CONTENTS

	Page
Contents	(11)
List of Tables	(14)
List of Illustrations	(16)
List of Abbreviations and Symbols	(19)
Chapter	
1. Introduction	1
1.1 General Introduction	1
1.1.1 Antioxidants	4
1.1.2 Cytotoxicity	6
1.2 Rational of this study	6
1.3 Review of Literatures	7
1.3.1 Phyllanthus emblica Linn.	7
1.3.2 Terminalia chebula Retz.	8
1.3.3 Terminalia bellerica Gaertn.	9
1.4 Chemical constituents of the investigated species	11
1.5 Biological activities of the investigated species	33
1.6 Objectives	64
2. Research Methodology	65
2.1 Instruments	65
2.2 Plant Materials	66
2.3 Preparation of plant extracts	66
2.3.1 Water extracts	66
2.3.2 Ethanolic extracts	67
2.4 Assay for antioxidant activity	69
2.4.1 DPPH radical scavenging assay	69
2.4.2 Lipid peroxidation of liposome assay	70

CONTENTS (Continued)

	Page
2.5 The content of total phenolic compounds	73
2.6 In vitro assay for cytotoxic activity	74
2.6.1 Human cell lines	74
2.6.2 Testing procedure	75
2.7 Bioassay-guided fractionation	76
2.8 Isolation of chemical constituents from Phyllanthus emblica Linn.	77
2.8.1 FA2	77
2.8.2 FA3	77
2.8.3 FA4	78
2.9 Quantitative determination of gallic acid using HPLC	82
2.9.1 Reagents	82
2.9.2 Chromatographic condition	82
2.9.3 Preparation of plant sample	82
3. Results and Discussion	83
3.1 Screening of biological activity of crude extracts	83
3.1.1 Free radical scavenging activity	85
3.1.2 Lipid peroxidation of liposome assay	87
3.1.3 Total phenolic contents	92
3.1.4 Cytotoxic activity	93
3.2 Antioxidant and cytotoxic activity of bioassay-guided fractionation	102
3.3 Analysis of chemical composition and structure determination of	104
the isolated compounds	
3.3.1 Structure elucidation of the isolated compounds	104
3.3.1.1 C2	104
3.3.1.2 C3	105
3.3.1.3 C4	110

CONTENTS (Continued)

	Page
3.3.1.4 C5	115
3.4 Discussion on phytochemical investigation	120
3.5 Activities of the isolated compounds	122
3.5.1 Free radical scavenging activity	122
3.5.2 Cytotoxic activity	123
3.6 Determination of gallic acid	125
3.6.1 Standardization of fingerprint	125
3.6.2 HPLC sample analysis and recovery	125
4. Conclusions	129
Bibliography	132
Vitae	143

LIST OF TABLES

Table		Page
1-1	Chemical constituents found in Phyllanthus emblica Linn.	11
1-2	Chemical constituents found in Terminalia chebula Retz.	16
1-3	Chemical constituents found in Terminalia bellerica Gaertn.	18
1-4	Biological activities of the investigated species	33
2-1	Plants and part of plants used in these study	67
3-1	Percentage yields of the water and ethanolic extracts from	84
	the investigated spices and Triphala formula	
3-2	EC_{50} (µg/ml) of plant extracts and its formula on DPPH assay (n=3)	85
3-3	EC_{50} (µg/ml) of plant extracts and its formula on liposome assay (n=3)	87
3-4	Gallic acid equivalents (GAE) of plant extracts and its formula	92
	on Folin-Ciocalteu's assay (n=3)	
3-5	Percent survival of cancerous cells (Mean \pm SEM) (breast cancer cell	94
	line = MCF-7, cervical cancer cell line = Hela and prostate cancer	
	cell line = PC3) treated with extract concentration 50 μ g/ml exposure	
	time 72 hr (n = 6)	
3-6	Cytotoxicity activity (IC ₅₀ μ g/ml ± SEM) of plant extracts against	96
	three types of cancer cell (MCF-7, Hela and PC3) and one type of	
	normal cells (MRC5) at exposure time 72 hr (n=4)	
3-7	IC_{50} (µg/ml) ± SEM of the fractions from <i>Phyllanthus emblica</i> Linn.	102
	separated by vacuum liquid chromatography scavenge DPPH radical	
	and also against three types of cancer cell lines at exposure time 72 hr	
	(n=2)	
3-8	NMR spectral data (500 MHz for 1 H) of C2 (β -sitosterol) in	107
	$CDCl_3$ and C3 (β -sitosterol-3- <i>O</i> - β -D- glucopyranoside)	
	in CDCl ₃ :CD ₃ OD	

(14)

LIST OF TABLES (Continued)

Table		Page
3-9	NMR spectral data (500 MHz for 1 H and 125 MHz for 13 C) of	111
	5-hydroxymethylfurfural in CDCl ₃	
3-10	NMR spectral data (500 MHz for 1 H and 125 MHz for 13 C) of	116
	gallic acid in CD ₃ OD	
3-11	EC_{50} (µg/ml) of pure compounds on DPPH assay (n=3) and	122
	lipid peroxidation assay	
3-12	IC_{50} (µM) value of compounds tested against breast, cervical	124
	and prostate cancer cell lines (MCF-7, Hela and PC3) and	
	normal cell lines (MRC5) (mean <u>+</u> SEM) exposure time 72 hr (n=3)	
3-13	The regression equation for the plant extracts and Triphala formula	126
3-14	Gallic acid contents of three plants and Triphala formula by	127
	HPLC analysis	

LIST OF ILLUSTRATIONS

Figure		Page
1-1	Phyllanthus emblica Linn.	8
1-2	Terminalia chebula Retz.	9
1-3	Terminalia bellerica Gaertn.	10
1-4	Structures of some chemical constituents found in P. emblica	20
1-5	Structures of some chemical constituents found in T. chebula	27
1-6	Structures of some chemical constituents found in T. bellerica	31
2-1	Fruit of <i>Phyllanthus emblica</i> Linn.	67
2-2	Fruit of Terminalia chebula Retz.	68
2-3	Fruit of Terminalia bellerica Gaertn.	68
2-4	The reaction between thiobarbituric acid and malonaldehyde	71
	to produce the pink coloured product	
2-5	Flow chart for separation compounds from FA2 and FA3 of	80
	the ethanolic extract of Phyllanthus emblica	
2-6	Flow chart for separation compounds from FA4 of the ethanolic	81
	extract of Phyllanthus emblica	
3-1	Comparative histogram of antioxidant activity of Triphala formula	91
	and its 3 ingredients on DPPH radical scavenging and	
	lipid peroxidation assay, used BHT as positive control for DPPH assay	
	(EC ₅₀ of BHT = 12.65 μ g/ml) and propyl gallate (1x10 ⁻⁴ M)	
	is positive control for lipid peroxidation assay (%inhibition	
	at this concentration =80-82%)	
3-2	Histogram comparing $IC_{50}(\mu g/ml)$ of three plants and	98
	Triphala formula on cell lines (n=4) exposure time 72 hr using	
	student t-test from Prism to compare the significant difference	
	between normal cell (MRC5) and each cancer cell	
	(MCF-7, Hela and PC3)	

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
3-3	Histogram comparing EC_{50} (µg/ml) of each fractions on DPPH assay	103
3-4	Histogram comparing IC ₅₀ (μ g/ml) of each fractions against	103
	three cancer cell lines at exposure time 72 hr	
3-5	Structure of ß-sitosterol	105
3-6	Structure of ß-sitosterol-3-O-ß-D-glucopyranoside	106
3-7	¹ H NMR spectrum of ß-sitosterol in CDCl ₃	107
3-8	¹ H NMR spectrum of ß-sitosterol-3-O-ß-D-glucopyranoside	108
	in CDCl ₃ :CD ₃ OD	
3-9	Structure of 5-hydroxymethylfurfural	110
3-10	¹ H NMR spectrum of 5-hydroxymethylfurfural in CDCl ₃	112
3-11	¹³ C NMR spectrum of 5-hydroxymethylfurfural in CDCl ₃	113
3-12	EIMS spectrum of 5-hydroxymethylfurfural	114
3-13	Structure of gallic acid	115
3-14	¹ H NMR spectrum of gallic acid in CD ₃ OD	117
3-15	¹³ C NMR spectrum of gallic acid in CD ₃ OD	118
3-16	EIMS spectrum of gallic acid	119
3-17	The chemical structure of four compounds isolated from	121
	the ethanolic extracts of the pulp of P. emblica fruit.	
3-18	IC_{50} values ($\mu M)$ and SEM of cytotoxic compounds isolated	124
	from the ethanolic extracts of P. emblica against breast,	
	cervical and prostate cancer cell lines (MCF-7, Hela and PC3)	
	and normal cell lines (MRC5) at exposure time 72 hr	
3-19	Standard curve of gallic acid, the y value is the peak area	126
	of analytes and the x value is the concentration of the analysis	
	$(\mu g/ml)$	
3-20	Percentage of gallic acid contents of three plants and Triphala formula	127

(17)

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
3-21	Typical chromatograms of gallic acid (a), Triphala (b),	128
	<i>P. emblica</i> (c), <i>T. chebula</i> (d) and <i>T. bellerica</i> (e)	
	recored at 280 nm	

LIST OF ABBREVIATIONS AND SYMBOLS

А	=	absorbance (for DPPH assay)
amu	=	atomic mass unit
В	=	absorbance of the blank mixture (liposome only)
BHT	=	butylated hydroxytoluene
br	=	broad (for NMR spectra)
br d	=	broad doublet (for NMR spectra)
С	=	total content of phenolic compounds (mg/g plant extract) in GAE
С	=	the concentration of gallic acid established from the calibration curve
		$(\mu g/ml)$
°C	=	degree Celsius
CC	=	column chromatography
CDCl ₃	=	deuterochloroform
CD ₃ OD	=	deuteromethanol
CHCl ₃	=	chloroform
¹³ C NMR	=	carbon-13 nuclear magnetic resonance
CO ₂	=	carbondioxide
cm	=	centimeter
d	=	doublet (for NMR spectra)
dd	=	doublet of doublet (for NMR spectra)
DMSO	=	dimethyl sulphoxide
DNA	=	deoxyribonucleic acid
DPPH	=	1,1-diphenyl-2-picrylhydrazyl
EA	=	absorbance due to the extract alone (for liposome assay)
EC ₅₀	=	concentration causing 50% effective activity
EDTA	=	ethylenediamine tetraacetic acid
EI-MS	=	electron impact mass spectroscopy
ET	=	absorbance of the extract test mixture (for liposome assay)

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

EtOH	=	ethanol
EtOAc	=	ethyl acetate
FeCl ₃	=	Ferric cholide
g	=	gram
GAE	=	gallic acid equivalents
FRM	=	Absorbance of the full reaction mixture (liposome and iron source plus
		solvent without the test substance)
FTNMR	=	fourier transform nuclear magnetic resonance
¹ H-NMR	=	proton nuclear magnetic resonance
HC1	=	hydrochloric acid
hex	=	hexane
H_2O_2	=	hydrogen peroxide
hr	=	hour
Hz	=	hertz
IC ₅₀	=	concentration causing 50% inhibitory effect
In	=	inch
J	=	nuclear spin-spin coupling constant (in Hz)
Kg	=	kilogram
1	=	litre
М	=	molar (concentration)
M+	=	molecular ion
т	=	the weight of plant extract (mg)
m	=	meter
m	=	multiplet (for NMR spectra)
MDA	=	malonaldehyde
mg	=	milligram
MHz	=	megahertz

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

min	=	minute
ml	=	milliliter
mm	=	millimeter
mM	=	millimolar
mol	=	mole
MS	=	mass spectroscopy
MW	=	molecular weight
m/z	=	mass to charge ratio
μg	=	microgram
μl	=	microliter
μm	=	micromolar
NCI	=	national cancer institute
nm	=	nanometer
nM	=	nanomolar
NMR	=	nuclear magnetic resonance
O_2	=	oxygen
OD	=	optical density
PBS	=	phosphate buffer saline
ppm	=	part per million
rpm	=	round per minute
S	=	singlet (for NMR spectra)
sec	=	second
SEM	=	standard error of the mean
SRB	=	sulphorhodamine B
t	=	triplet (for NMR spectra)
TBA	=	thiobarbituric acid
TCA	=	trichloroacetic acid

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

TLC	=	thin-layer chromatography
TMS	=	tetramethysilane
ROS	=	reactive oxygen species
UV	=	ultraviolet
UV-vis	=	ultraviolet and visible spectrometry
V	=	the volume of extract (ml)
VLC	=	vacuum liquid chromatography
w/w	=	weight/weight
δ	=	chemical shift (in ppm, for NMR spectra)
λ	=	wavelength (for UV spectra)