## CHAPTER 4 RESULTS

### 4.1 Clinical /pathological characteristics of the patients

Between September 2003 and December 2004, blood samples were collected from 31 Thai patients diagnosed as affected with breast cancer ( BrCa ), age range 20-80 years, with no history of treatment by chemotherapy. There were 17 patients (ID 1, 2, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 31, 32, 35, 39, 40) that presented with clinical features and had been admitted to Songklanagarind Hospital. Five of the 17 patients had a family history of cancer. The family history information and clinical features (pathologic classification, tumor grade and breast side) of each of the 17 patients are given in Appendix A. The other fourteen out of 31 patients did not have information of clinical features because they were volunteers in this project. The average age of 17 patients at diagnosis was 48 years (S.D. 11.3 years). The pathologic classification of the majority was invasive ductal carcinoma (inv.DC). The frequencies of clinical/pathological characteristics are summarized in Table 4.1.

Table 4.1 Percentage of the patients classified by clinical/pathological characteristics

| Type | Frequency | Percentage |
| :---: | :---: | :---: |
| Stage grouping |  |  |
| I | 6 | 35 |
| IIA | 5 | 29 |
| IIIA | 1 | 6 |
| IIB | 3 | 18 |
| IIIB | 2 | 12 |
| Total | 17 | 100 |
| Breast side |  |  |
| Right | 11 | 65 |
| Left | 6 | 35 |
| Total | 17 | 100 |

Clinical pedigree data of these patient families (Fig. 4.1) are described below.
(a) Patient ID 1

(b) Patient ID 17

(c) Patient ID 20

(d) Patient ID 35

(e) Patient ID 39


Fig. 4.1 The pedigrees of 5 patients with a family history of cancer. Black symbols are women affected with breast cancer. The upper-siteblackened symbols represent women affected with any other cancer or other disease. The ages at cancer diagnosis in patients are in brackets. The abbreviations are identified as follow, Bo, bone cancer; Br , breast cancer; Cer, cervical cancer; Lu, lung cancer; Lym lymphomatic cancer; Ne , neck cancer; Tub, tuberculosis; N, analyzed persons who do not have breast cancer. Probands are indicated by arrows.

In the family of patient ID 1, one lymphomatic, one cervical cancer and one BrCa occurred. In this family, the proband was diagnosed with BrCa at the age of 45, and whose father and mother affected with lymphomatic cancer and cervical cancer, respectively (Fig. 4.1a). In the family of patient ID 17, there were two BrCa cases. The proband and her deceased sister were diagnosed with BrCa at the age of 56. The proband's healthy daughter, who participated in this study at the age of 25 , was designed as ID 18 (Fig. 4.1b). In the family of patient ID 20, two BrCa occurred. In this family, the proband was the niece of the deceased patient and diagnosed with BrCa at the age of 48 (Fig. 4.1c). Patient ID 35 had a father with tuberculosis and a mother with lung cancer. The proband was the daughter of the deceased patient and diagnosed with BrCa at the age of 41 (Fig. 4.1d). In the family of patient ID 39, one bone cancer, one neck cancer and one BrCa occurred. The proband was diagnosed with BrCa at the age of 28 (Fig. 4.1e).

### 4.2 Purity and concentrations of the genomic DNA

The genomic DNA was extracted from 31 blood samples collected at Songklanagarind Hospital. The purity and concentration of genomic DNA was estimated by measuring the absorbance of DNA solution at $260 \mathrm{~nm}\left(\mathrm{OD}_{260}\right)$ and $280 \mathrm{~nm}\left(\mathrm{OD}_{280}\right)$ with a spectrophotometer. The purity was determined from $\mathrm{OD}_{260} / \mathrm{OD}_{280}$ ratios. Table 4.2 represented the purity and concentrations of genomic DNA.

Table 4.2 Summary of purity and concentrations of the genomic DNA

| $\begin{gathered} \text { Patient } \\ \text { ID } \end{gathered}$ | $\mathrm{OD}_{260}$ | $\mathrm{OD}_{280}$ | $\begin{gathered} \text { Purity } \\ \left(\mathrm{OD}_{260} / \mathrm{OD}_{280}\right) \\ \hline \end{gathered}$ | Concentration (ng/ $\mu \mathrm{l}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| Normal | 0.154 | 0.088 | 1.75 | 616 |
| 1 | 0.409 | 0.247 | 1.65 | 2,045 |
| 2 | 0.019 | 0.010 | 1.85 | 95 |
| 16 | 0.100 | 0.055 | 1.80 | 1,000 |
| 17 | 0.028 | 0.015 | 1.85 | 140 |
| 19 | 0.026 | 0.015 | 1.73 | 260 |
| 20 | 0.020 | 0.012 | 1.67 | 200 |
| 21 | 0.287 | 0.177 | 1.62 | 1,435 |
| 22 | 0.048 | 0.027 | 1.78 | 192 |
| 24 | 0.577 | 0.324 | 1.78 | 2,308 |
| 25 | 0.125 | 0.069 | 1.81 | 500 |
| 27 | 0.046 | 0.027 | 1.70 | 184 |
| 28 | 0.265 | 0.151 | 1.75 | 1,060 |
| 31 | 0.283 | 0.158 | 1.79 | 1,132 |
| 32 | 0.319 | 0.181 | 1.76 | 1,276 |
| 35 | 0.194 | 0.108 | 1.79 | 776 |
| 39 | 0.438 | 0.256 | 1.71 | 1,752 |
| 40 | 0.350 | 0.196 | 1.78 | 1,400 |
| 41 | 0.167 | 0.093 | 1.79 | 668 |
| 42 | 0.196 | 0.110 | 1.78 | 676 |
| 43 | 0.232 | 0.133 | 1.74 | 928 |
| 44 | 0.127 | 0.071 | 1.78 | 508 |
| 45 | 0.147 | 0.080 | 1.83 | 588 |
| 46 | 0.284 | 0.167 | 1.70 | 1,136 |
| 47 | 0.182 | 0.104 | 1.75 | 728 |
| 48 | 0.151 | 0.085 | 1.77 | 604 |
| 49 | 0.181 | 0.100 | 1.81 | 724 |
| 50 | 0.090 | 0.052 | 1.73 | 900 |
| 51 | 0.174 | 0.097 | 1.79 | 696 |
| 52 | 0.180 | 0.100 | 1.80 | 720 |
| 53 | 0.136 | 0.079 | 1.72 | 544 |
| 54 | 0.151 | 0.083 | 1.81 | 604 |

The genomic DNA was extracted from white blood cells by SDS-proteinase K treatment (Sambrook and Russell, 2001). Considerable yields of genomic DNA were obtained. The purity of genomic DNA was between 1.65-2.00, which was a satisfactory quality of genomic DNA for the Polymerase Chain Reaction Analysis (PCR).

### 4.3 PCR optimization for the amplification of BRCA1 exons

Thirty-one pairs of primer were used in the screening for BRCA1 mutations of 22 coding exons. The sizes of the product, annealing temperatures (Tm) and magnesium concentrations $\left(\mathrm{Mg}^{2+}\right)$ for successful PCR amplification were shown in Table 4.3.

Table 4.3 Summary of optimal conditions for PCR amplification of BRCA1 exons.

| Primer | Nucleotide position | Primer sequence (5'-3') | $\begin{aligned} & \mathrm{Tm} \\ & \left({ }^{\circ} \mathbf{C}\right) \end{aligned}$ | $\mathbf{M g}^{2+}$ <br> Concentration <br> $(\mathbf{m M})$ <br> 1.5 | Size of product (bp) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BRCF 2 | 4557 | GAAGTTGTCATTTTATAAACC | 55 | 1.5 | 227 |
| BRCR 2 | 4764 | TCTGTTCATTTGCATAGGAG |  |  |  |
| BRCF 3 | 12842 | GTTGACTCAGTCATAACAGCTC | 60 | 1.5 | 293 |
| BRCR 3 | 13114 | GGAGTTGGATTTTTCGTTCTC |  |  |  |
| BRCF 5 | 22116 | TCTTTTCATGGCTATTTGCC | 60 | 1.5 | 350 |
| BRCR 5 | 22445 | CCTGTATAAGGCAGATGTCCC |  |  |  |
| BRCF 6 | 23730 | GGTTGATAATCACTTGCTGAG | 56 | 1.5 | 174 |
| BRCR 6 | 23873 | GCACTTGAGTTGCATTCTTGG |  |  |  |
| BRCF 7 | 24381 | GAGCATACATAGGGTTTCTC | 56 | 3.0 | 440 |
| BRCR 7 | 24685 | CCTGGGCCACAGAGCAAGAC |  |  |  |
| BRCF 8 | 28811 | CTGGCCAATAATTGCTTGAC | 60 | 1.5 | 261 |
| BRCR 8 | 29051 | CTTCCCAAAGCTGCCTACCAC |  |  |  |
| BRCF 9 | 31316 | TACCTGCCACAGTAGATGCTC | 55 | 1.5 | 207 |
| BRCR 9 | 31504 | CCAGCTTCATAGACAAAGG |  |  |  |
| BRCF 10 | 32753 | CAGTTCTGCATACATGTAAC | 60 | 1.5 | 181 |
| BRCR 10 | 32914 | CCCACTCTCTTTTCAGTGCC |  |  |  |
| BRCF 11a | 33774 | GCCAGTTGGTTGATTTCCACC | 60 | 1.5 | 404 |
| BRCR 11a | 34158 | CCTTACTTCCAGCCCATCTG |  |  |  |
| BRCF 11b | 34046 | CATTACAGCATGAGAACAGCAG | 60 | 1.5 | 376 |
| BRCR 11b | 34402 | GCATTTGATTCAGACTCCCC |  |  |  |
| BRCF 11c | 34377 | GTTAGGTTCTGATGACTCACATG | 60 | 1.5 | 408 |
| BRCR 11c | 34762 | GTCTTTTGAACTGCCAAATCTGC |  |  |  |
| BRCF 11d | 34710 | GCGTAAAAGGAGACCTACATCAG | 60 | 1.5 | 393 |
| BRCR 11d | 35080 | GGTGGGCTTAGATTTCTACTGAC |  |  |  |
| BRCF 11e | 35032 | CTGAGGAGGAAGTCTTCTACCA | 60 | 1.5 | 410 |
| BRCR 11e | 35419 | GGGTCTTCAGCATTATTAGACAC |  |  |  |
| BRCF 11f | 35298 | CCCAATGGATACTTAAAGCCTTC | 60 | 1.5 | 405 |
| BRCR 11f | 35680 | GCTGAAGTTAACAAATGCACCT |  |  |  |


| Primer | Nucleotide position | Primer sequence ( $5^{\prime}-3{ }^{\prime}$ ) | $\begin{aligned} & \mathrm{Tm} \\ & \left({ }^{\circ} \mathbf{C}\right) \end{aligned}$ | $\begin{gathered} \mathbf{M g}^{2+} \\ \begin{array}{c} \text { Concentration } \\ (\mathrm{mM}) \end{array} \\ \hline \end{gathered}$ | Size of product (bp) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BRCF 11g <br> BRCR 11g | $\begin{aligned} & 35637 \\ & 36032 \end{aligned}$ | GGGACTAATTCATGGTTGTTCC CCTAGAGCCTCCTTTGATAC | 60 | 1.5 | 418 |
| BRCF 11h <br> BRCR 11h | $\begin{aligned} & \hline 36032 \\ & 36450 \end{aligned}$ | CCTAGAGCCTCCTTTGATAC GTTGCAAAACCCCTAATCTAAGC | 60 | 1.5 | 441 |
| BRCF 11i <br> BRCR 11i | $\begin{aligned} & 36430 \\ & 36808 \end{aligned}$ | GGGCCAAAATTGAATGCTATGC <br> CTATTTCTTGGCCCCTCTTCG | 60 | 1.5 | 400 |
| BRCF 11j <br> BRCR 11j | $\begin{aligned} & 36862 \\ & 37360 \\ & \hline \end{aligned}$ | GAAGAGCTTCCCTGCTTCCA GTAAAATGAGCTCCCCAAAAGC | 60 | 1.5 | 520 |
| BRCF 12 <br> BRCR 12 | $\begin{aligned} & 37610 \\ & 37808 \end{aligned}$ | CCAGTCCTGCCAATGAGAAG CCACACACACGCATGTGCAC | 60 | 1.5 | 218 |
| BRCF 13 BRCR 13 | $\begin{aligned} & 46032 \\ & 46388 \end{aligned}$ | CTTGTAGTTCCATACTAGGTG GGTCCTTACTCTTCAGAAGG | 62 | 1.5 | 376 |
| BRCF 14 BRCR 14 | $\begin{aligned} & 52045 \\ & 52265 \end{aligned}$ | CAGTATTCTAACCTGAATTATCA GATGTCAGATACCACAGCATC | 55 | 1.5 | 241 |
| BRCF 15 <br> BRCR 15 | $\begin{aligned} & 54167 \\ & 54445 \end{aligned}$ | CACAATTGGTGGCGATGG CTTTATGTAGGATTCAGAG | 60 | 1.5 | 297 |
| BRCF 16 <br> BRCR 16 | $\begin{aligned} & 57362 \\ & 57815 \end{aligned}$ | CCAACACTGTATTCATGTACCC GTCATTAGGGAGATACATATGG | 60 | 1.5 | 475 |
| BRCF 17 BRCR 17 | $\begin{aligned} & 60983 \\ & 61210 \end{aligned}$ | CTGAGCTGTGTGCTAGAG TCGGCCTCCCAAAGTGCTGC | 62 | 1.5 | 247 |
| BRCF 18 BRCR 18 | $\begin{aligned} & \hline 64713 \\ & 64945 \end{aligned}$ | GCTTCTTAGGACAGCACTTCC CTCAGACTCAGCATCAGC | 56 | 1.5 | 250 |
| BRCF 19 <br> BRCR 19 | $\begin{aligned} & 65278 \\ & 65542 \end{aligned}$ | GTGAATCGCTGACCTCTC <br> ATGAGCCACAGTGCAGGCCTGC | 60 | 3.0 | 306 |
| $\begin{aligned} & \text { BRCF } 20 \\ & \text { RRCR } 20 \end{aligned}$ | $\begin{aligned} & 71522 \\ & 71713 \end{aligned}$ | GACGTGTCTGCTCCACTTC TACAGAGTGGTGGGGTGAG | 56 | 2.0 | 210 |
| $\begin{aligned} & \hline \text { BRCF } 21 \\ & \text { RRCR } 21 \end{aligned}$ | $\begin{aligned} & \hline 77578 \\ & 77753 \end{aligned}$ | CTCTCCATTCCCCTGTCCCTC GCAATCTGAGGAACCCCCATC | 64 | 1.5 | 196 |
| BRCF 22 <br> BRCR 22 | $\begin{aligned} & 79482 \\ & 79633 \end{aligned}$ | GAGGGCCTGGGTTAAGTATGC TGTGTCCTCCCTCTCTGACTG | 64 | 1.5 | 172 |
| BRCF 23 <br> BRCR 23 | $\begin{aligned} & 80968 \\ & 81155 \end{aligned}$ | ATGAAGTGCAGTTCCAGTAG CTCAAGCACCAGGTAATGAG | 60 | 1.5 | 207 |
| BRCF 24 BRCR 24 | $\begin{aligned} & 82841 \\ & 83096 \\ & \hline \end{aligned}$ | GAACTCATACAACCAGGACCC ACTTTGTAAGCTCATTCTTG | 60 | 1.5 | 275 |

Determination for optimal condition of each parameter affecting PCR efficiency was discussed below.

### 4.3.1 Magnesium concentration

Magnesium concentration is a key factor affecting the performance of Taq DNA polymerase. Most exons were successfully amplified with the presence of $1.5 \mathrm{mM} \mathrm{Mg}{ }^{2+}$. Only few exons (exon 7, 19 and 20) were amplified with the presence of higher $\mathrm{Mg}^{2+}$ concentrations ( $2.0-3.0 \mathrm{mM}$ ).

### 4.3.2 Primer concentration

The concentration of primer in the $50 \mu \mathrm{l}$ PCR reaction was varied from 0.1 to $0.5 \mu \mathrm{M}$. There was no different in the yield of the PCR products obtained with primer concentrations of $0.1,0.3$ or $0.5 \mu \mathrm{M}$ (Fig. 4.2). However, high concentration of primer $(0.5 \mu \mathrm{M})$ was applied to confer selectivity in the amplification when a complex template as genomic DNA was used.


Fig. 4.2 The effect of primer concentration on PCR amplification of BRCA1 gene using BRCF3 and BRCR3 primers. The PCR products ( 350 bp ) were resolved by electrophoresis through $1 \%$ agarose gel and stained with ethidium bromide. Lane 1 is 100 bp DNA ladder. Lanes 2-4 were the PCR product profiles obtained with $0.1,0.3$ and $0.5 \mu \mathrm{M}$ of primer concentration in $50 \mu 1$ reaction, respectively.

### 4.3.3 Template concentration

Genomic DNA was a highly complex template for PCR amplification. Therefore high concentration of template ( 100 ng ) was used with all pairs of primer.

### 4.3.4 PCR programs

In this work, amplification conditions were as described by Munnes et al., (2000). After the initial denaturation step at $94{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 35$ cycles of denaturation at $94{ }^{\circ} \mathrm{C}$ for 30 s , annealing for 45 s at temperatures ( Tm ) as listed in

Table 4.3 and extension step at $72{ }^{\circ} \mathrm{C}$ for 5 min were applied for each PCR amplification.

### 4.3.5 Annealing temperature

The optimal annealing temperature varied from the estimated melting temperature or Tm . Tm was calculated from the simple formula of $2{ }^{\circ} \mathrm{C} \times(\mathrm{A}+\mathrm{T})+$ $4^{\circ} \mathrm{C} \times(\mathrm{C}+\mathrm{G})$, at which $(\mathrm{A}+\mathrm{T})$ is the number of A and T nucleotides in the primer sequence, and $(\mathrm{C}+\mathrm{G})$ is the number of C and G nucleotides. The annealing temperature was $1-2{ }^{\circ} \mathrm{C}$ below the calculated Tm for each primer. The annealing temperatures for each pair of primer were shown in Table 4.3. The pattern of PCR products amplified with each pair of primer at designated annealing temperature were shown in Fig. 4.3A-4.3E


Fig. 4.3A The PCR products of $B R C A 1$ exons obtained at annealing temperature of $55^{\circ} \mathrm{C}$ were run on a $1 \%$ agarose gel and stained with ethidium bromide.
Lane1: 100 bp DNA ladder; lane2: exon 2 ( 227 bp ); lane3: exon 9 (207 bp) and lane 4: exon 13 (376 bp)

## B <br>  <br> 3456 <br> 

Fig. 4.3B The PCR products of BRCA1 exons obtained at annealing temperature of $58^{\circ} \mathrm{C}$ were run on a $1 \%$ agarose gel and stained with ethidium bromide. Lanes 1 and 3: 100 bp DNA ladder; lane2: exon 7 ( 440 bp ); lane4: exon 6 ( 174 bp ); lane5: exon 17 ( 247 bp ) and lane6: exon 19 ( 306 bp )


Fig. 4.3C The PCR products of $B R C A 1$ exons obtained at annealing temperature of $60^{\circ} \mathrm{C}$ were run on a $1 \%$ agarose gel and stained with ethidium bromide. Lanes 1, 7 and 13: 100 bp DNA ladder; lane2: exon 3 (293 bp); lane3: exon 5 ( 350 bp ); lane4: exon 18 ( 250 bp ); lane5: exon 22 ( 172 bp ); lane6: exon 23 (207 bp); lane8: exon 8 ( 261 bp ); lane9: exon 10 ( 181 bp ); lane10: exon 14 ( 241 bp ); lane11: exon 15; lane12: exon 24 and lanes 14-23: exon 11a-11j, respectively.

## D



Fig. 4.3D The $\operatorname{PCR}$ products of $B R C A 1$ exons obtained at annealing temperature of $62^{\circ} \mathrm{C}$ were run on a $1 \%$ agarose gel and stained with ethidium bromide. Lane1: 100 bp DNA ladder; lane2: exon 12 (218 bp) and lane3: exon $16(475 \mathrm{bp})$


Fig. 4.3E The PCR products of BRCA1 exons obtained at annealing temperature of $64{ }^{\circ} \mathrm{C}$ were run on a $1 \%$ agarose gel and stained with ethidium bromide. Lane1: 100 bp DNA ladder; lane2: exon $20(210 \mathrm{bp})$ and lane3: exon 21 (196 bp)

### 4.4 Single-Stranded Conformation Polymorphism analysis of BRCA1 exons

PCR-amplified BRCA1 exons were subjected to SSCP analysis. The typical SSCP results for each exon of BRCA1 of 31 Thai patients were shown in Fig. 4.4-4.19. Summary of selected patients whose exons exhibiting changes in electrophoretic mobility on $10 \%$ non-denaturing polyacrylamide gel was shown in Table 4.4.

Table 4.4 Summary of selected patients whose exons exhibiting changes in electrophoretic mobility on $10 \%$ non-denaturing polyacrylamide gel

| Exon | Patient ID |
| :--- | :--- |


| 7 | 17 |
| :---: | :---: |
| 11 a | 54 |
| 11 c | 43 and 31 |
| 11 e | 40 |
| 11 f | 45 and 46 |
| 14 | 1 and 20 |

## A


$\begin{array}{llllllllllll}\text { Patient ID } & \text { wt } & 1 & 2 & 16 & 19 & 20 & 21 & 22 & 24 & 25 & 27\end{array}$

## B


$\begin{array}{lllllllllllll}\text { Patient ID } & \text { wt } & 1 & 2 & 16 & 19 & 20 & 21 & 22 & 24 & 25 & 27 & 28\end{array}$

$\begin{array}{lllllllllllll}\text { Lane } & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24\end{array}$

$\begin{array}{llllllllllll}\text { Patient ID } & \text { wt } & 31 & 32 & 35 & 39 & 40 & 46 & 47 & 48 & 49 & 50 \\ 51\end{array}$

Lane $\begin{array}{llllllllllll}22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32\end{array}$

$\begin{array}{lllllllll}\text { Lane } & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32\end{array}$


Fig．4．4 SSCP analysis of the PCR fragment of BRCA1 exon 2 （Panel A）and exon 3 （Panel B）．Normal control person（wt）is presented in lanes 1，12， 22 （A）and lanes 1，13， 25 （B）．The SSCP products were run on $10 \%$ non－denaturing polyacrylamide gel and visualized by silver staining．

Patient ID wt $\quad 50 \quad 51 \quad 52 \quad 53 \quad 54 \quad 41 \quad 42 \quad 43$

$\begin{array}{lllllllllll}\text { Lane } & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$

$\begin{array}{lllllllll}\text { Patient ID } & \text { wt } & 53 & 54 & 41 & 42 & 43 & 44 & 45\end{array}$

$\begin{array}{llllllllllll}\text { Lane } & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22\end{array}$

$\begin{array}{llllllllllll}\text { Lane } & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33\end{array}$


Patient ID wt $\quad 50$

Fig. 4.5 SSCP analysis of the PCR fragment of BRCA1 exon 5 (Panel A) and exon 6 (Panel B). Normal control person (wt) is presented in lanes 1, 11, 21, 31 (A) and lanes 1, 12, 23 (B). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.


Fig. 4.6 SSCP analysis of the PCR fragment of BRCA1 exon 7 (Panel A) and exon 8 (Panel B). Normal control person (wt) is presented in lanes 1, 13, 25 (A) and lanes 1, 12, 23 (B). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.

## A


$\begin{array}{llllllllllll}\text { Patient ID } & \text { wt } & 1 & 2 & 16 & 19 & 20 & 21 & 22 & 24 & 25 & 27\end{array}$

$\begin{array}{llllllllllll}\text { Patient ID } & \text { wt } & 28 & 31 & 32 & 35 & 39 & 40 & 46 & 47 & 48 & 49\end{array}$
$\begin{array}{llllllllllll}\text { Lane } & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33\end{array}$

$\begin{array}{lllllllllll}\text { Patient ID } & \text { wt } & 50 & 51 & 52 & 53 & 54 & 41 & 42 & 43 & 44 \\ 45\end{array}$

B

$\begin{array}{lllllllllll}\text { Lane } & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32\end{array}$

$\begin{array}{lllllllllll}\text { Patient ID } & \text { wt } & 50 & 51 & 52 & 53 & 54 & 41 & 42 & 43 & 44\end{array}$

Fig. 4.7 SSCP analysis of the PCR fragment of BRCAl exon 9 (Panel A) and exon 10
(Panel B). Normal control person (wt) is presented in lanes 1, 12, 23 ( A and B ). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.

## A



B


Lane $\begin{array}{lllllllll}10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$


Fig. 4.8 SSCP analysis of the PCR fragment of BRCA1 exon 11a (Panel A) and exon 11 b (Panel B). Normal control person (wt) is presented in lanes 1,9 , 16, 26 (A) and lanes 1, 10, 19, 25 (B). Arrow indicated the different electrophoretic mobility of BRCA1 exon 11a fragment of patient ID 54 with respect to the wild-type fragment (A). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.


Fig. 4.9 SSCP analysis of the PCR fragment of BRCA1 exon 11c (Panel A) and exon 11d (Panel B). Normal control person (wt) is presented in lanes 1, 12, 22, 31 (A) and lanes $1,7,15,25$ (B). Arrows indicated the different
Patient ID wt
 43 with respect to the wild-type fragment (A). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.

## A


$\begin{array}{lllllllll}\text { Patient ID } & \text { wt } & 40 & 31 & 41 & 43 & 32 & 39 & 45\end{array}$


Fig. 4.10 SSCP analysis of the PCR fragment of BRCA1 exon 11e (Panel A) and exon 11 f (Panel B). Normal control person (wt) is presented in lanes 1, 9, 17 (A) and lanes 1, 11, 21 (B). Arrows indicated the different electrophoretic mobility of BRCA1 exon 11e fragment of patient ID 40


A


## B





Fig. 4.11 SSCP analysis of the PCR fragment of BRCAl exon 11 g (Panel A) and exon 11h (Panel B). Normal control person (wt) is presented in lanes 1, 7, 17, 27 (A) and lanes 1, 8, 16, 22 (B). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.


$\begin{array}{lllllllllll}\text { Patient ID } & \text { wt } & 46 & 47 & 48 & 49 & 51 & 52 & 53 & 54 & 42\end{array}$

Fig. 4.12 SSCP analysis of the PCR fragment of BRCA1 exon 11i (Panel A) and exon 11 j (Panel B). Normal control person (wt) is presented in lanes 1, 7 , 11, 26 (A) and lanes 1, 9, 15, 25 (B). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.



Fig. 4.13 SSCP analysis of the PCR fragment of BRCAl exon 12 (Panel A) and exon 13 (Panel B). Normal control person (wt) is presented in lanes 1, 12, 23 (A) and lanes 1, 13, 24 (B). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.



Fig．4．14 SSCP analysis of the PCR fragment of BRCAl exon 14 （Panel A）and exon 15 （Panel B）．Normal control person（wt）is presented in lanes 1，12， 23 （A and B）．The SSCP products were run on $10 \%$ non－denaturing polyacrylamide gel and visualized by silver staining．



Fig. 4.15 SSCP analysis of the PCR fragment of BRCAl exon 16 (Panel A) and exon 17 (Panel B). Normal control person (wt) is presented in lanes 1, 11, 21,31 (A) and 1, 12, 23 (B). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.



Fig. 4.16 SSCP analysis of the PCR fragment of BRCAl exon 18 ( Panel A) and exon 19 (Panel B). Normal control person (wt) is presented in lanes 1, 11, 23 (A) and 1, 12, 23 (B). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.

A
$\begin{array}{llllllllllll}\text { Lane } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$


B
$\begin{array}{llllllllllll}\text { Lane } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$


Patient ID $\quad$ wt $1 \begin{array}{llllllllll} & 2 & 16 & 19 & 20 & 21 & 22 & 24 & 25 & 27\end{array}$


Fig. 4.17 SSCP analysis of the PCR fragment of BRCAl exon 20 (Panel A) and exon 21 (Panel B). Normal control person (wt) is presented in lanes 1, 12, 23 (A and B). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.

A


B



Fig. 4.18 SSCP analysis of the PCR fragment of BRCAI exon 22 (Panel A) and exon 23 (Panel B). Normal control person (wt) is presented in lanes 1, 12, 23 (A and B). The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.



Patient ID wt $25 \quad 27 \quad 28 \quad 31 \quad 32 \quad 35 \quad 3940 \quad 46$


Fig. 4.19 SSCP analysis of the PCR fragment of BRCA1 exon 24 . Normal control person (wt) is presented in lanes 1,10 and 22 . The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining.



Fig. 4.20 SSCP analysis of the PCR fragment of BRCA1 exons of patient ID 17. Arrow indicated the different electrophoretic mobility of BRCA1 exon 7 fragment with respect to the wild-type fragment. The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining. Wt stands for normal control person, ex stands for exon.

### 4.5 Direct sequencing of BRCA1 exons

PCR products of exon fragments with observed change in electrophoretic mobility were further analyzed by direct sequencing using PRISM ${ }^{\text {TM }}$ Ready Reaction Dye Deoxy Terminator Cycle Sequencing Kit and the Applied Biosystems ABI 377 sequencer.

## A



B


Fig. 4.21 Genomic sequences of the BRCA1 IVS7+34_47 del TTCTTTTCTTTTTT deletion. BRCA1 exon 7 - intron 7 boundary in the sense and antisense strand sequences of patient ID 17. (A) Sense sequence of BRCA1 IVS7+34_47delTTCTTTTCTTTTTT deletion. (B) Antisense sequence of BRCA1 IVS7+34_47delTTCTTTTCTTTTTT deletion.

The above results showed sequence alteration in electropherogram of exon 7 from patient ID 17. Sequencing of the BRCAl gene in the proband's genomic DNA revealed the absence of the non-coding intervening sequence at position +34 to +47 downstream the exon 7 of the BRCA1 gene, resulting in the deletion of the TTCTTTTCTTTTTT sequences (g.24646_24659delTTCTTTTCTTTTTT, corresponding to the traditional nomenclature IVS7+34_47delTTCTTTTCTTTTTT).

Pedigree of patient ID 17 was shown in Fig. 4.22. The family history revealed a deceased sister (II-1) who had been diagnosed with breast cancer in her 56s. The proband's parents (I-1 and I-2) and younger sister (II-5) are unaffected. Patient's ID17 has a daughter (III-2). Based on the family history of patient ID17, we would expect a risk imposed on the daughter due to maternal transmission. Hence, it was of great interest to further analyse BRCA1 mutations in the proband's daughter, ID 18 (III-2).


Fig. 4.22 Circle and square denote female and male individuals, respectively, while the slash marks indicate the deceased. Blackened shapes are affected individuals, and the proband (II-3) is designated with a left arrow with breast cancer at the age of 56 . Individual II-1 developed breast cancer in her 56s and deceased at the age of 58. The proband's daughter (III-2) was a healthy female.

### 4.6 Single-Stranded Conformation Polymorphism (SSCP) analysis of patient's healthy daughter (ID 18)

Electrophoretic mobility shift of bands were observed in exon 7 and exon 9 of ID 18 (Fig. 4.23) and whose identities subsequently confirmed by direct sequencing. Further analysis of the patient's healthy daughter genomic DNA showed the heterozygous sequences, compared with the sense strand sequence of the proband with a substitution of C for T at nucleotide position of 24650 in intron 7, corresponding to the traditional nomenclature IVS7 $+38 \mathrm{~T}>\mathrm{C}$. In addition, deletion of the BRCAl gene in the non-coding intervening sequence of the patient's healthy daughter genomic DNA was found. In the sense strand, the deletion in the non-coding intervening sequence at +50 to +63 downstream the exon 7 of the BRCA1 gene was identitied, resulting in the deletion of the TTCTTTTTTTTTTT (g.24662_24675 delTTCTTTTTTTTTTT, corresponding to the traditional nomenclature IVS7+50_63
delTTCTTTTTTTTTTT) and in the antisense strand, the deletion in the noncoding intervening sequence at the +34 to +47 was detected, resulting in the deletion of the AAGAAAAGAAAAAAA sequences, of which identical to deleted sequence observed in the patient ID 17 (Fig. 4.24).


Fig. 4.23 SSCP analysis of the PCR fragment of BRCA1 exons of ID 18. Arrows indicated the different electrophoretic mobility of BRCA1 exon 7 or exon 9 fragment with respect to the wild-type fragment. The SSCP products were run on $10 \%$ non-denaturing polyacrylamide gel and visualized by silver staining. Wt stands for normal control person and ex stands for exon.


B


Fig. 4.24 Genomic sequences of the $B R C A 1$ exon-intron 7 boundary in the sense and antisense strands of the patient ID17's healthy daughter. (A) Sense sequence of BRCA1 IVS7+50_63delTTCTTTTTTTTTTT deletion. (B) Antisense sequence of BRCA1 IVS7+34_47delAAGAAAAGAAAAAA deletion. Base substitution at IVS7 $+38 \mathrm{~T}>\mathrm{C}$ in the sense strand of the patient's healthy daughter is identified with an asterisk.

### 4.7 Sequence analysis of the exon-intron 7 boundary of patient ID 17 and the patient's daughter (ID 18)

The exon-intron 7 boundary sequence was analyzed using primers (Fw1 and Rv1) (page 41). On SSCP analysis, electrophoretic mobility of PCR products of ID 17 (Fig. 4.25A) and ID 18 (Fig. 4.25B) was different from that of normal healthy Thai control group. The exon-intron 7 boundary sequence was consequently verified by direct sequencing (Fig. 4.26 and Fig. 4.27).
A
1
2

B
1
2


Fig. 4.25 Single-stranded conformation polymorphism of polymerase chain reaction products with silver staining. (A) A shift band (arrow) was found on the gel from patient ID 17 noncoding intervening 7 (lane 2). (B) A shift band (arrow) was found on the gel from patient's daughter (ID 18) noncoding intervening 7 (lane2). Lane1 was normal healthy Thai control group.

### 4.8 Pfu DNA polymerase on patients whose exons exhibiting changes in SSCP analysis

Prior studying of amplification of BRCAl exons were performed by PCR-SSCP analysis. The study showed that $1 / 31$ of the DNA fragment mobility shifts were detected with SSCP, but only $9 / 31$ of these contained mutations when confirmed by direct sequencing. We expected that this result may be occurred by the PCR using the DNA polymerase from Thermus aquaticus (Taq DNA polymerase). Taq DNA polymerase used in this technique will make errors during DNA synthesis and
reaction conditions. The sensitivity of PCR procedure depends on the fidelity level of the polymerase used to catalyze the PCR. Therefore, we searched for an enzyme with high fidelity, Pfu. It is the thermostable DNA polymerase derived from Pyrococcus furiosus (Fiala and Stetteer, 1986). The 3'-5' exonuclease activity of polymerase reduces the accumulation of frameshift and misinsertion mutations (Bebenek et al., 1990). Prior testing of $P f u$ reported an error rate of $1.6 \times 10^{-6}$ per base pair (Lundberg et al., 1991). The fidelity of Pfu is significantly higher than the other commonly used thermostable polymerases: Taq has error rate of $10^{-4}$ and Vent has an error rate of $10^{-5}$ (Andre et al., 1997). Including, the genomic sequences in intron 7 of patient ID 17 and patient's healthy daughter (ID 18) have trinucleotide repeat sequences (TTC) with 7 units. This structure might be potential for mutations in amplified products arising with the higher than normal sequence. Thus, genomic DNA of patients whose exons exhibiting changes in SSCP analysis were amplified using Pfu DNA polymerase. In order to determine whether $3^{\prime}-5$ ' exonuclease activity can diminish error rate and increase the fidelity of synthesis of trinucleotide repeat sequences during the PCR.

The sequence of PCR amplified products were identical as in the previous observation. No mutations were found in the patient ID 54 in exon 11a, ID 43 and 31 in exon 11c, ID 40 in exon 11e, ID 45 and 46 in exon 11f and ID 14 in exon 1 and 20, respectively. However, alterations in $B R C A 1$ sequence were found in patient ID 17 (IVS7+50_63delTTCTTTTCTTTTTT) and patient's healthy daughter (ID 18) (IVS7+38T > C and IVS7+50_63delTTCTTTTTTTTTTT on the sense strand and IVS7+34_47delAAGAAAAGAAAAAA on the antisense strand).

A



Fig. 4.26 Genomic sequence of the BRCAl IVS7+34_47 delTTCTTTTCTTTTTT deletion. BRCAl exon-intron 7 boundary using Pfu DNA polymerase in the sense and antisense strand sequences of the patient ID 17. (A) Sequence analysis of the sense BRCA1 IVS7+34_47 delTTCTTTTCTTTTTT deletion. (B) Sequence analysis of the antisense BRCA1 IVS7+34_47 delTTCTTTTCTTTTTT deletion.

A


Fig. 4.27 Genomic sequence of the BRCA1 exon-intron 7 boundary using Pfu DNA polymerase in the sense and antisense strand sequences of the healthy patient's daughter. (A) Sequence analysis of the sense BRCA1 IVS 7+50_63 delTTCTTTTTTTTTTT deletion. (B) Sequence analysis of the antisense BRCA1 IVS 7+34_47 delAAGAAAAGAAAAAA deletion. Base substitution at IVS $7+38 \mathrm{~T}>\mathrm{C}$ (red star) in the sense strand of the healthy patient's daughter.

