CONTENTS

		Page
Contents		x
List of Table	es	xiii
List of Figur	res	xvi
List of Abbreviations and Symbols		xxiv
Chapter 1	Introduction	1
	Review of Literatures	3
	Objectives	40
	Scope of Research Work	40
Chapter 2	Materials and Methods	41
	Materials	41
	Analytical Methods	47
	Experimental Methods	50
Chapter 3	Results and Discussion	61
	Part 1. Synthesis of Sugar Esters from Palm Oil and Palm Fatty Acid	61
	Distillates using Commercial Lipases	
	1. Physical and chemical properties of palm oil and PFAD	61
	2. Hydrolytic activity of commercial lipases	61
	3. Selection of support for lipase immobilization	62
	4. Optimization of sugar esters synthesis from palm oil and	64
	palm fatty acid distillates	

CONTENTS (CONTINUED)

Part 2. Screening and Production of Lipase for Sugar Esters Synthesis	
1. Screening of lipase for sugar esters synthesis	76
2. Identification of Actinomycetes ME168	82
3. Optimization of sugar esters synthesis by immobilized lipase	83
from Streptomyces thermocarboxydus ME168	
4. Optimization of lipase production by Streptomyces	91
thermocarboxydus ME168	
5. Purification and characterization of lipase from Streptomyces	103
thermocarboxydus ME168	
Part 3. Production of Lipase from Burkholderia multivorans PSU-	113
AH130 and Application for Fatty Acid Methyl Esters Synthesis	
1. Identification of the strain PSU-AH130	113
2. Production of lipase from Burkholderia multivorans PSU-	113
AH130	
3. Immobilization of lipase from Burkholderia multivorans	114
PSU-AH130	
4. Optimization of immobilized lipase for fatty acid methyl	116
esters production	
5. Optimization of lipase production by Burkholderia	125

multivorans PSU-AH130

CONTENTS (CONTINUED)

			Page
	6.	Purification and characterization of lipase from Burkholderia	137
		multivorans PSU-AH130	
Chapter 4	Conclusion		149
	Suggestic	ons	150
References			151
Appendix			167
Vitae			185

LIST OF TABLES

Table		Page
1	Example of commercial lipases	7
2	Industrial applications of microbial lipases	9
3	Fatty acid composition of processed palm oil and palm oil fractions	13
4	Fatty acid composition of palm kernel oil	14
5	Standard specification for palm fatty acid distillates	14
6	Type of surfactants used in modern industry	16
7	Lipid-based fat substitutes	17
8	Literature reviews on enzymatic synthesis of fatty acid sugar esters	24
9	Water activity of saturated salt solution	30
10	Literature reviews of some lipase-producing microorganisms	33
11	Purification procedures for various microorganisms	37
12	Commercial lipases powder and immobilized lipases used in this work	41
13	Compositions and properties of palm oil and PFAD	62
14	Fatty acid compositions of palm oil and PFAD	62
15	Hydrolytic activity of commercial lipases (cupric acetate method)	63
16	Hydrolytic activity of immobilized lipases on various supports	63
17	Yields of PFAD esters with different acyl acceptors catalyzed by Novozym 435	67
18	Hydrolytic activity of lipase from the selected strains	77
19	Summary of hydrolytic activity during immobilization of lipase from the selected	79
	bacteria	

LIST OF TABLES (CONTINUED)

Table		Page
20	Summary of glucose ester synthesis from various fatty acid vinyl ester catalyzed	80
	by 8 immobilized bacterial lipases	
21	Effect of acyl acceptors on SE synthesis from vinyl caproate catalyzed by	84
	immobilized lipase of Streptomyces thermocarboxydus ME168	
22	Effect of organic solvents on glucose ester synthesis from vinyl caproate	86
	catalyzed by immobilized lipase from Streptomyces thermocarboxydus ME168	
23	Summary of purification steps for lipase from Streptomyces thermocarboxydus	104
	ME168	
24	Effect of various organic solvents on the activity of the purified lipase from	110
	Streptomyces thermocarboxydus ME168	
25	Effect of metal ions and other compounds on the activity of the purified lipase	112
	from Streptomyces thermocarboxydus ME168	
26	Effect of supporters on immobilization of the lipase from Burkholderia	115
	multivorans PSU-AH130	
27	Summary of purification steps of extracellular lipase from Burkholderia	138
	multivorans PSU-AH130	
28	Effect of metal ions and other reagents on the activity of the purified lipase from	147
	Burkholderia multivorans PSU-AH130	
29	Effect of various organic solvents on the hydrolytic activity of the purified lipase	148
	from Burkholderia multivorans PSU-AH130	

LIST OF TABLES (CONTINUED)

Table		Page
30	Retention time of standard fatty acid methyl esters	174
31	Water activity of saturated salt solution at 25°C	177
32	¹ H chemical shifts for 6-O-palmityl- α -D-glucopyranoside	179

LIST OF FIGURES

Figure		Page
1	Mechanism of lipases-catalyzed ester hydrolysis of butyrate ester.	4
	Numbering of amino acid residues is for lipase from Candida rugosa (CRL)	
2	The α , β -hydrolase folds of lipase	5
3	The schematic of sugar ester synthesis catalyzed by Candida antarctica lipase B	15
	(CALB) in <i>tert</i> -butanol	
4	Structural of Olestra	17
5	TLC of palmitic acid glucose ester catalyzed by various immobilized lipases	64
6	TLC of glucose esters catalyzed by Novozym 435	66
7	Acylation of glucose with partially purified PFAD by Novozym 435 in various	68
	organic solvents	
8	Effect of the initial water activity (a_w) of the reaction mixture on the yield of	69
	PFAD glucose esters catalyzed by Novozym 435	
9	Effect of molecular sieves loading on PFAD glucose esters synthesis catalyzed	70
	by Novozym 435	
10	Effect of molar ratio of glucose to PFAD on PFAD glucose esters synthesis	71
	catalyzed by Novozym 435	
11	Effect of enzyme loading on PFAD glucose esters synthesis catalyzed by	72
	Novozym 435	
12	Effect of temperature on PFAD glucose esters synthesis catalyzed by Novozym	73
	435	

Figure		Page
13	GC chromatogram of the reaction products obtained by incubation of PFAD and	74
	glucose with C. antarctica lipase	
14	Time course of PFAD glucose esters synthesis catalyzed by Novozym 435 under	75
	optimal conditions	
15	Bacterial colony of PSU-AH130 on the agar plate of the basal medium	77
	supplemented with 0.01 % (w/v) of Rhodamine B	
16	TLC chromatogram of caproic acid glucose ester catalyzed by various lipases	81
17	Phylogenetic tree of Streptomyces thermocarboxydus ME168	82
18	Effect of chain length of acyl donors on glucose ester synthesis catalyzed by	85
	immobilized lipase from Streptomyces thermocarboxydus ME168	
19	Effect of molar ratio of glucose to vinyl caproate on glucose ester synthesis	87
	catalyzed by immobilized lipase from Streptomyces thermocarboxydus ME168	
20	Effect of water activity on glucose ester synthesis catalyzed by immobilized	88
	lipase from Streptomyces thermocarboxydus ME168	
21	Effect of reaction temperature on glucose caproate synthesis catalyzed by	89
	immobilized lipase from Streptomyces thermocarboxydus ME168	
22	Time course of glucose caproate synthesis catalyzed by immobilized lipase from	90
	Streptomyces thermocarboxydus ME168	

Figure		Page
23	Effect of sugars on lipase production and cell growth of Streptomyces	92
	thermocarboxydus ME168	
24	Effect of concentration of molasses on lipase production and cell growth of	93
	Streptomyces thermocarboxydus ME168	
25	Effect of malt extract on lipase production and cell growth of Streptomyces	94
	thermocarboxydus ME168	
26	Effect of nitrogen sources on lipase production and cell growth of Streptomyces	95
	thermocarboxydus ME168	
27	Effect of concentration of yeast extract on lipase production and cell growth of	96
	Streptomyces thermocarboxydus ME168	
28	Effect of various kinds of oils on lipase production and cell growth of	97
	Streptomyces thermocarboxydus ME168	
29	Effect of palm oil concentration on lipase production and cell growth of	98
	Streptomyces thermocarboxydus ME168	
30	Effect of emulsifiers on lipase production and cell growth of Streptomyces	99
	thermocarboxydus ME168	
31	Effect of initial pH on lipase production and cell growth of Streptomyces	100
	thermocarboxydus ME168	
32	Effect of temperature on lipase production and cell growth of Streptomyces	101

thermocarboxydus ME168

xviii

Figure		Page
33	Time course of extracellular lipase production and cell growth of Streptomyces	102
	thermocarboxydus ME168	
34	Purification profile of lipase from Streptomyces thermocarboxydus ME168 on	105
	anion exchange chromatography (Resource Q)	
35	Purification profile of lipase from Streptomyces thermocarboxydus ME168 on	105
	gel filtration chromatography (Superdex 200)	
36	Sodium dodecyl sulphate polyacrylamide gel electrophoresis pattern of the	106
	purified lipase from Streptomyces thermocarboxydus ME168	
37	Effect of pH on activity (\bullet) and stability (\blacksquare) of lipase from <i>Streptomyce</i>	107
	thermocarboxydus ME168	
38	Effect of temperature on activity (\bullet) and stability (\blacksquare) of lipase from	107
	Streptomyces thermocarboxydus ME168	
39	Lineweaver-Burk plot of the purified lipase from Streptomyces	108
	thermocarboxydus ME168 using pNPP as substrate	
40	Hydrolytic activity on various p -nitrophenyl esters by the purified lipase from	109
	Streptomyces thermocarboxydus ME168	
41	Phylogenetic tree of Burkholderia multivorans PSU-AH130	114
42	Time course of extracellular lipase production from Burkholderia multivorans	115
	PSU-AH130 in the basal medium	

Figure		Page
43	TLC-FID chromatogram of standard compound and reaction mixture of FAME	116
	catalyzed by immobilized lipase from Burkholderia multivorans PSU-AH130	
44	Effect of types of immobilized lipases on FAME synthesis from palm olein	117
45	Effect of types of oils on FAME synthesis catalyzed by IM-PSU-AH130 at	118
	50°C	
46	Effect of water content on FAME synthesis from palm olein catalyzed by IM-	119
	PSU-AH130	
47	Effect of initial pH on FAME synthesis from palm olein catalyzed by IM-PSU-	120
	AH130	
48	Effect of molar ratio of palm olein to methanol on FAME synthesis from palm	121
	olein catalyzed by IM-PSU-AH130	
49	Effect of enzyme loading on FAME synthesis from palm olein catalyzed by IM-	122
	PSU-AH130 at 50°C for 60 h	
50	Effect of temperature on FAME synthesis from palm olein catalyzed by IM-	123
	PSU-AH130	
51	Time course of FAME synthesis from palm olein catalyzed by IM-PSU-AH130	124
52	Effect of organic nitrogen sources $(0.5\% \text{ w/v})$ on lipase production and cell	126
	growth of Burkholderia multivorans PSU-AH130	
53	Effect of tryptone concentration on lipase production and cell growth of	127
	Burkholderia multivorans PSU-AH130	

Figure		Page
54	Effect of inorganic nitrogen sources (0.1% w/v) on lipase production and cell	128
	growth of Burkholderia multivorans PSU-AH130	
55	Effect of ammonium sulphate concentration on lipase production and cell growth	129
	of Burkholderia multivorans PSU-AH130	
56	Effect of emulsifiers $(1.0\% \text{ w/v})$ on lipase production and cell growth of	130
	Burkholderia multivorans PSU-AH130	
57	Effect of carbon sources (1.0% w/v) on lipase production and cell growth of	132
	Burkholderia multivorans PSU-AH130	
58	Effect of olive oil concentration on lipase production and cell growth of	133
	Burkholderia multivorans PSU-AH130	
59	Effect of initial pH on lipase production and cell growth of Burkholderia	134
	multivorans PSU-AH130	
60	Effect of temperature on lipase production and cell growth of Burkholderia	135
	multivorans PSU-AH130	
61	Time course of lipase production and cell growth of Burkholderia multivorans	136
	PSU-AH130	
62	Purification profile of lipase of Burkholderia multivorans PSU-AH130 on	139
	DEAE-Toyopearl anion exchange chromatography	

63 Purification profile of lipase from *Burkholderia multivorans* PSU-AH130 on 140 Sephadex G-150 gel filtration chromatography

Figure		Page
64	Sodium dodecyl sulfate polyacrylamide gel electrophoresis pattern of purified	141
	lipase	
65	Effect of pH on activity (\bullet) and stability (\blacksquare) of lipase from <i>Burkholderia multivorans</i> PSU-AH130 lipase	143
66	Effect of temperature on activity (\bullet) and stability (\bullet) of lipase from	143
	Burkholderia multivorans PSU-AH130 lipase	
67	Lineweaver-Burk plot of the purified lipase from Burkholderia multivorans	144
	PSU-AH130 using pNPP as substrate	
68	Effect of chain length of acyl group on the activity of the purified lipase from	145
	Burkholderia multivorans PSU-AH130	
69	Calibrating curve of molar extinction coefficient of p -nitrophenol with different	169
	pH	
70	Standard curve of palmitic acid	169
71	TLC-FID chromatogram of standard oil	170
72	TLC-FID chromatogram of palm oil, crude PFAD and partially purified	171
	PFAD	
73	TLC-FID chromatogram of reaction mixture of PFAD glucose esters synthesis	172
	and α -Methyl-D-glucose as standard sugar ester	
74	TLC-FID chromatogram of standard oil compositions and FAME	173
75	Standard curve bovine serum albumin	175

Figure		Page
76	The curve of log molecular mass of standard proteins against R_{f} under SDS-	178
	PAGE	

LIST OF ABBREVIATIONS AND SYMBOLS

- $a_w =$ water activity
- AHA = Alpha hydroxyl acid
- ANOVA = Analysis of Varian
- AOAC = Association of Official Agriculture Chemists
- BHA = Butylated hydroxyanisole
- BHT = Butylated hydroxytoluene
- CALB = Candida antarctica lipase B
- CM = Carboxymethyl cellulose
- CRL = Candida rugosa lipase
- DAG = Diacylglycerol (diglyceride)
- DEAE = Diethyl aminoethyl
- DHA = Docosahexaenoic acid (C22:6)
- DMSO = Dimethyl sulfoxide
- DMF = Dimethyl formamide
- DTT = Dithiothreitol
- EDTA = Ethylene diaminetetracetic acid
- EMK = Ethyl methyl ketone
- FA = Fatty acid
- FAME = Fatty acid methyl esters
- FASE = Fatty acid sugar esters
- FFA = Free fatty acid
- FID = Flame ionization detector

LIST OF ABBREVIATIONS AND SYMBOLS (CONTINUED)

- GC = Gas chromatography
- kDa = Kilodalton
- K_m = Michaelis constant
- MAG = Monoacylglycerol (monoglyceride)
- MML = Mucor miehei lipase
- MTBE = Methyl-*tert*-butyl ether
- MW = Molecular weight
- PFAD = Palm fatty acid distillates
- PUFA = Polyunsaturated fatty acid
- PVC = Polyvinyl chloride
- SE = Sugar esters
- ST = Structured triglyceride
- TAG = Triacylglycerol (triglyceride)
- THF = Tetrahydrofuran
- TLC = Thin layer chromatography
- V_{max} = Maximum velocity