Contents

	Page
Contents	vi
List of Tables	ix
List of Figures	xi
Chapter	
1 Introduction	1
1.1 Introduction	1
1.2 Literature review	3
1.2.1 Chemistry of Arsenic(As)	3
1.2.1.1 Physical and chemical properties	4
1.2.1.2 Application	5
1.2.1.3 Source and potential exposure	5
1.2.1.4 Health effects	5
1.2.1.5 Maximum contaminant level (MCL) and guidelines	6
1.2.1.6 Arsenic contamination in Thailand	6
1.2.2 Inductively coupled plasma-optical emission spectrometry	8
1.2.3 Continuous flow hydride generation system	10
1.2.4 Determination of inorganic arsenic species	11
1.3 Objectives	14
2 Experimental	15
2.1 Standards and chemicals	15
2.2 Instrumentation and apparatus	15
2.3 Methodology	16
2.3.1 Preparation of standard and reagent solutions	16
2.3.1.1 Preparation of working As(III) and As(V) solutions	16
2.3.1.2 Preparation of NaHB ₄ solution	17
2.3.1.3 Preparation of HCl solution	17
2.3.1.4 Preparation of KI solution	17
2.3.2 Instrumental setup	17
2.3.2.1 Hydride generation system	17
	vi

Contents (Continued)

	Page
2.3.2.2 ICP-OES system	18
2.3.3 Optimization of HG-ICP-OES conditions for arsenic analysis	20
2.3.3.1 Wavelength	20
2.3.3.2 Integration time	20
2.3.3.3 RF power	20
2.3.3.4 Plasma gas flow rate	21
2.3.3.5 Carrier gas flow rate	21
2.3.3.6 Auxiliary flow rate	21
2.3.3.7 NaBH ₄ concentration	21
2.3.3.8 HCl concentration	21
2.3.3.9 Pumping rate	22
2.3.3.10 Sample flow rate	22
2.3.3.11 NaBH ₄ and HCl flow rate	22
2.3.3.12 KI concentration	22
2.3.3.13 Prereduction time	22
2.3.4 Linear dynamic range	23
2.3.5 Limit of detection (LOD) and limit of quantitation (LOQ)	23
2.3.6 Accuracy	24
2.4 Samples analysis	25
2.4.1 Determination of inorganic As in drinking water	26
Results and discussion	27
3.1 Optimization of HG-ICPOES conditions	27
3.1.1 Wavelength	27
3.1.2 Integration time	29
3.1.3 RF power	30
3.1.4 Plasma gas flow rate	31
3.1.5 Carrier gas flow rate	32
3.1.6 Auxiliary flow rate	33
3.1.7 Pumping rate	34
	vii

3

Contents (Continued)

	Page
3.1.8 HCl concentration	36
3.1.9 Reductant concentration	38
3.1.10 Pre-reductant concentration	39
3.1.11 Pre-reduction time	40
3.2 Linear dynamic range	42
3.2.1 Linear dynamic range of total As	42
3.2.2 Linear dynamic range of As(III)	43
3.2.3 Linear dynamic range of As(V)	44
3.3 Limit of detection (LOD) and limit of quantitation (LOQ)	45
3.3.1 Limit of detection and limit of quantitation of total As	45
3.3.2 Limit of detection and limit of quantitation of As(III)	48
3.4 Accuracy	51
3.4.1 % Recovery of total As	51
3.4.2 % Recovery of As(III)	52
3.4.3 % Recovery of As(V)	54
3.5 Sample analysis	55
3.5.1 Quantitative analysis of total As in drinking water	55
3.5.2 Quantitative analysis of As(III) in drinking water	56
3.5.3 Quantitative analysis of As(V) in drinking water	58
4 Conclusion	61
Reference	63
Vitae	69

List of Tables

Table	P	age
1	Common name, chemical structure, chemical formula,	
	synonym and trade name of arsenic, arsenite and arsenate species.	3
2	Physical and chemical properties of arsenic, arsenite and arsenate	4
3	Experimental conditions for the HG-ICP-OES	19
4	Dinking water samples for totalAs, As(III) and A(V) analysis using	
	by HG-ICP-OES	25
5	The relative emission signal of As(III) at various four wavelengths	28
6	The relative emission signal of As(III) at various integration time	29
7	The relative emission signal of As(III) at various RF powers	30
8	The relative emission signal of As(III) at various plasma gas	
	flow rates	31
9	The relative emission signal of As(III) at various carrier flow rates	32
10	The relative emission signal of As(III) at various auxiliary gas	
	flow rates	33
11	The relative emission signal of As(III) at various pumping rates	34
12	The relative emission signal of As(III) at various HCl	
	concentration	37
13	The relative emission signal of As(III) at various NaBH ₄	
	concentration	38
14	The relative emission signal of As(III) at various KI conc.	39
15	The relative emission signal of As(III) at various KI time	40
16	The optimum conditions of HG-ICP-OES for determination of	
	inorganic As species in this investigation	41
17	The relative emission signal depends on various total As	
	concentration	42
18	The relative emission signal depends on various As(III)	
	concentration	43
19	The relative emission signal depends on various As(V)	
	concentration	44
		ix

List of Tables (Continued)

Table	Pa	age
20	The total As concentration in blank (10 replicates)	46
21	The relative emission signal depends on various total As	
	concentrations	46
22	The As(III)concentration in blank (10 replicates)	48
23	The relative emission signal depends on various As(III)	
	concentrations	48
24	The limit of detection of total As, As(III) and As(V) from	
	this investigation	50
25	The relative of emission signal at various total As concentrations	51
26	% Recovery for total As	52
27	The % relative of emission signal at various As(III) concentrations	53
28	% Recovery for As(III)	53
29	% Recovery for As(V)	54
30	The % recovery of total As , $\mbox{As}(\mbox{III})$ and $\mbox{As}(\mbox{V})$ concentration of	
	8 and 16 μ g L ⁻¹	54
31	Total As concentration of drinking water samples determined by	
	calibration curve method using HG-ICP-OES system with optimum	n 55
32	% Recovery of total As using in drinking water samples	56
33	% Recovery of total As using in drinking water samples	56
34	As(III) concentration of drinking water samples determined by	
	calibration curve method using HG-ICP-OES system with	
	optimum conditions	57
35	% Recovery of As(III) with spiked 4 μ g L ⁻¹ in drinking water	
	samples	57
36	% Recovery of As(III) with spiked 8 μ g L ⁻¹ in drinking water	
	samples	58
37	% Recovery of As(III) with spiked 12 μ g L ⁻¹ in drinking water	
	samples	58

List of Tables (Continued)

Table		Page
38	% Recovery of As(V) in drinking water samples	59
39	Inorganic As concentrations of drinking water samples determined	
	by standard curve method	59

List of Figures

Figure	Pa	age
1	Map of Ron Phibun District, Showing the arsenic contamination	7
2	Major components and layout of typical ICP-OES instrument	9
3	Schematic design and flow path of hydride generation system	
	coupled online to ICP-OES	11
4	Instrument setup of HG-ICP-OES system	18
5	Drinking water samples for total As, As(III) and As(V) analysis	
	using HG-ICP-OES	25
6	The relative emission signal of As(III) at various four wavelength	28
7	The relative emission signal of As(III) at various integration time	29
8	The relative emission signal of As(III) at various RF power	30
9	The relative emission signal of As(III) at various plasma gas	
	flow rates	31
10	The relative emission signal of As(III) at various carrier flow rates	32
11	The relative emission signal of As(III) at various auxiliary gas	
	flow rates	33
12	The relative emission signal of As(III) at various pumping rates	35
13	The relative emission signal of As(III) at various sample flow rates	35
14	The relative emission signal of $As(III)$ at various HCl and $NaBH_4$	
	flow rates	36
15	The relative emission signal of As(III) at various HCl conc.	37
16	The relative emission signal of As(III) at various NaBH ₄ conc.	38
17	The relative emission signal of As(III) at various KI conc.	39
18	The relative emission signal of As(III) at various KI time	40
19	The calibration graph of total As concentration	43
20	The calibration graph of As(III) concentration	44
21	The calibration graph of As(V) concentration	45
22	The calibration graph of total As concentration	47
23	The calibration graph of As(III) concentration	49
24	The calibration graph of total As concentrations	52

xii

List of Figures (Continued)

Figure		Page
25	The calibration graph of As(III) concentration	53