CHAPTER 2

EXPERIMENTALS

2.1 Chemicals

The chemicals for the investigations and synthesis were the highest purity commercially available and were used without further purification. They are all shown in Table 2.

Table 2 Chemicals.

Entry	Chemicals	Source	Grade	Remark
1	Styrene	-	-	Department of
				polymer science
				, Prince of
				Songkhla
				University
2	Styrene oxide	Fluka	Chemika	Purum <u>></u> 97%
				(GC)
3	m-chloroperbenzoic acid	Fluka	Chemika	~ 70 %(RT)
4	Silver nitrate	MERCK	Pro analysi	Switzerland
5	Acetonitrile	LAB-SCAN	Analytical	Ireland
			Reagent	
6	Ammonium chloride	UNIVAR	Analytical	Assay 99.5 %
			Reagent	min
7	Sodium sulfate	Fisher	Laboratory	> 99%
		chemicals		
8	1, 4-Naphtoquinone	Fluka	Chemika	Puriss 99.5%
9	Anthraquinone	BPH	Laboratory	England

Entry	Chemicals	Source	Grade	Remark
10	2-(hydroxymethyl)anthraquinone	Fluka	Chemika	Purum 97%
				(HPLC)
11	1, 2-dihydroxyanthraquinone	Aldrich	Laboratory	Puriss 97%
				(USA)
12	1, 4-dihydroxyanthraquinone	Aldrich	Laboratory	Puriss 96%
				(USA)
13	1, 5-dihydroxyanthraquinone	Aldrich	Laboratory	~97 %
				(HPLC)
14	1, 8-dihydroxyanthraquinone	Aldrich	Laboratory	Puriss 97 %
				(USA)
15	Anthraquinone- 2, 6- disulfonic	Fluka	Chemika	Purum <u>></u> 97%
	acid disodium salt			(HPLC)
16	2, 6-dibromoanthraquinone	Fluka	Chemika	Purum 98%
17	α-Tetralone	Fluka	Chemika	Puriss 97 %
18	9-Xanthone	Fluka	Chemika Puriss ≥ 97	
				(Switzerland)
19	Anthrone	Aldrich	Laboratory	Puriss 97%
				(USA)
20	Benzophenone	Aldrich	Laboratory	Puriss 96 %
				(USA)
21	1, 4-Benzoquinone	Fluka	Chemika	Puriss <u>></u>
				99.5%
22	Tetrahydroxyquinone	Fluka	Chemika	Puriss 99.5%

2.2 Instruments

 2.2.1 Gas Chromatography - Flame Ionization Detector (GC - FID) The HEWLETT - PACKARD model 5890 SERIES II Gas Chromatography equipped with Flame Ionization Detector was used with capillary column: SP 1 [cross - linked methyl silicone gum (25 m x 0.32 mm i.d.)].

Figure 29 The HEWLETT – PACKARD model 5890 SERIES II Gas Chromatography

The high purity (99.999 %) gases including nitrogen gas, hydrogen gas and air zero gas were bought from TIG Thailand. The optimized conditions for product and reactant analyses are summarized in Table 3.

Parameters	Optimum values
Carrier gas flow rate	35 ml / min
Hydrogen gas flow rate	45 ml / min
Air zero gas flow rate	450 ml / min
Injector temperature	165 °C
Detector temperature	195 °C
Initial temperature 95 °C	
Ramp I 5 °C/ m	
Finish Ramp I	120 °C
Ramp II 1 °C/ mir	
Finish Ramp II125 °C	
Ramp III	25 °C/ min
Finish Ramp III	275 °C

Table 3 The optimized GC conditions for analysis.

2.2.2 Fourier Transform Infrared Spectrometry (FT-IR)

FT-IR is used to determine the functional group of catalyst species. The used instrument was PERKIN ELMER SPECTRUM GX FT – IR Spectrometer. The region of wave number under study was 4000 - 400 cm⁻¹.

Figure 30 PERKIN ELMER SPECTRUM GX FT - IR Spectrometer

2.2.3 UV - Visible spectroscopy (UV-Vis)

The SPECCORD S 100 UV - Visible spectrometer was used in this study.

Figure 31 SPECCORD S 100 UV - Visible spectrometer

2.3 Procedure

2.3.1 Determination of reaction order of styrene epoxidation by mchloroperbenzoic acid (without catalyst)

Reaction rates of styrene epoxidation were measured in the unit of concentration (molar) per time (hour, minute or second). The experiments were conducted as follows.

Stock 0.1 M styrene and 0.2 M mCPBA solutions in acetonitrile were mixed with the volumns as shown in Table 4. The solutions are adjusted to 5 ml with acetonitrile.

Entry	Stock styrene	Stock mCPBA	Concentration ratio
	solution 0.1 M	solution 0.2 M	(Styrene / mCPBA)
	(ml)	(ml)	
1	1.0	2.0	1:4
2	1.0	1.5	1:3
3	1.0	1.0	1:2
4	1.0	0.5	1:1
5	2.0	1.0	1:1
6	1.5	1.0	3:4
7	0.5	1.0	1:4

Table 4 The ratios of reactants for epoxidation rate investigation.

The concentrations of styrene oxide at various periods of time were analyzed by GC technique. Plot of the increasing styrene oxide with time and equations are made with Microsoft Excel program. The reaction rates are calculated from the slope of curve at 1 minute (considered to be initial rate). Rate constants (k) can be calculated from the simple kinetic rate equations.

2.3.2 Catalysis study of styrene epoxidation.

2.3.2.1 The styrene epoxidation catalyzed by silver nitrate and various quinone compounds

The investigation of styrene epoxidation catalyzed by silver nitrate and various ketone and quinone compounds were conducted with the same concentration of reactants (styrene and m-chloroperbenzoic acid) and catalysts.

Pipetting 0.1 M styrene stock solution 1 ml to the vial performed the experiments. When the reactions with mCPBA and silver nitrate were studied, the styrene solution was mixed with 0.2 M mCPBA 0.5 ml and 0.01 M silver nitrate 1 ml. 0.01 M of quinones and ketones were used. All solutions were adjusted to 5 ml with acetonitrile. The solutions were stirred for 25 hours at room temperature. The chemical were mixed as follows:

Table 5 Various conditions	s for styrene epoxidation
----------------------------	---------------------------

Conditions	mCPBA	AgNO ₃	Ketone
	0.2 M	0.01 M	or
	(ml)	(ml)	Quinone
			(Mole)
1. Normal conditions			
1.1 Styrene 0.1 M in acetonitrile (Basic			
condition, BC)	0	0	0
1.2 BC + $AgNO_3$ (Condition A)	0	1	0
1.3 BC + mCPBA (Condition B)	0.5	0	0
1.4 BC + $AgNO_3$ + mCPBA (Condition C)	0.5	1	0
2. BC with 0.01 M ketones or quinones			
2.1 BC + Anthraquinone	0	0	0.01
2.2 BC + 1, 2-Dihydroxyanthraquinone	0	0	0.01
2.3 BC + 1, 4-Dihydroxyanthraquinone	0	0	0.01
2.4 BC + 1, 5-Dihydroxyanthraquinone	0	0	0.01
2.5 BC + 1, 8-Dihydroxyanthraquinone	0	0	0.01
2.6 BC + 2-(Hydroxymethyl)anthraquinone	0	0	0.01
2.7 BC + 2, 6-Dibromoanthraquinone	0	0	0.01
2.8 BC + Anthraquinone - 2, 6- disulfonic			
acid disodium salt	0	0	0.01
2.9 BC + 1, 4-Benzoquinone	0	0	0.01
2.10 BC + Tetrahydroxyquinone	0	0	0.01
2.11 BC + 1, 4-Naphtoquinone	0	0	0.01
2.12 BC + Benzophenone	0	0	0.01
2.13 BC + Anthrone	0	0	0.01

Table 5 (Continued)

Conditions	mCPBA	AgNO ₃	Ketone
	0.2 M	0.01M	or
	(ml)	(ml)	Quinone
			(Mole)
3. Condition A with 0.01 M ketones or			
quinones			
3.1 A + Anthraquinone	0	1	0.01
3.2 A + 1, 2-Dihydroxyanthraquinone	0	1	0.01
3.3 A + 1, 4-Dihydroxyanthraquinone	0	1	0.01
3.4 A + 1, 5-Dihydroxyanthraquinone	0	1	0.01
3.5 A + 1, 8-Dihydroxyanthraquinone	0	1	0.01
3.6 A + 2-(Hydroxymethyl)anhraquinone	0	1	0.01
3.7 A + 2, 6-Dibromoanthraquinone	0	1	0.01
3.8 A + Anthraquinone-2, 6-disulfonic			
acid disodium salt	0	1	0.01
3.9 A + 1, 4-Benzoquinone	0	1	0.01
3.10 A + Tetrahydroxyquinone	0	1	0.01
3.11 A + 1, 4-Naphtoquinone	0	1	0.01
3.12 A + Benzophenone	0	1	0.01
3.13 A + Anthrone	0	1	0.01
4. Condition B with 0.01 M ketones or			
quinones			
4.1 B + Anthraquinone	0.5	0	0.01
4.2 B + 1, 2-Dihydroxyanthraquinone	0.5	0	0.01
4.3 B + 1, 4-Dihydroxyanthraquinone	0.5	0	0.01
4.4 B + 1, 5-Dihydroxyanthraquinone	0.5	0	0.01
4.5 B + 1, 8-Dihydroxyanthraquinone	0.5	0	0.01

Table 5 (Continued)

Condition	mCPBA	AgNO ₃	Ketone
	0.2 M	0.01M	or
	(ml)	(ml)	Quinone
			(Mole)
4.6 B + 2-(Hydroxymethyl)anhraquinone	0.5	0	0.01
4.7 B + 2, 6-Dibromoanthraquinone	0.5	0	0.01
4.8 B + Anthraquinone - 2, 6-disulfonic			
acid disodium salt	0.5	0	0.01
4.9 B + 1, 4-Benzoquinone	0.5	0	0.01
4.10 B + Tetrahydroxyquinone	0.5	0	0.01
4.11 B + 1, 4-Naphtoquinone	0.5	0	0.01
4.12 B + Benzophenone	0.5	0	0.01
4.13 B + Anthrone	0.5	0	0.01
5. Condition C with 0.01 M ketones or			
quinones			
5.1 C + Anthraquinone	0.5	1	0.01
5.2 C + 1, 2-Dihydroxyanthraquinone	0.5	1	0.01
5.3 C + 1, 4-Dihydroxyanthraquinone	0.5	1	0.01
5.4 C + 1, 5-Dihydroxyanthraquinone	0.5	1	0.01
5.5 C + 1, 8-Dihydroxyanthraquinone	0.5	1	0.01
5.6 C + 2-(Hydroxymethyl)anhraquinone	0.5	1	0.01
5.7 C + 2, 6-Dibromoanthraquinone	0.5	1	0.01
5.8 C + Anthraquinone-2, 6-disulfonic			
acid disodium	0.5	1	0.01
5.9 C + 1, 4-Benzoquinone	0.5	1	0.01
5.10 C + Tetrahydroxyquinone	0.5	1	0.01
5.11 C + 1, 4-Naphtoquinone	0.5	1	0.01

 Table 5 (Continued)

Condition	mCPBA	AgNO ₃	Ketone
	0.2 M	0.01M	or
	(ml)	(ml)	Quinone
			(Mole)
5.12 C + Benzophenone	0.5	1	0.01
5.13 C + Anthrone	0.5	1	0.014

After 25 hours, the 1 ml of mixture of 0.01 M ammonium chloride and 0.0001 M hydrochloric acid were added to separate silver chloride by centrifugetion. In some conditions that quinone compounds have highs boiling point and melting point, the solutions were separated from the solid by evaporation. The separated solutions were analyzed using Gas – Chromatography.

2.3.2.2 Reaction rates of styrene epoxidation using 1, 2- Dihydroxyan thraquinone, 1, 8- Dihydroxyanthraquinone and silver nitrate as catalyst

From the results of dihydroxyanthraquinone catalysts in the Table 5, 1, 2-dihydroxyanthraquinone was not suitable catalyst whereas 1, 8 – dihydroxyanthraquinone is satisfactory. They therefore have been chosen for the examination of catalytic activity. Eventhough the presence of $AgNO_3$ in category 5 seem to have less effect to the percentage yields, in the case of 1, 2–DHAQ, it significantly inhibits the reaction, resulting in much lower yield. This is an additional reason to choose this compound as a representative for the rate study.

All vials were added 0.1 M styrene 1 ml and 0.2 M mCPBA 0.5 ml with varied concentrations of quinone. All solutions were adjusted to 5 ml with acetonitrile. The conditions for this investigation were summarized in Table 6.

		$0.1 \text{ M} \text{ AgNO}_3(\text{ml})$			
1. Condit	1. Condition RA				
0.1 M	0.1 M styrene 1 ml+0.2 M mCPBA 0.5 ml+1, 8-dihydroxyantheraquinone				
(varie	d weights)				
1.1	0.0011	0			
1.2	0.0047	0			
1.3	0.0082	0			
1.4	0.0114	0			
1.5	0.0147	0			
2. Conditi	on RB				
0.1 M	styrene 1 ml+0.2 M mCP	BA 0.5 ml+1, 2-dihydroxyantheraquinone			
(varied	l weights)				
2.1	0.0022	0			
2.2	0.0048	0			
2.3	0.0073	0			
2.4	0.0104	0			
2.5	0.0160	0			
2.6	0.0223	0			
3. Condition RC					
0.1 M	styrene 1 ml+0.2 M mCP	BA 0.5 ml+1, 2-dihydroxyantheraquinone			
(consta	nnt weight)+ AgNO ₃				
3.1	0.022	0.2			
3.2	0.022	0.4			
3.3	0.022	0.6			
3.4	0.022	0.8			
3.5	0.022	1.0			

Table 6 Conditions for styrene epoxidation rate study

Table 6 (Continued)

Entry	Weight of quinone	0.1 M AgNO ₃ (ml)			
4. Cond	4. Condition RD				
0.1	0.1 M styrene 1 ml+0.2 M mCPBA 0.5 ml+1, 2-dihydroxyantheraquinone				
(con	(constant weight)+ AgNO ₃				
4.1	0.022	0.2			
4.2	0.022	0.4			
4.3	0.022	0.6			
4.4	0.022	0.8			
4.5	0.022	1.0			