Contents

	Page
Contents	viii
List of Tables	
List of Figures	
List of Abbreviations and Symbols	
Chapter	
1 Introduction	1
1.1 Background and Rationale	1
1.2 Scope of study	5
1.3 Objectives	5
2 Literature Reviews	6
2.1 Introduction	6
2.2 Studies of the factor affecting the drying of rubber sheets	6
2.3 Computational Fluid Dynamics method in air flow simulation	7
2.4 Studies of temperature distribution and performance of	
the present rubber smoking room	8
2.5 Literature remarks	9
3 Governing equations and Numerical methods	10
3.1 Introduction	10
3.2 Governing equations	10
3.3 Turbulence models	12
3.4 Numerical methods	22
4 Benchmarking of the CFD technique	
4.1 Introduction	25
4.2 Experimental works	25
4.2.1 Equipments	25
4.2.2 Methodology of experiment	26
4.2.3 Experimental results	29
4.3 Simulation of an Empty Rubber Smoking Room	31
4.3.1 Boundary conditions, materials, and grid setting	32
4.3.2 Simulation results	34

Contents (Continued)

	Page
4.4 Benchmarking the results and Discussion	34
4.4.1 Heat Source	34
4.4.2 Temperature	35
4.4.3 Velocity	37
4.5 Conclusions	39
5 Velocity and Temperature Distributions in a Present Rubber Smoking Room	40
5.1 Introduction	40
5.2 Simulation of a present rubber smoking room using FloVent program	40
5.2.1 Boundary conditions, materials, source input and grid setting	40
5.2.2 Simulation results and Discussion	43
5.3 Conclusions and Recommendation	50
6 Improvement of the rubber smoking room	51
6.1 Introduction	51
6.2 Effects of size and number of gas supply ducts	51
6.3 Effects of size, position and number of ventilating lids	60
6.4 Effects of position, number, and size of gas supply ducts	
and ventilating lids	70
6.5 Adjustment of the heat source input to the new model room	77
6.6 Conclusions	82
7 Conclusions and Recommendations	84
7.1 Conclusions	84
7.2 Recommendations	85
References	85
Appendix	89
Appendix A Temperature calibration of thermocouple used at all	
positions and the moisture content of firewood in the experiment	90
Appendix B Temperature results of all the case studies	99
Appendix C Drawing of a new model of the rubber smoking room	111
Vitae and List of Publications	120

List of Tables

Table	FablePa	
3.1	Turbulence models.	12
3.2	Mixing lengths for two-dimensional turbulent flows.	15
3.3	Mixing length model assessments.	15
3.4	The $k - \varepsilon$ model assessment.	17
3.5	Reynolds stress equation model assessment.	20
3.6	Algebraic stress model assessment.	22
4.1	Details of component, material, size and material properties	
	of the rubber smoking room.	33
4.2	Comparison of velocities.	38
5.1	Components, materials, sizes and material properties of rubber smoking room.	42

List of Figures

Figure		Page
1.1	Data of NR producing countries in the world.	2
1.2	Procedure of RSS production.	3
1.3	Non-uniform RSS on a cart.	4
2.1	Temperature distribution at 13 positions in the rubber smoking room.	8
4.1	Diagram for experimental methodology.	26
4.2	Calibration of thermocouple probes with a standard thermometer.	27
4.3	Positions of temperature probes on each plane shown from	
	the side view of the rubber smoking room.	27
4.4	The positions of velocity measurement at both ventilating lids	
	shown from the top view.	28
4.5	Temperature histories at 15 positions in the room and ambient.	29
4.6	Velocity histories at 5 positions on the front ventilating lid.	30
4.7	Velocity histories at 5 positions on the rear ventilating lid.	30
4.8	Velocity histories at 3 positions on the burner inlet.	31
4.9	The rubber smoking room model.	32
4.10	The temperature contours on the front, middle and back planes	
	of the model room.	34
4.11 Comparison of temperature between the experiment and simulation		
	at the front plane.	35
4.12 Comparison of temperature between the experiment and simulation		
	at the middle plane.	36
4.13	Comparison of temperature between the experiment and simulation	
	at the rear plane.	36
4.14	Comparison of temperature between the experiment and simulation	
	at all positions.	37
4.15	The velocity vector plane on the supply duct line in the model room.	37
5.1	Components of a present smoking room shown from side view.	41
5.2	Positions of the hot gas supplying ducts of a present smoking room	
	shown in top view.	41

List of Figures (Continued)

Figur	e	Page
5.3	Positions of temperature measurement in the rubber smoking room.	43
5.4	Flow pattern of a right plane of a present smoking room.	44
5.5	Flow pattern of a middle plane of a present smoking room.	44
5.6	Flow pattern of a left plane of a present smoking room.	45
5.7	Temperature contour of a right plane of a present smoking room.	46
5.8	Temperature contour of a middle plane of a present smoking room.	46
5.9	Temperature contour of a left plane of a present smoking room.	47
5.10	Temperature distribution in the rubber smoking room.	48
6.1	Temperature contour on the left plane of the example case study.	52
6.2	Positions of the gas supply ducts and ventilating lids for the case study 1	
	shown from the top view.	53
6.3	Flow pattern on the right plane of the case study 1.	53
6.4	Flow pattern on the middle plane of the case study 1.	54
6.5	Flow pattern on the left plane of the case study 1.	54
6.6	Temperature contour on the right plane of the case study 1.	55
6.7	Temperature contour on the middle plane of the case study 1.	55
6.8	Temperature contour on the left plane of the case study 1.	56
6.9	Positions of the gas supply ducts and the ventilating lids of the case study 2	
	shown from the top view.	57
6.10	Flow pattern on the right plane of the case study 2.	57
6.11	Flow pattern on the middle plane of the case study 2.	58
6.12	Temperature contour on the right plane of the case study 2.	59
6.13	Temperature contour on the middle plane of the case study 2.	59
6.14	Positions of the ventilating lids and the gas supply ducts of the case study 3	
	shown from the top view.	60
6.15	Flow pattern on the right plane of the case study 3.	61
6.16	Flow pattern on the middle plane of the case study 3.	62
6.17	Temperature contour on the right plane of the case study 3.	62
6.18	Temperature contour on the middle plane of the case study 3.	63

List of Figures (Continued)

Figure	Page
6.19 Positions of the ventilating lids and the gas supply ducts of the case study 4	
shown from the top view.	64
6.20 Flow pattern on the right plane of the case study 4.	65
6.21 Flow pattern on the middle plane of the case study 4.	65
6.22 Temperature contour on the right plane of the case study 4.	66
6.23 Temperature contour on the middle plane of the case study 4.	66
6.24 Positions of the ventilating lids and the gas supply ducts of the case study 5	
shown from the top view.	67
6.25 Flow pattern on the right plane of the case study 5.	68
6.26 Flow pattern on the middle plane of the case study 5.	68
6.27 Temperature contour on the right plane of the case study 5.	69
6.28 Temperature contour on the middle plane of the case study 5.	70
6.29 Positions of the ventilating lids and the gas supply ducts of the case study 6	
shown from the top view.	71
6.30 Flow pattern on the right plane of the case study 6.	72
6.31 Flow pattern on the middle plane of the case study 6.	72
6.32 Temperature contour on the right plane of the case study 6.	73
6.33 Temperature contour on the middle plane of the case study 6.	73
6.34 Positions of the ventilating lids and the gas supply ducts of the case study 7	
shown from the top view.	74
6.35 Flow pattern on the right plane of the case study 7.	75
6.36 Flow pattern on the middle plane of the case study 7.	75
6.37 Temperature contour on the right plane of the case study 7.	76
6.38 Temperature contour on the middle plane of the case study 7.	76
6.39 Flow pattern on the right plane of the case study 8.	78
6.40 Flow pattern on the middle plane of the case study 8.	78
6.41 Temperature contour on the right plane of the case study 8.	79
6.42 Temperature contour on the middle plane of the case study 8.	79
6.43 Flow pattern on the right plane of the case study 9.	80
6.44 Flow pattern on the middle plane of the case study 9.	81

List of Figures (Continued)

Figure	Page
6.45 Temperature contour on the right plane of the case study 9.	81
6.46 Temperature contour on the middle plane of the case study 9.	82

List of Abbreviations and Symbols

Abbreviations

CFD	Computational fluid dynamics
DNS	Direct numerical simulation
LES	Large Eddy Simulation
RANS	Reynolds-Averaged Navier-Stokes
RSM	Reynolds stress model
ASM	Algebraic stress model
LGS	Line Gauss-Seidel method
TDMA	Tri-diagonal matrix algorithm
SIMPLE	Semi-Implicit Method

Symbols

ū	Mean velocity components, m/s
$\overline{u_i}$	Velocity fluctuation, m/s
$\overline{\mathbf{P}}$	Pressure, N/m ²
X_i	Coordinate axis (x, y, z)
ρ	Density, kg/m ³
g_i	Gravitational acceleration vector, m/s ²
β	Thermal expansion coefficient, K^{-1}
μ	Viscosity, N·s/m ²
μ_{t}	Turbulent or eddy viscosity, $N \cdot s/m^2$
\overline{T}	Mean temperature, K
$\overline{T'}$	Temperature fluctuation, K
$ au_{ij}$	Reynolds stress, N/m ²
Γ_t	Turbulent scalar diffusivity
$\sigma_{\!\scriptscriptstyle H}$	Turbulent-Prandtl number
$\delta_{_{ij}}$	Kronecker delta
k	Turbulent kinetic energy

List of Abbreviations and Symbols (Continued)

V_t	Kinematics turbulent viscosity, m ² /s
ℓ	Turbulent length scale, m
С	Dimensionless constant of proportionality
У	Coordinate normal to the wall, m
К	von Karman's constant
k	Turbulent kinetic energy
Е	Dissipation rate
Р	Shear production term
G	Buoyancy production term
Π_{ij}	Pressure-strain correlation term
Ω_{ij}	Rotation term
D_{it}	Diffusion term
$\omega_{_k}$	Rotation vector
e_{ijk}	Alternation symbole
R_{ij}	Reynolds stress gradients
ϕ	Scalar variable value