CONTENTS

CONTENTS		Х
LIST OF TABLES		xiv
LIST OF FIGURES		xviii
CHAPTER I : INTRODUCTION AND LITERATURE REVIEW		1
Biological properties of carotenoid		5
Carotenoid in photosynthetic bacteria		10
Biosynthesis and distribution of carotenoid in photosynthesis		
bacteria		11
Biosynthesis and distribution of carotenoid in algae and fungi		23
Regulation and control of carotenoids biosynthesis	27	
Metabolism and distribution of carotenoids in aquatic animal		29
Biological function of carotenoid in aquatic animal		35
Applications of carotenoids for pigmentation in aquatic animal		41
Use of microoganism as a carotenoid source in aquatic animal feed	44	
Photosynthetic bacteria and its applications in aquaculture	48	
References		50
OBJECTIVES		60
CHAPTER II : BACTERIAL COLLECTION AND SCREENING FOR THE		
HIGHLY CAROTENOID PRODUCTION STRAIN		61
Introduction		61
Materials and methods		62
Results		66
Bacterial collection and screening for the highest carotenoids		
contents strain		66
Identification of the selected strain		66
16S rDNA sequencing and phylogenic analysis	72	

CONTENTS (Continued)

	page
Discussion	86
References	88
CHAPTER III : EFFECTS OF SYNTHETIC ASTAXANTHIN AND	
PHOTOSYNTHETIC BACTERIAL CELLS ON GROWTH PERFOR	RMANCE,
PIGMENTATION AND IMMUNE RESPONSES IN	
BLACK TIGER SHRIMP (PENAEUS MONODON)	91
Introduction	91
Materials and methods	92
Results	98
Pigmentation	98
Growth performances	98
Carotenoid analysis	103
Blood parameters	103
Histological changes	106
Discussion	109
References	112
CHAPTER IV : OPTIMIZATION FOR GROWTH AND TOTAL CAROTEN	NOIDS
PRODUCTION OF RHODOBACTOR SP. TM11B FOR USE AS	
NUTRIENT SOURCE IN BLACK TIGER SHRIMP FEED	115
Introduction	115
Materials and methods	116
Results	120
Effect of yeast extract/peptone (Y/P) supplementation	120
Effect of carbon source	121

Optimum concentration of monosodium glutamate for growth		
and toal carotenoids production		124
Effects of metal ions supplement	126	

CONTENTS (Continued)

]	Effect of sodium chloride	132
]	Effects of pH	134
(Carotenoids analysis	136
]	Discussion	137
]	References	140
CHAPT	ER V : THE EFFECTS OF <i>RHODOBACTER CAPSULATUS</i> TM11B ON	

GROWTH PERFORMANCE, PIGMENTATION, BLOOD PARAMETERS

AND DISEASE RESISTANCE IN BLACK TIGER SHRIMP	143
Introduction	143
Materials and methods	144
Results	151
Growth performances	151
Blood parameters	152
Carotenoid analysis	153
Stress tolerance	161
Disease resistance	162
Histological studies	163
Discussion	165
References	169

CHAPTER VI : Effect OF CAROTENOIDS ON HEALTH CONDITION,

IMMUNE RESPONSE AND DISEASE RESISTANCE IN THE BLACK

TIGER SHRIMP	174
Introduction	174
Materials and methods	175
Results	182
Trail 1 Experiment in small shrimp	182
Trial 2 Experiment in juvenile shrimp	186
Discussion	190

CONTENTS (Continued)

	page
References	192
CHAPTER VII : EFFECT OF ALGRO NATURAL [®] ON GROWTH	
PERFORMANCE, HEALTH CONDITION, IMMUNE RESPONSE	
AND DISEASE RESISTANCE IN BLACK TIGER SHRIMP	195
Introduction	195
Materials and methods	196
Results	201
Trial 1 (small shrimp) : Growth performance	
Body color, Blood parameters and disease resistance	201
Trial 2 (juvenile shrimp) : Blood parameters	
Body colors and carotenoids analysis	203
Bacterial clearance ability	209
Discussion	210
References	213
CHAPTER IIX : CONCLUSION	216
APPENDIX	218
VITAE	249

LIST OF TABLES

		page
Table 1-1. Black tiger shrimp production (mt) from aquaculture		
in Thailand during 1995-2003		2
Table 1-2. Carotenogenesis pathways and their distribution within anaerobic		
photosynthetic bacteria		11
Table 2-1. Photosynthetic bacterial isolates with the capability for		
growth in either aerobic-dark and anaerobic light conditions		
used in the studies		67
Table 2-2. Total carotenoids (mg/g dry weight) of each isolates during		
24-96 hrs. of the incubation periods under aerobic dark condition	69	
Table 2-3. Total carotenoids (mg/g dry weight) of each isolates during		
24-96 hrs. of the incubation periods under anaerobic light condition		71
Table 2-4. Physiological characteristics of cultures TM3, TN5,		
SV2 and TM11B		73
Table 3-1. Feed formulation of test diets	94	
Table 3-2. Salmofan scores of the shrimp fed the experimental diets		
for 8 weeks		99
Table 3-3. Average body weight (g) of shrimp fed with each experimental		
diet during 8 weeks of feeding period		101
Table 3-4. Growth performance of the shrimp fed with each experimental		
diet for 8 weeks	102	
Table 3-5. Total carotenoid, free astaxanthin, astaxanthin mono-ester		
and di-ester in shrimp fed with each experimental diet for 8 weeks	104	
Table 3-6. Total hemocytes, phenoloxidase activity, superoxide dismutase		
activity and total antioxidant status of the shrimp fed with		
each experimental diet for 8 weeks		105
Table 3-7. Levels and frequency of histological changes (%) in black tiger		

LIST OF TABLES (Continued)

Table 5-1. Feed formulation of test diets.	150	
Table 5-2. Average body weight (g), Weight gain (%), Survival (%) and FCR		
of the shrimp fed each experimental diet for 8 weeks periods.		152
Table 5-3. Blood parameter of the shrimp fed each experimental diet for 8 week.	153	
Table 5-4. Total carotenoid and astaxanthin content in the shrimp fed each		
experimental diet for 8 weeks.		154
Table 6-1. Composition of the test diet for small shrimp in trial 1.	177	
Table 6-2. Composition of the test diet for juvenile shrimp in trial 2.		178
Table 6-3. Analyzed of carotenoid compositions in each test diet for		
small shrimp in trial 1.		179
Table 6-4. Analyzed of carotenoid compositions in each test diet for		
juvenilel shrimp in trial 2. trial 2.	179	
Table 6-5. Growth performance of small shrimp (avg. weigh 1-5 g) after		
feeding with each carotenoid pigments for 8 weeks.		183
Table 6-6. Salmo fan score, astaxanthin and total carotenoid in juvenile		
shrimp after fed each experimental diet for 6 weeks.		187
Table 6-7. Blood parameters and immune response of juvenile shrimp		
fed diet containing with carotenoid pigments for 6 weeks.	188	
Table 7-1. Compositions of test diet.		200
Table 7-2. Average weigh (g) of small shrimp fed with experimental		
diet for 8 weeks.	202	
Table 7-3. Growth performance of small shrimp after feeding with		
experimental diet for 8 weeks.		202
Table 7-4. Color score and visual apparent of the shrimp in each treatment		
after boiling for 5 min.		203
Table 7-5. Blood parameters of small shrimp fed experimental diet for 8 weeks	204	

page

XV

Table 7-6. Total hemocyte counts and phenoloxidase activity of juvenile shrimp		
fed experimental diet for 6 weeks		204
LIST OF TABLES (Continued)		
		page
Table 7-7. Salmo fan score and visual apparent of the juvenile shrimp fed		
experimental diet after boiling for 3 min.	205	
Table 7-8. Total carotenoid and astaxanthin content in juvenile		
shrimp fed experimental diet for 6 weeks	209	
Table 7-9. Total bacteria count in hemolymph after injected with		
suspension of V. harveyi for 3 hr.		210

Appendix Table 1. Cell mass (mg dry wt./ml) of PSB TM 11B in the medium	
contain each level of yeast extract and peptone	219
Appendix Table 2. Total carotenoids contents (μ g/g dry wt.) of PSB TM 11B in	
the medium contain each level of yeast extract and peptone.	220
Appendix Table 3. Cell mass (mg dry wt./ml) of PSB TM11B in the medium	
contained each carbon source (4g/l glutamic acid as nitrogen	
source in the basal medium)	221
Appendix Table 4. Total carotenoids contents (μ g/g dry wt.) of PSB TM11B	
in the medium contained each carbon source (4g/l glutamic	
acid as nitrogen source in the basal medium).	222
Appendix Table 5. Cell mass (mg dry wt./ml) of PSB TM11B in the medium	
contained glutamic acid and monosodium glutamate as C	
and N source.	223
Appendix Table 6. Total carotenoids contents (μ g/g dry wt.) of PSB TM11B	
in the medium contained glutamic acid and monosodium glutamate	
as C and N source	224
Appendix Table 7. Cell mass (mg dry wt./ml) of PSB TM11B in the medium	

LIST OF TABLES (Continued)

225

Appendix Table 8. Total carotenoids contents (μ g/g dry wt.) of PSB TM 11B		
in the medium contained each concentration of mono sodium		
glutamate.		226
Appendix Table 9. Cell mass (mg dry wt./ml) of PSB TM11B in the medium		
contained each concentration of metal ions.		227
Appendix Table 10. Total carotenoids contents (μ g/g dry wt.) of PSB TM 11B		
in the medium contained each concentration of metal ions.	228	
Appendix Table 11. Cell mass (mg dry wt./ml) of PSB TM11B in the medium		
contained each concentration of cobalt chloride.		229
Appendix Table 12. Total carotenoids contents (μ g/g dry wt.) of PSB TM 11B in		
the medium contained each concentration of cobalt chloride.		230
Appendix Table 13. Cell mass (mg dry wt./ml) of PSB TM 11B in the medium		
contained each concentration of ferric chloride.		231
Appendix Table 14. Total carotenoids contents (μ g/g dry wt.) of PSB TM 11B in		
the medium contained each concentration of ferric chloride.		232
Appendix Table 15. Cell mass (mg dry wt./ml) of PSB TM 11B in the medium		
contained each concentration of ferric citrate.		233
Appendix Table 16. Total carotenoids contents (μ g/g dry wt.) of PSB TM 11B in		
the medium contained each concentration of ferric citrate.	234	
Appendix Table 17. Cell mass (mg dry wt./ml) of PSB TM 11B in the medium		
contained each concentration of sodium chloride.	235	
Appendix Table 18. Total carotenoids contents (μ g/g dry wt.) of PSB TM 11B in		
the medium contained each concentration of sodium chloride.		236
Appendix Table 19. Cell mass (mg dry wt./ml) of PSB TM 11B in the difference		
pH of the culture medium.		237

Appendix Table 20. Total carotenoids contents ($\mu\text{g/g}$ dry wt.) of PSB TM 11B in

the the difference pH of the culture medium.

LIST OF FIGURES

		page
Figure 1-1. Isoprene unit	5	
Figure 1-2. Lycopene		6
Figure 1-3. β -carotene	6	
Figure 1-4. Formation of geranylgeranyl pyrophosphate (GGPP) by the		
basic isoprenoid biosynthesis pathway from acetyl-CoA		8
Figure 1-5. General isoprenoid biosynthesis pathway and the mechanism		
for the formation of phytoene		9
Figure 1-6. Desaturation of phytoene to lycopene by phytoene desaturase	12	
Figure 1-7. The predicted pathway for the biosynthesis of spirilloxanthin	14	
Figure 1-8. The pathway for the biosynthesis of spheroidene		15
Figure 1-9. The predicted pathway for the biosynthesis of		
cross-conjugated carotenals and their structure		17
Figure 1-10. The predicted pathway for the biosynthesis of isorenieratene		
and Chlorobactene		19
Figure 1-11. Bioconversion pathways of carotenoids in the penaeid shrimp		
and proposed conversion pathway to retinoids		37
Figure 2-1. The first 500bp DNA sequence of the 16S rDNA		
from strain TM3	74	
Figure 2-2. The first 500bp DNA sequence of the 16S rDNA		
from strain TM11 B		74
Figure 2-3. The first 500bp DNA sequence of the 16S rDNA		
from strain SV2	75	

238

Figure 2-4. The first 500bp DNA sequence of the 16S rDNA	
from strain TN5	75
Figure 2-5. The phylogenic tree of strain TM 3	76
Figure 2-6. The phylogenic tree of strain TM 11 B	77
Figure 2-7. The phylogenic tree of strain SV 2	78

LIST OF FIGURES (Continued)

Figure 2-8. The phylogenic tree of strain TN 5	79	
Figure 2-9. Thin layer chromatogram of pigments extracted from		
4 strains of photosynthetic bacteria		80
Figure 2-10. VIS spectrum (upper) and mass spectrum (lower) of		
band A which corresponds to neurosporene		81
Figure 2-11. VIS spectrum (upper) and mass spectrum (lower) of		
band B which corresponds to spheroidene	82	
Figure 2-12. VIS spectrum (upper) and mass spectrum (lower) of		
band C which corresponds to spheroidenone		83
Figure 2-13. VIS spectrum (upper) and mass spectrum (lower) of		
band D which corresponds to demethylspheroidene		84
Figure 2-14. VIS spectrum (upper) and mass spectrum (lower) of		
band E which corresponds to hydroxyspheroidene	85	
Figure 3-1. Body color of shrimp fed with each experimental diet for 8 weeks	108	
Figure 3-2. Color of boiled shrimp fed each experimental diet		100
Figure 3-3. Atrophy in tubular epithelium of hepatopancreas, cell necrosis and		
degeneration of tubules with the infiltration of haemocytes during		
hepatopancreatic tubues, epithelium cells of antennal gland develop		
signs of atrophy and degeneration of intestinal epithelium in shrimp		
fed with Rhodobactes sphaeroides SV2		108
Figure 4-1. Cell mass (mg/ml) (a) and total carotenoids (b) of		
Rhodobactor capsulatus TM11B in medium contain each level		
of Y/P after cultivation for 96 hr.		120

in medium contain each	level of Y/P	after cultivation for 120 hr.	121

LIST OF FIGURES (Continued)

		page
Figure 4-3. Cell mass (mg/ml) (a) and total carotenoids (b) of		
Rhodobactor capsulatus TM11B in medium contain each carbon		
source after cultivation for 96 hr.		122
Figure 4-4. Cell mass (mg/ml) (a) and total carotenoids (b) of PSB TM 11B		
in medium contain each carbon source after cultivation for 120 hr.	122	
Figure 4-5. Cell mass (mg/ml) (a) and total carotenoids (b) of		
Rhodobactor capsulatus TM11B in medium contain glutamic acid		
and mono sodium glutamate after cultivation for 96 hr.		123
Figure 4-6. Cell mass (mg/ml) (a) and total carotenoids (b) of		
Rhodobactor capsulatus TM11B in medium contain glutamic acid		
and mono sodium glutamate after cultivation for 120 hr.	124	
Figure 4-7. Cell mass (mg/ml) (a) and total carotenoids (b) of		
Rhodobactor capsulatus TM11B in medium contain each level of		
mono sodium glutamate after cultivation for 96 hr.	125	
Figure 4-8. Cell mass (mg/ml) (a) and total carotenoids (b) of		
Rhodobactor capsulatus TM11B in medium contain each level of		
mono sodium glutamate after cultivation for 120 hr.		125
Figure 4-9. Cell mass (mg/ml) (a) and total carotenoids (b) of		
Rhodobactor capsulatus TM11B in medium contain ferrous		
sulphate and magnesium sulphate after cultivation for 96 hr.		126
Figure 4-10. Cell mass (mg/ml) (a) and total carotenoids (b) of <i>Rhodobactor</i>		
capsulatus TM11B in medium contain ferrous sulphate and magnesium		
sulphate after cultivation for 120 hr.		127

 Figure 4-11. Cell mass (mg/ml) (a) and total carotenoids (b) of *Rhodobactor*

 capsulatus TM11B in medium contain ferrous sulphate and magnesium

 sulphate after cultivation for 96 hr.

 128

LIST OF FIGURES (Continued)

		page
Figure 4-12. Cell mass (mg/ml) (a) and total carotenoids (b) of <i>Rhodobactor</i>		
capsulatus TM11B in medium contain ferrous sulphate and magnesium		
sulphate after cultivation for 96 hr.		128
Figure 4-13. Cell mass (mg/ml) (a) and total carotenoids (b) of <i>Rhodobactor</i>		
capsulatus TM11B in medium contain each concentration of ferric		
chloride after cultivation for 96 hr.		129
Figure 4-14. Cell mass (mg/ml) (a) and total carotenoids (b) of <i>Rhodobactor</i>		
capsulatus TM11B in medium contain each concentration of ferric		
chloride after cultivation for 120 hr.		130
Figure 4-15. Cell mass (mg/ml) (a) and total carotenoids (b) of <i>Rhodobactor</i>		
capsulatus TM11B in medium contain each concentration of ferric		
citrate after cultivation for 96 hr.	131	
Figure 4-16. Cell mass (mg/ml) (a) and total carotenoids (b) of <i>Rhodobactor</i>		
capsulatus TM11B in medium contain each concentration of ferric		
citrate after cultivation for 120 hr.	131	
Figure 4-17. Cell mass (mg/ml) (a) and total carotenoids (b) of <i>Rhodobactor</i>		
capsulatus TM11B in medium contain each concentration of sodium		
chloride after cultivation for 96 hr.		133
Figure 4-18. Cell mass (mg/ml) (a) and total carotenoids (b) of <i>Rhodobactor</i>		
capsulatus TM11B in medium contain each concentration of sodium		
chloride after cultivation for 120 hr.		133
Figure 4-19. Cell mass (mg/ml) (a) and total carotenoids (b) of <i>Rhodobactor</i>		
capsulatus TM11B in the difference pH of culture medium after		

cultivation for 96 hr	134
Figure 4-20. Cell mass (mg/ml) (a) and total carotenoids (b) of <i>Rhodobactor</i>	
capsulatus TM11B in the difference pH of culture medium after	
cultivation for 120 hr.	135

LIST OF FIGURES (Continued)

Figure 4-21. Thin layer chromatogram of carotenoids pigment from		
Rhodobacter capsulatus TM11B in the G5 (right) or optimized		
medium used in this study (left).	136	
Figure 5-1. Body color of shrimp fed each test diet for 8 weeks.	155	
Figure 5-2. Body color of shrimp fed each test diet after boiling for 3 min.	155	
Figure 5-3. Thin layer chromatogram of carotenoids extracted from the shrimp		
fed test diet for 8 weeks	156	
Figure 5-4. VIS spectrum of the pigment A (β -carotene) extracted from		
the shrimp fed diet 1-6 for 8 weeks compared to the standard		
UV/VIS spectrum		157
Figure 5-5. VIS spectrum of the pigment B (diester astaxanthin) extracted		
from the shrimp fed diet 1-6 for 8 weeks compared to the standard		
UV/VIS spectrum		158
Figure 5-6. VIS spectrum of the pigment C (mono-ester astaxanthin)		
extracted from the shrimp fed diet 1-6 for 8 weeks.		159
Figure 5-7. VIS spectrum of the pigment D (free- astaxanthin) extracted		
from the shrimp fed diet 1-6 for 8 weeks	160	
Figure 5-8. Survival rates (%) of the shrimp in each treatment during 7-days		
of stress period.	161	
Figure 5-9. Survival rates (%) of the shrimp in each treatment after		
challenged with Vibrio harveyi for 14 days.		162
Figure 5-10. (a) Hepatopancreas of the shrimp fed diet supplemented		

xxii

with 5% *Rhodobacter* sp. TM11B (b) Antennal gland of the
shrimp fed diet supplemented with 5% *Rhodobacter* sp. TM11B
(c) Intestinal epithelium of the shrimp fed diet
supplemented with 5% *Rhodobacter* sp. TM11B

LIST OF FIGURES (Continued)

164

Figure 6-1. Survival rates of small shrimp fed diet containing with		
each carotenoid pigments after challenged with WSSV at a		
concentration of $1:10^7$ for 13 days.		184
Figure 6-2. Survival rates of small shrimp fed diet containing with		
each carotenoid pigments during salinity stress for 13 days.	185	
Figure 6-3. Survival rates of juvenile shrimp fed diet containing with		
each carotenoid pigments after challenged with WSSV at a		
concentration of $1:10^7$ for 10 days.		189
Figure 7-1. Survival rates (%) of the shrimp in each treatment after challenged		
with $1:10^6$ WSSV for 15 days.	206	
Figure 7-2. Survival rates (%) of the shrimp in each treatment during 9-days		
of stress period		207
Figure 7-3. Body color of black tiger shrimp fed each test diet for 8 weeks.	208	