolysis of $\underline{4}$ in Caco-2 homogenate	112
48	Representative chromatograms of transport of <u>4</u> with 100 μ M indomethacin	113

(12)

Figure		Page
49	Representative chromatograms of transport of $\underline{4}$ with 100 μ M verapamil	114

List of Tables

Table		Page
1	Most commonly used cell culture models for estimating intestinal transcellular flux	16
2	ABC Transporters that confer multidrug resistance	20
3	Mobile phase used for HPLC analysis and retention time of each compound.	34
4	Solubility of esters of Mefenamic acid	43
5	Apparent half-lives of mefenamic acid esters <u>1-7</u> in 0.05M buffer solution at pH 2.0, 5.0, and 7.4 at $37^{\circ}C$	45
6	Apparent half-lives of mefenamic acid esters $1-7$ in various biological media	46
7	Bidirectional apparent permeability coefficients of esters of mefenamic acid across Caco-2 monolayer and the efflux ratio	51
8	Effects of verapamil and indomethacin on apparent permeability of $\underline{3}$ and $\underline{4}$ acoss Caco-2 monolayer	53
9	Solubility of mefenamic esters $\underline{2}$ and $\underline{3}$ in various solvents	89
10	Rate constants and squared correlation coefficients of hydrolysis of mefenamic acid esters in buffers at varying pH's	90
11	Rate constants and squared correlation coefficients of hydrolysis of mefenamic acid esters in biological media	91

Abbreviations and Symbols

ABC	Adenosine Triphosphate Binding Cassettes
AP	Apical
BL	Basolateral
BCRP	Breast Cancer Resistance Proteins
cm/s	Centimeter per second
DMSO	Dimethyl Sulfoxide
ER	Efflux Ratio
F	Fluorescence intensity
GI	Gastrointestine
HBSS	Hank's Balanced Salt Solution
HPLC	High Performance Liquid Chromatography
HEPES	N-hydroxyethylpiperazine-N'-2-ethane sulfonate
h	hour
КОН	Potassium hydroxide
MES	2-(N-Morpholino) ethane sulfonic acid
MRP	Multidrug resistance proteins
min	minute
nm	nanometer
NSAIDs	Non-steroidal anti-inflammatory drugs
P _{app}	Apparent permeability coefficient
Papp, A-B	Apparent permeability coefficient, in apical to basolateral
P _{app,B-A}	Apparent permeability coefficient, in basolateral to apical
Pgp	P-glycoprotein
PBS	Phosphate Buffer Saline
PMSF	Phenylmethyl sulfonyl fluoride
μg	microgram
μL	microliter
μΜ	micromolar
rpm	Round per minute
TER	Transepithelial electrical resistance

Abbreviations and Symbols (Continued)

Volume by volume

 \mathbf{v}/\mathbf{v}