CONTENTS

			Page
CC	ONTENTS	8	viii
LI	ST OF TA	ABLES	xi
LI	ST OF FIC	GURES	xiv
Cŀ	IAPTER		
1	INTROI	DUCTION AND LITERATURE REVIEW	
	1.1	Introduction	1
	1.2	Trace metals in estuarine lake	3
		1.2.1 Inputs of trace metals to lakes	3
		1.2.2 Regulation of trace metal in estuary	4
	1.3	Flux measurement	5
		1.3.1 Diffusive flux	5
		1.3.2 Benthic flux	6
		1.3.3 Benthic chamber	8
	1.4	Metal Analysis	8
	1.5	Study site: The Outer Songkhla Lake	8
	1.6	Research Objective	10
	1.7	Anticipation Outcome	10
2	METHC	DDOLOGY	
	2.1	Chemicals and materials	
	2.2	Instruments and Apparatus	11
		2.2.1 GFAAS Perkin Elmer model AAnalyst 800	11
		2.2.2 FAAS Shimasu model AA 680	
		and Varian model Spectra 220	12
		2.2.3 Core sampler	12
	2.3	Construction the benthic chamber	13

CONTENTS (CONTINUED)

			Page
	2.4	Effect of oxygen and salinity on metal concentrations in overlying	g 14
		water under controlled conditions in Laboratory	
		2.4.1 Effect of aerobic and anaerobic conditions on metals	
		concentrations	14
		2.4.2 Effect of salinity on metals concentrations	14
	2.5	Benthic fluxes of metals in the Outer Songkhla Lake	15
	2.6	Dissolved metals determination	17
	2.7	Calculation of Flux	18
		2.7.1 Benthic Flux	18
		2.7.2 Diffusive Flux	18
	2.8	Sediment	19
	2.9	Sub sampling of sediment	20
	2.10	Sediment digestions	20
	2.11	Optimized the temperature program of GFAAS	21
	2.12	Quantification of Metals	22
	2.13	Method of validation	22
		2.13.1 Detection Limit (DL)	22
		2.13.2 Precision	23
		2.13.3 Recovery	23
		2.13.4 Analytical accuracy	24
3.	RESULT	T AND DISSCUSSION	
	3.1	Effect of oxygen and salinity on metals concentration in	25
		overlying water under controlled conditions in Laboratory	

- 3.1.1
 Effect of aerobic and anaerobic conditions on metal concentrations
 25
- 3.1.2 Effect of salinity on metal concentrations 27

CONTENTS (CONTINUED)

			Page
3.2	Benth	ic chamber experiment	29
	3.2.1	Physico-chemical characteristic of overlying water	29
	3.2.2	Dissolved trace metals	35
	3.2.3	Calculation of Metal Flux	42
		3.2.3.1 Benthic Flux	42
		3.2.3.2 Diffusive Flux	51
3.3	Metal	s Profiles in Pore Water and in Sediment	54
	3.3.1	Pore water Profiles	54
	3.3.2	Sediment Profiles	57
3.4	Optin	nized the temperature program of GFAAS	61
3.5	Quant	tification of Metals	61
3.6	Metho	od of validation	64
	3.6.1	Detection Limit (DL)	64
	3.6.2	Precision	64
	3.6.3	Recovery	65
	3.6.4	Analytical accuracy	65
4. CONCI	LUSION		67
BIBLIOGR	APHY		69
APPENDIC	ES		76
А			77
В			82
С			85
D			103
E			105
F			108
VITAE			109

LIST OF TABLES

Table	Pa	age
2-1	Temperature Program for the Determination of Cd, Cu, Pb, Fe and Mn	21
3-1	Physico-chemical characteristics of overlying water	29
3-2	The slopes of the regression line and fluxes of Cd, Cu, Pb, Fe and Mn	43
3-3	The slopes of the regression line and fluxes of Cd, Cu, Pb, Fe and Mn	47
3-4	Concentration of Cd, Cu, Pb, Fe and Mn in pore water (nmol L^{-1}) at	52
	Khao-Deang sediments collected on 12 April, 2005	
3-5	Concentration of Cd, Cu, Pb, Fe and Mn in pore water (nmol L^{-1}) at	53
	Khao-Deang sediments collected on 27 January, 2006	
3-6	Benthic Fluxes and Diffusive Fluxes of Cd, Cu, Pb, Fe and Mn at	53
	Khao-Deang	
3-7	The operating conditions	61
3-8	Percent recovery of Cd, Cu, Pb, Fe and Mn	65
3-9	Analysis of reference material (MESS-1)	66
A-1	Concentration of Cd, Cu, Pb, Fe and Mn in pore water from	
	different sites	77
A-2	Diffusive flux of metals from different sites	78
A-3	Benthic fluxes of metals from different sites	79
A-4	Different design of benthic chamber	80
A-5	Water qualities in the Outer Songkhla Lake	80
A-6	Concentrations of dissolved Cd, Cu, Pb, Fe and Mn in the Outer Lake	81
A-7	Total Concentration of Cu, Pb, Fe and Mn in sediment from the Outer Lake	81
B-1	The list of chemical reagents	82
B-2	The list of materials	82
B-3	Operating conditions used for GFAAS	83
B-4	Operating conditions used for FAAS	84
C-1	The changes of metal concentration in aerobic and anaerobic condition	85
C-2	The changes of metal concentration in control condition	86
C-3	The changes of Cd concentration in different salinity	87

LIST OF TABLES (CONTINUED)

Table		Page
C-4	The changes of Cu concentration in different salinity	88
C-5	The changes of Pb concentration in different salinity	89
C-6	D.O. changes of the water inside and outside benthic chambers at Kor-	90
~ -	Yor (22- 23 January 2005)	
C-7	D.O. changes of the water inside and outside benthic chambers at	90
	Khao-Deang (11-12 April, 2005)	
C-8	D.O. changes of the water inside and outside benthic chambers at	91
	Khao-Deang (25-27 April, 2005)	
C-9	The pH changes of water inside light and dark benthic chamber	92
	at Khao-Deang (11-12 April, 2005)	
C-10	The pH changes of water inside light and dark benthic chamber	92
	at Khao-Deang (25-27 January, 2006)	
C-11	Conductivity and total dissolved solid changes of water inside and outside	e 93
	benthic chambers at Khao-Deang (25-27 April, 2006)	
C-12	Salinity and Temperature changes of water inside and outside benthic	94
	chambers at Khao-Deang (25-27 April, 2006)	
C-13	Average concentrations of Cd, Cu, Pb, Fe and Mn (nmol L^{-1}) in water	95
	samples at Kor-Yor collected on 22-23 January 2005	
C-14	Average concentrations of Cd, Cu, Pb, Fe and Mn (nmol L^{-1}) in water	95
	samples at Khao - Deang collected on 11-12 April, 2005	
C-15	Average concentrations of Cd, Cu, Pb, Fe and Mn (nmol L^{-1}) in water	96
	samples at Khao-Deang collected on 25-27 January, 2006	
C-16	The absorbance of 2 μ g. L ⁻¹ of Cd at the difference	97
	ashing and atomizing temperatures.	
C-17	The absorbance of 25 μ g.L ⁻¹ of Cu at the difference	97
	ashing and atomizing temperatures	
C-18	The absorbance of 50 μ g.L ⁻¹ of Pb at the difference	98
	ashing and atomizing temperatures	

LIST OF TABLES (CONTINUED)

Table		Page
C-19	The absorbance of 20 μ g.L ⁻¹ of Fe at the difference	98
	ashing and atomizing temperatures	
C-20	The absorbance of 25 μ g.L ⁻¹ of Mn at the difference	99
	ashing and atomizing temperatures	
C-21	The Cd result of the standard addition in estuarine water sample	99
C-22	The Cu result of the standard addition in estuarine water sample	100
C-23	The Pb result of the standard addition in estuarine water sample	100
C-24	The Fe result of the standard addition in estuarine water sample	100
C-25	The Mn result of the standard addition in estuarine water sample	101
C-26	Detection limit (μ g L ⁻¹)	101
C-27	The % RSD calculation from sediment sample	102
C-28	The changes of Cd, Cu, Pb, Mn and Fe absorbance in nanopure-water	102
D-1	The changes of Sr concentration (mg L^{-1}) of the water inside benthic	
	chambers at Kor-Yor (22- 23 January, 2005)	103
D-2	The changes of Sr concentration (mg L^{-1}) of the water inside benthic	
	chambers at Khao-Deang (11-12 April, 2005)	103
D-3	The changes of Sr concentration (mg L^{-1}) of the water inside benthic	
	chambers at Khao-Deang (25-27 January, 2006)	104

LIST OF FIGURES

Figur	e	Page
1-1	Location of the Outer Songkhla Lake	1
1-2	Schematic representation of the cycling of trace elements in a lake	5
2-1	Pushed core sampler	12
2-2	Lab-built light and dark benthic chamber (Left) and a submersible	
	Pump installed on the wall inside the bucket (Right)	13
2-3	Effect of aerobic and anaerobic condition (Left) and effect of salinity	
	(Right) on metal concentration in overlying water	15
2-4	Location of 2 sampling stations (•), Kor-Yor and Khao-Daeng	15
2-5	Experimental set up showing a benthic chamber in position	16
2-6	Filter water samples	17
2-7	Sediment in Core and overlying water	19
2-8	The sediment was pressed out and sliced in the nitrogen chamber	20
3-1	Effect of oxygen on Cd, Cu and Pb concentration in the overlying water	26
3-2	Concentration of Cd, Cu and Pb in control experiment under	26
	anaerobic condition	
3-3	Cd, Cu and Pb concentrations changes of the water in different salinity	28
3-4	D.O. changes of the water inside and outside benthic chambers at	
	Kor-Yor (22-23 January, 2005)	30
3-5	D.O. changes of the water inside and outside benthic chambers at	
	Khao–Deang (11-12 April, 2005)	31
3-6	D.O. changes of the water inside and outside benthic chambers at	
	Khao-Deang (25-27 January, 2006)	31
3-7	pH changes of overlying water at Khao-Deang in dry season	
	(11-12 April, 2005)	32
3-8	pH changes of overlying water at Khao-Deang in wet season	
	(25-27 January, 2006)	32
3-9	Total dissolved solid of water inside and outside benthic chambers	
	at Khao–Deang (25-27 January 2006)	33

LIST OF FIGURES (CONTINUED)

Figure	e	Page
3-10	Salinity changes of water inside and outside benthic chambers at	34
	Khao-Deang (25-27 January 2006)	
3-11	Conductivity changes of water inside and outside benthic chamber	34
	at Khao-Deang (25-27 January 2006)	
3-12	Temperature changes of water inside and outside benthic chambers	35
	at Khao–Deang (25-27 January 2006)	
3-13	Average dissolved Cd (nM) inside light and dark benthic chambers at	36
	Kor-Yor	
3-14	Average dissolved Cu (nM) inside light and dark benthic chambers at	36
	Kor-Yor	
3-15	Average dissolved Pb (nM) inside light and dark benthic chambers at	37
	Kor-Yor	
3-16	Average dissolved Fe (nM) inside light and dark benthic chambers at	37
	Kor-Yor	
3-17	Average dissolved Mn (nM) inside light and dark benthic chambers at	38
	Kor-Yor	
3-18	Average dissolved concentration of Cd and Cu (nM) at Khao-Deang	39
	in dry season (Left) and wet season (Right)	
3-19	Average dissolved concentration of Pb and Fe (nM) at Khao-Deang	40
	in dry season (Left) and wet season (Right)	
3-20	Average dissolved concentration of Mn (nM) at Khao-Deang	41
	in dry season (Left) and wet season (Right)	
3-21	Fluxes of Cd (pmol cm ⁻² h ⁻¹) at Kor-Yor	43
3-22	Fluxes of Cu (pmol cm ⁻² h ⁻¹) at Kor-Yor	44
3-23	Fluxes of Pb (pmol cm ⁻² h ⁻¹) at Kor-Yor	45
3-24	Fluxes of Fe (pmol cm ⁻² h ⁻¹) at Kor-Yor	46
3-25	Fluxes of Mn (pmol $\text{cm}^{-2} \text{ h}^{-1}$) at Kor-Yor	47
3-26	Fluxes of Cd and Cu (pmol cm ⁻² h ⁻¹) at Khao-Deang	48

LIST OF FIGURES (CONTINUED)

Figure		Page
3-27	Fluxes of Pb and Fe (pmol cm ^{-2} h ^{-1}) at Khao-Deang	49
3-28	Fluxes of Pb and Fe (pmol cm ⁻² h ⁻¹) at Khao-Deang	50
3-29	Depth profiles of Cd and Cu in pore water at Khao-Deang. Also	
	showed are overlying water column concentration at a depth of 0 cm.	55
3-30	Depth profiles of Pb and Fe in pore water at Khao-Deang. Also	
	showed are overlying water column concentration at a depth of 0 cm.	56
3-31	Depth profiles of Mn in pore water at Khao-Deang. Also	
	showed are overlying water column concentration at a depth of 0 cm.	57
3-32	Depth profile of Cd concentration (mg kg^{-1}) in sediment at Khao-Deang	58
3-33	Depth profile of Cu and Pb concentration (mg kg ⁻¹) in sediment at	
	Khao-Deang	59
3-34	Depth profile of Fe and Mn concentration (mg kg ^{-1}) in sediment at	
	Khao-Deang	60
3-35	Comparison Cd standard calibration curve and standard addition	
	curve method of extracted sample	62
3-36	Comparison Cu standard calibration curve and standard addition	
	curve method of extracted sample	62
3-37	Comparison Pb standard calibration curve and standard addition	
	curve method of extracted sample	63
3-38	Comparison Fe standard calibration curve and standard addition	
	curve method of extracted sample	63
3-39	Comparison Mn standard calibration curve and standard addition	
	curve method of extracted sample	64