Contents

				rage
(3))			
Ał	ostrac	t		(5)
Ac	cknow	ledgen	nent	(7)
Co	ontent	ts		(8)
Li	st of l	Figures		(12)
Li	List of Tables (15)			(15)
Ał	obrev	iations	and Symbols	(17)
Cł	napte	r		
1.	Intr	oductio	on	1
	1.1.	Genera	al introduction	1
	1.2.	Object	ives	3
2.	Lite	rature	Review	4
	2.1.	Boese	nbergia pandurata (Roxb.) Schltr.	4
		2.1.1	Plant description	4
		2.1.2	Ethnomedical uses	5
		2.1.3	Biological activities	6
		2.1.4	Phytochemistry	10

Page

Contents (continued)

2.2	2.2 Oxidation and antioxidants		17
	2.2.1	Oxidation and free radicals	17
	2.2.2	Physiological function and effects	18
	2.2.3	Antioxidant defences	20
	2.2.4	Phytochemical antioxidants	22
	2.2.5	Measurement of antioxidant activity	27
2.3	Chro	matographic analysis	31
	2.3.1	High performance liquid chromatography	32
	2.3.2	Optimization of condition for HPLC	34
	2.3.3	Calculation for chromatographic parameters	34
	2.3.4	Markers in plant	36
Experimentals			37
3.1 Plant materials			37
3.2	Chem	nical and reagents	37
	3.2.1	Chemicals and reagents for extraction	37
	3.2.2	Chemicals and reagents for antioxidant activity assay	38
	3.2.3	Chemicals and reagents for HPLC assay	38

3

Contents (continued)

			Page
3.3	Instru	umentation	38
	3.3.1	Apparatus used for extraction and structure elucidation	38
	3.3.2	Apparatus used for antioxidant activity assay	39
	3.3.3	Apparatus used for HPLC assay	39
3.4	Meth	ods	40
	3.4.1	Isolation of chemical constituents from the rhizome of	
		Boesenbergia pandurata	40
	3.4.2	Assay for total phenolic contents	45
	3.4.3	Assay for DPPH radical scavenger	46
	3.4.4	Assay for linoleic acid inhibition	47
	3.4.5	HPLC analysis	49
	3.4.6	Application for commercial dry crudes of <i>B. pandurata</i>	
		rhizome	51
	3.4.7	Statistical analysis	51
Results and Discussions		52	
4.1	Char	acterization of compounds	52
	4.1.1	Identification of compound 1	52
	4.1.2	Identification of compound 2	56
	4.1.3	Identification of compound 3	58
	4.1.4	Identification of compound 4	62
	4.1.5	Identification of compound 5	65

4

Contents (continued)

	4.2	Total	phenolic content	69
	4.3	Antioxidant activity		71
		4.3.1	Free radical scavenging activity by DPPH assay	71
		4.3.2	Free radical scavenging activity of pure compounds	74
		4.3.3	Inhibition of autoxidation on linoleic acid system	75
	4.4 HPLC analysis		76	
		4.4.1	Selection of the mobile phase	76
		4.4.2	Calibration curve of pinostrobin	81
	4.5	Appli	cation for commercial dry crudes of <i>B. pandurata</i>	
		rhizo	me	83
5	Co	nclusio	ns	88
Bibliography 90			90	
Appendix 102			102	
Vitae 133			133	

Page

List of Figures

F	igure	Page
	2-1 Boesenbergia pandurata (Roxb.) Schltr.	5
	2-2 Structure of compounds from <i>B. pandurata</i> (yellow rhizome)	12
	2-3 Typical structure of different groups of plant phenolics	24
	2-4 Typical structure of flavonoids divided into the different subgroups	25
	2-5 Structure of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical	28
	2-6 Formation of a chromogen by reaction of TBA with	
	malondialdehyde	30
	3-1 Extraction and isolation of <i>Boesenbergia pandurata</i> (Rhizome)	41
	3-2 A calibration curve of caffeic acid standard solutions	46
	4-1 Structure of compound 1	52
	4-2 Structure of compound 2	56
	4-3 Structure of compound 3	58
	4-4 Structure of compound 4	62
	4-5 Structure of compound 5	65
	4-6 Radical scavenging effect of ethanolic extract of <i>B. pandurata</i> on	
	the DPPH radical (μ g/ml)	72
	4-7 Chromatogram of ethanolic extract from <i>B. pandurata</i> .	79
	4-8 UV spectra of alpinetin (A); pinocembrin (B); cardamonin (C) and	
	pinostrobin (D) over the wavelength range 200-400 nm.	80
	4-9 A calibration curve of pinostrobin at λ 280 nm	81

List of Figures (continued)

Figure		
4-10 Chromatogrhic profile of ethanolic extract from five commercial		
B. pandurata.rhizome	83	
4-11 Average peak areas of alpinetin (5), pinocembrin (3) and		
pinostrobin (1) in crude drug of <i>B. pandurata</i> from		
five sources; n=3	84	
4-12 Free radical scavenging activity of crudes drug of <i>B. pandurata</i>		
by DPPH assay and pinostrobin contents	87	
A-1 UV spectrum of compound 1 (MeOH)	103	
A-2 FAB mass spectrum of compound 1	104	
A-3 IR spectrum of compound 1 (KBr)	105	
A-4 CD of compound 1	106	
A-5 ¹ H NMR spectrum of compound 1 (500 MHz, CDCl ₃)	107	
A-6 ¹³ C NMR spectrum of compound 1 (500 MHz, CDCl ₃)	108	
A-7 1 H - 1 H cosy spectrum of compound 1 (500 MHz, CDCl ₃)	109	
A-8 HMQC spectrum of compound 1 (500 MHz, CDCl ₃)	110	
A-9 HMBC spectrum of compound 1 (500 MHz, CDCl ₃)	111	
A-10 1 H NMR spectrum of compound 2 (500 MHz, CDCl ₃)	112	
A-11 UV spectrum of compound 3 (MeOH)	113	
A-12 IR spectrum of compound 3 (KBr)	114	
A-13 1 H NMR spectrum of compound 3 (500 MHz, CDCl ₃)	115	
A-14 ¹³ C NMR spectrum of compound 3 (500 MHz, CDCl ₃)	116	

List of Figures (continued)

Figure	Page
A-15 UV spectrum of compound 4 (MeOH)	117
A-16 IR spectrum of compound 4 (KBr)	118
A-17 ¹ H NMR spectrum of compound 4 (500 MHz, DMSO- d_6)	119
A-18 ¹³ C NMR spectrum of compound 4 (500 MHz, DMSO- d_6)	120
A-19 ¹ H - ¹ H COSY spectrum of compound 4 (500 MHz, DMSO- d_6)	121
A-20 HMQC spectrum of compound 4 (500 MHz, DMSO- d_6)	122
A-21 HMBC spectrum of compound 4 (500 MHz, DMSO- d_6)	123
A-22 NOE difference spectrum of compound 4 after irradiation	
at $\delta_{\rm H}$ 3.90	124
A-23 NOE difference spectrum of compound 4 after irradiation	
at $\delta_{\rm H}$ 6.02	125
A-24 UV spectrum of compound 5 (MeOH)	126
A-25 IR spectrum of compound 5 (KBr)	127
A-26 ¹ H NMR spectrum of compound 5 (500 MHz, DMSO- d_6)	128
A-27 ¹³ C NMR spectrum of compound 5 (500 MHz, DMSO- d_6)	129
A-28 ¹ H - ¹ H cosy spectrum of compound 5 (500 MHz, DMSO- d_6)	130
A-29 HMQC spectrum of compound 5 (500 MHz, DMSO- d_6)	131
A-30 HMBC spectrum of compound 5 (500 MHz, DMSO- d_6)	132

List of Tables

Table	Page
2-1 Chemical constituents reported in of <i>B. pandurata</i> (yellow rhizon	ne)
from literatures	11
2-2 Reactive oxygen and nitrogen species	18
2-3 Some of the clinical conditions in which the involvement of	
ROS/RNS has been suggested	19
2-4 Defense systems in vivo against oxidative damage	21
2-5 HPLC condition for plant	33
3-1 Different ratios of solvent for HPLC mobile phase	49
4-1 ¹ H NMR data and ¹ H- ¹ H COSY of compound 1	54
4-2 ¹³ C NMR data HMQC and HMBC of compound 1	55
4-3 ¹ H NMR data of compound 2	57
4-4 1 H NMR data of compound 3	59
4-5 13 C NMR data of compound 3	60
4-6 1 H NMR data and 1 H - 1 H cosy of compound 4	63
4-7 ¹³ C NMR data HMQC and HMBC of compound 4	64
4-8 1 H NMR data and 1 H - 1 H cosy of compound 5	66
4-9 ¹³ C NMR data HMQC and HMBC of compound 5	68
4-10 Total phenolic content of fractions from ethanolic extract of	
B. pandurata	70
4-11 DPPH radical scavenging activity of <i>B. pandurata</i> rhizome extra	act 73

List of Tables (continued)

Table	Page
4-12 DPPH radical scavenging activity of compounds isolated from	
B. pandurata	74
4-13 Inhibition of autoxidation of ethanolic extract from <i>B. pandurata</i>	
rhizome on the linoleic acid system	75
4-14 Chromatographic parameters from HPLC chromatogram of	
ethanolic extract from <i>B. pandurata</i> by using 0.5% acetic acid:	
acetonitrile (45:55) as mobile phase (M2)	78
4-15 Intra-day and inter-day precision for pinostrobin; $n = 3$	82
4-16 Peak area and ratio of alpinetin, pinocembrin and pinostrobin	
from five <i>B. pandurata</i> samples (BP1-BP5)	85
4-17 Information pinostrobin content (%w/w) and DPPH radical	
scavenging activity from five <i>B. pandurata</i> sample (BP1-BP5)	86

Abbreviations and Symbols

$(D_3C)_2CO$	acetone- d_6
¹³ C NMR	carbon-13 nuclear magnetic resonance
¹ H NMR	proton nuclear magnetic resonance
BHT	butylated hydroxytoluene
CC	column chromatography
CDCl ₃	chloroform- d_6
CH_2Cl_2	dichloromethane
COSY	correlated spectroscopy
D_2O	deuterium oxide
DMSO	dimethyl- d_6 sulfoxide
EC ₅₀	effective concentration at 50% of test subject
EtOAc	ethyl acetate
EtOH	ethanol
HMBC	heteronuclear multiple bond coherent
HMQC	heteronuclear multiple quantum coherent
HPLC	high performance liquid chromatography
Hz	hertz
IR	infrared
МеОН	methanol
MS	mass spectrometry
NMR	nuclear magnetic resonance
NOE	nuclear overhauser effect
RP	reversed phase
Rs	resolution
RSD	relative standard deviation
SD	standard deviation
TBA	triobarbituric acid
TCA	trichloroacetic acid
T _f	tailing factor

Abbreviations and Symbols (continued)

THF	tetrahydrofuran
TLC	thin layer chromatography
UV	ultraviolet
°C	degree celsius
d	doublet
dd	doublet of doublets
J	coupling constant
k'	capacity factor
m	multiplet
m/z	mass over charge ratio
S	singlet
t _R	retention time
δ	chemical shift
λ	wavelength
λ_{max}	wavelength at maximum absorption
$\nu_{\rm max}$	wavenumber at maximum absorption