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Chapter 3 
Governing Equations and Numerical Methods 

 
3.1 Introduction 
 The need for full Navier-Stokes simulation of complex fluid flows arises in 
numerous engineering problems. Over the last two or three decades, Computational Fluid 
Dynamics (CFD) method has matured in several aspects and has been used widely in the 
industry. Several different algorithms have been proposed and developed by various 
researchers. At the present, no single approach or method can be fully considered to be 
robust for all flow situations and applications from the point of view of numerical and 
modeling accuracy as well as efficiency.  

For turbulent flows, several approaches have evolved based on the level of 
resolution of the length scales (or the size of the resolved eddies) in the flow. The so-
called Direct Numerical Simulation (DNS) methods resolve all the length scales by solving 
the instantaneous form of the Navier-Stokes equations for turbulent flows. The next level of 
methods are the Large Eddy Simulation (LES) methods which resolve the large eddies in 
the flow and use modeling to resolve the sub-grid scales; the grid requirement is not as 
stringent as the DNS methods but is still prohibitively expensive for practical engineering 
flows. The most commonly used methods are based on the Reynolds-Averaged Navier-
Stokes (RANS) equations which resolve only the mean flow by modeling all turbulent 
fluctuations using turbulence models of varying complexity.  

At the beginning of this chapter, the governing equations of turbulence flow are 
presented, particularly for natural convection flow. Moreover, for turbulence flow, the 
turbulence models are necessarily presented to solve additional parameter. Finally, 
numerical methods of this CFD technique are also presented.  
 
3.2 Governing Equations  

The fluid flow field can be described by the conservation of mass, momentum and 
energy. Given the boundary conditions, the resulting flow and temperature patterns are 
determined by solving these equations all together. In turbulent flow, the governing 
equations preferred are the time averaged equations, called Reynolds-averaged Navier-
Stokes. For an incompressible fluid, and natural convection flow these are given by: 
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Continuity equation 
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Averaged Navier-Stokes equations 
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Energy equation 
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Where, u  is the mean velocity components ( , ,u v w  ), '
iu is the velocity fluctuation 

and   Ρ  is the pressure. Here, ix  is the coordinate axis ( , ,x y z ), ρ  is the density, ig  is 
the gravitational acceleration vector and β  is the thermal expansion coefficient. The 
diffusion term is indicated by viscosity µ . The Boussinesq approximation is employed in 
the last term of Eq. (2.2), where )(2

1
chref TTT +=   is the reference temperature, T  is the 

mean temperature, and 'T is the temperature fluctuation.  
The averaging process results in new unknowns, ''

jiuuρ− and ''Tuiρ−   , so called 
Reynolds terms. The first term is called the Reynolds stress ( ijτ ). The latter can be 
considered as a diffusion term for the enthalpy. The determination of the Reynolds terms 
requires extra equations. The correlation of the Reynolds terms to the mean flow field is 
resolved by turbulence models. Most turbulence models are based on the concept proposed 
by Boussinesq [15] who assumed that the turbulent stresses are proportional to the mean 
velocity gradients: 
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Where tµ  is the turbulent or eddy viscosity, a property of the flow, tΓ  the turbulent scalar 
diffusivity (also given as Ht σµ / , where Hσ  is the turbulent-Prandtl number), ijδ  the 
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Kronecker delta, and k  is the turbulent kinetic energy. The second term on the right hand 
side of equation 2.4, which can be considered as a dynamic pressure, will be ignored 
because it is small [16]. 

Different turbulence models are available to determine the unknown variable tµ  
[17]. These models vary greatly in their level of complexity and generality. Some are quite 
simple mathematically but rely heavily on experimental data and, as a consequence, are 
useful only in flows similar to those upon which they are based. Other turbulence models 
are more general or more accurate, but involve the repeated, expensive solution of complex 
equations. The best turbulence model for a given simulation is often a compromise between 
accuracy, cost, and depends heavily on the degree of accuracy required for the particular 
simulation [18]. The turbulence models will be discussed in the next section. 
 
3.3 Turbulence models 
 For most engineering purposes, it is unnecessary to resolve the details of the 
turbulent fluctuations. To be useful in a general purpose CFD code, the turbulence model 
must have wide applicability, and be accurate, simple and economical to run. The most 
common turbulence models are classified in Table 3.1. 

 
Table 3.1 Turbulence models 

 

Classical model (RANS) 
 

 
 
 

Based on Reynolds equations 

 1. Zero-equation model - mixing length model. 
2. Two-Equation model –the ε−k  model 
3. Reynolds stress model 
4. Algebraic stress model 

 

Large eddy simulation (LES) 
 

Based on space-filtered equations 
 

 
The classical models use the Reynolds equations developed and form the basis of 

turbulence calculation in currently available commercial CFD codes. The mixing length and 
ε−k  models are presently by far the most widely used and validated. Two transport 

equations, one for the turbulent kinetic energy and the other one for the rate of dissipation 
of turbulent kinetic energy, are solved. The underlying assumption of both these models is 
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that the turbulent viscosity is isentropic. In other words, the ratio between the Reynolds 
stress and mean rate of deformation is the same in all directions.  

Large eddy simulations (LES) are turbulence models where the time-dependent 
flow equations are solved for the mean flow and largest eddies. It was argued earlier that 
the largest eddies interact strong with the mean flow and contain most of the energy. So this 
approach results in a good model of the main effects of turbulence. LES are at present at 
the research stage and the calculations are too costly to merit consideration in general 
purpose computation. Although anticipated improvement in computer hardware may change 
this perspective in the future, we will not discuss these models further. 
 
3.3.1 Mixing length model 

This approach was first proposed by Prandtl in the 1920s. It is based on the 
analogy between the mixing by molecular motion and by turbulent eddies. In a broader 
sense, the concept of the eddy viscosity is also based on this analogy. The mixing-length 
model by Balwin and Lomax developed for boundary layer flows has been very popular in 
aerodynamics up to the 1990s [19]. 

The mixing length formulation is based upon an analogy between the motion of 
eddies in a turbulent fluid and the motion of molecules in a gas, as explained by the kinetic 
theory of gases and, in this formulation, turbulent eddies are considered to behave like 
molecules in some hypothetical gas [20]. The mixing length represents an effective 
interaction distance between eddies, similar to a mean free path of molecules [21]. In eddy 
viscosity models, we want an expression for the turbulent viscosity tt ρνµ = . The 
dimension of kinematics turbulent viscosity ( tν ) is m2/s (same as ν ), it can be expressed 
as product of a turbulent velocity scale ϑ  (m/s) and a length scale l  (m) [22]. If one 
velocity scale and one length scale suffice to describe the effects of turbulent, dimensional 
analysis yields 

 

 lϑν Ct =  (2.6)  
 

where C is a dimensionless constant of proportionality and the dynamic turbulent viscosity 
is then given by 
 

 lρϑµ Ct =  (2.7) 
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Most of the kinetic energy of turbulence is contained in the largest eddies and the 
turbulence length scale l  is therefore characteristic of these eddies which interact with the 
mean flow. The Reynolds stress is ''vuyxxy ρττ −==  and the mean velocity gradient is 

yu ∂∂ / . The eddies length scale is l . 
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 Combining (2.6) and (2.8) and absorbing the two constants C  and c which appear in 
these formulae into a new length scale ml  we obtain 
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where y  is the coordinate normal to the wall, and where ml  is the mixing length, and the 
model is called Prandtl’s mixing length model. The turbulence Reynolds stress is described 
by 
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Turbulence is a function of the flow and if the turbulence changes it is necessary to 
account for this within the mixing length model by varying ml . Some examples are given in 
Table 3.2. The mixing length model can also be used to predict turbulent transport of scalar 
quantities [23].   
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where Htt σµ /=Γ  and tν is found from (2.9). Rodi [23] recommends value for tσ of 0.9 
in near wall flows, 0.5 for jets and mixing layers and 0.7 for axisymmetric jets. 
 The mixing length is clearly very useful in flow where the turbulent properties 
develop in proportion to mean flow length scale, so that ml can be described as a  function 
of position by means of a simple algebraic formula. An overall assessment of the mixing 
length model is given in Table 3.3 
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Table 3.2   Mixing lengths for two-dimensional turbulent flows. 
Flow Mixing length ml  L 
Mixing layer L07.0  Layer width 
Jet L09.0  Jet half width 
Wake L16.0  Wake half width 
Axisymmetric jet L075.0  Jet half width 
Boundary layer ( )0/ =∂∂ xp  
  viscous sub-layer and  
  log-law layer ( )22.0/ ≤Ly  
  outer layer ( )22.0/ ≥Ly  

 
 

)]26/exp(1[ +−− yyκ  
L09.0  

 
 
 
 

Boundary layer 
thickness 

Pipes and channels  
(fully developed flow) 

2)/1(08.014.0[ LyL −−

( ) ]/106.0 4Ly−−  

Pipe radius or 
channel half 
width 

Where y  is the distance from the floor and 41.0=κ  is von Karman’s constant  
Ref. (Rodi, W.(1980)). 
 
Table 3.3   Mixing length model assessments. 

 

Advantages 
 

- easy to implement and cheap in terms of computing resources 
- good predictions for thin shear layers: jets, mixing layers, wakes and boundary 

layer 
- well established 

 

Disadvantages  
 

- completely incapable of describing flows with separation and recirculation  
only calculates mean flow properties and turbulent shear stress 

 
3.3.2 The ε−k  model 

Launder and Spalding’s two-equation ε−k model is unarguably the most widely 
used and validated model employed for turbulent fluid dynamics to date [24]. The model is 
favored for industrial applications due to its relatively low computational expense and 
generally better numerical stability than more complex turbulence models [25]. The 
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predominant drawback of the standard ε−k  turbulence model, for this application area, is 
that the model was designed for high Reynolds number flows therefore resulting poorly in 
terms of model accuracy when considering fluid flow over populated Printed Circuit Boards 
(PCB) which is usually classified as being low Reynolds number flow due to the small 
velocities and length scales encountered [26].  

The high Reynolds number version is obtained by neglecting all the terms 
containing the kinematics viscosity. In the proximity of solid walls, viscous effects become 
important and this assumption no longer holds. Several modifications have been proposed: 
in the two-layer formulation [27], and then the eddy viscosity is patched at a certain 
distance from the wall. The eddy viscosity ( tµ ) is defined from dimensional analysis as: 

 

 
ε

ρµ µ

2kCt =  (2.5)  
 

Where ε  is the rate of dissipation of turbulent kinetic energy and µC is an empirically 
determined constant ( µC  = 0.09; Launder and Spalding 1974).  
 The calculation of the turbulent viscosity requires the derivation of two additional 
equations to determine k  and ε . The standard ε−k  model, therefore, is called a two-
equation model. The derivation of these equations can be found in for example Nieuwstadt 
(1992). The equations for the kinetic energy of turbulence ( k ) and its dissipation rate ( ε ) 
are given by: 
k  Equation: 
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The model constants are 
 

 1 2 30.09, 1.44, 1.92, 1.0, 1.0, 1.217kC C C Cµ εσ σ= = = = = =  
 

The last term in equation (2.4), ρε is the destruction rate, and P  is the shear production 
and  G  is the buoyancy production term, which are given by: 
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 Due to the no-slip condition at the wall and the resulting damping, close to the 
wall a laminar flow is found. The standard ε−k  model (Equation 2.6 and 2.7) however is 
only valid for flow regions where the turbulent transport is dominating. An overall 
assessment of the ε−k  model is given in Table 3.4 
 
Table 3.4   The ε−k  model assessment.  

 

Advantages 
 

- simplest turbulence model for which only initial and/or boundary conditions 
need to be supplied 

- excellent performance for many industrially relevant flows 
- well established; the most widely validated turbulence model 

 

Disadvantages  
 

- more expensive to implement than mixing length model (two extra PDEs) 
- poor performance in variety of important cases such as  

(i) some unconfined flows 
(ii) flows with large extra strains 
(iii) rotating flows  
(iv) fully developed flows in non-circular ducts 

 
3.3.3 Reynolds stress model 
 The most complex classical turbulence is the Reynolds stress model (RSM), also 
called the second-order closure model. The modeling strategy originates from work 
reported in Launder et al (1975). We follow established practice in the literature by calling 

''/ jiijij uuR =−= ρτ  the Reynolds stress, although the term kinematics Reynolds stress would 
be more precise. The exact equation for equation for the transport of R  takes the following 
form: 
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Equation 3.45 describes six partial differential equations: one for the transport of 
each of six independent Reynolds stress ( '
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Reynolds stress equations: the pressure-strain correlation term ijΠ  whose effect on the 
kinetic energy can be shown to be zero, and the rotation term ijΩ .  
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The diffusion term itD  can be modeled by the assumption that the rate of transport of 
Reynolds stresses by diffusion is proportional to the gradients of Reynolds stresses. 
Commercial CFD codes often favour the simplest form. 
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with 
ε

ν µ

2kCt = ; 09.0=µC  and 0.1=kσ . 

The dissipation rate is modelled by assuming isotropy of the small dissipative 
eddies. It is set so that it affects the normal Reynolds stress ( ji = ) only and in equal 
measure. This can be achieved by 

 

ijij εδε
3
2

=  
 

Where ε  is the dissipation rate of turbulent kinetic energy. The Kronecker delta, 
ijδ  is given by 1=ijδ  if ji=  and if ji ≠ . 

Corrections are needed to account for the influence of wall proximity on the 
pressure-strain terms. These corrections are different in nature from the wall-damping 
functions encountered in the ε−k  model and need to be applied irrespective of the value of 
the mean flow Reynolds number. Measurements indicate that the wall effect increase the 
anisotropy of normal Reynolds number by damping out fluctuation in the direction normal 
to the wall and decreases the magnitude of the Reynolds stresses. The following simpler 
form is favored by some commercial available CFD codes: 
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with 8.11 =C and 6.02 =C  
The rotational term is given by 
 

( )jkmimikmjmkij eReR +−=Ω ω2       (3.50) 
 

Here kω is the rotational vector and ijke   is the alternating symbol; 1+=ijke if ji, and are 
different and in cyclic order, 1−=ijke  if ji, and k are different and in anti-cyclic order 
and 0=ijke if any two indices are the same. 
 Turbulent kinetic energy k is needed in the above formulae and can be found by 
adding the three normal stresses together: 
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The six equations for Reynolds stress transport are solved along with a model 
equation for the scalar dissipation rateε . 
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where 44.11 =εC and 92.12 =εC  
The usual boundary conditions for elliptic flows are required for the solution of the 

Reynolds stress transport equations: 
- inlet:   specified distributions of  ijR  and ε  
- outlet:  0/ =∂∂ nRij and 0/ =∂∂ nε  
- free stream:  0=ijR and 0=ε  
- solid wall:  wall functions 
In the absence of any information approximate inlet distribution for ijR may be 

calculated from the turbulence intensity iT and a characteristic length L of the equipment 
(e.g. equipment pipe radius) by means of the following assumed relationships: 
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RSMs are clearly quiet complex, but it is generally accepted that they are the 
‘simplest’ type of the model with the potential to describe all the mean flow properties and 
Reynolds stress without case-by-case adjustment (Table 3.5). The RSM is by no mean as 
well validated as the ε−k  model. The extension and improvement of theses model is an 
area of very active research.  
 
Table 3.5   Reynolds stress  equation model assessment  

 

Advantages 
 

- potentially the most general of a classical turbulence model 
- only initial and/or boundary conditions need to be supplied 
- very accurate calculation of mean flow properties and all Reynolds stress for 

many simple and more complex flows including wall jets, asymmetric channel 
and non-circular duct flows and cured flows 

 

Disadvantages  
 

- very large computing costs(seven extra PDEs) 
- not as widely validated as mixing length and  ε−k  models 
- performs just as poorly as the ε−k  model in some flows owing to identical 

problem with equation modeling (e.g. axisymmetric jets and unconfined 
recirculating flow) 

 
3.3.4 Algebraic stress model 
 The algebraic stress model (ASM) is an economical way of accounting for the 
anisotropy of Reynolds stresses without going to the full length of solving the Reynolds 
stress transport equations. The huge computational cost of solving the RSM is caused by the 
fact that gradients of the Reynolds stress ijR etc. appear in the convective ( tDD / ) and 
diffusive transport term ijD of 3.47 and 3.49 respectively. 
 The simplest method is to neglect the convection and diffusion terms altogether. In 
some cases this appears to be sufficiently accurate (Naot and Rodi, 1982; Demuren and 
Rodi, 1984). A more generally applicable method is to assume that the sum of the 
convection and diffusion terms of Reynolds stresses is proportional to the sum of the 
convection and diffusion terms of turbulent kinetic energy.  
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The term in the brackets on the right side comprise the sum of the rate of production. The 
rate of dissipation of turbulent kinetic energy from the exact ε−k equation and the rate of 
dissipation of turbulent kinematics energy are both turbulence properties and are closely 
related, so 3.52 is likely not to be too bad an approximation provided that the ratio 

kuu ji /'' does not vary too rapidly across the flow. Further refinements may be obtained by 
relating the transport by convection and diffusion independently to the transport by 
convection and diffusion independently to the transport of turbulent kinetic energy. 
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Reynolds stress appears on both sides of the equation. On the right side they are 
contained within ijP . Eq. (3.53) is set of six simultaneous algebraic equations for six 
unknown Reynolds stress ijR  that can be solved by matrix inversion or iterative technique if 
k  and ε  are unknown. The constant DC  is adjustable to make up for the physics ‘lost’ in 
the approximation. One commercial CFD code recommends ASM for swirling flows with 
the following constant: 

 

 55.0=DC              and  55.0=DC  
 

Demuren and Rodi [28] reported the computation of the secondary flow in non-
circular ducts with a somewhat more sophisticated version of this model that includes wall 
corrections for the pressure-strain term and modified values of adjustable constants to get a 
good match with measured data in nearly homogenous shear flows and channel flows. They 
achieved realistic predictions of the primary flow distortions and secondary flow in square 
and rectangular ducts. These effects are caused by anisotropy of the normal Reynolds stress 
and can therefore not be represented in simulations of the same situation with the standard 

ε−k  model. 
The algebraic stress model is an economical method of incorporating the effects of 

anisotropy into the calculations of Reynolds stresses. The model is not as well validated as 
the ε−k  model but can be used in flows where the latter is known to perform poorly and 
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where the transport assumptions made do not compromise too severely the calculation 
accuracy (Table 3.6).  
 
Table 3.6   Algebraic stress model assessment. 

 

Advantages 
 

- cheap method to account for Reynolds stress anisotropy 
- combines the generality of approach of the RSM (good modeling of buoyancy 

and rotation effects possible) with the economy of the ε−k  model 
- successfully applied to isothermal and buoyant thin shear layers 
- if convection and diffusion term are negligible the ASM performs as well as the 

RSM 
 

Disadvantages  
 

- only slightly more expensive than  model ( two PDEs and a system of algebraic 
equations) 

- not as widely validated as mixing length and  ε−k  models 
- model is severely restricted in flow where the transport assumptions for 

convective and diffusive effects do not apply-validation is necessary to define 
the performance limits  

 
3.4 Numerical Methods 

An analytic solution of the coupled, non-linear, partial differential equations for a 
three-dimensional, turbulent flow field is not possible. The use of numerical methods is 
inevitable and therefore the calculation of a flow problem requires the discretization of that 
flow field into space and time. Finite volume methods are used to obtain a numerical 
solution for three-dimensional convection-diffusion problem. In this method the discretized 
equations represent the flow problem in each control volume. Detail of this method includes 
the following procedure: 

Discretization - Discretization in space requires the flow field to be divided in 
small control volumes. Types of possible control volumes are hexahedral and tetrahedral. 
Integration over the control volume in order to balance the conservation equations requires 
the calculation of the cell face values of the scalar variable φ so that the convective and 
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diffusive fluxes can be determined. This requires an interpolation from the φ value at the 
cell centre to the cell face. Different interpolation schemes are available [29]. The 
application of a specific scheme for a variable (among others) depends on the grid 
alignment to the flow field. Higher order schemes present a better accuracy as a first order 
scheme introduces numerical diffusion when the flow field is oblique to the grid alignment. 
Higher order schemes however show a less stable solution procedure. 

Solver - Solving the equations on a structured grid allows the application of line-
iterative methods as the line Gauss-Seidel (LGS) method. The equations for a variable are 
solved directly along one line of control volumes applying the tri-diagonal matrix algorithm 
(TDMA) [30]. The calculation proceeds with the next line by applying the latest available 
boundary values. The solution process can be improved via block correction along a line of 
control volumes. The added correction satisfies the balance over the control volume block 
[31]. A further improvement can be obtained by applying a multigrid solver. Corrections 
are determined from a successively coarser grid which is constructed from a block of 
control volumes. These corrections are added to the fine grid solution during the iteration 
process [32]. The Gauss-Seidel solution process is combined with the multigrid technique. 
An algebraic scheme is then used to determine the coarse level mesh. 

An iterative approach is required to obtain the separate but coupled flow field 
variables from an initial guessed flow field. The solution of the flow field is complicated by 
the pressure source term in the momentum equation. The pressure field cannot be 
determined from a separate equation. Patankar [31] describes a procedure in which the 
pressure field is obtained via the continuity equation, the Semi-Implicit Method for 
Pressure-Linked Equations (SIMPLE). Given an initial pressure field, the momentum 
equations are solved. A pressure correction is obtained from the revised continuity equation 
and the velocity component values are corrected subsequently. After calculation of the 
coupled flow field variables, as temperature and turbulent quantities, the corrected pressure 
is taken as the new pressure field and the operation is repeated until a converged solution is 
obtained as shown in Fig.3.1. 

All flow field variables are stored in the cell centre of the control volume. A linear 
interpolation procedure is applied to obtain the pressure value at the face of the control 
volume, as is necessary for solving the momentum equation [33]. In this way an oscillatory 
pressure field is prevented without the application of a staggered grid. This approach is 
useful when boundary fitted coordinates are used for non-orthogonal boundaries of a flow 



 

24

 

problem. For large local gradients of the pressure, as with large buoyant forces, the 
discretization should be refined. Also a staggered grid approach may be re-introduced for 
the calculation of the face pressure. To prevent a similar oscillatory solution for the flow 
field when solving the continuity equation, a momentum-weighted averaging is applied for 
the velocity that is based on the convection and diffusion effects [34].  

When the buoyancy force is of the same order of magnitude as the pressure gradient 
the convergence is poor because of the relatively small contribution of the convective and 
viscous terms. This results from the sequential solving process of the SIMPLE-algorithm. 
A correction term can be incorporated in the revised continuity equation that accounts for 
the buoyancy force.  

Convergence - Because of the non-linearity of the problem the solution process is 
controlled via relaxation factors. A relaxation factor controls the change of a variable as 
calculated at each iteration. The convergence is checked by several criteria: the mass and 
heat conservation should be balanced; the residuals of the discretized conservation equations 
must steadily decrease; and the change in field values between two iterations should be very 
small. 
 
 
 
 
 
 
 
 
 
 
 
 


