CHAPTER 1

INTRODUCTION

1.1 General introduction

Medicinal plants has been used to be the main natural source of drugs. The use of medicinal plants was based on the experience of many generations of physicians and traditional systems of medicine from different ethnic societies. The use of medicinal plants in modern medicine suffered from the fact that though hundreds of plants were used in the world to prevent or to cure diseases, scientific evidenced in terms of modern medicine was lacking in most cases. However, it is necessary to provide scientific proof as to whether or not it is justified to use a plant or its active principles (Ammon and Wahl, 1991).

The World Health Organization (WHO) has estimated that for some 3.4 billion people in the developing world, plants were represented to be the primary source of medicine. This represents about 88% of the world's inhabitants who rely mainly on traditional medicine for their primary health care. At least 119 compounds derived from 90 plant species can be considered as important drugs currently in use in one or more countries, with 77% of these being derived from plants used in traditional medicine (Farnsworth, 1988).

The WHO has recently defined traditional medicine (including herbal drugs) as comprising therapeutic practices that have been in existence, often for hundreds of years, before the development and spread of modern medicine and are still in use today. Traditional medicine is the synthesis from therapeutic experience of many generations of practising physicians in indigenous systems for treatment. The traditional preparations comprise medicinal plants, minerals, organic matter, etc. (Kamboj, 2000).

Natural products, polyphenols, alkaloids, flavonoids and other secondary metabolites, in medicinal plants will provide a scientific validation for the popular use of them

and serve as a guide which may help in the selection of the plants with anticarcinogenic activity (Kaur *et al.*, 2005). The majority of these naturally occurring phenolics retain antioxidative and antiinflammatory properties, which appear to contribute to their chemopreventive activity (Pal *et al.*, 2001).

Triphala is a Thai traditional medicine preparation used as adaptogen for body in summer season of Thailand. It is consisting of the dried fruits of three plants, *Phyllanthus emblica* Linn, *Terminalia chebula* Retz. and *Terminalia bellerica* Gaertn. in equal proportions. Triphala is also a laxative that rejuvenates the membrane lining the digestive tract and contributes to effective cleansing of the colon, a key condition to maintaining optimum health. It is a completely balanced energetic formula (Tierra, 1996).

Recent studies have been reported that the aqueous extract of Triphala possessed ability to induce cytotoxicity against human breast cancer cell line (MCF-7) but less toxic against normal breast epithelial cell (MCF-10) (Sandhya *et al.*, 2006). The acetone extract showed a significant cytotoxic effect against two types of breast cancer cell Shionogi 115 (S115) mouse breast cancer cell line and human breast cancer cell line (MCF-7), two types of prostate cancer cell (PC-3 and DU-145) and this extract showed nonspecific with all these cell line (Kaur *et al.*, 2005).

Other previous studies of each plant in Triphala formula are describe below:

Recently reports about *Phyllanthus emblica* Linn. Showed showed the butanol extract of the water fraction of *P. emblica* fruits at the dose of 100 mg/kg body-weight, orally administered to rats for 10 consecutive days, was found to enhance secretion of gastric mucus and hexosamine in the indomethacin induced ulceration of rats. This extract was also shown to have a protective effect of the stomach wall. An antioxidant property appears to be predominantly responsible for this cytoprotective action of the herb (Bandyopadhyay *et al.*, 2000). The methanolic extract was also active and inhibited lipid peroxidaton with IC_{50} value of 13 µg/ml (KC and Müller, 1999). Numerous studies have suggested that *P. emblica* fruit possesses anticancer activity. A simple aqueous extract of *P. emblica* was shown to protect mice against the chromosome damaging effects of the well known carcinogen 3,4-benzo(a)pyrene. This carcinogen causes genotoxicity at least in part because it is an electrophilic reactant, which causes the formation of oxygen-derived free radicals with DNA-damaging potential (Nandi *et al.*, 1997). The protective effect against this

type of damage therefore most likely involves the antioxidant activity of *P. emblica* fruit extract. An anticancer effect may be mediated by the immune system. An antitumour effect of *P. emblica* aqueous fruit extract was demonstrated in tumour-bearing mice, resulting in a 35% increase in life span. The antitumour activity was shown to be meditated primarily through enhanced natural killer cell activity and antibody-dependent cellular cytotoxicity (Suresh and Vasudevan, 1994). Another study showed an aqueous extract of *P. emblica* to significant reduce induced solid tumours in mice in a manner suggesting interaction with cell cycle regulation (Jeena *et al.*, 2000). Extract of *P. emblica* fruit inhibited the proliferation of four human tumour cell lines *in vitro*. Pyrogallol was identified as an active component of the extracts. (Khan *et al.*, 2002). An aqueous extract of the dried fruits of *P. emblica* protected mice against the effects of nickel chloride. Nickel is a major environmental pollutant with carcinogenic potential (Dhir *et al.*, 1991). Alcoholic extract was also found to lack cellular toxicity in an assay using fresh sheep erythrocytes (Ahmad *et al.*, 1998).

Recently reports about *Terminalia chebula* Retz. showed that the aqueous extract acts as a potent antioxidant by examining its ability to inhibit γ -radiation-induced lipid peroxidation in rat liver microsomes and damage to superoxide dismutase (SOD) enzyme in rat liver mitochondria (Naik *et al.*, 2004). The cytotoxic activity of *T. chebula* extract that is used in the treatment of cancer in Asia and Africa. A 70 %methanol extract of *T. chebula* decreased the number of cell in immortalized and cancer cell lines by inhibiting the rate of cell proliferation and induced cell death. At low concentrations this extract is able to initiate cellular pathways that lead to apoptosis whereas at high concentrations the extract has toxic effects, which lead to rapid necrotic cell death. Among the the phenolics of the extract, chebulinic acid and ellagic acid showed moderate inhibition and they may be responsible for the inhibiting cell proliferation (Saleem *et al.*, 2002).

Recently reports about *Terminalia bellerica* Gaertn showed that the aqueous extract inhibit the growth and some physiological functions of *Streptococcus mutans*. The extract investigated as a potential anticaries and antiplaque agent. The growth of *S. mutans*, which is directly involved in the development of dental caries through the production of enamel degrading acids, was strongly inhibited by the extract (Jagtap and Karkera, 1999).

1.1.1 Antioxidants

In recent years the role of free radicals and reactive oxygen species (ROS) in human degenerative diseases of aging such as cancer, cardiovascular diseases, cataracts, brain dysfunction and immune system decline has become apparent. Free radicals or oxidants are energetically unstable and highly dangerous molecules which are constantly generated during body functions such as respiration, oxidative energy metabolism and immune activity. Free radicals are also produced from other sources (UV radiation, smoke, pollution, heavy metals, rancid fatty acids, etc.). Molecule oxygen is an oxidising agent, that is, it takes electron from another species (Halliwell and Gutteridge, 1999). The destructive effects of free radicals are farreaching, including cell membrane destruction via the interaction of fatty acid with oxygen to form dangerous peroxides (lipid peroxidation); genetic damage via DNA mutation; decline in immune function; increased inflammatory conditons; growth and spread of cancers; oxidation of LDL cholesterol leading to atherosclerosis hormone disruption, contributing to diabetes and other systemic disorders (Halliwell and Gutteridge, 1990; Benzie, 2000).

Oxygen is a double-edged sword: although we require oxygen to survive, certain oxygen species (such as superoxide, hydrogen peroxide, hydroxyl radical and singlet oxygen) are toxic to the body. In healthy aerobic organisms, production of reactive oxygen species is approximately balanced by the antioxidant defence system in the body. These endogenous antioxidants can protect from damage caused by these harmful molecules, as well as from free radicals mention above. The body has evolved its own natural free radical scavengers, which include the antioxidant vitamins (Vitamin A and beta-carotene, several of the B-complex vitamins, Vitamin C and Vitamin E), the mineral selenium and the antioxidant enzyme systems such as SOD (superoxide dismutase), glutathione peroxidase and catalase, which are the backbone of the cellular antioxidant defence system. Damage from free radicals can be prevented and even reversed if there are sufficient concentrations of antioxidants, which work individually and together in the body. However, the endogenous antioxidant system in body is not able to respond to a rapid increase in oxidative stress so the small exogenous antioxidant molecule such as $\mathbf{\alpha}$ -tocopherol, β -carotene , ascorbic acid or antioxidants from plant foods can prevent effects damage from oxygen free radicals (Dreher and Junod, 1996, Thurnham, 1993).

Important causes of cancer are ingested substances such as tobacco, chemicals used in the processing of foods, (e.g nitrosamines), toxic waste products and chemicals, and also the products of food preparation, such as charcoal grilling and pickling. Scientists estimate that perhaps 40-80% of all human cancers, excluding UV-induced cancers, may be caused by the burning of aromatic hydrocarbons, including tobacco, gasoline, coal, fat, oil, etc since these product can produced free radicals in the body. Some 90% of lung cancers and 50% of urinary cancers occur in smokers, while some 90% of mouth, larynx, esophagus and liver cancers occur in smokers who also drink. The mechanism of oxygen free radicals in cancer is based on the fact that oxidative stress can stimulate expansion of mutated cells and promote proliferation in mammalial cells after the initiation of cancer development by radiation and chemical mutation. Researchers have succeeded in identifying key mechanisms behind the development of these types of cancers, including the generation of toxic oxygen species or free radicals; and the damage to cell membranes caused by the interaction of certain fats with oxygen to form toxic peroxides (lipid peroxidation) (Harman, 1982, Jones, 1992, Mates and Sanchez-Jemenez, 2000).

The discovery that many of the body's natural mechanisms to prevent and neutralize damage caused by free radicals are actually nutrients themselves – the antioxidant vitamins A, C, E, the mineral selenium, and certain essential fatty acids, has provided an impetus to the use of nutritional antioxidants in the clinical treatment of many cancers (Odeleye, 1992; Das, 1990). The mechanism of antioxidant in cancer can modify the delvelopment stage of cancer by preventing the escalation of radical production by blocking lipid peroxidation and neutralizing free radical damage in the initiation and promotion phases of cancer. Additionally, antioxidant will improve the resistance of tissues to oxidative damage and promote healing and so reduce hyperplasia. The dietary antioxidant have been proven to have immune stimulating properties which is critical in treatment of any infectious disease and diseases such as cancer (Thurnham, 1993; Gordon , 1996).

Therefore, the discovery of antioxidant compounds from plants which is prevention disease and make healthy body is necessary especially the plants which was used as diary food.

Antioxidants come in various forms. They are classified broadly into two groups: antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase etc. and molecular antioxidants such as vitamin (C and E), mineral (selenium, zinc and manganese), carotenoids and flavonoids which are found in plants.

1.1.2 Cytotoxicity

The National Cancer Institute (NCI) in the USA has established the development of a method for initial screening and has defined the term "cytotoxic". A cytotoxic agent is toxic to tumor cells *in vitro* which is the method for studying bioactive compounds from plants and allows large numbers of plant extracts to be screened for activity especially cytotoxic compounds against many types of cancer cell lines. This assay is particularly useful for bioassay-guided fractionation of plant extracts. It is not always possible to test against cancer in an animal model and is more sensitive to most antitumor agents than *in vivo* assay and also costs less and requires less test material and time.

1.2 Rational of this study

In Thailand, many people have used traditional medicine as an alternative treatment for cancer (Subchareon, 1998). Folk doctors in Thailand have used Triphala in cancer drug formulae (Itharat *et al.*, 1998). This traditional medicines are prepared by boiling the plant material in water or soaking in alcohol and are commonly used by Thai people to prepare the drug for oral intake. An investigation of Triphala which is adaptogen in a traditional drug formula for treatment of cancer patients. This preparation is used by folk doctors to treat cancer in Southern Thailand and it can improve the condition and make patients have good quality of life. Surprisingly, there is no research comparison biological activities of each plant with combine plants extract in form Triphala especially cytotoxic activity against breast, cervical and prostate cancer which cause high death rates in man and also test antioxidant activity. Bioassay guide fractionation was used for isolated cytotoxic compounds against these cancer cells

and also isolated antioxidant compounds. These results would provide additional useful data on the biological activities of these plants and support the use of folk doctors to treat cancer patients.

1.3 Review of Literatures

1.3.1 Phyllanthus emblica Linn.

Phyllanthus emblica Linn. (Syn. *Emblica officinalis* Gaertn.) is known in Thailand by the local names, Ma-Kham Pom. In English, the plant is known as Indian Gooseberry; alternative English names included, Emblic Myrobalan, Malacca tree (Benny *et al.*, 2008). It is belonging to family Euphorbiaceae occurs throughout Thailand and also in India, Pakistan, Bangladesh, Ceyton, Malaya, Singapore, Malaysia, China, Sri Lanka and Peninsula (Benny *et al.* 2008, and Scartezzini *et al.*, 2006).

The description of *Phyllanthus emblica* Linn., shown in Figure 1-1, is a small or medium sized tree, up to 20 m high, deciduous, with crooked trunk and spreading branches; bark greenish gray, peeling off in conchoidal flakes; branchlets glabrous or finely pubescent 10 to 20 cm long. Leaves imbricate when young, subsessile, 0.5 to 2.5 cm by 1.5 to 5.5 mm, closely set along the branchlets, distichous, light green, glabrous, narrowly-linear, obtuse, having appearance of pinnate leaves; stipules minute, ovate, finely acute. Flowers small, monoecious, apetalous, greenish yellow, in axillary fascicles on the leaf-bearing branchlets, often on the naked portion below the leaves, with fimbricate bracts at the base. Male flowers numerous, on short slender pedicle; calyx-lobes, oblong, obtuse, 1.2 mm long; anthers; filaments united in a short central column; disk-glands 6 alternating with the calyx-segments. Female flowers few, subsessile or sessile; calyx as in the male; ovary 3-celled, half immersed in the lacerate, cup-shaped disk; style connate at the base; stigma, bilobed, lobed dilated, recurved. Fruits sessile, 1.3 to 2.7 cm in diameter, fleshy, globose or depress globose, with 6 longitudinal faint lines, glabrous, lucid, pale yellow; endocarp of triangular cocci, bony, dehiscent, with 3 short bundles of vascular tissue at the base. Seeds, trigonous (THP, 2000).

Figure 1-1 Phyllanthus emblica Linn. (original picture)

1.3.2 Terminalia chebula Retz.

Terminalia chebula Retz. or Sa-Maw-Thai in Thai is one member of family Combretaceae. The fruit commonly known as black Myrobalans in English and Harad in Hindi, indigenous in Pakistan and India among many Asia and Africa countries (Saleem *et al.*, 2002).

The description of *Terminalia chebula* Retz., shown in Figure 1-2, is a mediumsized or large tree, up to 30 m high, up to 1.3 m in girth; bark rough, scaly; shoots and young leaves usually rusty villous. Leaves simplex, opposite, coriaceous, broadly ovate to ovate-elliptic, 8 to 15 cm by 6 to 10 cm, glabescent; nerves obscure above, slightly raised and usually brownish pubescent beneath; apex acute or abruptly acuminate; base cuneate, slightly cordate or rounded; petiole 1 to 3 cm long, glabrous or sparsely pubescent with a pair of nodular glands near leafbase. Inflorescences axillary or terminal panicles, usually with 3 to 6 spikes; spikes 3 to 6 cm long; rachis pubescent; flowers 2 mm long, 3 to 4 mm in diameter; bracts nearly glabrous, 1.5 to 2 mm long; calyx outside glabrous, inside densely villous, calyx-segments triangular; stamens 3 to 4 mm long; ovary glabrous, ovoid, 1 mm long; style glabrous, 2.5 to 3 mm long; disc lobed, densely villous. Fruit drupe, glabrous, subglobose to ellipsoid, 2.5 to 5 cm by 1.5 to 2.5 cm, usually smooth or frequently 5-angulate ridged, wrinkled, turning blackish when dry. Seed, rough, ellipsoid, 1.5 to 2.0 cm by 0.5 to 0.7 cm, without ridges (THP, 2000).

Figure 1-2 Terminalia chebula Retz. (from THP, 2000)

1.3.3 Terminalia bellerica Gaertn.

Terminalia bellerica Gaertn. or Sa-Maw-Phi-Phek in Thai and Bahera in Hindi is one member of Combretaceae. It occurs throughout Thailand and also in India, Nepal, Sri Lanka and Malaysia.

The description of *Terminalia bellerica* Gaertn., shown in Figure 1-3, a large tree, up to 50 m high, decidous, up to 2 m in girth, usually with large buttresses; bark blackish, brittle, longitudinally fissured and cracked, thick, cut yellow. Leaves, coriaceous, obovate, 4 to 20 cm by 2 to 15 cm, glabrous; nerves widely spaced, 6 to 8 pairs; petiole glabrous, 3 to 9 cm long, usually with a pair of dotted glands at about the middle or near leaf-base, occasionally inconspicuous or hardly observed when dry. Inflorescences spike or raceme, 3 to 15 cm long, often crowed at ends of branchlets without leaves so as to form terminal panicles; flowers andromonoecious, male on the upper part, tomentose; calyx 1 to 2 mm long, 4 to 5 mm in diameter; calyx-segments recurved, deltoid, 1.5 mm long; stamens 3 to 3.5 mm long; ovary ellipsoid, 2 to 3.5 mm by 1.5 to 3 mm; style 4 mm long; disc densely, rusty villous. Fruits drupe,

subglobose to broadly ellipsoid, 2 to 3.5 cm by 1.5 to 3 cm, slightly 5-ridged, densely velvety pubescent, very hard when dry. Seed, ellipsoid, rough, 1.2 cm by 0.5 cm. (THP, 2000)

Figure 1-3 Terminalia bellerica Gaertn. (from THP, 2000)

1.4 Chemical constituents of the investigated species

The reports of chemical constituents of these three plants are shown in Table 1-1 to 1-3. Their chemical structures are showed in Figure 1-

4 to 1-6.

 Table 1-1
 Chemical constituents found in Phyllanthus emblica Linn.

Botanical name	Part of plant used	Chemical constituents	References
Phyllanthus emblica Linn.	Fruit	ascorbic acid	THP, 2000; Scartezzini et al., 2006; Khopde et
			<i>al.</i> , 2001
		chebulagic acid	Zhang et al., 2004; Zhang et al., 2003
		chebulanin	Zhang <i>et al.</i> , 2001(a)
		chebulinic acid	Zhang et al., 2003
		elaeocarpusin	Zhang et al., 2004
		corilagin	Zhang et al., 2004; Zhang et al., 2003; Kumaran
			and Karunakaran, 2006
		ellagic acid	Zhang et al., 2003

Botanical name	Part of plant used	Chemical constituents	References
Phyllanthus emblica Linn.	Fruit	emblicanin A	Ghosal et al., 1996; Bhattacharya et al., 2002
		emblicanin B	Ghosal et al., 1996; Bhattacharya et al., 2002
		emblicol	Scartezzini and Speroni, 2000; Khopde et al.,
			2001; Ghosal et al., 1996
		furosin	Kumaran and Karunakaran, 2006
		gallic acid	THP, 2000; Kumar et al., 2006; Bhattacharya et
			al., 2002; Zhang et al., 2003; Kumaran and
			Karunakaran, 2006; Chase, 2002
		ethyl gallate	Zhang et al., 2003; Khopde et al., 2001; Ghosal
			et al., 1996
		methyl gallate	Kumaran and Karunakaran, 2006
		gallo-ellagitannoid	Ghosal et al., 1996
		1-O-galloyl-B-D-glucose	Zhang et al., 2004; Zhang et al., 2003; El-
			Mekkawy et al., 1995
		gallo-ellagitannoid	Ghosal <i>et al.</i> , 1996

Table 1-1 (Continued)

Botanical name	Part of plant used	Chemical constituents	References
Phyllanthus emblica Linn.	Fruit	1-O-galloyl-B-D-glucose	Zhang et al., 2004; Zhang et al., 2003; El-
			Mekkawy et al., 1995
		1-O-galloyl-B-D-glucoside	Zhang et al., 2001
		1-di-O- galloyl-B-D-glucose	Khopde et al., 2001; Ghosal et al., 1996
		1,6-di-O- galloyl-B-D-glucose	Zhang et al., 2003; El-Mekkawy et al., 1995
		1-ß-2,3,6-tetra-galloyl-glucose	Zhang <i>et al.</i> , 2001(a)
		3,6-di-O-galloyl-D-glucose	Zhang et al., 2003
		kaempherol-3-O- B-D-glucoside	Khopde et al., 2001; Ghosal et al., 1996
		quercein-3-O- B-D-glucoside	Khopde et al., 2001; Ghosal et al., 1996
		geraniin	Kumaran and Karunakaran, 2006
		L-malic acid 2-O-gallate	Zhang et al., 2004; Zhang et al., 2001
		mallonin	Zhang <i>et al.</i> , 2001(a)
		mucic acid	THP, 2000
		mucic acid-1,4-lactone-2-O-gallate	Zhang et al., 2001
		mucic acid-1,4-lactone-3,5-di-O-gallate	Zhang et al., 2001

Table 1-1 (Continued)

Table 1-1	(Continued)	

Botanical name	Part of plant used	Chemical constituents	References
Phyllanthus emblica Linn.	Fruit	mucic acid-1,4-lactone-3,5-di-O-gallate	Zhang et al., 2001
		mucic acid-1,4-lactone-3-O-gallate	Zhang et al., 2001
		mucic acid-1,4-lactone-5-O-gallate	Zhang et al., 2001
		mucic acid-1,4-lactone-6-methylester-	Zhang et al., 2001
		2-O-gallate	
		mucic acid-1,4-lactone-6-methylester-	Zhang et al., 2001
		5-O-gallate	
		mucic acid-1-methylester-2-O-gallate	Zhang et al., 2001
		mucic acid-2-O-gallate	Zhang et al., 2004; Zhang et al., 2001
		mucic acid-6-methylester-2-O-gallate	Zhang et al., 2001
		mucic acid-dimethylester-2-O-gallate	Zhang et al., 2001
		nicotinic acid	Zhang et al., 2004
		pectin	Scartezzini and Speroni, 2000
		pedunculagin	Ghosal et al., 1996; Bhattacharya et al., 2002
		phyllanemblinin A	Zhang <i>et al.</i> , 2001(a)

Botanical name	Part of plant used	Chemical constituents	References
Phyllanthus emblica Linn.	Fruit	phyllemblic acid	THP, 2000; Scartezzini and Speroni, 2000
		phyllemblin	Scartezzini and Speroni, 2000
		punigluconin	Ghosal et al., 1996; Bhattacharya et al., 2002
		putranjivain A	Zhang et al., 2001(a); El-Mekkawy et al., 1995
		pyrogallol	Khan <i>et al.</i> , 2002
		quercetin	Zhang <i>et al.</i> , 2003
		iso-quercetin	El-Mekkawy et al., 1995
		rutin	THP, 2000; Bhattacharya et al., 2002
		isostrictiniin	Zhang <i>et al.</i> , 2003
		tannic acid	Kumar <i>et al.</i> , 2006

Table 1-1 (Continued)

Botanical name	Part of plant used	Chemical constituents	References
Terminalia chebula Retz.	Fruit	ascorbic acid	Naik <i>et al.</i> , 2004
		casuarinin	Cheng et al., 2003
		chebulagic acid	Lee et al., 1995; Hamada et al., 1997
		chebulic acid	THP, 2000
		chebuloside II	Tasduq et al., 2006
		2,4-chebulyl- ß-D-glucopyranose	Saleem et al., 2002
		cheblagic acid	Xie et al., 2006
		chebulinic acid	THP, 2000; Saleem et al., 2002; Cheng et al.,
			2003
		chebulanin	Cheng et al., 2003
		ellagic acid	Saleem et al., 2002; Naik et al., 2004
		gallic acid	THP, 2000; Kaur et al., 1998; Chase, 2002;
			Saleem et al., 2002; Naik et al., 2004; Hamada et
			al., 1997

 Table 1-2
 Chemical constituents found in Terminalia chebula Retz.

Table 1-2 ((Continued)
--------------------	-------------

Botanical name	Part of plant used	Chemical constituents	References
Terminalia chebula Retz.	Fruit	1,2,3,4,6-penta-O-galloyl-B-D-	Lee <i>et al.</i> , 1995
		glucopyranose	
		1,6-di-O-galloyl-B-D-glucose	Cheng et al., 2003
		saponins	THP, 2000
		ß-sitosterol	THP, 2000
		tannic acid	THP, 2000
		linoleic acid	THP, 2000
		oleic acid	THP, 2000
		palmitic acid	THP, 2000

1.5 Biological activities of the investigated species

Previous investigations on biological activity of these twelve plants are shown in Table 1-4.

Table 1-4 Biological activities of the investigated species

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Antioxidant	Butanolic extract of the water fraction	Bandyopadhyay et al., 2000
			showed cytoprotective action on the	
			stomach wall from lesion by increased	
			secretion of hexosamine and gastric mucus	
			in the indomethacin induced ulceration of	
			rats and also decreased the level of	
			malonaldehyde (MDA) and increased	
			superoxide dismutase (SOD)	

Table 1-4	(Continuted)
-----------	--------------

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Antioxidant	Aqueous extract showed antioxidant	Khopde et al., 2001
			activity against γ -radiation-induced lipid	
			peroxidaion (LPO) in rat liver microsomes	
			and superoxide dismutase (SOD) damage in	
			rat liver mitochondria	
		Antioxidant	An emblicanin-A and emblicanin-B of fresh	Bhattacharya et al., 2002
			fruit juice showed antioxidant activity	
			against ischemia-reperfusion (IRI) -induced	
			oxidative stress in rat heart	
		Antioxidant	A standardized extract (Merck) showed a	Chaudhuri, 2002
			long-lasting and broad spectrum antioxidant	
			activity in cosmetic formulations and no	
			pro-oxidation activity induced by iron	
			and/or copper	

Table 1-4	(Continuted)
-----------	--------------

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Antioxidant	Flavonoid from methanol extract increased	Anila and Vijayalakshmi,
			free radical scavenging enzymes and	2003
			decreased lipid peroxide content in	
			hypercholesterolemic rats	
		Antioxidant	The dehydrated powder showed the ability	Anilakumar et al., 2004
			to detoxify the dimethyl hydrazine (DMH)	
			partly by enhancing the multicomponent	
			antioxidant system in the rat	
		Antioxidant	Ascorbic acid content in extract showed	Scartezzini et al., 2006
			antioxidant activity by DPPH and ABTS	
			tests, when the concentration was higher	
			than 0.25 mg/ml, the bleaching power of the	
			solutions was too high	

Table 1-4	(Continuted)	

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Antioxidant	The free and bound phenolics of extract	Kumar et al., 2006
			showed antioxidant activity by DPPH assay	
			$(IC_{50} = 0.65\pm0.05, 0.85\pm0.04 \ \mu g/ml,$	
			respectively)	
		Antioxidant	Ethyl acetate extract and five pure	Kumaran and Karunakaran,
			compounds from ethyl acetate extract	2006
			(gallic acid, methyl gallate, corilagin,	
			furosin and geraniin) showed strong NO	
			scavenging activity in vitro, when	
			compared with water and hexane extracts	
		Analgesic	Ethanolic and aqueous extracts showed	Perianayagam et al., 2004
			inhibitory effect on acetic acid-induced	
			writhing response in mice and no activity in	
			the tail-immersion test in mice	

Table 1-4 (Continuted)

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Antioxidant	Methanolic extract (75%) inhibited lipid	Chase, 2002
			peroxide formation, scavenged hydroxyl	
			and superoxide radicals in vitro and	
			reduced serum glucose concentrations in the	
			normal and diabetic rats within 4 hours after	
			administration	
		Antioxidant	Methanolic extract (75%) inhibited lipid	Sabu and Kuttan, 2002
			peroxidation induced with $\mathrm{Fe}^{2+}/\mathrm{ascorbate}$	
			and to scavenge hydroxyl and superoxide	
			radicals in vitro and IC_{50} of lipid	
			peroxidation, hydroxyl radical scavenging	
			and superoxide scavenging were found to	
			be 74.0±5.8, 155.0±8.1 and 6.5±1.5 µg/ml,	
			respectively	

Table 1-4	(Continuted)
-----------	--------------

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Antiulcerogenic	Methanolic extract showed ulcer protective	Sairam et al., 2002
			in different acute gastric ulcer models in	
			rats induced by aspirin, ethanol, cold	
			restraint stress and pyloric ligation and	
			healing effect in chronic gastric ulcers	
			induced by acetic acid in rats	
		Antitussive	Ethanolic extract showed that the cough	Nosál'ova et al., 2003
			suppressive activity was dose-dependent	
			and less effective than the classical narcotic	
			antitussive drug codeine but more effective	
			than the non-narcotic antitussive agent	
			dropropizine	

Table 1-4	(Continuted)	

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Hypolipidemia	Fresh juice showed lipid lowering and	Mathur et al., 1996
			antiatherosclerotic effects in cholesterol-fed	
			rabbits lowered the level of serum	
			cholesterol, TG, phospholipid and LDL by	
			82%, 66%, 77% and 90%, respectively	
		Hypolipidemia	Flavonoid from methanol extract inhibited	Anila and Vijayalakshmi,
			hepatic HMG CoA reductase activity and	2002
			elevated level of plasma LCAT, the	
			mechanism of hypolipidemic action is by	
			the concerted action of inhibition of	
			synthesis and enhancement of degradation	
		Antipyretic	Ethanolic and aqueous extracts showed	Perianayagam et al., 2004
			reduction in brewer's yeast induced	
			hyperthermia in rats	

|--|

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Immunomodulatory	The extract resulted in enhanced cyto-	Ram et al., 2002
			protection, apoptosis and DNA	
			fragmentation induced by chromium and	
			relieved the immunosuppressive effects of	
			Cr on lymphocyte proliferation and even	
			restored the IL-2 and $\gamma\text{-}\text{IFN}$ production	
			considerably	
		Immunomodulatory	Phyllanthus emblica had been found to	Suresh and Vasudevan,
			enhance natural killer (NK) cell activity and	1994
			antibody dependent cellular cytotoxicity	
			(ADCC) in syngeneic BALB/c mice,	
			bearing Dalton's lymphoma ascites (DLA)	
			tumor	

Table 1-4	(Continuted)
-----------	--------------

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Hepatoprotective	Ethanol extract (50%) exhibited increased	Pramyothin et al., 2006
			cell viability of rat primary cultured	
			hepatocytes being with ethanol by	
			increasing %MTT and decreasing the	
			release of transaminase	
		Hepatoprotective	Water extract inhibited the hepatotoxicity	Jeena and Kuttan, 2000
			produced by acute and chronic CCl ₄	
			administration as seen from the decreased	
			levels of serum and liver lipid peroxides	
			(LPO), glutamate-pyruvate transaminase	
			(GPT) and alkaline phosphatase (ALP)	
		Hepatoprotective	Hydroalcoholic extract (50%) against	Tasduq et al., 2005
			antituberculosis drugs-induced hepatic	
			injury	

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Cytotoxicity	Ethanol extract showed fully suppress	Khan <i>et al.</i> , 2002
			chronic myelogenous leukemic K562 cell	
			growth at 5-500 ng/ml and ethanol extract	
			and n-butanol fraction showed increased	
			amounts of extract on cell proliferation of	
			K562, B-lymphoid Raji, T-lymphoid Jurkat	
			and erythroleukemia HEL human cell lines	
			and the IC_{50} on K562, Raji, Jurkat and HEL	
			cells were 0.4, 8.0, 2.5 and 10 ng/ml,	
			respectively and the IC_{50} of pyrogallol on	
			K562, Jurkat, Raji and HEL cells was found	
			to be in range of 10-30 µM	

Table 1-4 (Continuted)

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Cytotoxicity	L-malic acid 2-O-gallate, mucic acid 2-O-	Zhang <i>et al.</i> , 2004
			gallate, 1-O-galloyl-ß-D-glucose and	
			corilagin showed stronger inhibition against	
			B16F10 (murine melanoma) cell growth	
			than against HeLa (human uterine	
			carcinoma) and MK-1 (human gastric	
			adrenocarcinoma) cell growth by MTT	
			method	
		Antitumor	The extract inhibited tumor incidences on	Sancheti et al., 2005
			two-stage process of skin carcinogenesis in	
			Swiss albino mice, induced by 7,12-	
			dimethyabenz(a)anthrecene (DMBA)	

Table 1-4	(Continuted)	
IGDICI	(Commuted)	

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Antitumor	Aqueous extract showed cytotoxic to L 929	Jeena et al., 2001
			cells in a dose dependent manner (IC ₅₀ =	
			16.5 µg/ml) and reduced ascites and solid	
			tumours in mice induced by DLA (Daltons	
			lymphoma ascites) cells, increased life span	
			of tumour bearing animals (20%) and	
			inhibited cell cycle regulating enzymes cdc	
			25 phosphatase in a dose dependent manner	
			$(IC_{50} = 5 \ \mu g/ml)$	
		Anticancer	Aqueous extract (10%) inhibited	Jeena et al., 1999
			hepatocarcinogenesis induced by N-	
			nitrosodiethylamine (NDEA) in a dose	
			dependent manner	

Table 1-4 (Continuted)

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Antimutagenicity	Ethanolic extract showed protection against	Banu et al., 2004
			genotoxicity induced by the rodent	
			carcinogent, 7,12-dimethyabenz(a)	
			anthrecene (DMBA)	
		Antimutagenicity	Acetone extract against indirect acting	Arora et al., 2003
			mutagen, 2-aminofluorene, in both TA98	
			and TA100 tester strains of Salmonella	
			typhimurium than against the direct acting	
			mutagens	
		Anti-diabetic	Methanolic extract (75%) at dose 100	Sabu and Kuttan, 2002
			mg/kg body weight reduced the blood sugar	
			level in normal and in alloxan (120 mg/kg)	
			diabetic rats within 4 hours	

Table 1-4	(Continuted)
-----------	--------------

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Anti-sugar cataract	Aqueous extract and tannoids of extract	Suryanarayana et al., 2004
			inhibited rat lens with IC_{50} values 0.72	
			mg/ml and 6 μ g/ml, respectively and human	
			aldose reductase (AR) 0.88 mg/ml and 10 μ	
			g/ml, respectively	
		Antidiarrheal	Methanolic extract showed inhibitory effect	Perianayagam et al., 2005
			on rats with diarrhea induced by castor oil	
			and magnesium sulfate, produced reduction	
			in gastrointestinal motility in charcoal meal	
			tests in rats and inhibited PGE(2)-induced	
			enteropooling as compared to control	
			animals	

Table 1-4	(Continuted)
-----------	--------------

Botanical name	Part of plant used	Activities	Results of biological activities	References
Phyllanthus emblica Linn.	Fruit	Antibacterial	Alcoholic and aqueous extracts exhibited	Ahmad et al., 1998
			antibacterial activity against Bacillus	
			subtilis, Proteus vulgaris, Salmonella	
			typhimurium, Pseudomonas aeruginosa,	
			Esherichia coli and Staphylococcus aureus	
			by using agar well diffusion method at	
			concentration of 200 mg/ml and concluded	
			that alcoholic extract showed greater	
			activity than aqueous and hexane extracts	
Terminalia chebula Retz.	Fruit	Antioxidant	Aqueous extract inhibited γ -radiation-	Naik et al., 2004
			induced lipid peroxidation in rat liver	
			microsomes and damage to superoxide	
			dismutase enzyme in rat liver mitochondria	
			and also scavenger of DPPH radicals	

Table I 4 (Continued)	Table 1-4	(Continuted)	
-----------------------	-----------	--------------	--

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Fruit	Antioxidant	Aqueous extract showed inhibition in the	Naik et al., 2003
			thiobarbituric acid reactive substances	
			(TBARS) formation and restored	
			antioxidant enzyme superoxide dismutase	
			(SOD) from the radiation induced damage	
			and also evaluated in terms of ascorbate	
			equivalents by different methods such as	
			cyclic voltammetry, decay of ABS	
			radical by pulse radiolysis and decreased in	
			the absorbance of DPPH radicals	
		Antioxidant	Methanolic extract (75%) inhibited lipid	Chase, 2002
			peroxide formation, scavenged hydroxyl	
			and superoxide radicals and reduced serum	
			glucose concentrations in the normal and	
			diabetic rats within 4 h after administration	

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Fruit	Antioxidant	MeOH, CHCl ₃ , EtOAc, n-BuOH, organic	Cheng <i>et al.</i> , 2003
			aqueous, water extracts, casuarinin,	
			chebulanin, chebulinic acid and 1,6-di-O-	
			galloyl-B-D-glucose showed anti-lipid	
			peroxidation activity (IC ₅₀ < 9.00 mg/ml,	
			except casuarinin, $IC_{50} = 29.67$ mg/ml),	
			anti-superoxide radical formation activity	
			$(IC_{50}$ values in the range of 0.04-2.42	
			mg/ml), free radical scavenging activity	
			(chebulinic acid had the strongest activity,	
			$IC_{50} = 2 \ \mu g/ml$, casuarinin and all extracts,	
			except organic aqueous extract possessed	
			free radical scavenging activity with IC_{50}	
			values in the range of 4-9 μ g/ml)	

Table 1-4 (Continuted)

Table I 4 (Continued)	Table 1-4	(Continuted)	
-----------------------	-----------	--------------	--

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Fruit	Antioxidant	Ethanolic extract inhibited oxidative stress	Na et al., 2004
			induced by UVB but in the peroxidation	
			model using t-buOOH showed a notable	
			cytoprotective effect on the human	
			epidermal keratinocytes-Neonatal/Foreskin	
			(HEK-N/F) cells with $60.5\pm3.8\%$ at a	
			concentration of 50 $\mu\text{g/ml}$ and the age-	
			dependent shortening of the telomeric DNA	
			length by the southern blots of the terminal	
			restriction fragments (TRFs) of DNA	
			extracted from subculture passage	
		Antioxidant	Methanolic extract (75%) inhibited lipid	Sabu and Kuttan, 2002
			peroxidation and scavenge hydroxyl and	
			superoxide radicals and IC ₅₀ were 85.5 ± 6.5 ,	
			165.5 \pm 8.5 and 20.5 \pm 3.2 µg/ml, respectively	

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Fruit	Antioxidant	Aqueous extract reversed the tert-butyl	Lee et al., 2005
			hydroperoxide (t-BHP)-induced cell	
			cytotoxicity and lactate dehydrogenase	
			leakage and exhibited in vitro ferric-	
			reducing antioxidant activity and DPPH	
			free radical-scavenging activities and also	
			lowered the serum levels of the hepatic	
			enzyme markers aspartate and alanine	
			aminotransferases and reduced the	
			indicators of oxidative stress in the liver,	
			such as the glutathione disulfide content	
			and lipid peroxidation, in a dose-dependent	
			manner	

Table 1-4 (Continuted)

Table 1-4	(Continuted)	
	(000	

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Fruit	Antioxidant	Methanolic extract showed down regulation	Prasad et al., 2006
			of glutathione content, glutathione-S-	
			transferase, glutathione reductase, lipid	
			peroxidation, H_2O_2 generation, blood urea	
			nitrogen, serum creatinine, DNA synthesis	
			and ornithine decarboxylase activity with	
			concomitant restoration of glutathione	
			peroxidase activity by NiCl_{2} induced renal	
			oxidative stress, toxicity and cell	
			proliferation response in male Wistar rats	
		Anti-diabetic	Methanolic extract (75%) at dose 100	Sabu and Kuttan, 2002
			mg/kg body weight reduced the blood sugar	
			level in normal and in alloxan (120 mg/kg)	
			diabetic rats within 4 hours	

Table 1-4 (Continu

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Fruit	Antiproliferation	Methanolic extract (70%) decreased cell	Saleem et al., 2002
			viability, inhibited cell proliferation and	
			induced cell death in a dose dependent	
			manner on all cell lines studied (human	
			(MCF-7) and mouse (S115) breast cancer	
			cell line, human osteosarcoma cell line	
			(HOS-1), human prostate cancer cell line	
			(PC3) and a non-tumorigenic, immortalized	
			human prostate cell line (PNTIA)) and also	
			induced apoptosis at lower concentrations,	
			but at higher concentrations, the major	
			mechanism of cell death was necrosis and	
			growth inhibitory, chebulinic acid (IC ₅₀ =	
			53.2 μM \pm 0.16) and ellagic acid (IC_{50} =	
			78.5 μ M \pm 0.24), on HOS-1 cell line	

Table 1-4	(Continuted)
-----------	--------------

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Fruit	Cytotoxicity	Methanolic extract (90%) inhibited the	Jin et al., 2006
			melanin production of mouse B16	
			melanoma cells by using MTT method	
		Hepatoprotective	Ethanolic extract showed hepatoprotective	Tasduq et al., 2006
			activity against anti-tuberculosis (anti-TB)	
			drug-induced toxicity	
		Immunosuppressive	Gallic acid and chebulagic acid that blocked	Hamada et al., 1997
			the cytotoxic T lymphocyte (CTL)-	
			mediated cytotoxicity and inhibited the	
			killing activity of CD8+ CTL clone at IC_{50}	
			values of 30 and 50 μ M, respectively and	
			also blocked granule exocytosis in response	
			to anti-CD3 stimulation at the equivalent	
			concentrations	

Table 1-4	(Continuted)
-----------	--------------

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Fruit	Antiviral	Water extract showed anti-herpes simplex	Yukaya <i>et al.</i> , 1996;
			virus (HSV) activity in vivo and inhibited	Kurokawa et al., 1995
			replication of human cytomegalovirus	
			(CMV) and murine CMV (MCMV) in vitro	
			and suppressed MCMV yields in lungs of	
			treated mice compared with water treatment	
		Antimutagenic	Aqueous extract inhibited γ -radiation-	Naik et al., 2004
			induced strand breaks formation in plasmid	
			pBR322 DNA	
		Antimutagenic	A tannin fraction showed effective against	Kaur et al., 1998
			S9-dependent mutagen, 2-aminofluorene, 4-	
			nitro-o-phynylenediamine but not at all	
			effective against 4-nitroquinoline-N-oxide	

Table 1-4 (Continuted)

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Fruit	Antimutagenic	Acetone extract against indirect acting	Arora et al., 2003
			mutagen, 2-aminofluorene, in both TA98	
			and TA100 tester strains of Salmonella	
			typhimurium than against the direct acting	
			mutagens	
		Anti-anaphylactic	Water soluble fraction inhibited compound	Shin et al., 2001
			48/80-induced anaphylactic shock 100%	
			with doses of 0.01-1.0 g/kg and also	
			inhibited histamine release from rat	
			peritoneal mast cells (RPMC) and reduced	
			the serum histamine levels at concentration	
			ranging from 0.005 to 1.0 g/kg in a dose-	
			dependent manner and increasing effect on	
			anti-dinitrophenyl IgE-induced tumor	
			necrosis factor- α production from RPMC	

Table 1-4	(Continuted)	

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Fruit	Anticaries	Aqueous extract inhibited the growth,	Jagtap and Karkera, 1999
			sucrose induced adherence and glucan	
			induced aggregation of Streptococcus	
			mutans, 10% solution of the extract	
			inhibited the salivary bacterial count and	
			salivary glycolysis and mouthrinsing with	
			the extract reduced total bacterial counts	
			and the total streptococcal counts in the	
			saliva samples obtained up to and including	
			3 hours after rinsing	
		Hypolipidemia	Not showed potent hypolipidemic agent and	Shaila et al., 1998
			induced partial inhibition of rabbit atheroma	
			Alcoholic and water extracts showed	

Table 1-4	(Continuted)	
-----------	--------------	--

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Fruit	Antibacterial	Alcoholic and water extracts showed	Malekzadeh et al., 2001
			antibacterial effect against Helicobacter	
			pylori by using agar diffusion method and	
			the water extract showed MIC and MBC of	
			125 and 150 mg/l, respectively and at	
			concentration of 1-2.5 mg/ml inhibited	
			urease activity of H. pylori	
		Antibacterial	Alcoholic and aqueous extracts against	Ahmad et al., 1998
			Bacillus subtilis, Proteus vulgaris,	
			Salmonella typhimurium, Pseudomonas	
			aeruginosa, Esherichia coli and	
			Staphylococcus aureus by using agar well	
			diffusion method at concentration of 200	
			mg/ml and alcoholic extract showed greater	
			activity than aqueous and hexane extracts	

Table 1-4 (Continuted)

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia chebula Retz.	Seed	Antibacterial	Methanolic extract against S.aureus by agar	Bonjar, 2004
			well-diffusion bioassay and diameter of	
			inhibition zone were 18 mm in unripe seed	
			and 21 mm in ripe seed	
		Antifungal	Methanolic extract at 20 mg/ml	Bonjar, 2004(a)
			concentration against Clotrimazole-resistant	
			Candida albicans by agar well-diffusion	
			bioassay and the MIC were 1.25 mg/ml in	
			unripe seed and 0.62 mg/ml in ripe seed	
Terminalia bellerica	Fruit	Antioxidant	Methanolic extract (75%) inhibited lipid	Chase, 2002
Gaertn.			peroxide formation, scavenged hydroxyl	
			and superoxide radicals in vitro and	
			reduced serum glucose concentrations in the	
			normal and diabetic rats within 4 hours after	
			administration	

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia bellerica	Fruit	Antioxidant	Ethanolic extract (200, 400 and 800 mg/kg,	Jadon et al., 2007
Gaertn.			p.o.) and gallic acid (50, 100 and 200	
			mg/kg, p.o.) showed dose-dependent	
			recovery in aspartate aminotransferase,	
			serum alanine aminotransferase, serum	
			alkaline phosphatase, lipid peroxidation and	
			glutathione level but the effect was more	
			pronounced with gallic acid and at 200	
			mg/kg dose of gallic acid most effective	
			against carbon tetrachloride induced liver	
			and kidney damage	

Table 1-4 (Continuted)

Table 1-4	(Continuted)	
	(Commuted)	

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia bellerica	Fruit	Antioxidant	Methanolic extract (75%) inhibited lipid	Sabu and Kuttan, 2002
Gaertn.			peroxidation induced with $\mathrm{Fe}^{2+}/\mathrm{ascorbate}$	
			and to scavenge hydroxyl and superoxide	
			radicals in vitro and IC_{50} of lipid	
			peroxidation, hydroxyl radical scavenging	
			and superoxide scavenging were found to	
			be 27.0±3.2, 71.0±2.7 and 40.5±6.5 µg/ml,	
			respectively	
		Antimutagenic	Acetone extract against indirect acting	Arora et al., 2003
			mutagen, 2-aminofluorene, in both TA98	
			and TA100 tester strains of Salmonella	
			typhimurium than against the direct acting	
			mutagens	

Table 1-4	(Continuted)
-----------	--------------

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia bellerica	Fruit	Anti-diabetic	Methanolic extract (75%) at dose 100	Sabu and Kuttan, 2002
Gaertn.			mg/kg body weight reduced the blood sugar	
			level in normal and in alloxan (120 mg/kg)	
			diabetic rats within 4 hours	
		Antibacterial	Alcoholic extracts exhibited antibacterial	Ahmad et al., 1998
			activity against Bacillus subtilis, Proteus	
			vulgaris, Salmonella typhimurium,	
			Pseudomonas aeruginosa, Esherichia coli	
			and Staphylococcus aureus by using agar	
			well diffusion method at sample	
			concentration of 200 mg/ml and concluded	
			that alcoholic extract showed greater	
			activity than aqueous and hexane extract	

Table 1-4	(Continuted)
-----------	--------------

Botanical name	Part of plant used	Activities	Results of biological activities	References
Terminalia bellerica	Fruit	Antimicrobial	Methanol extract was more effective than	Elizabeth, 2005
Gaertn.			crude aqueous tested by extract against	
			most of 9 human microbial pathogens	
			except E. coli (enteropathogent) and P.	
			aeruginosa and highly effective against S.	
			aureus with lower MIC values.	
		Hypolipidemia	Not showed potent hypolipidemic agent and	Shaila et al., 1998
			induced partial inhibition of rabbit atheroma	

1.6 Objectives

This thesis was planned to study:

1. Antioxidant and cytotoxic activity against three types of human cancer cells; breast, cervical, prostrate and normal human lung cell of Triphala formula and its ingredients.

2. Chemical constituents of the active plant extracts which show free radical scavenging activity and/or cytotoxic activity against cancer cell lines.

3. Antioxidant activity and/or cytotoxic activity against cancer cells of the isolated compounds.