CHAPTER 3

MATERIALS AND METHODS

3.1 Materials

3.1.1 Clinical specimens

During the period between September 2003 and December 2004, blood samples were collected from 31 Thai breast cancer patients. There were 5 breast cancer cases (P1, P17, P20, P35 and P39) with a family history of cancer from patients admitted to Songklanagarind Hospital. These patients aged between 20-80 years and did not receive any medical treatment. All of the patients had given informed consent before providing their blood samples. In addition, one healthy woman who is a daughter of the patient who was identified with the mutation of *BRCA1* in the study was included for examination of gene mutation.

3.1.2 Materials for genomic DNA

- Proteinase K (20 mg/ml)
- 6 M Sodium Chloride
- Isopropanol
- 70% Ethanol
- Sodium Dodecyl Sulphate (SDS)
- Lysis buffer (320 mM Sucrose, 5 M MgCl₂.6H₂O, 10 mM Tris-base and 1% Triton-X-100)
- SE buffer pH 8.0 (75 mM NaCl and 25 mM EDTA)
- TE buffer pH 8.0 (10 mM Tris-base and 0.1 mM EDTA)
- QIAquick Gel Extraction Kit (QIAGEN, Germany)

3.1.3 Materials for polymerase chain reaction (PCR)

- DNA template
- Forward and reverse primers
- MgCl₂
- dNTP (dTTP, dATP, dCTP and dGTP)
- *Taq* DNA polymerase
- PCR Buffer (20 mM Tris-HCl and 50 mM KCl)

3.1.4 Materials for agarose gel electrophoresis

- Agarose powder
- Electrophoresis buffer (2.42 g of Tris-base, 0.571 ml of glacial acetic acid and 1ml of 0.5 M EDTA, pH 8.0
- 6x Gel-loading buffer (0.25% Bromophenol blue and 40% sucrose)
- Ethidium Bromide

3.1.5 Materials for single-stranded conformation polymorphism

- Electrophoresis buffer (54 g of Tris-base, 27.5 g of boric acid and 20 ml of 0.5 M EDTA (pH 8.0))
- Acrylamide
- 2x SSCP gel-loading (formamide, 5% bromophenol blue, 5% xylene cyanol, 1M EDTA and 1M NaOH)
- *N*, *N*' methylene bis-acrylamide
- TEMED (N, N, N', N'- tetramethylethylenediamine)
- 40% Methanol
- 160 mM Nitric acid
- 10% Citric acid
- 10% Ammonium Persulfate
- 37% Formaldehyde

35

- Glycerol
- Sodium Carbonate
- Silver staining solution (100 mg of Silver Nitrate (AgNO₃) and 50 ml of deionized water)

3.1.6 Materials for DNA sequencing

 PRISMTM Ready Reaction Dye Deoxy Terminator Cycle Sequencing Kit (Applied Biosystems Ltd., USA)

3.1.7 PCR primers specific for BRCA1 gene

The entire coding sequence of the *BRCA1* gene from each of 33 DNA samples were amplified using thirty-one *BRCA1* primer pairs as adapted from Munnes *et al.*, 2000. Thirty-one PCR fragments amplified with the specified primer covered 22 exons of *BRCA1* gene. Coding sequence of the largest exon (exon 11) was amplified through 10 overlapping fragments. Lists of *BRCA1* primers pairs used in this work are shown in Table 3.1. All primers were ordered from QIAGEN[®] Operon[®], Germany.

Table	3.1	Oligodeoxyribonucleotide	primers	used	for	PCR	amplification	and
		nucleotide sequences (adap	oted from	Munn	es et	al., 20	00).	

Primer	Nucleotide position	Primer sequence (5'-3')	Annealing temperature (°C)	Size of product (bp)
BRCF 2	4557	GAAGTTGTCATTTTATAAACC	55	227
BRCR 2	4764	TCTGTTCATTTGCATAGGAG	55	221
BRCF 3	12842	GTTGACTCAGTCATAACAGCTC	60	202
BRCR 3	13114	GGAGTTGGATTTTTCGTTCTC	00	293
BRCF 5	22116	TCTTTTCATGGCTATTTGCC	60	250
BRCR 5	22445	CCTGTATAAGGCAGATGTCCC	00	550
BRCF 6	23730	GGTTGATAATCACTTGCTGAG	56	174
BRCR 6	23873	GCACTTGAGTTGCATTCTTGG	50	1/4
BRCF 7	24381	GAGCATACATAGGGTTTCTC	56	224
BRCR 7	24685	CCTGGGCCACAGAGCAAGAC	50	524
BRCF 8	28811	CTGGCCAATAATTGCTTGAC	(0)	2(1
BRCR 8	29051	CTTCCCAAAGCTGCCTACCAC	60	261
BRCF 9	31316	TACCTGCCACAGTAGATGCTC	55	207
BRCR 9	31504	CCAGCTTCATAGACAAAGG	55	207

Primer	Nucleotide Primer sequence (5'-3')	Annealing	Size of product	
1 milei	position	Timer sequence (5, 5)	temperature (°C)	(bp)
BRCF 10	32753	CAGTTCTGCATACATGTAAC	60	181
BRCR 10	32914	CCCACTCTCTTTTCAGTGCC	00	101
BRCF 11a	33774	GCCAGTTGGTTGATTTCCACC	60	404
BRCR 11a	34158	CCTTACTTCCAGCCCATCTG	00	404
BRCF 11b	34046	CATTACAGCATGAGAACAGCAG	(0)	27(
BRCR 11b	34402	GCATTTGATTCAGACTCCCC	60	376
BRCF 11c	34377	GTTACCTTCTCATCACTCACATC		
BRCR 11c	34762	GTCTTTTGAACTGCCAAATCTGC	60	408
DRCE 114	24710			
DRCF IIU	34/10		60	393
DRCK IIU	35080			
DRCF 11e	35032 25410		60	410
BRCR IIe	33419	GGGICIICAGCATIATIAGACAC		
BRCF IIf	35298		60	405
BRCR 11f	35680	GUTGAAGTTAACAAATGCACCT		
BRCF 11g	35637	GGGACTAATTCATGGTTGTTCC	60	418
BRCR 11g	36032	CCTAGAGCCTCCTTTGATAC		110
BRCF 11h	36032	CCTAGAGCCTCCTTTGATAC	60	441
BRCR 11h	36450	GTTGCAAAACCCCTAATCTAAGC		
BRCF 11i	36430	GGGCCAAAATTGAATGCTATGC	60	400
BRCR 11i	36808	CTATTTCTTGGCCCCTCTTCG		
BRCF 11j	36862	GAAGAGCTTCCCTGCTTCCA	60	520
BRCR 11j	37360	GTAAAATGAGCTCCCCAAAAGC	00	520
BRCF 12	37610	CCAGTCCTGCCAATGAGAAG	62	218
BRCR 12	37808	CCACACACGCATGTGCAC	02	210
BRCF 13	46032	CTTGTAGTTCCATACTAGGTG	55	376
BRCR 13	46388	GGTCCTTACTCTTCAGAAGG	55	570
BRCF 14	52045	CAGTATTCTAACCTGAATTATCA	60	241
BRCR 14	52265	GATGTCAGATACCACAGCATC	00	241
BRCF 15	54167	CACAATTGGTGGCGATGG	60	207
BRCR 15	54445	CTTTATGTAGGATTCAGAG	00	291
BRCF 16	57362	CCAACACTGTATTCATGTACCC	62	175
BRCR 16	57815	GTCATTAGGGAGATACATATGG	02	475
BRCF 17	60983	CTGAGCTGTGTGCTAGAG	56	247
BRCR 17	61210	TCGGCCTCCCAAAGTGCTGC	50	247
BRCF 18	64713	GCTTCTTAGGACAGCACTTCC	60	250
BRCR 18	64945	CTCAGACTCAGCATCAGC	00	230
BRCF 19	65278	GTGAATCGCTGACCTCTC	56	306
BRCR 19	65542	ATGAGCCACAGTGCAGGCCTGC	50	500
BRCF 20	71522	GACGTGTCTGCTCCACTTC	64	210
BRCR 20	71713	TACAGAGTGGTGGGGTGAG	04	210
BRCF 21	77578	CTCTCCATTCCCCTGTCCCTC	64	106
BRCR 21	77753	GCAATCTGAGGAACCCCCATC	04	170
BRCF 22	79482	GAGGGCCTGGGTTAAGTATGC	60	172
BRCR 22	79633	TGTGTCCTCCCTCTCTGACTG	00	1/2
BRCF 23	80968	ATGAAGTGCAGTTCCAGTAG	60	207
BRCR 23	81155	CTCAAGCACCAGGTAATGAG	00	207
BRCF 24	82841	GAACTCATACAACCAGGACCC	60	275
BRCR 24	83096	ACTTTGTAAGCTCATTCTTG	00	213

3.2 Instruments

- 3.2.1 Agarose gel electrophoresis apparatus (EC 370, E-C Apparatus Company , USA)
- 3.2.2 Autoclave (HD-3D, Hirayama Company, Japan)
- 3.2.3 Freezer (Hotpack, Forma Scientific Company, USA)
- 3.2.4 Gel documentation equipment (1000, BIO-RAD Company, USA)
- 3.2.5 Hot air oven (Memmert GmbH Co., Germany)
- 3.2.6 Polyacrylamide gel electrophoresis apparatus (AE–6450 Dual mini slab kit, ATTO Company, Japan)
- 3.2.7 Polymerase chain reaction machine (GeneAmp 9600, Perkin-Elmer Company, USA)
- 3.2.8 Power supply (EC 135, E-C apparatus Company, USA and AE-8150 my power 500, ATTO, Company, JAPAN)
- 3.2.9 Refrigerated microcentrifuge (Kubota 1910, Kubota Company, JAPAN)
- 3.2.10 Shaking bath (SBO 50 BIO, Heto lab equipment Company, USA)
- 3.2.11 UV-spectrophotometer (Genesis 5, Spectronic Company, USA)

3.3 Methods

3.3.1 Genomic DNA extraction

3.3.1.1 Collection of blood samples

Five milliliters of blood samples from patients were collected into syringe and immediately transferred into falcon tube that contained five hundred microliters of ethylenediaminetetraamine solution (EDTA) as an anticoagulant. The tube was closed and the blood sample was mixed with EDTA solution by gently inversion several times. After this procedure, the blood cells were kept frozen at -20 ⁰C until whole blood DNA extraction was performed.

3.3.1.2 Separation of white blood cells

The EDTA peripheral blood sample was allowed to stand at room temperature for 30 minutes. After that, blood samples were added with 15 ml of lysis buffer and mixed gently by inversion. The tube was placed on ice for 30 minutes, and inversely mixed while on ice, centrifuged at $9,000 \times g$ at 4 0 C for 15 minutes. After that, supernatant was decanted. If the pellets were still red, additional 10 ml of cold lysis buffer was added and centrifuged again.

3.3.1.3 DNA extraction from white blood cells

The remaining white blood cell (WBC) pellet was resuspended in 2.5 ml of cold SE buffer, 6 μ l of 20 mg/ml proteinase K and 125 μ l of 20% SDS. The WBC suspension was incubated in a water bath overnight at 37 °C. On the second day, the WBC suspension was added with 1.4 ml of 6 M NaCl, vortexed at room temperature for 15 seconds and centrifuged at 9,000×g at room temperature for 15 minutes. The supernatant was transferred into a new falcon tube. The genomic DNA was precipitated with isopropanol. The DNA cluster was observed as a long and white like filament. A pastuer hook like pipette was used to fish out the DNA. The precipitated DNA was transferred to a 1.5 ml microcentrifuge tube. The DNA was washed with 70% ethanol and dried at room temperature for 30 minutes. The DNA was kept in 150 μ l of TE buffer at 4 °C.

3.3.2 The purity and concentration of DNA

The purity and concentration of DNA was estimated by measuring the absorbance at 260 nm (OD_{260}) and 280 nm (OD_{280}) with a spectrophotometer. The ratio of OD_{260} / OD_{280} was calculated to verify the purity of DNA. The ratio should be greater than 1.5 and the amount of DNA was calculated using following equation; 1 OD_{260} is equivalent to 50 µg/ ml DNA.

DNA concentration ($\mu g/ml$ or $ng/\mu l$) = OD₂₆₀ x 50 x dilution factor

3.3.3 Screening for BRCA1 mutations

3.3.3.1 DNA amplification

The purified genomic DNA was amplified by polymerase chain reaction (PCR). The standard procedure for a PCR reaction was performed in a 50 μ l volume. It contained 1x PCR buffer (1.5 mM of MgCl₂ and 10 mM Tris-HCl pH 8.4), 1.5 to 3 mM of MgCl₂, 200 μ M dNTPs, 0.5 μ M each of the PCR primers, 2.5 U *Taq* DNA polymerase (QIAGEN, USA), 100 ng of genomic DNA and sterile distilled water to make up of 50 μ l. The mixture was contained in PCR tube and placed in a thermal cycler (Perkin-Elmer GeneAmp 9600). The conditions of the thermal cycle are shown in Table 3.2

	Step	Temperature (⁰ C)	Time	Number of cycle
1	Denaturing	94	5 minutes	1
	Denaturing	94	30 seconds	
	Annealing	depend on each of	45 seconds	30
2		BRCA1 exons		50
	Extension	72	45 seconds	
2	Extension	72	10 minutes	1
3	Holding	4	œ	I

Table 3.2 The conditions of thermal cycl	e
---	---

3.3.3.2 Analysis of the exon-intron 7 boundary sequence of patient ID 17 and the patient's daughter

The exon-intron 7 boundary was screened using the human genomic DNA of patient ID 17 and the patient's daughter. The exon-intron 7 boundary sequence was shown in Fig. 3.1. Oligonucleotide primers, designed from the human *BRCA1* genomic DNA, were used for primer extension PCRs to sequence patient ID 17 and the patient's daughter to determine the intron 7 sequence surrounding the exon 7. Five oligonucleotide primer pairs were used to amplify cover interested

exon-intron 7 boundary (Table 3.3). Amplification was carried out as follows: initiation denaturation at 94 ^oC for 5 min, then 94 ^oC for 30 s, annealing depend on each of *BRCA1* exon-intron 7 boundary primer for 45 s and extension 72 ^oC for 45 s for 30 cycles, followed by 1 cycle of 94 ^oC for 30 s, annealing depend on each of *BRCA1* exon-intron 7 boundary primer for 45 s and extension 72 ^oC for 10 min. The PCR-amplified fragments were directly sequenced using the same primers and dry terminators (PRISMTM Ready Reaction Dye Deoxy Terminator Cycle Sequencing Kit) and an ABI 377 DNA sequencer (Applied Biosystems Ltd., USA).

Exon-intron 7 boundary sequence

24361cattgtettaacacaacaaagagcatacatagggtttetettggtttetttgattataattcatacatttIntron 624431ttetetaactgcaaacataatgttttecettgtattttacag atgcaaacagcataaatttgcaaaaaa24501ggaaaataactetectgaacatctaaaagatgaaggttetatcatecaaagtatgggeta24501cagaaaccgtgccaaaagacatctaaaagatgaagttetatcatecaaagtatgggeta24501cagaaaccgtgccaaaagacttetacagagtgaacccgaaaatcetteettgtg24501cagaaaccgtgccaaaagacttetacagagtgaacccgaaaatcetteettgtg24501cagaaaccgtgccaaaagacttetacagagtgaacccgaaaatcetteettgtg24501cagaaaccgtgccaaaagacttetacagagtgaacccgaaaatcetteettgtg24501cagaaaccgtgccaaaagacttetacagagtgaacccgaaaatcetteettgtg24501cagaaccgtgccaaaagacttetttittttittittitttittittigagatgtgtg24631ttettettetttetttittttettittitttittittigagatgtgtgtgtgtg24711gcagtecteetgcettagecccettagecgccaggtggggttgt

Fig. 3.1 The exon-intron 7 boundary sequences in the *BRCA1* gene. The exon 7 is indicated by boldface, while intron 7 sequences is indicated by vertical bars.

Primers	Nucleotide position	Primer sequence (5'-3')	Annealing temperature (°C)	Size of product (bp)
Fw	24381	GAGCATACATAGGGTTTCTC	56	440
Rv 1	24801	GGTTTCATCATGTTGGCCAG	50	440
Fw	24381	GAGCATACATAGGGTTTCTC	60	510
Rv 2	24869	CAAATTGCTGGGATTACAGGTG	00	510
Fw 1	24555	GGGCTACAGAAACCGTGCC	59	260
Rv 1	24801	GGTTTCATCATGTTGGCCAG	50	200
Fw 1	24555	GGGCTACAGAAACCGTGCC	60	227
Rv 2	24869	CAAATTGCTGGGATTACAGGTG	00	337
Fw 2	24591	TGAACCCGAAAATCCTTCCTTG	50	220
Rv 1	24801	GGTTTCATCATGTTGGCCAG	38	230

Table 3.3 Oligodeoxyribonucleotide primers used for PCR amplification of exon-
intron 7 boundary and nucleotide sequence

3.3.3.3 Agarose gel electrophoresis

The size of the fragments of *BRCA1* exons were checked for quality in 1.0% (w/v) agarose gel electrophoresis. A 1.0% (w/v) agarose solution was prepared using 0.5x TAE buffer melted and poured on a plastic tray. A plastic comb was then placed in the gel. After the agarose gel was completely set (30-45 minutes at room temperature), the comb was carefully removed and the gel was installed on the platform in the electrophoresis chamber containing 0.5x TAE buffer. The solution of *BRCA1* exons was mixed with gel loading dye and slowly loaded into the slots of the submerged gel using an automatic micropipette. Electrophoresis was carried out at a constant 80 volts for 40-45 minutes, or until the running dyes had migrated the necessary distance. Next, the gel was stained with 0.5 μ g/ml of ethidium bromide (EtBr) solution for 5 minutes and destained with distilled water for 15 minutes. After that the DNA pattern was observed using a UV light box (Gel Doc model 1000, BIO-RAD, USA) and the photograph was taken and printed out.

3.3.3.4 Single-Stranded Conformation Polymorphism

3.3.3.4.1 Preparation of non-denaturing polyacrylamide gel

Assembled glass plates of the vertical mini-slab gel set according to the manufacture's detailed instructions. Both glass plates were carefully cleaned with distilled water and absolute ethanol and dried before assembly. Ten percent non-polyacrylamide gel was prepared as the mixture shown in the Table 3.4.

Reagent One gel (ml) Two gel (ml) 40% acrylamide : bisacrylamide (49:1) 2.5 5.0 5 x TBE buffer 2.0 4.0 Glycerol 0.5 1.0 Distilled water 4.39 9.78 10% Ammonium persulphate 0.07 0.14 TEMED 0.004 0.008

Table 3.4 Preparation of 10% non - denaturing polyacrylamide gel

The gel mixture was poured into the space between the glass-plates sandwich by using a syringe and a comb inserted immediately at the topside in order to make sample wells without allowing air bubbles to become trapped under the teeth. The gel was allowed to polymerize for at least 30 minutes. After polymerization, the glass-plates were assembled upon the electrophoresis set and the comb removed.

3.3.3.4.2 Sample preparation

The sample mixture contained 2 μ l of each PCR product, 6 μ l of distilled water and 2 μ l of 2x SSCP gel-loading solution. The PCR product mixture was denatured at 95 0 C for 10 minutes and allowed to stand in ice for PCR reannealing for 5 minutes.

3.3.3.4.3 Polyacrylamide gel electrophoresis

After applying 10 μ l of PCR reannealing into a well of the non-denaturing polyacrylamide gel, electrophoresis was performed in 1x TBE buffer at room temperature at 70 volts, 15 mA for about 4 hours.

3.3.3.4.4 Silver staining of gel

The gel was transferred into a plastic box or flat bottomed chamber. The electrophoresed gel was fixed in 50 ml of 40% methanol for 10 minutes. Every step in silver staining was shaken. Then, 40% methanol was discarded, the gel was soaked in 50 ml of 160 mM HNO₃ for 6 minutes. The nitric acid was discarded and the gel was rinsed and washed twice for 5 minutes, each with distilled water. The gel was stained in 50 ml of 0.2% silver nitrate for 20 minutes and the staining solution was discarded into a waste box. The gel was washed twice with distilled water for 50 minutes each and soaked with 50 ml of the developer solution for 4-10 minutes, in order to develop the silver staining. The gel was shaken gently until the DNA bands became visible. Once the DNA bands were clearly seen, 50 ml of stop solution was immediately added, followed by shaking for 5 minutes. The gel was washed with distilled water for 50 minutes and finally dried with gel dryer for one day.

3.4 Data Analysis

Descriptive statistic was performed to calculate basic information of patients as age at diagnosis, clinical and pathological characteristics.