CONTENTS

Page

CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xiii

CHAPTER

1.	. INTRODUCTION AND LITERATURE REVIEW			
	<u>1.1</u>	Overview		
	<u>1.2</u>	Arsenic contaminated in the environment		
		<u>1.2.1</u> <u>Arsenic in soil</u>	3	
		<u>1.2.2</u> Arsenic in plants	4	
		<u>1.2.3</u> <u>Arsenic in water</u>	5	
	<u>1.3</u> The analytical techniques for arsenic analysis			
	<u>1.4</u> <u>Health Effects of arsenic on human</u>			
	1.5 Source and value of exposure			
	<u>1.6</u>	Arsenic contamination in Ronphibun Sub-district		
		<u>1.6.1</u> Background information of arsenic contamination	10	
		<u>1.6.2</u> Distribution of arsenic in Ronphibun Sub-district	12	
		<u>1.6.3</u> <u>Risk assessment studies</u>	13	
	<u>1.7</u>	Objectives	14	
<u>1.8</u> <u>Anticipation outcome</u>			14	
2.	2. <u>METHODOLOGY</u>			
	<u>2.1</u>	Chemical and material	15	
	2.2	Instruments	15	
	<u>2.3</u>	Hydride Generation Atomic Absorption Spectrophotometry17		
		(HGAAS)		
	<u>2.4</u>	Optimization of the analytical method	18	
		2.4.1 Carrier gas (Ar) flow rate	18	

CONTENTS (CONTINUED)

		<u>2.4.2</u>	Effect of NaBH ₄ concentration	18
		<u>2.4.3</u>	Effect of HCl concentration	18
		2.4.4	Effect of KI / Ascorbic acid concentration	18
		2.4.5	Effect of reduction time	19
		2.4.6	Optimum of atomization temperature	19
	2.5	Samplin	ng site and sample preparation	19
		2.5.1	Soil sampling and preparation	22
		2.5.2	Plant sampling and preparation	22
	2.6	Compa	rison of the extraction methods	24
		2.6.1	Autoclave extraction method	24
		2.6.2	Hot plate extraction method	24
	2.7	Sample	s Extraction	24
		2.7.1	Soil extraction	24
		2.7.2	Plant extraction	24
	2.8	Determination of total arsenic in soils and edible plants		
	2.9	Standard addition method		
	2.10	Method of validation		
		2.10.1	Detection limit (DL)	26
		2.10.2	Precision	27
		2.10.3	Accuracy	27
		2.10.4	Recovery	27
		2.10.5	Linear dynamic range	28
RE	SULT	S AND I	DISSCUSSION	29
	3.1	Optimization of parameters used for FIAS 100-AAnalyst 800		
		3.1.1	Effect of carrier gas flow rate (Ar)	29
		3.1.2	Effect of NaBH ₄ concentration	29
		3.1.3	Effect of HCl concentration	30
		3.1.4	Effect of Potassium iodide / Ascorbic concentration	31

3

CONTENTS (CONTINUED)

			Page
	3.1.5	Effect of reduction time	32
	3.1.6	Effect of atomization temperature	32
3.2	Compa	rison of the method used for extraction	33
3.3	Standar	rd addition	35
3.4 Method of validation		36	
	3.4.1	Detection limit (DL)	36
	3.4.2	Precision	36
	3.4.3	Accuracy	36
	3.4.4	Percent Recovery	36
	3.4.5	Linear dynamic range	37
3.5 Total amount of arsenic in soil and edible plant samples			37
	3.5.1	Arsenic level in soil	37
	3.5.2	Arsenic level in plants	40
3.6 Relationship between arsenic contents of soil and plant		44	
3.7	Risk as	ssessment study	48
4 <u>CONCL</u>	<u>USION</u>		51
REFERENCE	ES		53
APPENDICE	<u>ES</u>		62
A			63
<u>B</u>			66
<u>C</u>	_		68
D			79

<u>VITAE</u>

E

80

81

LIST OF TABLES

Table		Page
<u>1-1</u>	Some arsenic compounds and their chemical structure which are	2
	found in the environment	
<u>1-2</u>	Arsenic contents in the soil of various countries	4
<u>1-3</u>	Analytical method used with arsenic determination	7
<u>1-4</u>	Estimated daily intake of arsenic for each individual	10
<u>1-5</u>	Arsenic concentration from various environmental media in12	
	Ronphibun Sub-district	
<u>2- 1</u>	The Village names of the sampling area in Ronphibun Sub-district,	20
	Nakhorn Si Thammarat	
<u>3- 1</u>	Arsenic concentration in Certified Reference Material (CRM) PACS-2	36
<u>3-2</u>	Bioconcentration factor value (BCF) of each plant growing on 46	
	Ronphibun Sub-district Nakhorn Si Thammarat	
<u>3-3</u>	Risk index of people in Ronphibun Sub-district consuming	50
	arsenic contaminated food	
<u>A- 1</u>	Stock solution and all chemical reagents list	63
<u>A- 2</u>	The parameters used for Perkin Elmer model 5000	63
<u>A-3</u>	The parameters used for Perkin Elmer FIAS -AAanlyst 800	64
<u>A-4</u>	Name and GPS position of each sampling site	65
<u>C-1</u>	Optimization of carrier gas (argon)	68
<u>C-2</u>	The effect of $NaBH_4$ concentration on the peak area of arsine	68
<u>C-3</u>	The effect of HCl concentration (%v/v) on the peak height and peak	68
	area of arsine	
<u>C-4</u>	The effect of KI/ Ascorbic acid reagent using as reducing agent on	69
	the peak area of arsine	
<u>C-5</u>	The effect of reduction time on the peak area of arsine	69
<u>C-6</u>	The effect of optimization temperature on the peak area of arsine	69
<u>C-7</u>	Comparison of the method used for extraction	70
<u>C-8</u>	The result of the standard addition in soil (B79/1 M9)	70
C- 9	The result of the standard addition in <i>Curcuma Longa</i> . plant $(B_{79/1} M_9)$	70

LIST OF TABLES (CONTINUED)

Table		Page
<u>C-10</u>	The detection limit for arsenic measurement using hydride generation	71
	of AAS Perkin Model 5000	
<u>C- 11</u>	The detection limit for arsenic measurement using hydride generation	71
	of FIAS 100-AAnalyst 800	
<u>C-12</u>	The % RSD calculation from soil sample $(M_{14}B_{204})$	72
<u>C-13</u>	The % RSD calculation from Carica sp. (M_2B_{10})	72
<u>C-14</u>	Percent recovery	73
<u>C-15</u>	Linear dynamic range for AAnalyst 800 and Perkin Elmer Model 5000	73
<u>C- 16</u>	Arsenic concentration in soil samples at the Ronphibun Sub-district	74
C- 17	Arsenic concentration in edible plants	73
C- 18	The bioconcentratin factor of edile plant sample	76
<u>D- 1</u>	Total population in Ronphibun Sub-district, Nakhorn Si Thammarat	79

LIST OF FIGURES

Figu	re P	age
<u>1-1</u>	Biological transformations of arsenic	3
<u>1-2</u>	Illustration of skin cancer caused by arsenic	9
<u>1-3</u>	Map of Ronphibun Sub-district, Nakhorn Si Thammarat Province	11
<u>2-1</u>	Perkin Elmer model 5000 coupled with Flow injection system	16
<u>2-2</u>	Perkin Elmer model AAnalyst 800 coupled with Flow injection 16	
	analysis system 100 (FIAS100)	
<u>2-3</u>	The sampling location	21
<u>2-4</u>	Compositing sampling protocol	22
<u>2-5</u>	Edible plants collected from Villages No. 1, 2, 8, 9, 11, 13 and 23	
	14 grown in Ronphibun Sub-district	
<u>2-6</u>	Samples extraction (A: soil extraction. and B: plant extraction)	25
<u>3-1</u>	The effect of carrier gas (argon) flow rate on the peak area	_29
	of arsine generated from FIAS -AAnalyst 800 system	
<u>3-2</u>	The effect of NaBH ₄ concentration on the peak area of arsine generated 30	
	from FIAS 100- AAnalyst 800 system	
<u>3-3</u>	The effect of HCl concentration (%v/v) on the peak height 31	
	and peak area of arsine generated from FIAS 100- AAnalyst 800 system	
<u>3-4</u>	The effect of KI/ Ascorbic acid reagent using as reducing agent on _31	
	the peak area of arsine generated from FIAS 100- AAnalyst 800 system	
<u>3-5</u>	The effect of reduction time on the peak area of arsine generated_32	
	from FIAS 100-AAnalyst 800 system	
<u>3-6</u>	The effect of optimization temperature on the peak area of arsine	_33
	generated from FIAS 100-AAnalyst 800 system	
<u>3-7</u>	Peak are generated from extractants of soil samples for extraction 34	
	using autoclave and hot plate	
<u>3- 8</u>	Comparison standard calibration curve and standard addition curve 35	
	method for soil sample	
<u>3-9</u>	Comparison standard calibration curve and standard addition curve 35	
	method for plant sample	

LIST OF FIGURES (CONTINUED)

Figur	re Pa	ge
<u>3-10</u>	Peak are generated from FIAS 100 - AAnalyst 800 system (A)	37
<u>3-11</u>	Distribution of arsenic concentration in soil samples collected from 39	
	Villages No. 1, 2, 8, 9, 11, 12, 13 and 14 in Ronphibun Sub-district,	
	Nakhorn Si Thammarat	
<u>3-12</u>	Box and outliner plot presents Q_1 , Q_2 and Q_3 of arsenic level in soil of each 4	.0
	Village (Moo) in Ronphibun Sub-district Nakhorn Si Thammarat	
<u>3-13</u>	Box plot of arsenic concentration presented in plants that have edible root	41
<u>3-14</u>	Box plot of arsenic concentration presented in the plants 42	
	that have edible leaves	
<u>3- 15</u>	Box plot of arsenic concentration presented in the plants 43	
	that have edible fruit	
<u>3- 16</u>	The relationship between soil arsenic and accumulated in different part45	
	of plants growing in Ronphibun Sub-district Nakhorn Si Thammarat	
3-17	Box plot of arsenic concentrations of arsenic accumulated in edible part of	45
	plants which are grown in both high and low contaminated area	