CONTENTS

	Page
CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SCHEME	X
LIST OF ABBREVIATIONS AND SYMBOLS	xi
CHAPTER	
1 INTRODUCTION	
1.1 Marine natural products and drug development	1
1.1.1 Marine-derived natural products in clinical development	1
1.2 Alzheimer's disease and cholinesterase inhibitors	4
1.2.1 Pathophysiology of Alzheimer's disease (AD)	4
1.2.2 Cholinergic hypothesis	4
1.2.3 Acetylcholinesterase inhibitors (AChE-I's)	5
1.3 Cholinesterase inhibitors derived from natural products	6
1.3.1 Alkaloids	7
1.3.1.1 Physostigmine	7
1.3.1.2 Galantamine and related Amaryllidaceous alkaloids	7
1.3.1.3 Huperzine A and Lycopodium alkaloids	8
1.3.1.4 Steroidal alkaloids and alkaloids with terpenoid skeletons	9
1.3.1.5 Miscellaneous alkaloids	9
1.3.2 Terpenoids	10
1.3.3 Buxaceous steroidal alkaloids	11
1.4 The sponge <i>Corticium</i> sp.	32
1.4.1 Taxonomy of <i>Corticium</i> sp.	32
1.4.2 Compounds associated with sponges from the genus Corticium	32
1.5 Objectives	41

CONTENTS (cont.)

	Page
2 EXPERIMENTAL	
2.1 General	42
2.2 Sponge material	43
2.3 Bioactivity determination	43
2.3.1 Acetylcholinesterase inhibition activity	43
2.3.1.1 Microplate assay	43
2.3.1.2 Thin-layer chromatography (TLC) assay	44
2.3.2 Cytotoxic activity	44
2.4 Isolation and purification	45
2.5 Physical properties of isolated compound	45
3 RESULTS AND DISCUSSION	
3.1 Isolation of the acetylcholinesterase-inhibiting compounds from the sponge	
Corticium sp.	47
3.2 The structure elucidation of the isolated compounds	48
3.2.1 The structure elucidation of compound 103	48
3.2.2 The structure elucidation of compound 102	53
3.3 Biological activities of compound 103	57
4 CONCLUSION	61
REFERENCES	62
APPENDIX	67
VITAE	79

LIST OF TABLES

Table		Page	
1	Marine-derived natural products currently approved or in clinical trial	3	
2	Steroidal alkaloids as cholinesterase inhibitors	13	
3	Compounds isolated from sponges of the genus Corticium	33	
4	NMR data of 103 (500 MHz for 1 H and 125 MHz for 13 C; C_6D_6)	52	
5	NMR data of 102 (500 MHz for 1 H and 125 MHz for 13 C; C_6D_6)	57	
6	The inhibitory activities of compound 103	58	
7	$V_{\rm max}$ and $K_{\rm m}$ of AChE with and without inhibitors	58	

LIST OF FIGURES

Figure		Page
1	FDA-approved drugs for AD	6
2	13 C NMR spectrum of 103 (125 MHz, C_6D_6)	49
3	1 H NMR spectrum of 103 (500 MHz, $C_{6}D_{6}$)	50
4	13 C NMR spectrum of 102 (125 MHz, C_6D_6)	54
5	¹ H NMR spectrum of 102 (500 MHz, C_6D_6)	55

LIST OF SCHEME

SCHEME	age
1 Isolation protocol for the sponge, <i>Corticium</i> sp.	46

LIST OF ABBREVIATIONS AND SYMBOLS

 $[\alpha]_{D}$ specific rotation

 δ chemical shift (in ppm)

ε molar extinction coefficient

 λ_{\max} maximum wavelength

 $V_{\rm max}$ maximum wave number

ACh acetylcholine

AChE acetylcholinesterase

AChE-I's acetylcholinesterase inhibitors

AD Alzheimer's disease

ATCI acetylthiocholine iodide

BChE butyrylcholinesterase

br broad (for NMR signals)

c concentration

CoMFA comparative molecular field analysis

CoMSIA comparative molecular similarity indices analysis

COSY correlation spectroscopy

d doublet (for NMR signals)

DEPT distortioness enhancement by polarization transfer

dmA delta milliabsorption

DTNB 5,5'-dithiobis[2-nitrobenzoic acid]

EIMS electron-impact mass spectroscopy

ESIMS electro-sprayed ionization mass spectroscopy

HMBC heteronuclear multiple-bond multiple-quantum coherence

HMQC heteronuclear multiple-quantum coherence

HPLC high pressure liquid chromatography

HREIMS high-resolution electron-impact mass spectroscopy

IC₅₀ inhibitory concentration at 50% of tested subject

IR infrared

LIST OF ABBREVIATIONS AND SYMBOLS (cont.)

J coupling constant

 $K_{\rm m}$ Michaelis constant

m multiplet (for NMR signals)

m/z mass-over-charge ratio

MIC minimum inhibitory concentration

MS mass spectroscopy

NMR nuclear magnetic resonance

QSAR quantitative structure-activity relationship

s singlet (for NMR signals)

SE standard error

SRB sulphorhodamine B

t triplet (for NMR signals)

TLC thin layer chromatography

 t_{R} retention time

UV ultraviolet-visible

 V_{max} maximum velocity

w/v weight by volume