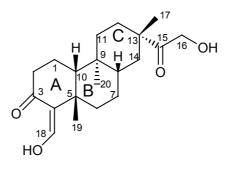
CHAPTER 3


RESULTS, DISCUSSION AND CONCLUSION

3.1 Structure elucidation of compounds from the bark of C. tagal

The air-dried and crushed stem bark of *C. tagal* (4.8 kg) was extracted with methylene chloride and concentrated in vacuo to give residue (17.4 g) which was subjected to quick column chromatography and/or crystallization to give 13 new diterpenoids of dolabranes: TD1-TD3, TD6-TD7 and TD10, nor-dolabranes: TD19-TD24 and pimaranes: TD25-TD26 together with 15 known diterpenoids of dolabranes: TD1-TD18 and kauranes: TD27-TD28.

Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data such as ¹H, ¹³C NMR, DEPT 135°, DEPT 90°, HMQC, HMBC, ¹H-¹H COSY and 2D NOESY. Mass spectral data were determined for new compounds. In addition X-ray cryctallographic structures were reported for compounds **TD1**, **TD5**, **TD13**, **TD25** and **TD28**. The known compounds were compared with the reported NMR data and/or other physical data of those compounds.

3.1.1 Compound TD1

TD1 was obtained as a colorless plate crystal (methylene chloride /Hexane), mp 122-123°C, $[\alpha]_D^{27}$: -24.0° (c = 1.96, CHCl₃). IR absorptions at 3453 and 1697 cm⁻¹ (Figure 9) suggested the presence of hydroxyl and enone functionalities, which was supported by λ_{max} 243 nm (weak) and 295 nm (medium) in UV spectrum (Figure 8). X-ray crystallographic analysis of TD1 was carried out and gave ORTEP drawing as shown in Figure 2. The structure of TD1 enabled assignment of a dolabrane

diterpene with a molecular formula $C_{20}H_{30}O_4$ by HREIMS. Its structure was clarified by ¹H and ¹³C NMR spectra (**Table 1**, Figure 10 and 11).

The ¹³C NMR spectrum of **TD1** showed 20 spectral lines which were sorted by DEPT experiments as three methines (including an sp² oxy-methine), eight methylenes, three methyls, and six quaternary carbons. A closer analysis of the ¹³C NMR data allowed the identification of two carbonyl groups whose signals appeared at δ 215.2 (C-15) identified for a ketone and at δ 199.3 (C-3). The downfield chemical shift of the latter together with signals of a double bond at δ 116.4 (C-4) and 171.4 (C-18) indicated a carbonyl conjugated with a double bond. A hydroxy methylene carbon which connected to keto carbonyl carbon appeared at δ 63.9 (C-16). All other signals indicated non-functionalized, saturated carbons. The ¹H NMR spectrum clearly exhibited three singlet quaternary methyl groups at δ 0.72 (H₃-20), 1.17 (H₃-19), and 1.22 (H₃-17), a downfield olefinic proton at δ 7.94 (*d*, *J* = 7.8 Hz, H-18), a chelated hydroxy proton at δ 15.43 (*d*, *J* = 7.8 Hz, OH-18), a hydroxy methylene protons at δ 4.38 (d, *J* = 3.9 Hz, H₂-16), along with hydroxy proton at δ 3.26 (*br* t, *J* = 3.9 Hz, OH-16).

The important HMBC correlations were noticed between hydroxy methylene protons, H_2 -16 (δ 4.38)/C-13 (δ 45.4), and C-15 (δ 215.2) and between a chelated hydroxyl proton, 18-OH (δ 15.43)/C-3 (δ 199.3), C-4 (δ 116.4), and C-18 (δ 171.4). The X-ray cryatallographic analysis of **TD1** together with the reported dolabrane structures from the same plant (Zhang et al., 2005) enabled assignment of *cis*-A/B and *trans*-B/C ring junctions. Therefore, compound **TD1** was established as *ent*-5 α , 3,15-dioxodolabr-4(18)-ene-16,18-diol, a new compound designated as ceriotagalsin A.

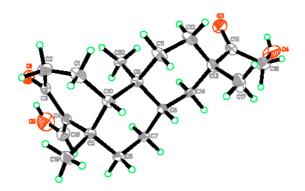


Figure 2 X-ray ORTEP diagram of compound TD1

Position	Type of C	$\delta_{_{ m C}}$ /ppm	$\delta_{\rm H}$ /ppm, multiplicity (J/Hz)	$HMBC/^{1}H \rightarrow ^{13}C$
1	CH_2	16.1		
2	CH_2	31.4	2.49, dd (9.3, 6.3)	1, 3, 4, 10
3	С	199.3		
4	С	116.4		
5	С	36.2		
6	CH_2	36.5	2.16, m; 1.42, m	
7	CH_2	25.3		
8	СН	41.9	1.46, <i>m</i>	
9	С	37.6		
10	СН	51.7	1.25, m	
11	CH_2	34.9		
12	CH_2	27.7		
13	С	45.4		
14	CH_2	34.4		
15	С	215.2		
16	CH_2	63.9	4.38, d (3.9)	13, 15
17	CH_3	20.6	1.22, <i>s</i>	12, 13, 15
18	СН	171.4	7.94, d (7.8)	2, 3, 4, 5, 19
19	CH_3	35.8	1.17, <i>s</i>	4, 5, 6, 10
20	CH_3	12.6	0.72, <i>s</i>	8, 9, 10, 11
	OH-16		3.26, br t (3.9)	
	OH-18		15.43, d (7.8)	3, 4, 18

 Table 1
 The ¹H, ¹³C and HMBC spectral data of compound TD1

3.1.2 Compound TD2

TD2 was isolated as a colorless oil, $[\alpha]_D^{28}$: +2.0° (c = 2.58, CHCl₃). The IR and UV spectra were closely similar to spectra of **TD1**. Its molecular formula C₂₀H₃₀O₃ established from HREIMS which was 16 mass units less than that of **TD1**, suggesting the loss of one oxygen atom.

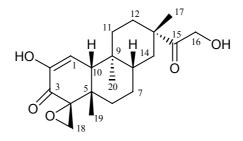
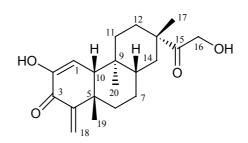

The ¹H and ¹³C NMR spectra of **TD2** (**Table 2, Figures 12** and **13**) were similar to those of **TD1**. The difference was found in ring A, where the exo-methylene protons at δ 5.26 (*s*, H-18a) and 5.95 (*s*, H-18b) replaced signals of an oxy-olefinic proton and a chelated hydroxy proton in **TD1**. The two olefinic protons H₂-18 showed HMBC correlations with C-3 (δ 202.9), C-4 (δ 151.9), C-5 (40.8) and C-19 (δ 33.4). Therefore, compound **TD2** was deduced to be *ent*-5 α ,3,15-dioxodolabr-4 (18)-ene-16-ol, a new compound designated as ceriotagalsin B.

Table 2 The ¹H, ¹³C and HMBC spectral data of compounds TD2 and TD1

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!\scriptscriptstyle m H}$ /ppm, multi	iplicity (J/Hz)	HMBC (TD2)
tion	of C*	TD1	TD2	TD2	TD1	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	16.1	17.6			
2	CH_2	31.4	36.3	2.53, dd (9.1, 6.3)	2.49, dd (9.3, 6.3)	1, 3, 4, 10
3	С	199.3	202.9			
4	С	116.4	151.9			
5	С	36.2	40.8			
6	CH_2	36.5	37.2	2.12, m; 1.45, m	2.16, m; 1.42, m	
7	CH_2	25.3	25.3			
8	СН	41.9	41.7	1.44, <i>m</i>	1.46, <i>m</i>	
9	С	37.6	38.0			
10	СН	51.7	52.1	1.33, m	1.25, m	
11	CH_2	34.9	35.0			
12	CH_2	27.7	27.9			
13	С	45.4	45.5			
14	CH_2	34.4	34.6			
15	С	215.2	215.2			
16	CH_2	63.9	63.8	4.39, br s	4.38, d (3.9)	13, 15
17	CH_3	20.6	20.5	1.23, s	1.22, s	12, 13, 15
18	CH_2	171.4	116.5	5.26, s (Ha);	7.94, d (7.8)	3, 4, 5, 19
				5.95, s (Hb)		

Posi-	Туре	$\delta_{\!_{ m C}}$ /ppm		$\delta_{_{ m H}}$ /ppm, multi	iplicity (J/Hz)	HMBC (TD2)
tion	of C*	TD1	TD2	TD2	TD1	$^{1}\text{H}\rightarrow ^{13}\text{C}$
19	CH_3	35.8	33.4	1.11, <i>s</i>	1.17, <i>s</i>	4, 5, 6, 10
20	CH_3	12.6	13.5	0.81, <i>s</i>	0.72, <i>s</i>	8, 9, 10, 11
	OH-16				3.26, br t (3.9)	
	OH-18				15.43, d (7.8)	

3.1.3 Compound TD3


TD3 came as a colorless oil, $[\alpha]_D^{28}$: +109.0° (c = 0.98, CHCl₃) and its molecular formula was assigned as C₂₀H₂₈O₅ from HREIMS. In IR spectrum, hydroxyl (3440 cm⁻¹) and enone (1697 cm⁻¹) absorptions were displayed.

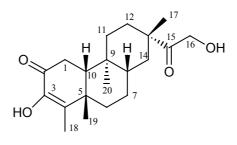
The ¹H and ¹³C NMR spectra of **TD3** (**Table 3**, **Figures 14** and **15**) were similar to those of **TD1**, except for a difference in the signals for ring A. In place of signals for an oxy-olefinic, a chelated hydroxy and four methylene protons in **TD1**, an olefinic and epoxidic geminal proton signals were present in **TD3**. The olefinic proton at δ 6.27 (*d*, *J* = 6.6 Hz, H-1) showed a correlation with proton at δ 2.22 (*d*, *J* = 6.6 Hz, H-10) in ¹H-¹H COSY, suggesting that vinyl carbons of an enone were located at C-1 and C-2 of ring A. A strong hydrogen bond of an hydroxy proton at C-2 with the carbonyl group at C-3 was defined by the appearance of a broaden ¹H NMR signal at δ 6.00 and ¹³C NMR signals of an enone at δ 118.1 (C-1), 147.6 (C-2), and 191.9 (C-3). The ¹³C NMR downfield chemical shift at δ 147.6 (C-2) indicated that the double bond carried a hydroxyl group. The chemical shift of two epoxidic geminal protons at δ 3.10 (*d*, *J* = 6.3 Hz) indicated a β -orientation, the same as reported for tagalsin B (Zhang et al., 2005) and oxidopanamensin (Koike et al., 1980). NOE correlation between H₂-18 and H₃-19 supported the assignment. Thus, compound **TD3** was identified as $ent-5\alpha$, 18β , 3, 15-dioxodolabr-4, 18-epoxy-1-ene-2, 16-diol, a new compound designated as ceriotagals in C.

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{_{ m H}}$ / ppm, m	ultiplicity (J/Hz)	HMBC (TD3)
tion	of C*	TD1	TD3	TD3	TD1	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	СН	16.1	118.1	6.27, d (6.6)		2, 3, 5, 10
2	С	31.4	147.6		2.49, dd (9.3, 6.3)	
3	С	199.3	191.9			
4	С	116.4	61.2			
5	С	36.2	37.2			
6	CH_2	36.5	32.1	1.64, m; 1.25,	2.16, m; 1.42, m	
				т		
7	CH_2	25.3	27.1			
8	СН	41.9	39.6	1.55, m	1.46, <i>m</i>	
9	С	37.6	39.2			
10	СН	51.7	54.7	2.22, d (6.6)	1.25, <i>m</i>	1, 2, 5, 9, 20
11	CH_2	34.9	34.0			
12	CH_2	27.7	27.9			
13	С	45.4	45.5			
14	CH_2	34.4	35.4			
15	С	215.2	214.9			
16	CH_2	63.9	63.9	4.40, br s	4.38, d (3.9)	13, 15
17	CH_3	20.6	20.3	1.27, s	1.22, <i>s</i>	12, 13, 15
18	CH_2	171.4	55.7	3.10, d (6.3);	7.94, d (7.8)	3, 4, 5
				3.12, d (6.3)		
19	CH_3	35.8	29.4	1.22, s	1.17, <i>s</i>	4, 5, 6, 10
20	CH_3	12.6	13.1	0.76, <i>s</i>	0.72, <i>s</i>	9, 10, 11
	OH-2			6.00, br s		1, 2, 3
	OH-16				3.26, br t (3.9)	
	OH-18				15.43, d (7.8)	

Table 3 The ¹H, ¹³C and HMBC spectral data of compounds TD3 and TD1

3.1.4 Compound TD4

TD4 was isolated as a colorless oil, $[\alpha]_D^{28}$: +235.4° (c = 4.58, CHCl₃). The ¹H and ¹³C NMR spectra of TD4 (Table 4, Figures 16 and 17) were similar to those of TD3, except for a difference in the signal for ring A. In place of the epoxidic geminal signals in TD3, the exocyclic olefinic protons were present in TD4. It showed the hydroxy methylene protons at δ 4.39 (s, H₂-16), an olefinic proton, H-1 at δ 6.17 (d, J = 6.9Hz) and hydroxy proton, OH-2 at δ 6.33 (br s) in TD3. The exocyclic olefinic protons, δ 6.25 (s, H-18a) and 5.41 (s, H-18b) showed correlation with C-2 (δ 147.4), C-3 (δ 185.0), C-4 (δ 149.2) and C-5 (δ 41.1) in HMBC. By comparison of the ¹³C NMR spectral data with the previously reported data (Kijjoa et al., 1994) (Table 4), compound TD4 was identified as $ent-5\alpha$,3,15-dioxodolabr-1,4(18)-diene-2,16-diol.


Table 4 The ¹H, ¹³C and HMBC spectral data of compounds **TD4**, **TD3** and $ent-5\alpha$, 3, 15-dioxodolabr-1, 4(18)-diene-2, 16-diol (**R**)

Posi-	Туре		$\delta_{ m c}$ / ppm		$\delta_{_{ m H}}$ / ppm, mult	HMBC (TD4)	
tion	of C*	R	TD4	TD3	TD4	TD3	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	СН	117.1	117.2	118.1	6.17, d (6.9)	6.27, d (6.6)	2, 3, 5, 10
2	С	148.6	147.4	147.6			
3	С	185.0	185.0	191.9			
4	С	147.4	149.2	61.2			
5	С	41.1	41.1	37.2			
6	CH_2	36.4	36.3	32.1	2.20, m;	1.64, m; 1.25,	
					1.48, m	т	
7	CH_2	25.2	25.2	27.1			
8	СН	40.2	40.1	39.6	1.47, m	1.55, m	
9	С	40.4	40.4	39.2			
10	СН	55.2	55.1	54.7	2.02, d (6.9)	2.22, d~(6.6)	5, 19, 20

Table 4 Continued

Posi-	Туре		$\delta_{\!_{ m C}}$ / ppm		$\delta_{\rm H}$ /ppm, multiplicity (J/Hz)		HMBC (TD4)
tion	of C*	R	TD4	TD3	TD4	TD3	$^{1}\text{H}\rightarrow ^{13}\text{C}$
11	CH ₂	35.5	35.4	34.0			
12	CH_2	27.7	27.6	27.9			
13	С	45.6	45.6	45.5			
14	CH_2	34.9	34.2	35.4			
15	С	214.8	215.0	214.9			
16	CH_2	63.8	63.8	63.9	4.39, <i>s</i>	4.40, br s	13, 15
17	CH_3	20.4	20.4	20.3	1.26, <i>s</i>	1.27, s	12, 13
18	CH_2	119.0	119.1	55.7	6.25, <i>s</i> ;	3.10, d (6.3);	2, 3, 4, 5
					5.41, <i>s</i>	3.12, d (6.3)	
19	CH_3	33.8	33.8	29.4	1.13, s	1.22, <i>s</i>	5, 6, 10
20	CH_3	11.9	11.9	13.1	0.62, <i>s</i>	0.76, <i>s</i>	9,10
	OH-2				6.33, br s	6.00, br s	

3.1.5 Compound TD5

TD5 was isolated as a colorless plate crystals (CHCl₃), mp 153-154°C, $[\alpha]_D^{28}$: +66.4° (c = 2.29, CHCl₃). The ¹H and ¹³C NMR spectra of **TD5** (**Table 5**, **Figures 18** and **19**) were very similar to those of **TD4**, except for a difference in the signals for ring A which were displayed as 3-hydroxy-4-methyl-2-enone cyclohexane, whose ¹H NMR spectrum showed the signals of allylic methyl at δ 1.87 (s, H₃-18) and a broad singlet signal of a hydroxy proton at δ 6.11 ($br \ s$, OH-3). ¹³C NMR spectrum displayed the signals of an enone functionality at δ 193.0 (C-2), 144.5 (C-3) and 135.3 (C-4). The important HMBC correlations between allylic methyl protons, H₃-18/C-3, C-4, C-5 (δ 38.9), and C-19 (δ 31.6) and between H-1 (δ 2.86, 2.71)/C-2, C-3, and C-10 (δ 54.2) were displayed. By comparison of the ¹³C NMR spectral data with the previously reported data (Kijjoa et al., 1994) (Table 5), compound TD5 was established as $ent-5\alpha$, 2, 15-dioxodolabr-3-ene-3, 16-diol, whose structure was supported by X-ray crystallographic analysis (Figure 3).

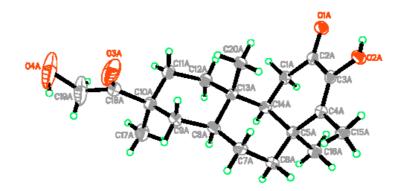
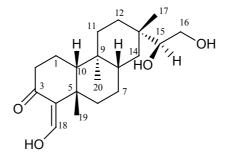


Figure 3 X-ray ORTEP diagram of compound TD5

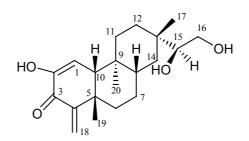

Table 5	The ¹ H, ¹³ C and HMBC spectral data of compounds TD5 , TD4 and
	ent-5 α ,2,15-dioxodolabr-3-ene-3,16-diol (R)

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{\!_{ m H}}$ / ppm, multij	plicity (J/Hz)	HMBC (TD5)
tion	of C*	R	TD5	TD4	TD5	TD4	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	37.4	33.1	117.2	2.86, dd (18.6, 6.2);	6.17, <i>d</i> (6.9)	2, 3, 10
					2.71, d (18.6)		
2	С	192.5	193.0	147.4			
3	С	144.3	144.5	185.0			
4	С	135.2	135.3	149.2			
5	С	38.6	38.9	41.1			
6	CH_2	34.6	37.7	36.3	2.19, m; 1.24, m	2.20, m; 1.48, m	
7	CH_2	26.2	26.4	25.2			
8	СН	40.5	41.1	40.1	1.42, m	1.47, <i>m</i>	
9	С	37.5	37.8	40.4			
10	СН	53.8	54.2	55.1	1.67, <i>m</i>	2.02, d (6.9)	2, 4, 5, 19
11	CH_2	32.9	33.4	35.4			
12	CH_2	27.3	27.6	27.6			
13	С	45.0	45.3	45.6			
14	CH_2	32.9	34.9	34.2			
15	С	214.8	215.0	215.0			

Table 5 Continued

Posi-	Туре	$\delta_{ m _C}$ / ppm			$\delta_{\!\scriptscriptstyle m H}$ / ppm, multip	HMBC (TD5)	
tion	of C*	R	TD5	TD4	TD5	TD4	$^{1}\text{H}\rightarrow ^{13}\text{C}$
16	CH ₂	63.6	63.8	63.8	4.33, <i>s</i>	4.39, <i>s</i>	13, 15, 17
17	CH_3	20.3	20.6	20.4	1.23, <i>s</i>	1.26, <i>s</i>	12, 13, 15
18	CH_3	12.3	13.6	119.1	1.87, <i>s</i>	6.25, s; 5.41, s	3, 4, 5, 19
19	CH_3	31.3	31.6	33.8	1.24, <i>s</i>	1.13, <i>s</i>	6, 10
20	CH_3	11.3	11.6	11.9	0.63, <i>s</i>	0.62, <i>s</i>	8, 9, 10, 11
	OH-2					6.33, br s	
	OH-3				6.11, br s		

3.1.6 Compound TD6


TD6 was isolated as a colorless oil, $[\alpha]_D^{28}$: -31.1° (c = 1.15, CHCl₃). The ¹H and ¹³C NMR spectra (**Table 6**, **Figures 20** and **21**) of **TD6** indicated that it contained a hydroxy enone of a dolabrane backbone as in **TD1**, but the molecular formula of **TD6** was $C_{20}H_{32}O_4$ as indicated by HREIMS, differing from **TD1** by an additional two hydrogen atoms.

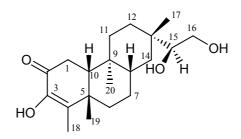
The ¹H NMR spectrum showed the signals for three AB₂ system of 1,2hydroxyethyl side-chain at δ 3.74 (*dd*, *J* = 10.8, 2.4 Hz, H-16a), 3.52 (*dd*, *J* = 10.8, 9.3 Hz, H-16b), and 3.32 (*dd*, *J* = 9.3, 2.4 Hz, H-15) instead of a hydroxy methylene protons in **TD1**. The ¹³C NMR signal of ketone carbonyl carbon at δ 215.2 in **TD1** was replaced by a signal of an oxy-methine carbon at δ 81.1 (C-15) in **TD6**. This was confirmed by HMBC correlation observed between H-17 (δ 0.92, *s*)/C-12 (δ 28.6), C-13 (δ 36.2), C-14 (δ 36.3), and C-15. The configuration at C-15 of a 1,2dihydroxyethyl side-chain may be assigned on the basis of the carbon chemical shifts around C-13. The two epimers of *ent*-dolabr-4(18)-ene-7 α ,15S/R,16-diol showed different ¹H NMR chemical shifts at C-12 and C-14 (Ansell et al., 1993). In case of compound **TD6**, the chemical shifts at C-12 and C-14 were displayed at δ 28.6 and 36.3, respectively, comparable to those of an *ent*-dolabr-4(18)-ene-15S,16-diol at δ 28.5 (C-12) and 36.1 (C-14) (Ansell et al., 1993). Hence, compound **TD6** could be deduced as *ent*-5 α ,15S,3-oxodolabr-4(18)-ene-15,16,18-triol, a new compound designated as ceriotagalsin D.

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!\scriptscriptstyle \mathrm{H}}$ /ppm, multip	plicity (J/Hz)	HMBC (TD6)
tion	of C*	TD1	TD6	TD6	TD1	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH_2	16.1	16.1			
2	CH_2	31.4	31.5	2.49, <i>m</i>	2.49, dd (9.3, 6.3)	1, 3, 4, 10
3	С	199.3	199.5			
4	С	116.4	116.6			
5	С	36.2	36.5			
6	CH_2	36.5	36.7	2.16, m; 1.36, m	2.16, m; 1.42, m	
7	CH_2	25.3	25.6			
8	СН	41.9	42.1	1.37, m	1.46, <i>m</i>	
9	С	37.6	37.7			
10	CH	51.7	51.8	1.23, m	1.25, m	
11	CH_2	34.9	34.9			
12	CH_2	27.7	28.6			
13	С	45.4	36.2			
14	CH_2	34.4	36.3			
15	CH	215.2	81.1	3.32, dd (9.3, 2.4)		16
16	CH_2	63.9	62.6	3.74, dd (10.8, 2.4);	4.38, d (3.9)	15
				3.52, dd (10.8, 9.3)		
17	CH_3	20.6	19.0	0.92, <i>s</i>	1.22, <i>s</i>	12, 13, 14,
						15
18	СН	171.4	171.4	7.93, d (7.5)	7.94, d (7.8)	2, 3, 5
19	CH_3	35.8	35.8	1.51, s	1.17, <i>s</i>	4, 5, 6, 10
20	CH_3	12.6	12.6	0.69, <i>s</i>	0.72, <i>s</i>	8, 9, 10, 11
	OH-18			15.42, d (7.5)	15.43, d (7.8)	2, 3, 4, 18

Table 6 The ¹H, ¹³C and HMBC spectral data of compounds TD6 and TD1

3.1.7 Compound TD7

TD7 was isolated as a colorless oil, $[\alpha]_D^{28}$: +120° (c = 0.33, CHCl₃) and analyzed for C₂₀H₃₀O₄ as indicated by HREIMS. The ¹H and ¹³C NMR spectra of **TD7** (**Table 7, Figures 22** and **23**) showed dolabrane backbone with 1,2-dihydroxyethyl group side-chain connected to ring C as in **TD6**. The resonances assigned for ring A were identical to those of tagalsin C (Zhang et al., 2005) and *ent*-5 α ,3,15-dioxodolabr-1,4 (18)-diene-2,16-diol (Kijjoa et al., 1994). The exo-methylene protons at δ 5.41 (*s*, H-18a), and 6.24 (*s*, H-18b) and the olefinic proton at δ 6.19 (*d*, J = 6.6 Hz, H-1) were observed. The latter proton showed HMBC correlations with C-2 (δ 147.3), C-3 (δ 185.2), C-5 (δ 41.2), and C-10 (δ 55.4). The ¹³C NMR spectrum indicated hydroxy enone at δ 185.2 (C-3), 147.3 (C-2), and 118.0 (C-1) and exo-methylene group at δ 148.8 (C-4), and 119.0 (C-18). Therefore, compound **TD7** was deduced to be *ent*-5 α ,15*S*,3-oxodolabr-1,4(18)-diene-2,15,16-triol, a new compound designated as ceriotagalsin E.

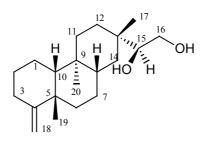

Table 7 The ¹H, ¹³C and HMBC spectral data of compounds TD7 and TD6

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!\scriptscriptstyle m H}$ /ppm, mult	HMBC (TD7)	
tion	of C*	TD6	TD7	TD7	TD6	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	СН	16.1	118.0	6.19, <i>d</i> (6.6)		2, 3, 5, 10
2	С	31.5	147.3		2.49, m	
3	С	199.5	185.2			
4	С	116.6	148.8			
5	С	36.5	41.2			
6	CH_2	36.7	36.5	2.20, m; 1.40, m	2.16, m; 1.36, m	
7	CH_2	25.6	25.5			
8	СН	42.1	40.4	1.43, m	1.37, m	
9	С	37.7	40.7			

Table 7 Continued

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{_{ m H}}$ /ppm, multi	iplicity (J/Hz)	HMBC (TD7)
tion	of C*	TD6	TD7	TD7	TD6	$^{1}\text{H}\rightarrow ^{13}\text{C}$
10	СН	51.8	55.4	2.03, d (6.6)	1.23, m	1, 2, 4, 5, 9, 20
11	CH_2	34.9	34.8			
12	CH_2	28.6	28.3			
13	С	36.2	36.8			
14	CH_2	36.3	36.8			
15	СН	81.1	81.0	3.32, dd (9.3, 2.7)	3.32, dd (9.3, 2.4)	12, 13, 16, 17
16	CH_2	62.6	62.5	3.52, dd (10.8,	3.74, dd (10.8,	13, 15
				9.3); 3.74, dd	2.4); 3.52, dd	
				(10.8, 2.7)	(10.8, 9.3)	
17	CH_3	19.0	19.0	0.96, <i>s</i>	0.92, <i>s</i>	12, 15
18	CH_2	171.4	119.0	5.41, s; 6.24 s	7.93, d (7.5)	3, 4, 5, 19
19	CH_3	35.8	33.8	1.12, <i>s</i>	1.51, s	4, 5, 6, 10
20	CH ₃	12.6	12.0	0.60, <i>s</i>	0.69, <i>s</i>	8, 9, 10, 11

3.1.8 Compound TD8


TD8 was isolated as a white solid, mp 126–128°C, $[\alpha]_D^{28}$: -17.8° (c = 1.33, CHCl₃). The ¹H and ¹³C NMR spectra of TD8 (Table 8, Figures 24 and 25) were similar to those of TD6, except for a difference in the signals for ring A which were displayed as 3-hydroxy-4-methyl-2-enone cyclohexane whose ¹H NMR spectrum showed the signals of an allylic methyl at $\delta 1.87$ (s, H₃–18) and a broad singlet signal of a hydroxy proton at $\delta 6.16$ (br s, OH–3). ¹³C NMR spectrum displayed the signals of an enone functionality at $\delta 193.1$ (C–2), 144.6 (C–3) and 135.6 (C–4). The important HMBC correlations between allylic methyl protons H₃–18/C–3, C–4, C–5 (δ 39.0) and C–19 (δ 31.7) and between H–1 (δ 2.84 and 2.71)/C–2, C–3, C–5, C–9 (δ 38.0),

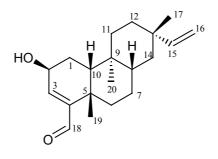
and C-10 (δ 54.3) were displayed. By comparison of the ¹³C NMR spectral data with the previously reported data (Kijjoa et al., 1995) (**Table 8**), compound **TD8** was established as ent-5 α ,15S,2-oxodolabr-3-ene-3,15,16-triol.

Posi-	Туре		$\delta_{\!\scriptscriptstyle m C}$ / ppm		$\delta_{_{ m H}}$ / ppm, mult	tiplicity (J/Hz)	HMBC (TD8)
tion	of C*	R	TD8	TD6	TD8	R	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	38.0	33.2	16.1	2.84, dd (18.6,	2.81, dd (18.5,	2, 3, 5, 9, 10
					6.3); 2.71, d	(6.5); 2.69, d	
					(18.6)	(18.5)	
2	С	193.0	193.1	31.5			
3	С	144.6	144.6	199.5			
4	С	135.3	135.6	116.6			
5	С	39.0	39.0	36.5			
6	CH_2	36.4	37.8	36.7	2.17, m; 1.25, m	2.13, m; 1.24, m	
7	CH_2	26.9	26.8	25.6			
8	СН	41.3	41.2	42.1	1.37, m	1.38, <i>m</i>	
9	С	38.1	38.0	37.7			
10	СН	54.5	54.3	51.8	1.64, <i>m</i>	1.62, <i>m</i>	
11	CH_2	33.9	33.7	34.9			
12	CH_2	28.4	28.4	28.6			
13	С	36.5	36.4	36.2			
14	CH_2	33.2	36.3	36.3			
15	СН	81.0	81.0	81.1	3.31, dd (9.6,	3.29, dd (10, 2)	13, 16
					2.4)		
16	CH_2	62.6	69.5	62.6	3.73, dd (10.5,	3.70, br d (10, 2);	15
					2.4); 3.08, dd	3.49, br d (10,	
					(10.5, 9.6)	10)	
17	CH_3	19.2	19.0	19.0	0.92, <i>s</i>	0.91, <i>s</i>	12, 13, 14, 15
18	CH_3	13.6	13.6	171.4	1.87, <i>s</i>	1.85, <i>s</i>	3, 4, 5, 19
19	CH_3	31.7	31.7	35.8	1.23, s	1.20, <i>s</i>	4, 5, 9
20	CH_3	11.5	11.6	12.6	0.59, <i>s</i>	0.57, <i>s</i>	8, 9, 10, 11
	OH-3				6.16, br s	6.09, br s	1, 2, 3

Table 8 The ¹H, ¹³C and HMBC spectral data of compounds **TD8**, **TD6** and $ent-5\alpha$, 2-oxodolabr-3-ene-3, 15, 16-triol (**R**)

3.1.9 Compound TD9

TD9 was isolated as a colorless oil, $[\alpha]_{D}^{28}$: +69.3° (c = 0.50, CHCl₃). The ¹H and ¹³C NMR spectra of TD9 (Table 9, Figures 26 and 27) showed dolabrane backbone with 1,2-dihydroxyethyl group side-chain connected to ring C as in TD6, but the resonances assigned for ring A showed the exo-methylene protons at δ 4.73 (s, H-18a) and 4.71 (s, H-18b) which replaced the hydroxyl enone of TD6. The ¹³C NMR spectrum indicated the exocyclic olefinic group at δ 154.0 (C-4), and 105.7 (C-18). By comparison of the ¹³C NMR spectral data with the previously reported data (Ansel et al., 1993) (Table 9), compound TD9 was deduced to be *ent*-5 α -dolabr-4(18)-ene-15S,16-diol.


Table 9 The ¹H, ¹³C and HMBC spectral data of compounds **TD9**, **TD6** and $ent-5\alpha$ -dolabr-4(18)-ene-15S,16-diol (**R**)

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{_{ m H}}$ /ppm, multi	plicity (J/Hz)	HMBC (TD9)
tion	of C*	R	TD9	TD6	TD9	TD6	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	20.7	20.6	16.1			
2	CH_2	24.1	24.1	31.5		2.49, m	
3	CH_2	38.6	31.9	199.5	3.15, m		
4	С	153.9	154.0	116.6			
5	С	40.0	39.9	36.5			
6	CH_2	36.0	38.4	36.7	2.22, m; 1.31, m	2.16, m; 1.36, m	
7	CH_2	26.3	26.2	25.6			
8	СН	42.4	42.3	42.1	1.30, <i>m</i>	1.37, m	
9	С	38.6	36.0	37.7			
10	СН	54.6	54.4	51.8	1.17, m	1.23, m	
11	CH_2	32.0	35.8	34.9			
12	CH_2	28.5	28.9	28.6			
13	С	35.5	36.6	36.2			

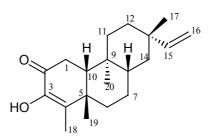
Table 9 Continued

Posi-	Туре		$\delta_{\!\scriptscriptstyle m C}$ / ppm		$\delta_{_{ m H}}$ / ppm, multi	HMBC (TD9)	
tion	of C*	R	TD9	TD6	TD9	TD6	$^{1}\text{H}\rightarrow ^{13}\text{C}$
14	CH ₂	36.1	36.5	36.3			
15	СН	85.0	81.4	81.1	3.32, d 99.0, 3.0)	3.32, dd (9.3,	12, 13, 14,
						2.4)	16, 17
16	CH_2	64.7	62.6	62.6	3.74, dd (12.0,	3.74, dd (10.8,	13, 15
					9.0); 3.52, dd	2.4); 3.52, dd	
					(9.0, 3.0)	(10.8, 9.3)	
17	CH_3	19.3	18.8	19.0	0.91, <i>s</i>	0.92, s	12, 13, 14
18	CH_2	105.8	105.7	171.4	4.73, s; 4.71, s	7.93, d (7.5)	
19	CH_3	32.9	32.0	35.8	1.25, s	1.51, <i>s</i>	3, 4, 5, 10
20	CH_3	15.6	15.5	12.6	0.86, <i>s</i>	0.69, <i>s</i>	8, 9, 10

3.1.10 Compound TD10

TD10 was isolated as a colorless oil, $[\alpha]_D^{28}$: +37.0° (c = 0.16, CHCl₃), and assigned the molecular formula of C₂₀H₃₀O₄ as indicated by HREIMS. Comparison of its NMR spectra (**Table 10**, **Figures 28** and **29**) with **TD1** showed that **TD10** was also a tricyclic diterpenoid.

The ¹H NMR spectrum of **TD10** exhibited three singlet methyl groups at δ 0.74 (H₃-20), 1.02 (H₃-17), and 1.29 (H₃-19), an olefinic proton at δ 6.54 (*d*, J = 3.0 Hz, H-3) and a terminal vinylic group at δ 4.84 (*dd*, J = 10.8, 1.2 Hz, H-16a), 4.91 (*dd*, J = 17.4, 1.2 Hz, H-16b), and 5.79 (*dd*, J = 17.4, 10.8 Hz, H-15), an oxy-methine proton at δ 4.72 (*ddd*, J = 9.3, 8.1, 3.0 Hz, H-2), along with a singlet signal of a formyl proton at δ 9.47 (H-18). Its ¹³C NMR spectrum displayed conjugated enone system at δ 159.6 (C-3), 149.0 (C-4), and 194.7 (C-18), a monosubstituted


double bond at δ 151.1 (C-15), and 108.8 (C-16), and an oxy-methine carbon at δ 65.6 (C-2).

The HMBC correlation between a formyl proton H-18/C-3, C-4, and C-5 (δ 37.3) supported the connection of the formyl group at C-18. The ¹H-¹H COSY cross peak of an oxy-methine proton H-2 with an olefinic proton H-3 confirmed that C-2 carried a hydroxyl group. The oxy-methine proton H-2 was assigned as an axial proton (α -orientation) due to the spin coupling of this proton at δ 4.72 (*ddd*, J = 9.3, 8.1, 3.0 Hz, H-2). Thus, compound **TD10** could be deduced as *ent*-5 α ,18-oxodolabr-3,15-diene-2 β -ol, a new compound designated as ceriotagalsin F.

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!\scriptscriptstyle m H}$ /ppm, multipl	licity (J/Hz)	HMBC (TD10)
tion	of C*	TD1	TD10	TD10	TD1	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	16.1	35.4			
2	СН	31.4	65.6	4.72, ddd (9.3, 8.1, 3.0)	2.49, dd (9.3, 6.3)	1, 5
3	СН	199.3	159.6	6.54, d(3.0)		
4	С	116.4	149.0			
5	С	36.2	37.3			
6	CH_2	36.5	28.4	3.17, m; 1.72, m	2.16, <i>m</i> ; 1.42, <i>m</i>	
7	CH_2	25.3	27.0			
8	СН	41.9	41.7	1.38, <i>m</i>	1.46, <i>m</i>	
9	С	37.6	37.6			
10	СН	51.7	56.3	1.43, <i>m</i>	1.25, m	
11	CH_2	34.9	35.7			
12	CH_2	27.7	31.7			
13	С	45.4	36.2			
14	CH_2	34.4	38.9			
15	СН	215.2	151.1	5.79, dd (17.4, 10.8)		12, 13, 14, 17
16	CH_2	63.9	108.8	4.91, dd (17.4, 1.2);	4.38, d (3.9)	13, 15
				4.84, dd (10.8, 1.2)		
17	CH_3	20.6	23.0	1.02, <i>s</i>	1.22, <i>s</i>	12, 13, 14
18	СН	171.4	194.7	9.47, <i>s</i>	7.94, d (7.8)	3, 4, 5
19	CH_3	35.8	34.4	1.29, <i>s</i>	1.17, s	4, 5, 6, 10
20	CH_3	12.6	14.1	0.74, <i>s</i>	0.72, <i>s</i>	8, 9, 10 11

Table 10 The ¹H, ¹³C and HMBC spectral data of compounds TD10 and TD1

3.1.11 Compound TD11

TD11 was isolated as a white solid, mp 90-91°C, $[\alpha]_{D}^{28}$: +17.6° (c = 2.38, CHCl₃). The ¹H and ¹³C NMR spectra of TD11 (Table 11, Figures 30 and 31) were very similar to those of TD10, except for a difference in the signal for ring A which were displayed as 3-hydroxy-4-methyl-2-enone cyclohexane, whose ¹H NMR spectrum showed the signals of allylic methyl at δ 1.87 (s, H₃-18) and a broad singlet signal of a hydroxy proton at δ 6.12 ($br \ s$, OH-3). ¹³C NMR spectrum displayed the signals of an enone functionality at δ 193.1 (C-2), 144.5 (C-3) and 135.5 (C-4). The important HMBC correlations between allylic methyl protons, H₃-18/C-3, C-4 and C-19 (δ 31.7) and between H-1 (δ 2.83 and 2.73)/C-2, C-3, C-5 (δ 38.9), C-9 (δ 38.1) and C-10 (δ 54.5) were displayed. By comparison of the ¹³C NMR spectral data with the previously reported data of tagalsin G (Zhang et al., 2005) (Table 11), compound TD11 was established as *ent*-5 α ,2-oxodolabr-3,15-diene-3-ol.

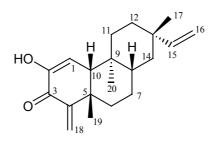
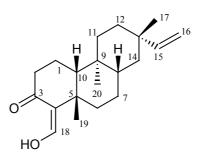

Posi-	Туре	$\delta_{ m c}$ / ppm			$\delta_{\!\scriptscriptstyle m H}$ / ppm, multi	plicity (J/Hz)	HMBC (TD11)
tion	of C*	R	TD11	TD10	TD11	TD10	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	33.2	33.2	35.4	2.83, dd (18.6,		2, 3, 5, 9,
					6.3) ; 2.73, br d		10
					(18.6)		
2	С	193.1	193.1	65.6		4.72, ddd	
						(9.3, 8.1, 3.0)	
3	С	144.5	144.5	159.6		6.54, d (3.0)	
4	С	135.5	135.5	149.0			
5	С	39.0	38.9	37.3			
6	CH_2	38.0	38.0	28.4	2.17, m; 1.38, m	3.17, m; 1.72, m	

Table 11The ¹H, ¹³C and HMBC spectral data of compounds TD11, TD10 and
tagalsin G (R)

Table 11 Continued

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{\!_{ m H}}$ / ppm, multi	plicity (J/Hz)	HMBC (TD11)
tion	of C*	R	TD11	TD10	TD11	TD10	$^{1}\text{H}\rightarrow ^{13}\text{C}$
7	CH ₂	26.7	26.7	27.0			
8	СН	41.6	41.6	41.7	1.39, m	1.38, <i>m</i>	
9	С	38.1	38.1	37.6			
10	СН	54.5	54.5	56.3	1.67, <i>m</i>	1.43, m	
11	CH_2	34.2	34.1	35.7			
12	CH_2	31.7	31.6	31.7			
13	С	36.2	36.2	36.2			
14	CH_2	38.9	38.8	38.9			
15	СН	150.9	150.9	151.1	5.78, dd (17.4,	5.79, dd (17.4,	12, 13, 14, 17
					10.5)	10.8)	
16	CH_2	108.9	108.9	108.8	4.90, dd (17.4,	4.91, dd (17.4,	13, 15
					1.5); 4.84, dd	1.2); 4.84, dd	
					(10.5, 1.5)	(10.8, 1.2)	
17	CH_3	23.1	23.1	23.0	1.02, <i>s</i>	1.02, <i>s</i>	12, 13, 14, 15
18	CH_3	11.6	11.6	194.7	1.87, <i>s</i>	9.47, <i>s</i>	3, 4, 19
19	CH_3	31.6	31.7	34.4	1.24, <i>s</i>	1.29, <i>s</i>	4, 5, 10
20	CH_3	13.7	13.7	14.1	0.60, <i>s</i>	0.74, <i>s</i>	8, 9, 10
	OH-3				6.12, br s		

3.1.12 Compound TD12


TD12 was isolated as a pale yellow oil, $[\alpha]_D^{28}$: +92.3° (c = 0.05, CHCl₃). Comparison of ¹H and ¹³C NMR spectra of **TD12** and **TD11** (**Table 12**, **Figures 32** and **33**) revealed that signals assigned to rings B and C were similar, while the signals for ring A were almost identical to those of **TD4**. An exocyclic olefinic protons, δ

6.24 (s, H-18a) and 5.41 (s, H-18b) and an olefinic proton H-1 at δ 6.20 (d, J = 6.6 Hz) of **TD12** replaced the 3-hydroxy-4-methyl-2-enone cyclohexane group of **TD11**. The important HMBC correlations between olefinic protons, H₃-18/C-3 (δ 185.3), C-4 (δ 148.9), C-5 (δ 41.2), and C-19 (δ 33.9) and between H-1/C-3, C-5 and C-10 (δ 55.5) were displayed. By comparison of the ¹³C NMR spectral data with the previously reported data of tagalsin C (Zhang et al., 2005) (**Table 12**), compound **TD12** was established as *ent*-5 α ,2-oxodolabr-1,4(18),15-triene-2-ol.

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{\!_{ m H}}$ / ppm, multi	plicity (J/Hz)	HMBC (TD12)
tion	of C*	R	TD12	TD11	TD12	R	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	СН	118.2	118.1	33.2	6.20, <i>d</i> (6.6)	6.22, <i>d</i> (6.7)	3, 5, 10
2	С	147.2	147.2	193.1			
3	С	185.3	185.3	144.5			
4	С	148.8	148.9	135.5			
5	С	41.2	41.2	38.9			
6	CH_2	36.6	36.6	38.0	2.19, m; 1.51, m	2.20, m; 1.48, m	
7	CH_2	25.4	25.5	26.7			
8	СН	40.8	40.9	41.6	1.46, <i>m</i>	1.48, <i>m</i>	
9	С	40.8	40.8	38.1			
10	СН	55.5	55.5	54.5	2.06, d~(6.6)	2.08, d (6.7)	1,2,8,11,20
11	CH_2	35.2	35.3	34.1			
12	CH_2	31.6	31.6	31.6			
13	С	36.5	36.5	36.2			
14	CH_2	39.4	39.4	38.8			
15	СН	150.8	150.9	150.9	5.79, dd (17.4,	5.80, dd (17.5,	12, 13, 14, 17
					10.8)	10.8)	
16	CH_2	108.9	108.9	108.9	4.94, dd (17.5,	4.90, d (17.5);	13, 14, 15
					1.5); 4.85, dd	4.87, d (10.8)	
					(10.8, 1.5)		
17	CH_3	22.9	22.9	23.1	1.06, <i>s</i>	1.05, <i>s</i>	12, 13, 14
18	CH_2	118.9	118.9	11.6	6.24, s; 5.41, s	6.26, s; 5.43, s	3,4,5,19
19	CH_3	33.9	33.9	31.7	1.12, s	1.14, <i>s</i>	4, 5, 6, 10
20	CH_3	12.0	12.1	13.7	0.60, <i>s</i>	0.64, <i>s</i>	8, 9, 10 ,11

 Table 12
 The ¹H, ¹³C and HMBC spectral data of compounds TD12, TD11 and tagalsin C (R)

3.1.13 Compound **TD13**

TD13 was isolated as a colorless plate crystal (CHCl₃), mp 101-102°C, $[\alpha]_{D}^{28}$: +37.8° (c = 2.05, CHCl₃). Comparison of ¹H and ¹³C NMR spectra of TD13 and TD11 (Table 13, Figures 34 and 35) revealed that signals assigned to rings B and C were similar, while the signal for ring A were almost identical to those of TD1. An olefinic proton, H-18 at δ 7.93 (d, J = 7.5 Hz) and a chelated ydroxyl proton, OH-18 at δ 15.43 (d, J = 7.5 Hz) of TD12 replaced the 3-hydroxy-4-methyl-2-enone cyclohexane group of TD11. The important HMBC correlations between olefinic proton, H-18/C-2 (δ 31.5), C-3 (δ 199.6), C-4 (δ 116.8), and C-10 (δ 51.9) were displayed. By comparison of the ¹³C NMR spectral data with the previously reported data of tagalsin F (Zhang et al., 2005) (Table 13), compound TD1 was established as *ent*-5 α ,2-oxodolabr-4(18),15-diene-18-ol. The X-ray crystallographic structure of TD1 was also displayed (Figure 4).

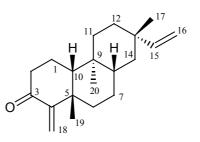


Figure 4 X-ray ORTEP diagram of compound TD13

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{_{ m H}}$ / ppm, multi	plicity (J/Hz)	HMBC (TD13)
tion	of C*	R	TD13	TD11	TD13	R	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	16.1	16.1	33.2	2.04, m; 1.96, m	2.04, m; 1.97, m	
2	CH_2	31.5	31.5	193.1	2.48, m	2.46, m; 2.45, m	
3	С	199.6	199.6	144.5			
4	С	116.7	116.8	135.5			
5	С	36.3	36.3	38.9			
6	CH_2	36.7	36.7	38.0	2.16, m; 1.45, m	2.13, m; 1.42, m	
7	CH_2	25.5	25.5	26.7			
8	СН	42.5	42.6	41.6			
9	С	37.7	37.8	38.1			
10	СН	51.8	51.9	54.5	1.26, m	1.24, m	
11	CH_2	35.2	35.3	34.1			
12	CH_2	31.7	31.7	31.6			
13	С	36.1	36.2	36.2			
14	CH_2	38.8	38.9	38.8			
15	СН	150.9	151.0	150.9	5.79, dd (17.4,	5.78, dd (17.5,	12, 13, 14,
					10.5)	10.7)	17
16	CH_2	108.8	108.8	108.9	4.91, dd (17.4,	4.88, d (17.5);	13
					1.5); 4.87, dd	4.84, d (10.7)	
					(10.5, 1.5)		
17	CH_3	23.0	23.1	23.1	1.02, <i>s</i>	1.01, <i>s</i>	12, 13, 14,
							15
18	СН	171.2	171.3	11.6	7.93, d (7.5)	7.90, d (7.8)	2, 3, 4, 10
19	CH_3	35.8	35.9	31.7	1.16, <i>s</i>	1.15, s	4, 5, 9, 10
20	CH_3	12.7	12.7	13.7	0.70, <i>s</i>	0.69, <i>s</i>	8, 9, 10.
							11
	OH-18				15.43, d (7.5)	15.46, d (7.8)	3, 4, 18

Table 13The ¹H, ¹³C and HMBC spectral data of compounds TD13, TD11 and
tagalsin F (R)

3.1.14 Compound TD14

TD14 was isolated as a pale yellow oil, $[\alpha]_D^{28}$: -8.39° (c = 1.00, CHCl₃). Comparison of IR, ¹H and ¹³C NMR spectroscopic data of TD14 and TD13 (Table 14, Figures 36 and 37) revealed that signals assigned to rings B and C were very similar, while the signals for ring A were almost identical to those of TD2. Two singlet olefinic protons at δ 5.93 (H-18a) and 5.33 (H-18b) of TD14 replaced an olefinic and chelated ydroxyl protons of TD13. By comparison of the ¹³C NMR spectral data with the previously reported data of tagalsin E (Zhang et al., 2005) (Table 14), compound TD14 was established as $ent-5\alpha$, 2-oxodolabr-4(18), 15-diene.

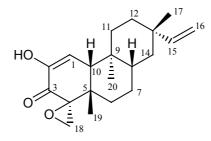
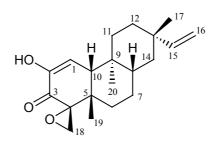

Posi-	Туре		$\delta_{\!\scriptscriptstyle m C}$ / ppm		$\delta_{\!\scriptscriptstyle \mathrm{H}}$ /ppm, multi	plicity (J/Hz)
tion	of C*	R	TD14	TD13	TD14	R
1	CH ₂	18.0	17.7	16.1		
2	CH_2	36.7	36.5	31.5	2.57, m; 2.53, m	
3	С	203.7	203.5	199.6		
4	С	152.5	152.3	116.8		
5	С	41.2	41.0	36.3		
6	CH_2	37.6	37.4	36.7		
7	CH_2	25.8	25.6	25.5		
8	СН	42.7	42.5	42.6		
9	С	38.4	38.2	37.8		
10	СН	52.6	52.4	51.9		
11	CH_2	35.8	35.6	35.3		
12	CH_2	32.1	31.9	31.7		
13	С	36.6	36.3	36.2		
14	CH_2	39.2	39.0	38.9		
15	СН	151.2	151.0	151.0	5.80, dd (17.4, 10.8)	5.79, dd(17.5, 10.8)

Table 14 The ¹H and ¹³C spectral data of compounds TD14, TD13 and tagalsin E (R)

Table 14 Continued

Posi-	Туре	$\delta_{_{ m C}}$ / ppm			$\delta_{\!_{ m H}}$ /ppm, multi	plicity (J/Hz)
tion	of C*	R	TD14	TD13	TD14	R
16	CH ₂	109.1	108.8	108.8	4.93, dd (17.4, 1.2);	4.92, d (17.5);
					4.85, dd (10.8, 1.2)	4.84, <i>d</i> (10.8)
17	CH_3	93.2	23.0	23.1	1.03, <i>s</i>	1.02, <i>s</i>
18	CH_2	116.5	116.3	171.3	5.93, s; 5.33, s	5.92, s; 5.24, s
19	CH_3	33.8	33.6	35.9	1.10, <i>s</i>	1.08, <i>s</i>
20	CH_3	13.9	13.6	12.7	0.79, <i>s</i>	0.78, <i>s</i>

3.1.15 Compound TD15



TD15 was isolated as a white solid, mp $68-69^{\circ}$ C, $[\alpha]_{D}^{28}$: +120.0° (c = 0.75, CHCl₃). Comparison of IR, ¹H and ¹³C NMR spectroscopic data of TD15 and TD12 (Table 15, Figures 38 and 39) revealed that signals assigned to rings B and C were very similar, while the signals for ring A were similar to those of TD3. The two geminal epoxidic protons, H₂-18 at $\delta 3.45$ (d, J = 6.3 Hz) and 2.98 (d, J = 6.3 Hz) of TD15 replaced the two olefinic signals of TD12. The important HMBC correlations between epoxidic protons, H₂-18/C-3 (δ 191.2), C-4 (δ 60.1), and C-5 (δ 35.7), along with H-1 (δ 6.34)/C-2 (δ 147.7), C-3 and C-10 (δ 54.4) were displayed. The configuration of the epoxidic group at C-4 (δ 60.1) was assigned as α -orientation, due to the chemical shifts of protons at C-18, which differed from the chemical shift of β -orientation at δ 3.12 (d, J = 6.3 Hz, H-18a) and 3.10 (d, J = 6.3 Hz, H-18b) in TD3. By comparison of the ¹³C NMR spectral data with the previously reported data of tagalsin A (Zhang et al., 2005) (Table 15), compound TD15 was established as *ent*-5 α , 18 α ,3-oxodolabr-4,18-epoxy-1,15-diene-2-ol.

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{\!\scriptscriptstyle m H}$ / ppm, mul	tiplicity (J/Hz)	HMBC (TD15)
tion	of C*	R	TD15	TD12	TD15	R	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	СН	120.6	120.3	118.1	6.34, <i>d</i> (6.9)	6.34, <i>d</i> (6.8)	2, 3, 10
2	С	147.7	147.7	147.2			
3	С	191.2	191.2	185.3			
4	С	60.1	60.1	148.9			
5	С	35.6	35.7	41.2			
6	CH_2	34.2	34.3	36.6			
7	CH_2	27.2	27.2	25.5			
8	СН	40.8	40.9	40.9			
9	С	39.7	39.8	40.8			
10	СН	54.3	54.4	55.5	2.14, <i>d</i> (6.9)	2.14, <i>d</i> (6.8)	4, 5, 9, 19,
							20
11	CH_2	35.0	35.1	35.3			
12	CH_2	31.7	31.8	31.6			
13	С	36.4	36.4	36.5			
14	CH_2	39.4	39.4	39.4			
15	СН	150.8	150.9	150.9	5.80, dd (17.4,	5.79, dd (17.5,	12, 13, 14
					10.8)	10.7)	
16	CH_2	108.9	109.0	108.9	4.91, dd (17.4,	4.92, br d	13
					1.5); 4.85, dd	(17.5); 4.85, br	
					(10.8, 1.5)	d (10.7)	
17	CH_3	22.9	22.9	22.9	1.06, <i>s</i>	1.05, <i>s</i>	12, 13, 14,
							15
18	CH_2	50.6	50.6	118.9	3.45, d(6.3);	3.44, d (6.1);	3, 4, 5
					2.98, d(6.3)	2.96, d (6.1)	
19	CH_3	31.6	31.7	33.9	1.20, <i>s</i>	1.18, <i>s</i>	4, 5, 6, 10
20	CH_3	12.1	12.1	12.1	0.78, <i>s</i>	0.77, s	9, 10, 11
	OH-2				5.90, br s	6.15, br s	1, 2, 3

Table 15The ¹H, ¹³C and HMBC spectral data of compounds TD15, TD12 and
tagalsin A (R)

3.1.16 Compound TD16

TD16 was isolated as a white solid, mp 83-84°C, $[\alpha]_{D}^{28}$: +86.1° (c = 2.25, CHCl₃). The IR, ¹H and ¹³C NMR spectroscopic data of TD16 were almost identical to those of TD15 (Table 16, Figures 40 and 41), except for the signals of the epoxidic protons, where H₂-18 at δ 3.14 (d, J = 6.3 Hz) and 3.11 (d, J = 6.3 Hz) of TD16 replaced H₂-18 of TD15. By comparison of the ¹³C NMR spectral data with the previously reported data of tagalsin B (Zhang et al., 2005) (Table 16), compound TD16 was established as $ent-5\alpha$, 18 β , 3-oxodolabr-4, 18-epoxy-1, 15-diene-2-ol, a C-18 epimer of TD15.

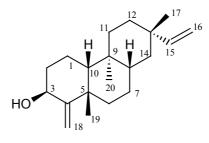
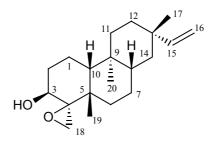

Posi-	Туре	$\delta_{ m c}$ / ppm			$\delta_{_{ m H}}$ / ppm, mult	tiplicity (J/Hz)
tion	of C*	R	TD16	TD15	TD16	R
1	СН	119.0	119.1	120.3	6.32, <i>d</i> (6.6)	6.30, <i>d</i> (6.7)
2	С	147.2	147.5	147.7		
3	С	191.9	191.2	191.2		
4	С	61.1	61.3	60.1		
5	С	36.9	37.2	35.7		
6	CH_2	32.0	32.2	34.3		
7	CH_2	27.1	27.3	27.2		
8	СН	40.0	40.3	40.9		
9	С	39.1	39.5	39.8		
10	СН	54.7	55.0	54.4	2.24, d (6.6)	2.21, d (6.7)
11	CH_2	34.6	34.9	35.1		
12	CH_2	31.5	31.8	31.8		
13	С	36.1	36.3	36.4		
14	CH_2	39.2	39.4	39.4		
15	СН	105.4	105.6	150.9	5.81, dd (17.4, 10.8)	5.88, dd (17.5, 10.8)

Table 16 The ¹H and ¹³C spectral data of compounds **TD16**, **TD15** and tagalsin B (**R**)

Table 16 Continued

Posi-	Туре	$\delta_{ m _C}$ /ppm			$\delta_{ m _{H}}$ /ppm, multiplicity (J/Hz)		
tion	of C*	R	TD16	TD15	TD16	R	
16	CH_2	108.9	109.1	109.0	4.93, dd (17.4, 1.2);	4.91, <i>d</i> (17.8);	
					4.88, dd (10.8, 1.2)	4.86, <i>d</i> (10.8)	
17	CH_3	22.6	22.8	22.9	1.08, <i>s</i>	1.06, <i>s</i>	
18	CH_2	55.5	55.7	50.6	3.14, d (6.3);	3.13, d (6.2);	
					3.11, d (6.3)	3.11, <i>d</i> (6.2)	
19	CH_3	29.2	29.4	31.7	1.23, <i>s</i>	1.21, <i>s</i>	
20	CH_3	12.9	13.1	12.1	0.75, <i>s</i>	0.73, <i>s</i>	

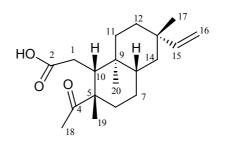
3.1.17 Compound TD17



TD17 was isolated as a pale yellow oil, $[\alpha]_D^{28}$: +40.8° (c = 0.25, CHCl₃). Comparison of IR, ¹H and ¹³C NMR spectroscopic data of TD17 and TD14 (Table 17, Figures 42 and 43) revealed that signals assigned to rings B and C were very identical. The difference was shown in ring A, where an oxymethine proton H-3 at δ 4.43 (dd, J = 4.2, 2.1 Hz) in TD17 replaced the carbonyl group in TD14. The important HMBC correlations between oxymethine proton H-3/C-1 (δ 16.5), C-2 (δ 29.8), and C-18 (δ 112.2), along with olefinic protons H₂-18 (δ 5.05 and 5.02)/C-3 (δ 74.1), C-4 (δ 155.0), C-5 (δ 39.2) and C-19 (δ 34.9) were displayed. The oxymethine proton at C-3 was assigned as equatorial position (α -orientation), due to the small coupling constants of this proton (dd, J = 4.2, 2.1 Hz). Therefore, compound TD17 was established as $ent-5\alpha$ -dolabr-4(18),15-diene-3 α -ol, the same as previously reported (Krebs et al. 2004).

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!\scriptscriptstyle m H}$ / ppm, mu	ltiplicity (J/Hz)	HMBC (TD17)
tion	of C*	TD14	TD17	TD17	TD14	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	17.7	16.5	2.15, m; 1.78, m		
2	CH_2	36.5	29.8	2.13, m; 1.75, m		
3	CH	203.5	74.1	4.43, dd (4.2,		1, 2, 18
				2.1)		
4	С	152.3	155.0			
5	С	41.0	39.2			
6	CH_2	37.4	39.3	2.27, m; 1.31, m		
7	CH_2	25.6	26.0			
8	CH	42.5	42.8	1.35, m		
9	С	38.2	38.2			
10	СН	52.4	54.1	1.24, m		
11	CH_2	35.6	36.2			
12	CH_2	31.9	31.9			
13	С	36.3	36.4			
14	CH_2	39.0	39.0			
15	CH	151.0	151.4	5.80, dd (17.4,	5.80, dd (17.4,	12, 13, 14, 17
				10.8)	10.8)	
16	CH_2	108.8	108.6	4.90, dd (17.4,	4.93, dd (17.4,	13, 15
				1.5); 4.84, dd	1.2); 4.85, dd	
				(10.8, 1.5)	(10.8, 1.2)	
17	CH_3	23.0	22.9	1.01, <i>s</i>	1.03, <i>s</i>	12, 13, 14, 15
18	CH_2	116.3	112.2	5.05, s; 5.02, s	5.93, s; 5.33, s	3, 4, 5, 19
19	CH_3	33.6	34.9	1.45, <i>s</i>	1.10, <i>s</i>	4, 5, 6
20	CH_3	13.6	15.3	0.79, <i>s</i>	0.79, <i>s</i>	8, 9, 10, 11

Table 17 The ¹H, ¹³C and HMBC spectral data of compounds TD17 and TD14


3.1.18 Compound TD18

TD18 was isolated as a white solid, mp 87-88°C, $[\alpha]_D^{28}$: +38.4° (c = 2.64, CHCl₃). The IR, ¹H and ¹³C NMR spectroscopic data of TD18 were almost identical to those of TD17 (Table 18, Figures 44 and 45), except for the signals of the epoxidic protons in ring A, where H₂-18 at δ 3.07 (d, J = 4.8 Hz) and 2.71 (d, J = 4.8 Hz) of TD18 replaced the two olefinic protons of TD17. Due to chemical shifts of two epoxidic protons, C-18 carbon was assigned as 18 α , the same as in TD15. By comparison of the ¹³C NMR spectral data with the previously reported data of tagalsin D (Zhang et al., 2005) (Table 18), compound TD18 was established as $ent-5\alpha$, 18 α , -dolabr-4, 18-epoxy-15-ene-3 α -ol.

Posi-	Туре	$\delta_{_{ m C}}$ / ppm		Type $\delta_{\rm C}$ /ppm $\delta_{\rm H}$ /ppm, mu		$\delta_{\!\scriptscriptstyle m H}$ / ppm, multi	plicity (J/Hz)
tion	of C*	R	TD18	TD17	TD18	R	
1	CH_2	15.7	15.7	16.5			
2	CH_2	29.1	29.0	39.3			
3	СН	73.4	73.4	74.1	3.45, dd (2.0, 1.5)	3.45, dd (2.0, 1.5)	
4	С	62.3	62.3	155.0			
5	С	35.9	35.9	39.2			
6	CH_2	34.4	34.4	26.0			
7	CH_2	27.9	27.8	29.8			
8	CH	41.8	41.2	42.8			
9	С	37.4	37.4	38.2			
10	СН	54.7	54.7	54.1			
11	CH_2	35.9	35.9	36.2			
12	CH_2	32.1	32.1	31.9			
13	С	36.2	36.2	36.4			
14	CH_2	38.9	38.9	39.0			
15	CH	151.2	151.2	151.4	5.80, dd (17.4, 10.8)	5.80, <i>dd</i> (17.5, 10.8)	
16	CH_2	108.8	108.7	108.6	4.91, dd (17.4, 1.5);	4.90, d (17.5);	
					4.85, dd (10.8, 1.5)	4.84, <i>d</i> (10.8)	
17	CH_3	22.8	22.8	22.9	1.01, <i>s</i>	1.01, <i>s</i>	
18	CH_2	56.5	56.5	112.2	3.07, d (4.8);	3.08, d (4.6);	
					2.71, d (4.8)	2.70, d (4.6)	
19	CH_3	30.8	30.8	34.9	1.38, <i>s</i>	1.39, <i>s</i>	
20	CH_3	16.8	16.9	15.3	0.87, <i>s</i>	0.87, <i>s</i>	

Table 18 The ¹H and ¹³C spectral data of compounds **TD18**, **TD17** and tagalsin **D** (**R**)

TD19 was isolated as a white solid, mp 87-88°C, $[\alpha]_D^{28}$: -4.53° (c = 1.50, CHCl₃). The IR absorptions at 1701 and 1636 cm⁻¹ suggested the presence of a carbonyl and a vinyl groups. The ¹³C NMR spectrum (**Table 19, Figure 47**) showed nineteen carbons and the ¹H NMR spectrum (**Table 19, Figure 46**) displayed four singlet methyl groups at $\delta 0.57$ (H₃-20), 1.02 (H₃-17), 1.14 (H₃-19), and 2.19 (H₃-18) and the terminal vinylic protons at $\delta 4.85$ (d, J = 10.5 Hz, H-16a), 4.89 (d, J = 17.4 Hz, H-16b), and 5.77 (dd, J = 17.4, 10.5 Hz, H-15). Comparison with **TD18** revealed that signals for rings B and C were identical. The ¹H NMR signals for ring A in **TD18** were replaced by signals of downfield methylene protons H₂-1 at $\delta 3.11$ (dd, J = 18.3, 1.2 Hz) and 2.63 (dd, J = 18.3, 6.9 Hz) and a methyl ketone at $\delta 2.19$ (H₃-18). The ¹³C NMR signals of carboxyl and carbonyl were displayed at $\delta 180.6$ and 214.6, respectively. These data indicated that ring A was broken. By comparison of the ¹³C NMR spectral data with the previously reported data of tagalsin H (Zhang et al., 2005) (**Table 19**), compound **TD19** was established as *ent-2-seco-3-nor-5a*,4-oxodolabr-15-ene-2-oic acid.

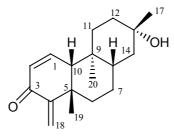

Posi-	Туре	$\delta_{\!_{ m C}}$ / ppm			$\delta_{_{ m H}}$ /ppm, multiplicity (J/Hz)		
tion	of C*	R	TD19	TD18	TD19	R	
1	CH_2	31.1	31.4	15.7	3.11, dd (18.3, 1.2;	3.15, dd (18.0, 2.0;	
					2.63, dd (18.3, 6.9)	2.66, dd (18.0, 7.0)	
2	С	179.5	180.6	29.0			
3	-	-	-	73.4			
4	С	214.7	214.6	62.3			
5	С	50.4	50.4	35.9			
6	CH_2	38.7	38.7	34.4			

Table 19 The ¹H and ¹³C spectral data of compounds **TD19**, **TD18** and tagalsin H (**R**)

Table 19 Continued

Posi-	Туре	$\delta_{_{ m C}}$ / ppm			$\delta_{_{ m H}}$ /ppm, mul	tiplicity (J/Hz)
tion	of C*	R	TD19	TD18	TD19	R
7	CH ₂	27.3	27.3	27.8		
8	СН	42.1	42.1	41.2		
9	С	38.6	38.6	37.4		
10	СН	54.3	54.3	54.7	1.87, <i>m</i>	1.89, <i>m</i>
11	CH_2	33.0	33.0	35.9		
12	CH_2	31.8	31.8	32.1		
13	С	36.2	36.2	36.2		
14	CH_2	39.1	39.1	38.9		
15	СН	150.9	150.9	151.2	5.77, dd (17.4, 10.5)	5.78, dd (17.5, 10.5)
16	CH_2	108.9	108.9	108.7	4.89, d (17.4);	4.88, d (17.5);
					4.85, d (10.5)	4.84, <i>d</i> (10.5)
17	CH_3	23.1	23.1	22.8	1.02 s	1.04, <i>s</i>
18	CH_3	27.6	27.6	56.5	2.19 <i>s</i>	2.22, s
19	CH_3	28.4	28.4	30.8	1.14 <i>s</i>	1.17, <i>s</i>
20	CH_3	12.3	12.2	16.9	0.57 s	0.58, <i>s</i>

3.1.20 Compound TD20

TD20 showed eighteen carbons in ¹³C NMR spectrum (**Table 20**, **Figure 49**) and its molecular formula was established as $C_{18}H_{26}O_2$ on the basis of HREIMS. The ¹H NMR spectrum of **TD20** (**Table 20**, **Figure 48**) showed three singlet methyl signals at δ 0.70 (H₃-20), 1.10 (H₃-19), and 1.30 (H₃-17). The ¹³C NMR resonances indicated methyl signals at δ 12.3 (C-20), and 33.5 (C-19) which was related to A/B *cis*-ring junction of dolabrane skeleton as in **TD1**. The two olefinic units were conjugated with a carbonyl group (δ 191.1, C-3) as displayed at δ 130.4 (C-1), and 149.7 (C-2) for

endo-conjugation and δ 150.0 (C-4), and 117.5 (C-18) for exo-conjugation in ¹³C NMR spectrum, while the proton signals of these functions displayed a disubstituted olefinic protons at δ 6.96 (*dd*, J = 10.2, 6.0 Hz, H-1), and 6.29 (*d*, J = 10.2 Hz, H-2) and exocyclic ones at δ 5.33 (*s*, H-18a), and 6.15 (*s*, H-18b). The conjugated enone system was located at ring A by the HMBC correlations observed between H-1/C-3, C-5 (δ 40.6), and C-10 (δ 57.4), between H-2/C-1, C-3, and C-10 and between H₂-18/C-3, and C-5. In addition, the HMBC correlations were further observed between H₃-17/C-12 (δ 35.6), C-14 (δ 43.2), and oxy-quaternary carbon C-13 (δ 71.2) indicating that **TD20** was 15,16 nordolabrane diterpene. The stereochemistry of the hydroxyl group at C-13 was determined by NOESY experiment which revealed correlations from H₃-20 (δ 0.70) to H-11equatorial (δ 1.64), H-7axial (δ 1.44), H-12axial (δ 1.55), H-14axial (δ 1.49) and no correlations from H-12axial and H-14axial to H₃-17 (δ 1.30). These results established the hydroxyl group as 13 β . Thus, compound **TD20** was deduced as *ent*-5 α ,3-oxo-15,16-nordolabr-1,4(18)-diene-13 β -ol, a new compound designated as ceriotagalsin G.

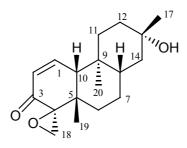
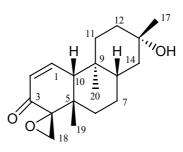

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!\scriptscriptstyle \mathrm{H}}$ /ppm, mul	tiplicity (J/Hz)	HMBC (TD20)
tion	of C*	TD1	TD20	TD20	TD1	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	СН	16.1	149.7	6.96, dd (10.2,		3, 5, 10
				6.0)		
2	СН	31.4	130.4	6.29, d (10.2)	2.49, dd (9.3, 6.3)	1, 3, 10
3	С	199.3	191.1			
4	С	116.4	150.0			
5	С	36.2	40.6			
6	CH_2	36.5	36.3	2.23, m; 1.45, m	2.16, m; 1.42, m	
7	CH_2	25.3	25.3	1.44, m; 1.24, m		
8	СН	41.9	44.0	1.31, m	1.46, <i>m</i>	
9	С	37.6	39.8			
10	СН	51.7	57.4	1.99, d (6.0)	1.25, m	1, 2, 8, 20
11	CH_2	34.9	37.3	1.64, m; 1.26, m		
12	CH_2	27.7	35.6	1.60, m; 1.55, m		
13	С	45.4	71.2			
14	CH_2	34.4	43.2	1.49, m; 1.42, <i>m</i>		

Table 20 The ¹H, ¹³C and HMBC spectral data of compounds TD20 and TD1

Table 20 Continued

Posi-	Туре	$\delta_{_{ m C}}$ /ppm		$\delta_{_{ m H}}$ /ppm, mul	HMBC (TD20)	
tion	of C*	TD1	TD20	TD20	TD1	$^{1}\text{H}\rightarrow ^{13}\text{C}$
15		215.2				
16		63.9			4.38, d (3.9)	
17	CH ₃	20.6	26.8	1.30, <i>s</i>	1.22, <i>s</i>	12, 13, 14
18	CH_2	171.4	117.5	5.33, s; 6.15, s	7.94, d (7.8)	3, 5
19	CH_3	35.8	33.5	1.10, <i>s</i>	1.17, <i>s</i>	4, 5, 6, 10
20	CH ₃	12.6	12.3	0.70, <i>s</i>	0.72, <i>s</i>	8, 9, 10, 11

3.1.21 Compound TD21

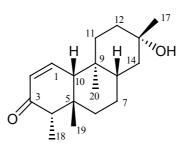


The ¹³C NMR spectrum of **TD21** showed eighteen signals, suggesting $C_{18}H_{26}O_3$ as confirmed by HREIMS. The ¹H and ¹³C NMR spectra of **TD21** (**Table 21**, **Figures 50** and **51**) exhibited signals similar to those of **TD20** except that the exocyclic olefinic protons in **TD20** were replaced by a pair of separated epoxidic geminal signals at δ 2.88 (d, J = 6.5 Hz, H–18a), and 3.36 (d, J = 6.5 Hz, H–18b). Furthermore, ¹³C NMR signals of **TD21** at δ 60.3 (C–4) and 50.5 (C–18) were observed instead of the signals of an olefinic group for **TD20**. The configuration of the epoxide group was the same as found for tagalsin A (Zhang et al., 2005). The important HMBC showed the correlation between epoxidic protons H₂–18 with C–4, and C–5 (δ 35.5). Therefore, compound **TD21** was determined as $ent-5\alpha$, 18 α , 3–0x0–15, 16–nordolabr–4, 18–epoxy–1–ene–13 β –ol, a new compound designated as ceriotagalsin H.

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!\scriptscriptstyle m H}$ / ppm, mult	iplicity (J/Hz)	HMBC (TD21)
tion	of C*	TD20	TD21	TD21	TD20	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	СН	130.4	151.2	7.11, dd (10.5,	6.96, dd (10.2,	3, 5, 10
				6.5)	6.0)	
2	СН	149.7	130.4	6.33, d~(10.5)	6.29, d (10.2)	4, 10
3	С	191.1	194.3			
4	С	150.0	60.3			
5	С	40.6	35.5			
6	CH_2	36.3	33.9			
7	CH_2	25.3	27.2			
8	СН	44.0	43.8			
9	С	39.8	39.2			
10	СН	57.4	56.4	2.08, d~(6.5)	1.99, <i>d</i> (6.0)	4, 5, 9, 19, 20
11	CH_2	37.3	37.3			
12	CH_2	35.6	35.7			
13	С	71.2	71.4			
14	CH_2	43.2	43.2			
17	CH_3	26.8	26.7	1.30, <i>s</i>	1.30, <i>s</i>	12, 13, 14
18	CH_2	117.5	50.5	2.88, d (6.5);	5.33, <i>s</i> ;	4, 5
				3.36, d (6.5)	6.15, <i>s</i>	
19	CH_3	33.5	31.4	1.17, s	1.10, <i>s</i>	4, 5, 6, 10
20	CH ₃	12.3	12.2	0.86, <i>s</i>	0.70, <i>s</i>	8, 9, 10, 11

Table 21The ¹H, ¹³C and HMBC spectral data of compounds TD21 and TD20

3.1.22 Compound TD22



The molecular formula of TD22 was identical to that of TD21 on the basis of HREIMS. The 1 H and 13 C NMR spectra of TD22 (Table 22, Figures 52 and 53)

resembled those of **TD21** except for the signals of epoxidic group (H_2 -18) which were shifted to δ 3.04 (d, J = 6.6 Hz), and 3.07 (d, J = 6.6 Hz) and the chemical shift of C-18 which resonated at δ 55.2 in **TD22** in contrast to δ 50.5 in **TD21**. By the same comparison as for tagalsin A, and B (Zhang et al., 2005) and oxidopanamensin (Koike et al., 1980), compound **TD22** was assigned to be an epimer of **TD21** at epoxidic C-18. Thus, this compound was elucidated as $ent-5\alpha$, 18 β , 3-oxo-15, 16-nordolabr-4, 18epoxy-1-ene-13-ol, a new compound designated as ceriotagalsin I.

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!\scriptscriptstyle m H}$ /ppm, multip	olicity (J/Hz)	HMBC (TD22)
tion	of C*	TD21	TD22	TD22	TD21	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	СН	151.2	150.3	7.07, dd (10.2,	7.11, dd (10.5,	3, 9, 10
				6.0)	6.5)	
2	СН	130.4	130.5	6.30, d (10.2)	6.33, d (10.5)	4,10
3	С	194.3	195.1			
4	С	60.3	61.2			
5	С	35.5	36.8			
6	CH_2	33.9	31.9	1.71, <i>m</i> ; 1.66, <i>m</i>		
7	CH_2	27.2	27.3			
8	СН	43.8	43.2	1.47, m		
9	С	39.2	38.8			
10	СН	56.4	58.0	2.19, d (2.0)	2.08, d~(6.5)	2, 5, 9, 19, 20
11	CH_2	37.3	37.1			
12	CH_2	35.7	35.7			
13	С	71.4	70.9			
14	CH_2	43.2	43.1			
17	CH_3	26.7	26.7	1.31, <i>s</i>	1.30, <i>s</i>	8, 12, 13
18	CH_2	50.5	55.2	3.07, d (6.6);	2.88, d(6.5);	
				3.04, <i>d</i> (6.6)	3.36, d(6.5)	
19	CH_3	31.4	29.2	1.19, <i>s</i>	1.17, s	4, 5, 6, 10
20	CH_3	12.2	13.3	0.83, <i>s</i>	0.86, <i>s</i>	8, 9, 10, 11

Table 22The ¹H, ¹³C and HMBC spectral data of compounds TD22 and TD21

The ¹³C NMR spectrum (Table 23, Figure 55) of TD23 indicated that it contained eighteen carbons of a nordolabrane backbone as in TD20-TD22. The molecular formula C₁₈H₂₈O₂ of TD23 was indicated by HREIMS. It differed from TD20 by an additional two hydrogen atoms. The ¹H NMR spectrum (Table 23, Figure 54) of TD23 exhibited disubstituted olefinic protons at δ 6.14 (d, J = 10.2 Hz, H-2), and 6.84 (dd, J = 10.2, 5.7 Hz, H-1) with similarity to those of **TD20-TD22**. The difference was shown in ring A, of which the exocyclic olefinic protons in TD20 were replaced by the signals of a methyl doublet at δ 1.04 (d, J = 6.6 Hz, H₃-18) and a methine proton at δ 2.83 (q, J = 6.6 Hz, H-4) in **TD23**. The HMBC correlations were observed between H-4/C-3 (δ 202.6), C-5 (δ 39.3), C-18 (δ 8.0), and C-19 (δ 26.3) and between H_3 -18/C-3, C-4 (δ 45.0) and C-5, which confirmed an attachment of a doublet methyl at C-4. The methyl group at C-18 could be assigned as α -orientation by NOESY experiment which revealed correlations from H_3 -20 (δ 0.87) to H_3 -18 (δ 1.04) but no correlations from H_3 -20 to H-4 (δ 2.83). Therefore, compound **TD23** was deduced to be ent-5 α , 18 β , 3-oxo-15, 16-nordolabr-1-ene-13-ol, a new compound designated as ceriotagalsin J.

Table 23 The ¹H, ¹³C and HMBC spectral data of compounds TD23 and TD20

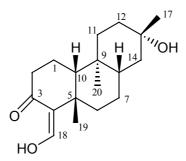

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{_{ m H}}$ / ppm, multi	HMBC (TD23)	
tion	of C*	TD20	TD23	TD23	TD20	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	СН	130.4	148.0	6.84, dd (10.2, 5.7)	6.96, dd (10.2, 6.0)	3, 5, 10
2	СН	149.7	130.2	6.14, d (10.2)	6.29, d (10.2)	4, 10
3	С	191.1	202.6			
4	СН	150.0	45.0	2.83, q (6.6)		3, 5, 18, 19
5	С	40.6	39.3			

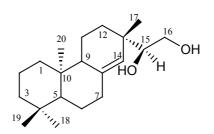
Table 23 Continued

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{_{ m H}}$ / ppm, multi	plicity (J/Hz)	HMBC (TD23)
tion	of C*	TD20	TD23	TD23	TD20	$^{1}\text{H}\rightarrow ^{13}\text{C}$
6	CH ₂	36.3	37.5	1.97, m; 1.27, m	2.23, m; 1.45, m	
7	CH_2	25.3	25.3			
8	СН	44.0	44.5	1.30, <i>m</i>	1.31, <i>m</i>	
9	С	39.8	39.0			
10	СН	57.4	57.4	1.88, d (5.7)	1.99, <i>d</i> (6.0)	1, 5, 9, 19, 20
11	CH_2	37.3	37.4			
12	CH_2	35.6	35.6			
13	С	71.2	71.1			
14	CH_2	43.2	43.0			
17	CH_3	26.8	27.0	1.32, <i>s</i>	1.30, <i>s</i>	12, 13, 14
18	CH_3	117.5	8.0	1.04, <i>d</i> (6.6)	5.33, s; 6.15, s	3, 4, 5
19	CH_3	33.5	26.3	0.87, <i>s</i>	1.10, <i>s</i>	4, 5, 6, 10
20	CH_3	12.3	13.5	0.92, <i>s</i>	0.70, <i>s</i>	8, 9, 10, 11

* For TD23

3.1.24 Compound TD24

TD24 was isolated as a white solid, mp 147-148°C, $[\alpha]_D^{28}$: -56.3° (c = 0.25, CHCl₃). TD24 showed eighteen carbons in ¹³C NMR spectrum (Table 2, Figure 55) and its molecular formula was established as C₁₈H₂₈O₃ on the basis of HREIMS. The ¹H and ¹³C NMR spectra (Tables 24, Figures 56 and 57) of TD24 showed the signals similar to those of TD20 with the exception of the signals for ring A, where an olefinic proton at δ 7.94 (d, J = 7.0 Hz, H-18) and a chelated hydroxy proton at δ 15.43 (d, J = 7.0 Hz, 18-OH) were observed, instead of the two olefinic protons as in TD20. The important HMBC showed the correlations between olefinic proton H-18/C-2 (δ 31.5),


C-3 (δ 199.3), C-4 (δ 116.6), and C-5 (δ 36.2) and between H₃-17/C-12 (δ 35.6), C-13 (δ 71.2), and C-14 (δ 42.7). Therefore, compound **TD24** was determined as *ent*-5 α ,3-oxo-15,16-nordolabr-4(18)-ene-13,18-diol, a new compound designated as ceriotagalsin K.

Posi-	Туре	$\delta_{ m c}$ /p	pm	$\delta_{_{ m H}}$ /ppm, mu	ltiplicity (J/Hz)	HMBC (TD24)
tion	of C*	TD20	TD24	TD24	TD20	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	130.4	16.5		6.96, dd (10.2, 6.0)	
2	CH_2	149.7	31.5	2.49, m	6.29, <i>d</i> (10.2)	1, 3, 4, 10
3	С	191.1	199.3			
4	С	150.0	116.6			
5	С	40.6	36.2			
6	CH_2	36.3	36.8	2.17, m; 1.78, m	2.23, m; 1.45, m	
7	CH_2	25.3	25.1			
8	CH	44.0	45.3	1.31, m	1.31, m	
9	С	39.8	37.7			
10	CH	57.4	51.9	1.23, m	1.99, <i>d</i> (6.0)	
11	CH_2	37.3	37.5			
12	CH_2	35.6	35.6			
13	С	71.2	71.2			
14	CH_2	43.2	42.7			
17	CH_3	26.8	16.9	1.25, s	1.30 s	12, 13, 14
18	СН	117.5	171.5	7.94, d (7.0)	6.15, s; 5.33, s	2, 3, 4, 5
19	CH_3	33.5	35.7	1.16, <i>s</i>	1.10, <i>s</i>	5, 10
20	CH_3	12.3	12.9	0.77, <i>s</i>	0.70, <i>s</i>	8, 9, 10, 11
	OH-18			15.43, d (7.0)		2, 3, 4, 8

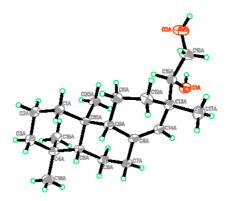
Table 24The ¹H, ¹³C and HMBC spectral data of compounds TD24 and TD20

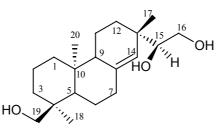
* For **TD24**

3.1.25 Compound TD25

TD25 was obtained as a colorless plate crystal (acetone), mp $104-105^{\circ}$ C, $[\alpha]_{D}^{28}$: -17.7° (c = 1.93, CHCl₃). X-ray crystallographic analysis of TD25 was carried out and gave ORTEP drawing as shown in Figure 5, whose structure enabled assignment of a pimarane diterpene with a molecular formula $C_{20}H_{34}O_{2}$ by HREIMS. Its ¹H NMR spectrum (Table 25, Figure 58) showed the signals for trisubstituted olefinic proton a

 δ 5.27 (s, H-14), for AB₂ system of 1,2-hydroxyethyl side-chain at δ 3.61 (dd, J = 9.3, 2.1 Hz, H-16a), 3.51 (dd, J = 10.5, 9.3 Hz, H-16b) and 3.70 (dd, J = 10.5, 2.1 Hz, H-15), and four singlet quaternary methyl groups at δ 0.90 (H₃-17), 0.88 (H₃-19), 0.84 (H₃-18) and 0.78 (H₃-20). The important HMBC correlations were noticed between a hydroxy methine proton H-15/C-12 (δ 32.4), C-13 (δ 36.3), C-14 (δ 126.9), C-16 (δ 63.3) and C-17 (δ 23.7). The ¹H and ¹³C NMR spectra (**Table 25, Figures 56 and 59**) of **TD25** were in agreement with those of flavidusin A (Zhao et al., 1998) except for the signals of C-8 (δ 140.1), C-12 (δ 32.4), C-13 (δ 36.3), C-14 (δ 126.9) and C-15 (δ 78.8) which differed from the signals of flavidusin A (isoprima-8(14)-ene-15,16-diol) of C-8 (δ 137.6), C-12 (δ 31.1), C-13 (δ 38.4), C-14 (δ 129.1) and C-15 (δ 79.8). X-ray crystallographic analysis of **TD25** enabled assignment of 1,2-hydroxyethyl side-chain as axial-orientation and *S* configuration for C-15. Thus, compound **TD25** was elucidated as *ent*-15*S*-prima-8 (14)-ene-15,16-diol, a new compound designated as ceriotagalsin L.




Figure 5 X-ray ORTEP diagram of compound TD25

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{_{ m H}}$ /ppm, multip	blicity (J/Hz)	HMBC (TD25)
tion	of C*	R	TD25	TD25	R	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH_2	40.0	39.2			
2	CH_2	19.0	18.9			
3	CH_2	42.4	42.1			
4	С	33.4	33.3			
5	СН	51.3	54.9	1.05, <i>m</i>		
6	CH_2	22.9	22.6			
7	CH_2	36.6	36.3	2.31, m; 2.06, m		
8	С	137.6	140.1			
9	СН	54.4	50.4	1.72, <i>m</i>		
10	С	38.5	38.5			
11	CH_2	19.4	19.0			
12	CH_2	31.1	32.4			
13	С	38.4	36.3			
14	СН	129.1	126.9	5.27, s	5.67, <i>s</i>	7, 12, 13, 17
15	СН	79.8	78.8	3.70, dd (10.5, 2.1)	3.85, dd (8.8,	12, 13, 15, 16,
					2.4)	17
16	CH_2	63.5	63.3	3.61, dd (9.3, 2.1);	4.17, dd (10.7,	9, 12, 13, 17
				3.51, dd (10.5, 9.3)	2.4); 3.92, dd	
					(10.7, 8.8)	
17	CH ₃	22.3	23.7	0.90 s	1.24, <i>s</i>	12, 13, 14, 15
18	CH ₃	33.9	33.7	0.84, <i>s</i>	0.78, <i>s</i>	3, 4, 5
19	CH ₃	23.3	22.1	0.88, <i>s</i>	0.82, <i>s</i>	3, 4, 5
20	CH_3	15.1	15.0	0.78, <i>s</i>	0.82, <i>s</i>	1, 5, 9, 10

 Table 25
 The ¹H, ¹³C and HMBC spectral data of compounds TD25 and flavidusin A (R)

* For **TD25**

3.1.26 Compound TD26

TD26 was isolated as a white solid, mp 119–120°C, $[\alpha]_D^{28}$: -17.8° (c = 1.33, CHCl₃), its molecular formula was established as C₂₀H₃₄O₃ from HREIMS which was 16 mass units more than that of TD25, suggesting the addition of one oxygen atom. The ¹H and ¹³C NMR spectra (Tables 26, Figures 60 and 61) of TD26 were comparable to those of TD25 and a synthetic compound, isoprima-8(14)-ene-15,16,18-triol (Wenkert et al., 1979) except for the hydroxy methylene protons at C-19 (δ 65.2) and methyl group at δ 27.1 (C-18) in TD26 replaced the hydroxy methylene protons at C-18 (δ 70.8) and methyl group at δ 17.3 (C-19) in the latter compound. By comparison of the ¹³C NMR spectral data with the previously reported data of isoprima-8(14)-ene-15,16,18-triol, compound TD26 was assigned as *ent*-15*S*-prima-8(14)-ene-15,16,19-triol, a new compound designated as ceriotagalsin M.

Table 26The ¹H, ¹³C and HMBC spectral data of compounds TD26, TD 25 and
isoprima-8(14)-ene-15,16,18-triol (R)

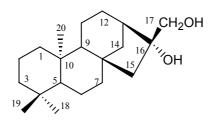

Posi-	Туре		$\delta_{\!\scriptscriptstyle m C}$ / ppm		$\delta_{_{ m H}}$ / ppm, multi	plicity (J/Hz)	HMBC (TD26)
tion	of C*	R	TD26	TD25	TD26	TD25	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	38.2	39.1	39.2			
2	CH_2	17.8	18.6	18.9			
3	CH_2	35.3	35.4	42.1			
4	С	37.2	38.6	33.3			
5	СН	47.2	55.9	54.9	1.26, m	1.05, <i>m</i>	
6	CH_2	22.0	22.6	22.6			
7	CH_2	34.9	36.6	36.3	2.33, m; 2.06, m	2.31, m; 2.06, m	
8	С	138.6	139.6	140.1			
9	СН	50.3	50.5	50.4	1.75, m	1.72, m	
10	С	36.6	38.4	38.5			
11	CH_2	17.8	19.0	19.0			
12	CH_2	31.5	32.4	32.4			
13	С	37.4	37.1	36.3			
14	СН	127.0	127.2	126.9	5.27 s	5.27 s	7, 9, 12, 17
15	СН	75.5	78.7	78.8	3.60, dd (9.0,	3.70, dd (10.5,	16, 17
					1.5)	2.1)	

Table 26 Continued

Posi-	Туре		$\delta_{ m c}$ / ppm		$\delta_{_{ m H}}$ / ppm, multi	plicity (J/Hz)	HMBC (TD26)
tion	of C*	R	TD26	TD25	TD26	TD25	$^{1}\text{H}\rightarrow ^{13}\text{C}$
16	CH ₂	62.7	63.3	63.3	3.70, dd (9.0,	3.61, dd (9.3,	14, 15
					1.5); 3.49, dd	2.1); 3.51, dd	
					(10.5, 9.0)	(10.5, 9.3)	
17	CH_3	21.8	23.6	23.7	0.90, <i>s</i>	0.90, <i>s</i>	12, 13, 14, 15
18	CH_3	70.8	27.1	33.7	0.99, <i>s</i>	0.84, <i>s</i>	3, 4, 5, 19
19	CH_2	17.3	65.2	22.1	3.43, d (11.1);	0.88, <i>s</i>	3, 4, 5, 19
					3.82, d (11.1)		
20	CH_3	14.7	16.1	15.0	0.76, <i>s</i>	0.78, <i>s</i>	5, 9, 10

* For **TD26**

3.1.27 Compound TD27

TD27 was obtained as a white solid, mp 174-175°C, $[\alpha]_D^{28}$: -9.2° (c = 2.25, CHCl₃). The ¹H and ¹³C NMR spectral data (**Table 27**, **Figures 62** and **63**) of **TD27** were suggestive of a kaurane diterpenoid. The ¹H NMR spectrum showed three singlet methyl groups at δ 0.86 (H₃-18), 0.82 (H₃-19), and 1.03 (H₃-20) and two oxy-methylene protons at δ 3.80 (d, J = 11.1 Hz), and 3.68 (d, J = 11.1 Hz). Its ¹³C NMR spectrum displayed the signals of an oxy-methylene carbon at δ 66.4 (C-17) and oxyquaternary carbon at δ 81.9 (C-16). The important HMBC correlations were noticed between two oxy-methylene protons, H₂-17/C-13 (δ 45.5), C-15 (δ 53.4) and C-16, between H₃-18 and H₃-19/C-3, and C-5 and between H₃-20/C-1(δ 42.0), C-5, and C-9 (δ 56.7). By comparison of the ¹³C NMR spectral data with the previously reported data (Kitajima et al., 1982), compound **TD27** was assigned as *ent*-kauran-16 β ,17-diol.

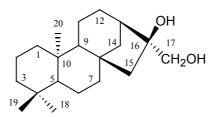

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{_{ m H}}$ /ppm, multip	licity (J/Hz)	HMBC (TD27)
tion	of C*	R**	TD27	TD27	R **	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH_2	42.0	42.0			
2	CH_2	18.2	18.3			
3	CH_2	42.0	42.0			
4	С	33.4	33.3			
5	СН	56.1	56.1	0.80, <i>m</i>		
6	CH_2	20.5	20.4			
7	CH_2	37.2	37.3	1.98, m; 1.58, m		
8	С	44.6	44.7			
9	СН	56.7	56.7	1.01, <i>m</i>		
10	С	39.4	39.4			
11	CH_2	18.3	18.6			
12	CH_2	26.3	26.3			
13	С	45.5	45.5	2.05, <i>m</i>		
14	CH_2	40.4	40.3			
15	CH_2	53.4	53.4			
16	С	81.6	81.9			
17	CH_2	66.2	66.4	3.80, d (11.1);	3.80, d (11);	13, 15, 16
				3.68, d (11.1)	3.65, d (11)	
18	CH_3	33.4	33.6	0.86, <i>s</i>	0.84, <i>s</i>	3, 5
19	CH_3	21.5	21.5	0.82, <i>s</i>	0.80, <i>s</i>	3, 5, 18
20	CH_3	17.7	17.8	1.03, <i>s</i>	1.02, <i>s</i>	1, 5, 9

Table 27 The ¹H, ¹³C and HMBC spectral data of compounds **TD27** and *ent*-kauran-16 β ,17-diol (**R**)

* For **TD27**

**In pyridine

3.1.28 Compound TD28

TD28 was isolated as a white solid, mp 134-135°C, $[\alpha]_D^{28}$: -37.5° (c = 0.30, CHCl₃). The ¹H and ¹³C NMR spectra of **TD28** (**Table 28**, **Figures 64** and **65**) resembled those of **TD27** except for the signals of two oxy-methylene protons that displayed at δ 3.47 (d, J = 9.0 Hz), and 3.39 (d, J = 9.0 Hz) and the chemical shift of C-17 which resonated at δ 69.9 in **TD28** in contrast to δ 66.4 in **TD27**. The structure of **TD28** was assigned to be an epimer of **TD27** at C-16. By comparison of the ¹³C NMR spectral data with the previously reported data (Kitajima et al., 1982) (**Table 28**), compound **TD28** was established as *ent*-kauran-16 α ,17-diol, whose structure was supported by X-ray crystallographic analysis (**Figure 6**) (Chantrapromma et al. 2006).

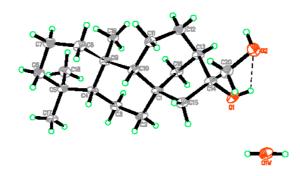


Figure 6 X-ray ORTEP diagram of compound TD28

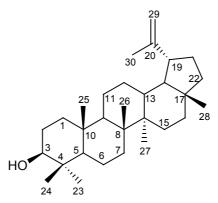
Table 28 The ¹H, ¹³C and HMBC spectral data of compounds **TD28**, **TD27** and ent-kauran-16 α ,17-diol (**R**)

Posi-	Туре		$\delta_{ m c}$ / ppm		$\delta_{_{ m H}}$ / ppm, multi	plicity (J/Hz)	HMBC *
tion	of C*	R	TD28	TD27	TD28	TD27	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	41.9	41.9	42.0			
2	CH_2	18.7	18.8	18.3			
3	CH_2	42.0	42.1	42.0			
4	С	33.2	33.2	33.3			
5	СН	56.1	56.2	56.1	0.81, <i>m</i>	0.80, <i>m</i>	
6	CH_2	20.0	21.6	20.4			
7	CH_2	38.2	38.3	37.3	2.03, m; 1.02, m	1.98, m; 1.58, m	
8	С	43.5	43.5	44.7			
9	СН	56.9	57.0	56.7	1.14, m	1.01, <i>m</i>	
10	С	39.3	39.4	39.4			
11	CH_2	18.6	18.6	18.6			

Table 28 Continued

Posi-	Туре		$\delta_{\!\scriptscriptstyle m C}$ / ppm		$\delta_{_{ m H}}$ / ppm, multi	plicity (J/Hz)	HMBC *
tion	of C*	R	TD28	TD27	TD28	TD27	$^{1}\text{H}\rightarrow ^{13}\text{C}$
12	CH_2	26.7	26.7	26.3			
13	С	52.6	40.8	45.5	2.09, m	2.05, m	
14	CH_2	40.4	40.4	40.3			
15	CH_2	56.1	52.8	53.4			
16	С	79.7	79.8	81.9			
17	CH_2	69.7	69.9	66.4	3.47, d (9.0);	3.80, d (11.1);	13, 15,
					3.39, d (9.0)	3.68, d (11.1)	16
18	CH_3	33.6	33.6	33.6	0.84, <i>s</i>	0.86, <i>s</i>	3, 5, 19
19	CH_3	21.5	21.6	21.5	0.80, <i>s</i>	0.82, <i>s</i>	3, 5, 18
20	CH_3	17.6	17.6	17.8	1.03, <i>s</i>	1.03, <i>s</i>	9, 10

* For **TD28**


3.2 Structure elucidation of compounds from the hypocotyls and fruits of C. tagal

Dried milled hypocotyls of *C. tagal* (5.3 kg) were extracted with hexane and methylene chloride, successively. The crude hexane extract was subjected to chromatography and/or crystallization to give triterpenoids of three known lupanes: **TL6**, **TL7** and **TL11**. The crude methylene chloride extract was purified by chromatography and/or crystallization to yield triterpenoids of three new dammaranes: **TM7-TM9**, ten known lupanes: **TL1-TL5**, **TL8-TL10**, **TL12** and **TL13**, and a mixture of two known steroids: **TS1** and **TS2**.

Dried milled fruits of *C. tagal* (574.0 g) were extracted with hexane and methylene chloride, successively. The combined dried crude hexane (6.0 g) and methylene chloride (6.1 g) extracts were subjected to chromatography and/or crystallization to give triterpenoids of two new dammaranes: TM1-TM6, four known dammaranes: TM1-TM6 and one known oleanane: TO1.

Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data such as 1 H, 13 C NMR, DEPT 135°, DEPT 90°, HMQC, HMBC, 1 H- 1 H COSY and 2D NOESY. Mass spectral data were determined for new compounds. In addition X-ray crystallographic structure was reported for compound **TL7**.

3.2.1 Compound TL1

Compound **TL1** was obtained as a white solid, mp $193-194^{\circ}$ C, $[\alpha]_{D}^{28}$: +25.0° (c = 0.20, MeOH). The IR spectrum (**Figure 66**) showed absorption bands for hydroxyl group at 3343 cm⁻¹ and double bond at 1638 cm⁻¹. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ¹³C NMR spectral data (**Table 29**, **Figure 69**) showed 30 signals for 30 carbons. Analysis of DEPT-90° and DEPT-135° spectra of this compound suggested the presence of seven methyls (δ 14.6, 15.4, 16.0, 16.1, 18.0, 19.3 and 28.0), eleven methylenes (δ 18.3, 20.9, 25.2, 27.4, 27.5, 29.9, 34.3, 35.6, 38.7, 40.0 and 109.3), six methines (δ 38.1, 48.0, 48.3, 50.5, 55.3 and 79.0) and six quaternary carbons (δ 37.2, 38.9, 40.8, 42.8, 43.0 and 151.0).

The ¹H NMR spectral data (**Table 29, Figure 68**) showed characteristic of lupane triterpenoids as seven methyl singlet signals at δ 0.76, 0.79, 0.83, 0.94, 0.97 and 1.03 including one vinylic methy at δ 1.68, two protons of an isopropenyl moiety at δ 4.68 (d, J = 2.1 Hz, H-29a) and 4.56 (m, H-29b) and a typical lupane H β -19 proton at δ 2.38 (m). An oxymethine proton was shown at δ 3.19 (1H, dd, J = 10.8, 5.1 Hz, H-3) whose doublet of doublet splitting pattern together with a large coupling constant with Jax-ax = 10.8 Hz and Jax-eq = 5.1 Hz indicated its axial (α) orientation.

The position of the hydroxyl group at C-3 was determined through an HMBC experiment in which the oxymethine proton at $\delta 3.19$ (H-3) showed correlations with C-1 ($\delta 38.7$) and C-4 ($\delta 38.9$), C-23 ($\delta 28.0$) and C-24 ($\delta 15.4$). And the position of a methine proton at C-19 was determined from HMBC correlation of H-19 ($\delta 2.38$) with C-18 ($\delta 48.3$), C-20 ($\delta 151.0$), C-21 ($\delta 29.9$), C-29 ($\delta 109.3$) and

C-30 (δ 19.3). Thus, on the basis of its spectroscopic data and comparison of the ¹H and ¹³C NMR spectral data (**Table 29**) with the previously reported data (Reynolds et al., 1986), compound **TL1** was assigned as lupeol.

Posi-	Туре	$\delta_{ m c}$ / $ m r$	opm)	$\delta_{_{ m H}}$ / ppm, multipli	city (J/Hz)	HMBC (TL1)
tion	of C*	lupeol	TL1	lupeol	TL1*	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	38.7	38.7	0.91, <i>m</i>	0.91, <i>t</i> ; 1.68, <i>d</i>	
2	CH_2	27.4	27.4	1.56, <i>m</i>	1.54, q; 1.61 d	
3	СН	79.0	79.0	3.19, dd (10.8, 5.1)	3.18, dd	1, 4, 23, 24
4	С	38.8	38.9			
5	СН	55.3	55.3	0.69, <i>m</i>	0.69, d	
6	CH_2	18.3	18.3	1.40, m; 1.55, m	1.39, q; 1.54 d	
7	CH_2	34.2	34.3	1.40, <i>m</i>	1.41, m	
8	С	40.8	40.8			
9	СН	50.4	50.5	1.28, <i>m</i>	1.28, d	
10	С	37.1	37.2			
11	CH_2	20.9	20.9	1.22, m; 1.45, m	1.25, q; 1.42, d	
12	CH_2	25.1	25.2	1.08, <i>m</i>	1.07, q; 1.68, d	
13	СН	38.0	38.1	1.67, <i>m</i>	1.67, <i>t</i>	
14	С	42.8	42.8			
15	CH_2	27.4	27.5	1.56, m	1.01, d; 1.71, t	
16	CH_2	35.5	35.6	1.51, <i>m</i>	1.38, t; 1.49, d	
17	С	43.0	43.0			
18	СН	48.2	48.3	1.38, <i>m</i>	1.37, t	
19	СН	47.9	48.0	2.38, <i>m</i>	2.39, m	13, 18, 20, 21,
						29, 30
20	С	150.9	151.0			
21	CH_2	29.8	29.9	1.94, <i>m</i>	1.33, m; 1.93, m	
22	CH_2	40.0	40.0	1.20, <i>m</i> ; 1.40, <i>m</i>	1.20, <i>m</i> ; 1.42, <i>m</i>	
23	CH_3	28.0	28.0	0.97, <i>s</i>	0.98, <i>s</i>	3, 4, 5, 24
24	CH_3	15.4	15.4	0.76, <i>s</i>	0.77, <i>s</i>	3, 4, 5, 23
25	CH_3	16.1	16.1	0.83, <i>s</i>	0.84, <i>s</i>	1, 5, 9

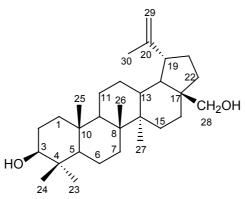

Table 29 The ¹H, ¹³C and HMBC spectral data of compounds TL1 and lupeol

Table 29 Continued

Posi-	Туре	$\delta_{_{ m C}}$ / ppm)		$\delta_{_{ m H}}$ /ppm, multipli	HMBC (TL1)	
tion	of C*	lupeol	TL1	lupeol	TL1*	$^{1}\text{H}\rightarrow ^{13}\text{C}$
26	CH ₃	16.0	16.0	1.03, <i>s</i>	1.04, <i>s</i>	7, 8, 9, 14
27	CH_3	14.5	14.6	0.94, <i>s</i>	0.97, <i>s</i>	8, 14, 15
28	CH_3	18.0	18.0	0.79, <i>s</i>	0.79, <i>s</i>	16, 17, 18, 22
29	CH_2	109.3	109.3	4.68, d (2.1); 4.56, m	4.56, m; 4.69, m	19, 30
30	CH_3	19.3	19.3	1.68, <i>s</i>	1.69, <i>s</i>	19, 20, 29

* Deduced from HMQC experiment

3.2.2 Compound TL2

Compound TL2 was obtained as a white solid, mp $230-231^{\circ}$ C, $[\alpha]_{D}^{28}$: +16.7° (*c* = 0.15, MeOH). It gave a purple vanillin-sulfuric acid test indicating a triterpene. The IR spectrum showed similar characteristic bands to those of TL1.

Comparison of ¹H and ¹³C NMR spectral data (**Table 30**, **Figures 70** and **71**) of compounds **TL2** and **TL1** revealed close structural similarity. Difference in the spectrum of **TL2** was shown as only six singlet signals of methyl groups at δ 0.76, 0.82, 0.97, 0.98, 1.02 and 1.68. In addition, AB system of oxy-methylene protons was shown at δ 3.80 (*dd*, *J* = 10.8, 1.5 Hz, H-28a) and 3.33 (*d*, *J* = 10.8 Hz, H-28b) which was not observed in **TL1**. On the basis of HMBC experiment, the oxy-methylene protons H₂-28 showed long-range correlation with C-16 (δ 29.2), C-17 (δ 47.5) and C-22 (δ 34.0), thus the oxy-methylene protons were located at C-28 (δ 60.6). This compound was established as betulin by comparison of its spectral data with those reported in the literature (Tinto et al., 1992) (**Table 30**). Compound **TL2** was assigned as betulin.

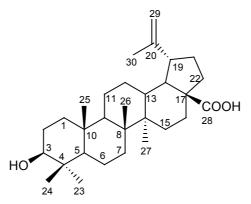

Posi-	Туре		$\delta_{\!\scriptscriptstyle m C}$ / ppm		$\delta_{\!\scriptscriptstyle m H}$ / ppm, mult	iplicity (J/Hz)	HMBC (TL2)
tion	of C*	R	TL2	TL1	TL2**	TL1**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	38.8	38.7	38.7	0.90, m; 1.70, m	0.91, <i>m</i>	
2	CH_2	27.2	27.4	27.4	1.59, <i>m</i>	1.56, <i>m</i>	
3	СН	78.9	79.0	79.0	3.19, dd (10.8, 5.1)	3.19, dd (10.8, 5.1)	1, 4, 23, 24
4	С	38.9	38.9	38.9			
5	СН	55.3	55.3	55.3	0.68, <i>m</i>	0.69, <i>m</i>	
6	CH_2	18.3	18.3	18.3	1.41, <i>m</i>	1.40, m; 1.55, m	
7	CH_2	34.3	34.2	34.3	1.04, <i>m</i> ; 1.40, <i>m</i>	1.40, <i>m</i>	
8	С	40.9	40.9	40.8			
9	СН	50.4	50.4	50.5	1.27, m	1.28, <i>m</i>	
10	С	37.2	37.2	37.2			
11	CH_2	20.9	20.8	20.9	1.28, m; 1.46, m	1.22, m; 1.45, m	
12	CH_2	25.3	25.2	25.2	1.68, <i>m</i>	1.08, <i>m</i>	
13	СН	27.3	37.3	38.1	1.67, <i>m</i>	1.67, <i>m</i>	
14	С	42.7	42.7	42.8			
15	CH_2	27.0	27.0	27.5	1.11, m; 1.66, m	1.56, <i>m</i>	
16	CH_2	29.2	29.2	35.6	1.20, m; 1.98, m	1.51, m	
17	С	47.8	47.5	43.0			
18	СН	48.8	48.8	48.3	1.60, <i>m</i>	1.38, <i>m</i>	
19	СН	47.8	47.5	48.0	2.38, m	2.38, m	13, 18, 20,
							21, 29, 30
20	С	150.6	150.5	151.0			
21	CH_2	29.8	29.8	29.9	1.91, <i>m</i>	1.94, <i>m</i>	
22	CH_2	34.0	34.0	40.0	1.80, <i>m</i> ; 1.88, <i>m</i>	1.20, <i>m</i> ; 1.40, <i>m</i>	
23	CH_3	28.0	28.0	28.0	0.97, s	0.97, s	3, 4, 5, 24
24	CH_3	15.4	15.4	15.4	0.76, <i>s</i>	0.76, <i>s</i>	3, 4, 5, 23
25	CH_3	16.1	16.1	16.1	0.82, <i>s</i>	0.83, <i>s</i>	1, 5, 9
26	CH_3	16.0	16.0	16.0	1.02, <i>s</i>	1.03, s	7, 8, 9, 14
27	CH_3	14.8	14.8	14.6	0.98, <i>s</i>	0.94, <i>s</i>	8, 13, 14, 15
28	CH_2	60.2	60.6	18.0	3.33, d (10.8); 3.80,	0.79, <i>s</i>	16, 17, 22
					dd (10.8, 1.5)		
29	CH_2	109.6	109.7	109.3	4.68, d (2.1);4.58, m	4.68, d(2.1); 4.56, m	19, 20, 30
30	CH_3	19.1	19.1	19.3	1.68, <i>s</i>	1.68, <i>s</i>	19, 20, 29
* 17 1		l betulin		deale The st	uced from HMOC expe	•	

Table 30¹H, ¹³C and HMBC spectral data of compounds TL2, TL1 and betulin (R)

* For **TL3** and betulin

** Deduced from HMQC experiment

3.2.3 Compound TL3

Compound **TL3** was obtained as a white solid, mp $279-280^{\circ}$ C, $[\alpha]_{D}^{28}$: +15.0° (c = 0.10, MeOH). It gave a purple vanillin-sulfuric acid test indicating a triterpene. The IR spectrum (**Figure 67**) showed absorption bands of a hydroxyl group at 3415 cm⁻¹ and a carbonyl group at 1686 cm⁻¹.

The ¹H and ¹³C NMR spectral data of **TL3** (**Table 31**, **Figures 72** and **73**) were similar to those of **TL2**. The difference in the spectrum of **TL3** was shown as disappearance of an oxy-methylene protons at δ 3.80 (1H, dd, J = 10.8, 1.5 Hz) and 3.33 (1H, d, J = 10.8 Hz) in the ¹H NMR spectrum and the ¹³C NMR spectrum displayed a signal of a carboxyl carbon at δ 179.6 instead of an oxy-methylene carbon at δ 60.6, thus suggesting a carboxylic functionality at C-28. The location of the carboxyl group was confirmed by HMBC experiment in which the methylene proton signals at δ 1.83 (1H, *m*, H-22a) and 1.41 (1H, *m*, H-22b) showed correlations with C-17 (δ 55.3), C-18 (δ 48.3) and C-28 (δ 179.6). Thus on the basis of its spectroscopic data and comparison of the NMR chemical shifts with those reported in the literature (Kitajima et al., 1990), (**Table 31**), compound **TL3** was assigned as betulinic acid.

 Table 31
 ¹H, ¹³C and HMBC spectral data of compounds TL3, TL2 and betulinic acid (R)

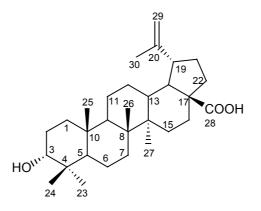

Posi-	Туре	$\delta_{_{ m C}}$ / ppm			$\delta_{_{ m H}}$ / ppm, mult	HMBC (TL3)	
tion	of C*	R	TL3	TL2	TL3**	TL2**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	38.5	37.7	38.7	0.87, <i>m</i> ; 1.64, <i>m</i>	0.90, m; 1.70, m	
2	CH_2	28.2	26.4	27.4	1.55, m	1.59, <i>m</i>	

Table 31Continued

Posi-	Туре		$\delta_{\!_{ m C}}$ / ppm		$\delta_{_{ m H}}$ /ppm, mult	tiplicity (J/Hz)	HMBC (TL3)
tion	of C*	R	TL3	TL2	TL3**	TL2**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
3	СН	78.1	78.0	79.0	3.19, dd (10.8, 5.4)	3.19, dd (10.8, 5.1)	4, 23, 24
4	С	39.4	37.9	38.9			
5	СН	55.9	54.4	55.3	0.69, <i>m</i>	0.68, <i>m</i>	4, 6, 7, 9
6	CH ₂	18.7	17.3	18.3	1.35, m; 1.48, m	1.41, m	
7	CH ₂	34.7	33.3	34.2	1.35, m	1.04, <i>m</i> ; 1.40, <i>m</i>	
8	С	41.0	39.7	40.9			
9	СН	50.9	49.5	50.4	1.20, <i>m</i>	1.27, m	
10	С	37.5	36.2	37.2			
11	CH_2	21.1	19.8	20.8	1.41, <i>m</i>	1.28, <i>m</i> ; 1.46, <i>m</i>	
12	CH_2	26.0	24.5	25.2	1.67, <i>m</i>	1.68, <i>m</i>	
13	СН	39.2	37.4	37.3	2.20, <i>m</i>	1.67, <i>m</i>	
14	С	42.8	41.4	42.7			
15	CH_2	30.2	28.7	27.0	1.14, m; 1.23, m	1.11, <i>m</i> ; 1.66, <i>m</i>	
16	CH_2	32.8	31.2	29.2	2.22, m	1.20, <i>m</i> ; 1.98, <i>m</i>	
17	С	56.6	55.3	47.5			
18	СН	49.7	48.3	48.8	1.55, m	1.60, <i>m</i>	
19	СН	47.7	45.9	47.5	3.00, <i>m</i>	2.38, m	18, 20, 21,
							29, 30
20	С	151.4	149.4	150.5			
21	CH_2	31.1	29.6	29.8	1.89, <i>m</i>	1.91, <i>m</i>	
22	CH_2	37.4	36.0	34.0	1.40, m; 1.93, m	1.80, <i>m</i> ; 1.88, <i>m</i>	17, 18, 28
23	CH_3	28.5	27.0	28.0	0.97, <i>s</i>	0.97, <i>s</i>	3, 4, 5, 24
24	CH_3	16.2	14.3	15.4	0.75, <i>s</i>	0.76, <i>s</i>	3, 4, 5, 23
25	CH_3	16.3	15.1	16.1	0.82, <i>s</i>	0.82, <i>s</i>	1, 3, 9, 10
26	CH_3	16.2	15.0	16.0	0.94, <i>s</i>	1.02, <i>s</i>	7, 8, 9, 14
27	CH_3	14.8	13.7	14.8	0.98, <i>s</i>	0.98, <i>s</i>	8, 13, 14, 15
28	С	179.0	179.6	60.6		3.33, d (10.8);	
						3.80, dd (10.8, 1.5)	
29	CH_2	110.0	108.7	109.7	4.74, br s;	4.68, d (2.1);	19, 30
					4.61, br s	4.58, <i>m</i>	
30	CH_3	19.4	18.4	19.1	1.69, <i>s</i>	1.68, <i>s</i>	19, 20, 29

* For **TL4** and betulinic acid ** Deduced from HMQC experiment

3.2.4 Compound TL4

Compound **TL4** was obtained as a white solid, mp $257-259^{\circ}$ C, $[\alpha]_{D}^{28}$: -10.0° (c = 0.05, MeOH). It gave a positive vanillin-sulfuric acid test indicating a triterpene. The IR spectrum showed absorption bands similar to those of compound **TL3**.

The ¹H and ¹³C NMR spectral data (**Table 32, Figures 74** and **75**) of compound **TL4** were similar to those of compound **TL3**, except that the splitting pattern of H-3 in **TL4** at δ 3.38 was a triplet (J = 2.7 Hz) instead of a doublet of doublet (J = 10.8, 5.4 Hz) of **TL3**. The difference in the multiplicity with a small coupling constant of H-3 in compound **TL4** was in agreement with the respective coupling pattern (equatorial-equatorial and equatorial-axial) of H-3 and H-2, indicating that H-3 is situated in an equatorial position. The location of a hydroxyl group at C-3 was determined through an HMBC experiment in which the oxymethine proton signal at δ 3.38 (H-3) showed long-range correlations with C-1 (δ 33.2) and C-5 (δ 49.0). Thus on the basis of its spectroscopic data and comparison of NMR chemical shifts from the previous report (Kitajima et al., 1990) (**Table 32**), compound **TL4** was assigned as 3-*epi*-betulinic acid.

 Table 32
 ¹H, ¹³C and HMBC spectral data of compounds TL4, TL3 and 3-epi-betulinic acid (R)

Posi	Туре	$\delta_{_{ m C}}$ / ppm			$\delta_{_{ m H}}$ / ppm, m	HMBC (TL4)	
tion	of C*	R	TL4	TL3	TL4**	TL3**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	37.7	33.2	78.0	1.18, <i>m</i>	0.87, m; 1.64, m	
2	CH_2	26.4	25.5	37.9	1.02, m; 1.68, m	1.55, m	
3	СН	78.0	76.2	54.4	3.38, t (2.7)	3.19, dd (10.8, 5.4)	1, 5

Table 32 Continued

Posi	Туре		$\delta_{\!_{ m C}}$ / ppm		$\delta_{_{ m H}}$ / ppm, m	ultiplicity (J/Hz)	HMBC (TL4)
tion	of C*	R	TL4	TL3	TL4**	TL3**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
4	С	37.9	37.5	17.3			
5	СН	54.4	49.0	33.3	1.18, <i>m</i>	0.69, <i>m</i>	
6	CH_2	17.3	18.2	39.7	1.34, m; 1.38, m	1.35, m; 1.48, m	
7	CH_2	33.3	34.1	49.5	1.30, <i>m</i>	1.35, m	
8	С	39.7	40.8	36.2			
9	СН	49.5	50.3	19.8	1.40, <i>m</i>	1.20, <i>m</i>	
10	С	36.2	37.3	24.5			
11	CH_2	19.8	20.7	37.4	1.42, m	1.41, <i>m</i>	
12	CH_2	24.5	25.3	41.4	1.52, m; 1.82, m	1.67, <i>m</i>	
13	СН	37.4	38.2	28.7	2.21, m	2.20, m	26, 27
14	С	41.4	42.5	31.2			
15	CH_2	28.7	29.6	55.3	1.14, m	1.14, m; 1.23, m	
16	CH_2	31.2	32.2	48.3	2.24, m	2.22, m	
17	С	55.3	56.2	45.9			
18	СН	48.3	49.2	149.4	1.57, m	1.55, m	
19	СН	45.9	47.0	29.6	3.00, m	3.00, m	
20	С	149.4	150.7	36.0			
21	CH_2	29.6	30.6	27.0	1.93, m	1.89, <i>m</i>	17, 18, 19,
							28
22	CH_2	36.0	37.1	14.3	1.95, m	1.40, m; 1.93, m	17, 18, 28
23	CH_3	27.0	28.2	15.1	0.93, <i>s</i>	0.97, <i>s</i>	3, 4, 5, 24
24	CH_3	14.3	22.1	15.0	0.82, <i>s</i>	0.75, <i>s</i>	3, 4, 5, 23
25	CH_3	15.1	15.9	13.7	0.94, <i>s</i>	0.82, <i>s</i>	1, 5, 9
26	CH_3	15.0	15.9	179.6	0.83, <i>s</i>	0.94, <i>s</i>	7, 8, 9, 14
27	CH_3	13.7	14.7	108.7	0.99, s	0.98, <i>s</i>	8, 13, 14, 15
28	С	179.6	179.2	18.4			
29	CH_2	108.7	109.5		4.73, d (1.8);	4.74, br s; 4.61, br s	19, 30
					4.60, <i>m</i>		
30	CH_3	18.4	19.3		1.69, <i>s</i>	1.69, <i>s</i>	19, 20, 29

* For TL4 and 3-epi-betulinic acid

** Deduced from HMQC experiment

Compound **TL5** was obtained as a white solid, mp $250-254^{\circ}$ C, $[\alpha]_{D}^{28}$: +32.0° (c = 0.37, MeOH). The IR spectrum exhibited absorption band of a carbonyl group at 1704 cm⁻¹. It gave a purple vanillin- sulfuric acid test indicating a triterpene.

The ¹H and ¹³C NMR spectral data of **TL5** (**Table 33**, **Figures 76** and **77**) were closely related to compound **TL3**, except the oxymethine proton (H-3) at δ 3.19 (*dd*, J = 10.8, 5.4 Hz) disappeared and the methylene protons (H₂-2) were shifted downfield to δ 2.45 (*m*) as compared to that of **TL3** at δ 1.55 (*m*). The ¹³C NMR spectral data of compound **TL5** displayed a signal of a carbonyl group at δ 218.3 which was assigned to C-3 and no signal of oxy-methine carbon as observed in **TL3**. The location of the carbonyl group was confirmed by HMBC experiment in which both H₃-24 (δ 1.02) and H₃-23 (δ 1.07) showed long-range correlation with C-3 (δ 218.3), C-4 (δ 47.3) and C-5 (δ 54.9). By comparison of the physical and spectral data with the previously reported data (Gonzalez et al., 1983) (**Table 33**), compound **TL5** was assigned as betulonic acid.

Table 33 ¹H, ¹³C and HMBC spectral data of compounds TL5 and TL3

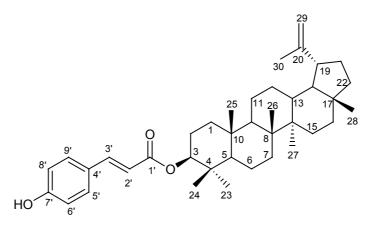

Posi-	Туре	$\delta_{_{ m C}}$ / ppm		$\delta_{_{ m H}}$ / ppm,	HMBC (TL5)	
tion	of C*	TL3	TL5	TL5**	TL3**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	37.7	39.6		0.87, <i>m</i> ; 1.64, <i>m</i>	
2	CH_2	26.4	34.1	2.45, m	1.55, <i>m</i>	
3	С	78.0	218.3		3.19, dd (10.8, 5.4)	
4	С	37.9	47.3			
5	СН	54.4	54.9	1.24, m	0.69, <i>m</i>	

Table 33 Continued

Posi-	Туре	$\delta_{ m c}$.	/ppm	$\delta_{\!\scriptscriptstyle \mathrm{H}}$ / ppm,	multiplicity (J/Hz)	HMBC (TL5)
tion	of C*	TL3	TL5	TL5**	TL3**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
6	CH_2	17.3	19.6		1.35, m; 1.48, m	
7	CH_2	33.3	33.6		1.35, m	
8	С	39.7	40.6			
9	СН	49.5	49.8	1.35, m	1.20, <i>m</i>	
10	С	36.2	36.9			
11	CH_2	19.8	21.4		1.41, <i>m</i>	
12	CH_2	24.5	25.5		1.67, <i>m</i>	
13	СН	37.4	38.5	2.20, m	2.20, <i>m</i>	
14	С	41.4	42.5			
15	CH_2	28.7	30.6		1.14, m; 1.23, m	
16	CH_2	31.2	32.1		2.22, m	
17	С	55.3	56.4			
18	СН	48.3	49.2	1.62, m	1.55, m	
19	СН	45.9	46.9	3.01, m	3.00, <i>m</i>	18, 20, 21, 30
20	С	149.4	150.3			
21	CH_2	29.6	29.7		1.89, <i>m</i>	
22	CH_2	36.0	37.0		1.40, m; 1.93, m	
23	CH_3	27.0	26.6	1.07, s	0.97, <i>s</i>	3, 4, 5, 24
24	CH_3	14.3	21.0	1.02, <i>s</i>	0.75, <i>s</i>	3, 4, 5, 23
25	CH_3	15.1	16.0	0.93, s	0.82, <i>s</i>	1, 5, 9, 10
26	CH_3	15.0	15.8	0.98, <i>s</i>	0.94, <i>s</i>	7, 8, 9, 14
27	CH_3	13.7	14.6	0.99, s	0.98, <i>s</i>	8, 13, 14, 15
28	С	179.6	182.2			
29	CH_2	108.7	109.8	4.62, br s;	4.61, br s;	19, 20, 30
				4.75, br s	4.74, br s	
30	CH_3	18.4	19.4	1.70, <i>s</i>	1.69, <i>s</i>	19, 29, 30

* For TL5

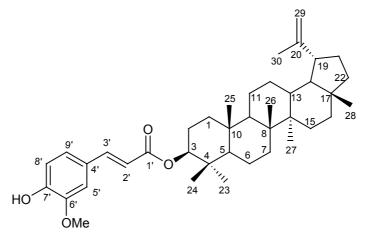
** Deduced from HMQC experiment

Compoud **TL6** was isolated as a white solid, mp 166–167°C, $[\alpha]_{\rm D}^{28}$: +20.0° (c = 0.05, MeOH). The IR spectrum suggested hydroxyl (3397 cm⁻¹), conjugated ester (1726 cm⁻¹) and double bond (1602 cm⁻¹) functionalities. The UV absorption maxima at 227 and 313 nm, again suggested the presence of conjugation in the molecule. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ¹H and ¹³C NMR spectral data (**Table 34, Figures 78** and **79**) of compounds **TL6** and **TL1** exhibited the same pattern. The difference was shown in **TL6** which displayed additional signals due to the presence of *trans*-coumaroyl substituent as two *para*-disubstituted aromatic protons at δ 7.41 and 6.85 (each *d*, *J* = 8.7 Hz, H-5', H-9' and H-6', H-8', respectively) and two *trans* olefinic protons at δ 7.61 (H-3') and 6.29 (H-2') as a doublet with coupling constant 15.9 Hz. The oxy-methine proton (H-3) was shown to be shifted more downfield than compound **TL1** at δ 4.62 (*m*) as a result of the ester substituent at C-3. The ¹³C NMR spectral data of compound **TL6** suggested the presence of an ester group as a signal at δ 167.8, which was confirmed by HMBC experiment in which the oxy-methine H-3 showed long-range correlation with C-1' (δ 167.8) and C-4 (δ 38.1), C-23 (δ 28.0) and C-24 (δ 16.2). Thus compound **TL6** was identified as 3β -*E*-coumaroyllupeol by comparison of its spectral data with those reported data (Kuo et al., 1997).

Table 34 ¹H, ¹³C and HMBC spectral data of compounds **TL6**, **TL1** and 3β -*E*-coumaroyllupeol (**R**)

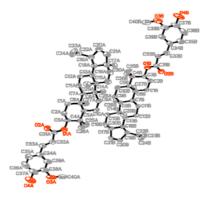
Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{_{ m H}}$ /ppm, multi	plicity (J/Hz)	HMBC (TL6)
tion	of C*	R	TL6	TL1	TL6**	TL1**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	38.5	38.4	38.7	1.70, <i>m</i>	0.91, <i>m</i>	
2	CH_2	23.9	23.9	27.4	1.70, <i>m</i>	1.56, m	
3	СН	80.9	81.2	79.0	4.62, <i>m</i>	3.19, dd (10.8,	1', 4, 23, 24
						5.1)	
4	С	38.1	38.1	38.8			
5	СН	55.5	55.4	55.3	0.82, <i>m</i>	0.69, <i>m</i>	
6	CH_2	18.3	18.2	18.3	1.42, m; 1.55, m	1.40, m; 1.55, m	
7	CH_2	34.3	34.2	34.2	1.42, m	1.40, <i>m</i>	
8	С	40.9	40.9	40.8			
9	СН	50.4	50.4	50.4	1.31, m	1.28, <i>m</i>	
10	С	37.2	37.1	37.1			
11	CH_2	21.0	21.0	20.9	1.47, m	1.22, <i>m</i> ; 1.45, <i>m</i>	
12	CH_2	25.2	25.1	25.1	1.71, m	1.08, <i>m</i>	
13	СН	38.1	38.1	38.0	1.63, m	1.67, <i>m</i>	
14	С	42.9	42.9	42.8			
15	CH_2	27.5	27.5	27.4	1.04, <i>m</i>	1.56, <i>m</i>	
16	CH_2	35.6	35.6	35.5	1.48, m; 1.53, m	1.51, m	
17	С	43.0	43.0	43.0			
18	СН	48.3	48.3	48.2	1.38, m	1.38, <i>m</i>	
19	СН	48.0	48.0	47.9	2.38, m	2.38, m	20, 29, 30
20	С	151.0	151.0	150.9			
21	CH_2	29.9	29.9	29.8	1.89, m; 1.95, m	1.94, <i>m</i>	19, 30
22	CH_2	40.0	40.0	40.0	1.20, m; 1.41, m	1.20, <i>m</i> ; 1.40, <i>m</i>	
23	CH_3	28.0	28.0	28.0	0.89, <i>s</i>	0.97, <i>s</i>	3,4,5,24
24	CH_3	16.0	16.2	15.4	0.88, <i>s</i>	0.76, <i>s</i>	3,4,5,23
25	CH_3	16.7	16.7	16.1	0.92, <i>s</i>	0.83, <i>s</i>	1, 5, 9
26	CH_3	16.2	16.0	16.0	1.04, <i>s</i>	1.03, <i>s</i>	7, 8, 9, 14
27	CH_3	14.6	14.6	14.5	0.95, <i>s</i>	0.94, <i>s</i>	8, 13, 14, 15
28	CH_3	18.0	18.0	18.0	0.79, <i>s</i>	0.79, <i>s</i>	16, 17, 18, 22
29	CH_2	109.4	109.4	109.3	4.69, d (2.1);	4.68, d (2.1);	19, 30
					4.58, <i>m</i>	4.56, <i>m</i>	
30	CH ₃	19.3	19.3	19.3	1.69, <i>s</i>	1.68, <i>s</i>	19, 20, 29


Table 34 Continued

Posi-	Туре	$\delta_{_{ m C}}$ / ppm			$\delta_{_{ m H}}$ / ppm, multi	plicity (J/Hz)	HMBC (TL6)
tion	of C*	R	TL6	TL1	TL6**	TL1**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1′	С	167.2	167.8				
2′	СН	116.5	115.9		6.29, d (15.9)		1', 3', 4'
3′	СН	143.8	144.4		7.61, d (15.9)		1', 3', 4' 1', 5', 9'
4′	С	127.6	127.0				
5', 9'	СН	129.9	130.0		7.41, d (8.7)		3', 5', 9', 7'
6', 8'	СН	115.8	116.0		6.85, d (8.7)		3', 5', 9', 7' 4', 6', 8', 7'
7'	С	157.4	158.1				

* For **TL6** and 3β -*E*-coumaroyllupeol

** Deduced from HMQC experiment


3.2.7 Compound TL7

Compound **TL7** was obtained as a white solid, mp 167-169°C, $[\alpha]_D^{28}$: +140.0° (c = 0.03, MeOH). Its ESITOFMS mass spectrum showed the [M-H]⁻ ion peak at m/z 601.4244, corresponding to the molecular formula $C_{40}H_{58}O_4$. The IR spectrum (**Figure 80**) suggested hydroxyl (3534 cm⁻¹), double bond (1635, 1604 cm⁻¹), and conjugated ester (1703 cm⁻¹) functionalities. This compound exhibited UV absorption (**Figure 81**) maxima at 234, 298, and 325 nm, again suggesting the presence of conjugation in the molecule. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ¹H and ¹³C NMR spectra (**Table 35**, **Figures 82** and **83**) of **TL7** and **TL6** exhibited the same pattern. The difference was shown in the ¹H NMR spectra of a

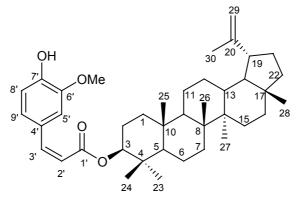
substituent group which supported the presence of a trans-feruloyl as three 1,2,4trisubstituted aromatic protons at δ 6.91 (1H, d, J = 8.1 Hz, H-8'), 7.03 (1H, d, J = 1.8 Hz, H-5'), and 7.07 (1H, dd, J = 8.1, 1.8 Hz, H-9'), two trans-oriented vinyl protons at δ 6.29 and 7.59 (each d, J = 15.9 Hz, H-2', H-3', respectively), and aromatic methoxy protons at δ 3.93 (3H, s). A signal of a hydroxy proton (disappeared on $D_{0}O$ exchange) was shown at δ 5.85 (1H, s). A cross peak between H-5' and the aromatic OMe in the NOESY spectrum located the latter at position C-6'. Lupane triterpenoid skeleton was evident from the following ¹H NMR signals: six methyls at δ 0.79, 0.88, 0.89, 0.92, 0.95, 1.04 (3H, s, each), an isopropenyl group [δ 1.69 (3H, s), 4.60 (1H, m), 4.69 (1H, d, J = 2.1 Hz], and a typical lupane H β -19 proton at δ 2.37 (1H, m). An oxymethine proton in proximity to an ester moiety was shown at δ 4.62 (dd, J = 9.0, 5.4 Hz, H-3). The doublet of doublet splitting pattern together with large coupling constants of H-3 with Jax-ax = 9.0 Hz and Jax-eq = 5.4 Hz indicated an axial (α) orientation of H-3. The ester carbonyl was also confirmed by ¹³C NMR signal at δ 167.1. The ester substituent was placed at C-3 as a result of downfield shift observed for H-3 and C-3 in the proton and ¹³C NMR spectra, respectively, compared with an analogous data of lupeol, and from the correlations between H-3 (δ 4.62) and C-23 $(\delta 28.0)$, C-24 $(\delta 16.2)$, and C-1' $(\delta 167.1)$ observed in the HMBC spectrum. The ¹³C NMR signals for sp² methine carbons were shown at δ 116.3 (C-2'), 144.3 (C-3'), 109.3 (C-5'), 114.7 (C-8'), and 123.1 (C-9'), and one olefinic methylene carbon at δ 109.4 (C-29). Therefore, compound TL7 was assigned as 3β -E-feruloyllupeol, the same as a compound isolated from Ceriops decandra (Ponglimanont and Thongdeeying, 2005) whose X-ray crystallographic structure was also displayed (Pakhathirathien et al., 2005) (Figure 7).

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!\scriptscriptstyle\mathrm{H}}$ /ppm, multi	plicity (J/Hz)	HMBC (TL7)
tion	of C*	TL7	TL6	TL7**	TL6**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	38.5	38.4		1.70, <i>m</i>	
2	CH_2	23.9	23.9		1.70, <i>m</i>	
3	СН	80.9	81.2	4.62, dd (9.0, 5.4)	4.62, <i>m</i>	1', 23, 24
4	С	38.1	38.1			
5	СН	55.5	55.4		0.82, <i>m</i>	
6	CH_2	18.3	18.2		1.42, m; 1.55, m	
7	CH_2	34.3	34.2		1.42, m	
8	С	40.9	40.9			
9	СН	50.4	50.4		1.31, m	
10	С	37.2	37.1			
11	CH_2	21.0	21.0		1.47, m	
12	CH_2	25.2	25.1		1.71, m	
13	СН	38.1	38.1		1.63, m	
14	С	42.9	42.9			
15	CH_2	27.5	27.5		1.04, <i>m</i>	
16	CH_2	35.6	35.6		1.48, m; 1.53, m	
17	С	43.0	43.0			
18	СН	48.3	48.3		1.38, m	
19	СН	48.0	48.0	2.37, m	2.38, m	20, 30, 29, 21
20	С	151.0	151.0			
21	CH_2	29.9	29.9		1.89, m; 1.95, m	
22	CH_2	40.0	40.0		1.20, <i>m</i> ; 1.41, <i>m</i>	

Table 35 ¹H, ¹³C and HMBC spectral data of compounds TL7 and TL6

Figure 7 X-ray ORTEP diagram of compound TL7

Table 35 Continued


Posi-	Туре	$\delta_{_{ m C}}$ / ppm		$\delta_{\!\scriptscriptstyle m H}$ / ppm, multi	HMBC (TL7)	
tion	of C*	TL7	TL6	TL7**	TL6**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
23	CH ₃	28.0	28.0	0.88, <i>s</i>	0.89, <i>s</i>	5, 3, 4, 24
24	CH_3	16.2	16.2	0.89, <i>s</i>	0.88, <i>s</i>	3, 4, 5, 23
25	CH_3	16.7	16.7	0.92, <i>s</i>	0.92, <i>s</i>	1, 9, 5
26	CH_3	16.0	16.0	1.04, <i>s</i>	1.04, <i>s</i>	7,8,9,14

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!\scriptscriptstyle m H}$ / ppm, multi	plicity (J/Hz)	HMBC (TL7)
tion	of C*	TL7	TL6	TL7**	TL6**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
27	CH_3	14.6	14.6	0.95, <i>s</i>	0.95, <i>s</i>	8, 14, 13, 15
28	CH_3	18.0	18.0	0.79, <i>s</i>	0.79, <i>s</i>	16, 17, 18, 22
29	CH_2	109.4	109.4	4.69, d (2.1);	4.69, d (2.1);	18, 30
				4.60, <i>m</i>	4.58, <i>m</i>	
30	CH_3	19.3	19.3	1.69, <i>s</i>	1.69, <i>s</i>	19, 20, 29
1'	С	167.1	167.8			
2′	СН	116.3	115.9	6.29, d (15.9)	6.29, d (15.9)	1', 4'
3′	СН	144.3	144.4	7.59, d(15.9)	7.61 d (15.9)	1', 2', 4', 5', 9'
4′	С	127.2	127.0			
5′	СН	109.3	130.0	7.03, d(1.8)	7.41, d (8.7)	3', 4', 7', 9'
6′	С	146.8	116.0		6.85, d(8.7)	
7'	С	147.8	158.1			
8′	СН	114.7	116.0	6.91, <i>d</i> (8.1)	6.85, d (8.7)	4', 6'
9′	СН	123.1	130.0	7.07, dd (8.1, 1.8)	7.41, d (8.7)	3', 5', 7'
	OMe	56.0		3.93, <i>s</i>		6 [′]
	ОН			5.85, br <i>s</i>		

* For **TL7**

** Deduced from HMQC experiment

3.2.8 Compound TL8

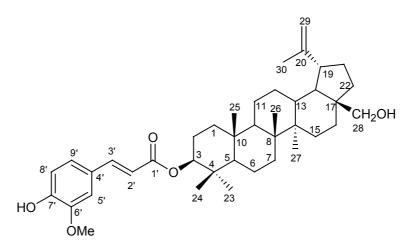
Compound **TL8** was obtained as a white solid, mp $195-197^{\circ}$ C, $[\alpha]_{D}^{28}$: +41.7° (*c* = 0.06, MeOH). Its ESITOFMS mass spectrum showed the [M-H]⁻ ion peak at m/z 601.4260, corresponding to the molecular formula C₄₀H₅₈O₄. The IR and UV spectrum showed absorption bands similar to those of **TL7**.

The ¹H and ¹³C NMR spectral data (**Table 36**, **Figures 84** and **85**) were closely related to those of **TL7**, except for the olefinic proton signals at δ 5.81 (1H, *d*, *J* = 12.9 Hz) and 6.77 (1H, *d*, *J* = 12.9 Hz) assignable, respectively to H-2' and H-3' on the feruloyl group. Judging from the small *J* value (12.9 Hz), the double bond should have a *Z* geometry. These spectral data implied a lupeol bearing a *Z*-feruloyl group. On the basis of HMBC, the *Z*-feruloyl moiety was located at C-3 by correlation of H-3 signal (δ 4.54) with C-1' (δ 166.4), C-23 (δ 28.0), and C-24 (δ 16.2). The coupling constant and splitting pattern of H-3 (*dd*, *J* = 11.1, 5.4 Hz) indicated a β -orientation of H-3. Thus compound **TL8** was assigned as 3β -*Z*-feruloylupeol, the same as a compound isolated from *Ceriops decandra* (Ponglimanont and Thongdeeying, 2005).

Table 36 ¹H, ¹³C and HMBC spectral data of compounds TL8 and TL7

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!\scriptscriptstyle \mathrm{H}}$ /ppm, multi	plicity (J/Hz)	HMBC (TL8)
tion	of C*	TL8	TL7	TL8**	TL7**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	38.5	38.5			
2	CH_2	23.9	23.9			
3	СН	80.9	80.9	4.54, dd (11.1,	4.62, dd (9.0,	1', 23, 24
				5.4)	5.4)	
4	С	38.1	38.1			
5	СН	55.5	55.5			
6	CH_2	18.3	18.3			
7	CH_2	34.3	34.3			
8	С	40.9	40.9			
9	СН	50.4	50.4			
10	С	37.2	37.2			
11	CH_2	21.0	21.0			
12	CH_2	25.2	25.2			
13	СН	38.1	38.1			
14	С	42.9	42.9			
15	CH_2	27.5	27.5			

Table 36 Continued


Posi-	Туре	$\delta_{\!\scriptscriptstyle m C}$ / ppm	$\delta_{_{ m H}}$ /ppm, multiplicity (J/Hz)	HMBC (TL8)
-------	------	--	--	------------

tion	of C*	TL8	TL7	TL8**	TL7**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
16	CH_2	35.6	35.6			
17	С	43.0	43.0			
18	СН	48.3	48.3			
19	СН	48.0	48.0	2.38, m	2.37, m	13, 20, 21, 29,
						30
20	С	151.0	151.0			
21	CH_2	29.9	29.9			
22	CH_2	40.0	40.0			
23	CH_3	28.0	28.0	0.86, <i>s</i>	0.88, <i>s</i>	3, 5, 24
24	CH_3	16.2	16.2	0.81, <i>s</i>	0.89, <i>s</i>	3, 5, 23
25	CH_3	16.7	16.7	0.86, <i>s</i>	0.92, s	1, 5, 9
26	CH_3	16.0	16.0	1.03, s	1.04, <i>s</i>	7, 8, 9, 14
27	CH_3	14.5	14.6	0.94, <i>s</i>	0.95, s	8, 13, 14, 15
28	CH_3	18.0	18.0	0.79, <i>s</i>	0.79, <i>s</i>	16, 17, 18, 22
29	CH_2	109.4	109.4	4.69, <i>d</i> (2.1):	4.69, d(2.1);	19, 20, 30
				4.57, m	4.60, <i>m</i>	
30	CH_3	19.4	19.3	1.69, <i>s</i>	1.69, <i>s</i>	19, 20, 29
1'	С	166.4	167.1			
2'	СН	117.4	116.3	5.81, d(12.9)	6.29, d (15.9)	1', 3', 4'
3'	СН	143.5	144.3	6.77, d (12.9)	7.59, d (15.9)	1', 2', 5', 9'
4′	С	127.3	127.2			
5′	СН	112.9	109.3	7.78, d (1.8)	7.03, d (1.8)	3', 4', 6', 7', 9'
6′	С	146.0	146.8			
7′	С	147.0	147.8			
8′	СН	113.9	114.7	6.87, <i>d</i> (8.4)	6.91, d (8.1)	4', 6', 7'
9′	СН	125.6	123.1	7.10, dd (8.4, 1.8)	7.07, dd (8.1, 1.8)	3', 5', 7', 8'
	OMe	56.0	56.0	3.91, s	3.93, s	
	OH			5.88, br <i>s</i>	5.85, br <i>s</i>	6′

* For TL8

** Deduced from HMQC experiment

3.2.9 Compound TL9

Compound **TL9** was isolated as a white solid, mp $152-154^{\circ}$ C. $[\alpha]_{D}^{28}$: +16.2° (c = 0.40, MeOH). Its IR and UV spectra showed absorption bands similar to compound **TL7**.

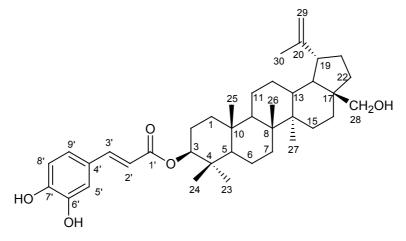
The ¹H and ¹³C NMR spectral data of compound **TL9** (**Table 37**, **Figures 86** and **87**) and **TL7** exhibited the same pattern, except that compound **TL9** displayed only six singlet methyl signals (δ 0.88, 0.90, 0.92, 0.99, 1.04 and 1.71). It appeared that a singlet signal of H₃-28 was replaced with the AB system of oxymethylene protons at δ 3.80 and 3.33 (each *d*, *J* = 10.5 Hz). The parent triterpene structure was identified as betulin by a combination of HMQC and HMBC experiments. Thus on the basis of its spectroscopic data and comparison of the NMR spectral data with previously reported data (Kuo et al., 1997) (**Table 37**), compound **TL9** was assigned as 3β -*E*-feruloylbetulin.

Table 37 ¹H, ¹³C and HMBC spectral data of compounds **TL9**, **TL7** and 3β -*E*-feruloylbetulin (**R**)

Posi-	Туре	$\delta_{ m _C}$ / ppm			$\delta_{_{ m H}}$ / ppm, m	HMBC (TL9)	
tion	of C*	R	TL9	TL7	TL9**	TL7**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	38.4	38.4	38.5			
2	CH_2	23.7	23.8	23.9			
3	СН	80.8	80.8	80.9	4.62, <i>m</i>	4.62, dd (9.0, 5.4)	1', 23, 24
4	С	38.1	38.1	38.1			
5	СН	55.4	55.4	55.5			
6	CH_2	18.2	18.2	18.3			

Table 37 Continued

Posi-	Туре		$\delta_{ m c}$ / ppm		$\delta_{\!\scriptscriptstyle \mathrm{H}}$ / ppm, m	ultiplicity (J/Hz)	HMBC (TL9)
tion	of C*	R	TL9	TL7	TL9**	TL7**	$^{1}\text{H}\rightarrow^{13}\text{C}$
7	CH ₂	34.0	34.0	34.3			
8	С	40.9	41.0	40.9			
9	СН	50.3	50.3	50.4			
10	С	37.1	37.1	37.2			
11	CH_2	20.9	20.9	21.0			
12	CH_2	25.2	25.2	25.2			
13	СН	37.3	37.3	38.1			
14	С	42.7	42.7	42.9			
15	CH_2	27.0	27.1	27.5			
16	CH_2	29.2	29.2	35.6			
17	С	47.8	47.8	43.0			
18	СН	48.7	48.8	48.3			
19	СН	47.8	47.8	48.0	2.39, m	2.37, m	18, 21
20	С	150.5	150.5	151.0			
21	CH_2	29.7	29.8	29.9			
22	CH_2	34.2	34.2	40.0			
23	CH_3	28.0	28.0	28.0	0.90, <i>s</i>	0.88, <i>s</i>	3, 4, 5, 24
24	CH_3	16.0	16.7	16.2	0.88, <i>s</i>	0.89, <i>s</i>	3, 4, 5, 23
25	CH_3	16.2	16.2	16.7	0.92, s	0.92, <i>s</i>	1, 5, 9
26	CH_3	16.6	16.0	16.0	1.04, <i>s</i>	1.04, <i>s</i>	7, 8, 9, 14
27	CH_3	14.7	14.7	14.6	0.99, s	0.95, <i>s</i>	8, 13, 14, 15
28	CH_2	60.7	60.6	18.0	3.80, <i>d</i> (10.5);	0.79, <i>s</i>	21, 22
					3.33, d (10.5)		
29	CH_2	109.7	109.7	109.4	4.68, d (1.8);	4.69, d (2.1);	19, 30
					4.59, <i>m</i>	4.60, <i>m</i>	
30	CH_3	19.1	19.1	19.3	1.71, <i>s</i>	1.69, <i>s</i>	19, 20, 29
1′	С	167.1	167.1	167.1			
2'	СН	114.6	116.3	116.3	6.28, d (15.9)	6.29, d (15.9)	1', 3', 4'
3′	СН	144.3	144.3	144.3	7.59, d (15.9)	7.59, d (15.9)	1', 2', 4', 5', 9'
4′	С	127.1	127.2	127.2			
5 ′	СН	109.2	109.3	109.3	7.03, d (1.5)	7.03, d (1.8)	3', 6', 9'
6′	С	146.7	146.8	146.8			
7′	С	147.8	147.8	147.8			
Table		•	•	•	·		<u>.</u>


Table 37 Continued

Posi-	Туре	$\delta_{ m c}$ / ppm			$\delta_{_{ m H}}$ / ppm, m	HMBC (TL9)	
tion	of C*	R	TL9	TL7	TL9**	TL7**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
8′	СН	116.2	114.7	114.7	6.91, <i>d</i> (8.1)	6.91, <i>d</i> (8.1)	4',6'
9′	СН	123.0	123.0	123.1	7.07, dd (8.1,	7.07, dd (8.1, 1.8)	3', 5', 7'
					1.5)		
	OMe	56.0	56.0	56.0	3.85, (s)	3.93, <i>s</i>	
	OH				5.89, (br s)	5.85, br s	

* For **TL9** and 3β -*E*-feruloylbetulin

** Deduced from HMQC experiment

3.2.10 Compound TL10

Compound **TL10** was isolated as a white solid, mp $160-163^{\circ}$ C, $[\alpha]_{D}^{28}$: +47.0° (c = 1.00, MeOH). Its IR spectrum suggested hydroxyl (3413 cm⁻¹), conjugated ester (1726 cm⁻¹) and double bond (1605 cm⁻¹) functionalities. This compound exhibited UV absorption similar to compound **TL9**.

Comparison of the ¹H and ¹³C NMR spectral data (**Table 38, Figures 88** and **89**) of compounds **TL10** and **TL9** revealed close structural similarity. The difference was shown in the absence of the aromatic methoxy protons at δ 3.85 (3H, *s*, OMe-6') which was confirmed by HMBC experiment in which H-8' [δ 6.87 (d, J = 8.1 Hz)] showed correlation with C-4' (δ 127.5), C-6' (δ 144.0), C-7' (δ 146.5) and C-9' (δ 122.3). Thus, on the basis of its spectroscopic data and comparison with previously reported data (Chen et al., 1999) (**Table 38**), compound **TL10** was assigned as 3β -*E*-caffeoylbetulin.

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{_{ m H}}$ / ppm, mult	iplicity (J/Hz)	HMBC (TL10)
tion	of C*	R	TL10	TL9	TL10	TL9	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	38.4	38.4	38.4			
2	CH_2	23.8	23.8	23.8			
3	СН	81.3	81.2	80.8	4.59, dd (8.7,	4.62, <i>m</i>	1', 2, 4, 24
					7.2)		
4	С	38.1	38.1	38.1			
5	СН	55.5	55.4	55.4			
6	CH_2	18.2	18.2	18.2			
7	CH_2	34.2	34.2	34.0			
8	С	41.0	40.9	41.0			
9	СН	50.3	50.3	50.3			
10	С	37.1	37.1	37.1			
11	CH_2	27.0	20.8	20.9			
12	CH_2	25.2	25.2	25.2			
13	СН	37.3	37.3	37.3			
14	С	42.7	42.7	42.7			
15	CH_2	20.9	27.0	27.1			
16	CH_2	29.2	29.2	29.2			
17	С	47.8	47.8	47.8			
18	СН	48.8	48.7	48.8			
19	СН	47.8	47.8	47.8	2.38, m	2.39, m	13, 18, 21
20	С	150.4	150.4	150.5			
21	CH_2	29.7	29.7	29.8			
22	CH_2	34.0	34.0	34.2			
23	CH_3	28.0	28.0	28.0	0.88, <i>s</i>	0.90, <i>s</i>	3, 4, 5, 24
24	CH_3	16.7	16.7	16.7	0.91, <i>s</i>	0.88, <i>s</i>	3, 4, 5, 23
25	CH_3	16.2	16.2	16.2	0.87, <i>s</i>	0.92, <i>s</i>	1, 5, 9, 10
26	CH_3	16.0	15.8	16.0	1.03, <i>s</i>	1.04, <i>s</i>	7, 8, 9, 14
27	CH_3	14.8	14.8	14.7	0.99, <i>s</i>	0.99, s	8, 13, 14, 15
28	CH_2	60.7	60.7	60.6	3.36, d (10.5);	3.33, d (10.5);	16, 17, 22
					3.82, d (10.5)	3.80, <i>d</i> (10.5)	
29	CH_2	109.8	109.8	109.7	4.59, <i>m</i> ;	4.59, <i>m</i> ;	19, 30
					4.68, d (1.5)	4.68, d (1.8)	

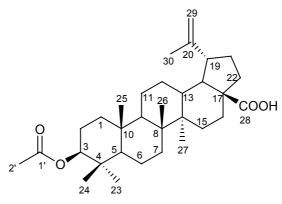

Table 38 ¹H, ¹³C and HMBC spectral data of compounds **TL10**, **TL9** and 3β -*E*-caffeoylbetulin (**R**)

Table 38 Continued

Posi-	Туре	$\delta_{ m c}$ / ppm			$\delta_{_{ m H}}$ / ppm, mult	iplicity (J/Hz)	HMBC (TL10)
tion	of C*	R	TL10	TL9	TL10	TL9	$^{1}\text{H}\rightarrow ^{13}\text{C}$
30	CH_3	19.1	19.1	19.1	1.69, <i>s</i>	1.71, s	19, 20, 29
1'	С	168.0	167.7	167.1			
2′	СН	115.9	116.1	116.3	7.55, d (15.9);	6.28, d (15.9)	1', 4'
3′	СН	144.9	144.7	144.3	6.26, d (15.9)	7.59, d (15.9)	1', 2', 4', 5', 9'
4′	С	127.4	127.5	127.2			
5′	СН	115.4	114.3	109.3	7.10, d (1.5)	7.03, d (1.5)	3', 6', 9'
6′	С	144.1	144.0	146.8			
7'	С	146.6	146.5	147.8			
8′	СН	114.3	115.4	114.7	6.87, d (8.1)	6.91, <i>d</i> (8.1)	4',6', 7', 9'
9′	СН	122.3	122.3	123.0	7.00, dd (8.1,	7.07, dd (8.1,	3', 5', 7'
					1.5)	1.5)	
	OMe			56.0		3.85, (s)	
	OH					5.89, (br s)	

* For **TL9** and 3β -*E*-caffeoylbetulin

3.2.11 Compound TL11

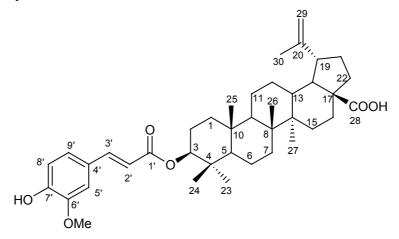
Compoud **TL11** was isolated as a white solid, mp $269-271^{\circ}$ C, $[\alpha]_{D}^{28}$: +8.0° (c = 0.05, MeOH). The IR spectrum suggested conjugated ester (1740 cm⁻¹), carboxy carbonyl (1704 cm⁻¹) functionalities. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ¹H and ¹³C NMR spectral data (**Table 39, Figures 90** and **91**) of compounds **TL11** and **TL3** exhibited the same pattern. The difference was shown in the

compound **TL11** which displayed additional signals due to the presence of acetyl substituent as singlet methyl protons at $\delta 2.08$. The oxymethine proton (H-3) was shown to be shifted more downfield than compound **TL3** at $\delta 4.62$ (*m*) as a result of the ester substituent at C-3. The ¹³C NMR spectral data of compound **TL11** suggested the presence of an ester group as a signal at $\delta 170.9$, which was confirmed by HMBC experiment in which the oxymethine H-3 showed long-range correlation with C-1' ($\delta 170.9$), C-4 ($\delta 37.1$), C-23 ($\delta 27.8$) and C-24 ($\delta 21.7$). Thus, compound **TL11** was identified as 3 β -acetylbetulinic acid by comparison of its physical data with those reported data (Tiwari et al., 1980).

Posi-	Туре	$\delta_{ m c}$ /	'ppm	$\delta_{\!\scriptscriptstyle \mathrm{H}}$ / ppm, mu	ltiplicity (J/Hz)	HMBC (TL11)
tion	of C*	TL11	TL3	TL11**	TL3**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	36.7	37.7		0.87, <i>m</i> ; 1.64, <i>m</i>	
2	CH_2	25.5	26.4		1.55, m	
3	СН	78.4	78.0	4.62, br s	3.19, dd (10.8, 5.4)	1', 4, 23, 24
4	С	37.1	37.9			
5	СН	50.3	54.4	1.17, m	0.69, <i>m</i>	
6	CH_2	18.1	17.3		1.35, m; 1.48, m	
7	CH_2	33.9	33.3		1.35, m	
8	С	40.9	39.7			
9	СН	50.2	49.5	1.41, m	1.20, <i>m</i>	
10	С	37.2	36.2			
11	CH_2	20.7	19.8		1.41, <i>m</i>	
12	CH_2	22.9	24.5		1.67, <i>m</i>	
13	СН	38.4	37.4	2.19, <i>m</i>	2.20, m	
14	С	42.5	41.4			
15	CH_2	29.7	28.7		1.14, m; 1.23, m	
16	CH_2	32.2	31.2		2.22, m	
17	С	56.5	55.3			
18	СН	49.3	48.3	1.63, <i>m</i>	1.55, m	
19	СН	46.4	45.9	3.02, <i>m</i>	3.00, <i>m</i>	18, 20, 21,
						29, 30
20	С	150.4	149.4			
21	CH_2	30.6	29.6		1.89, <i>m</i>	

Table 39 ¹H, ¹³C and HMBC spectral data of compounds TL11 and TL3


Table 39 Continued

Posi-	Туре	$\delta_{ m c}$ /	'ppm	$\delta_{_{ m H}}$ / ppm, mu	tiplicity (J/Hz)	HMBC (TL11)
tion	of C*	TL11	TL3	TL11**	TL3**	$^{1}\text{H}\rightarrow ^{13}\text{C}$
22	CH ₂	34.1	36.0		1.40, m; 1.93, m	
23	CH_3	27.8	27.0	0.83, <i>s</i>	0.97, <i>s</i>	4, 5, 24
24	CH_3	21.7	14.3	0.86, <i>s</i>	0.75, <i>s</i>	4, 5, 23
25	CH_3	15.9	15.1	0.85, <i>s</i>	0.82, <i>s</i>	1, 5, 9, 10
26	CH_3	16.1	15.0	0.95, <i>s</i>	0.94, <i>s</i>	7, 8, 9, 14
27	CH_3	14.9	13.7	1.03, <i>s</i>	0.98, <i>s</i>	8, 13, 14, 15
28	С	182.6	179.6			
29	CH_2	109.7	108.7	4.62, br s; 4.74, br	4.61, br s; 4.74, br s	19, 20, 30
				S		
30	CH_3	19.4	18.4	1.70, <i>s</i>	1.69, <i>s</i>	19, 20, 29
1′	С	170.9				
2′	CH_3	21.4		2.08, s		1′, 3

* For **TL11**

** Deduced from HMQC experiment

3.2.12 Compound TL12

Compound **TL12** was isolated as a white solid, mp 224-225°C, $[\alpha]_D^{28}$: +7.8° (*c* = 0.76, MeOH). Its IR and UV spectra showed absorption bands similar to compound **TL7**.

The ¹H and ¹³C NMR spectral data of compounds TL12 and TL7 (Table 40, Figures 92 and 93) exhibited the same pattern except that TL12 displayed only six singlet methyls (δ 0.88, 0.89, 0.92, 0.96, 0.99 and 1.69). The ¹³C NMR spectrum

displayed a signal of a carboxyl carbon C-18 at δ 181.4 instead of a methyl carbon at δ 18.0 in TL7. On the basis of its spectroscopic data and comparison of the NMR chemical shifts of those reported in the literature (Siddiqui et al., 2001) (Table 40), compound TL12 was assigned as 3β -E-feruloylbetulinic acid.

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{_{ m H}}$ / ppm, mult	tiplicity (J/Hz)	HMBC (TL12)
tion	of C*	R	TL12	TL7	TL12	TL7	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	38.3	38.4	38.5			
2	CH_2	26.2	23.8	23.9			
3	СН	79.7	80.8	80.9	4.89, dd (11.6,	4.62, dd (9.0, 5.4)	1', 2, 4, 23, 24
					4.7)		
4	С	38.8	38.1	38.1			
5	СН	47.8	49.3	55.5			
6	CH_2	16.9	18.2	18.3			
7	CH_2	23.2	30.6	34.3			
8	С	42.9	40.7	40.9			
9	СН	52.2	50.4	50.4			
10	С	37.2	37.2	37.2			
11	CH_2	21.2	20.9	21.0			
12	CH_2	23.8	25.5	25.2			
13	СН	38.5	38.4	38.1			
14	С	43	42.4	42.9			
15	CH_2	30.3	32.2	27.5			
16	CH_2	31.3	34.3	35.6			
17	С	55.8	56.4	43.0			
18	СН	46.7	49.3	48.3			
19	СН	49.8	46.9	48.0	3.02, m	2.37, m	18, 21
20	С	147.8	150.4	151.0			
21	CH_2	29.7	29.7	29.9			
22	CH_2	37.3	37.0	40.0			
23	CH_3	28.1	28.0	28.0	0.89, s	0.88, <i>s</i>	3, 4, 5, 24
24	CH_3	16.3	16.0	16.2	0.92, s	0.89, <i>s</i>	3, 4, 5, 23

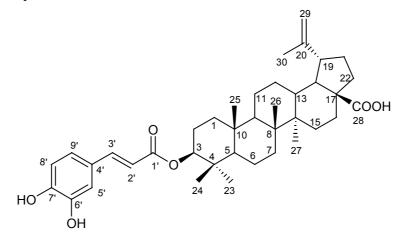

Table 40 ¹H, ¹³C and HMBC spectral data of compounds **TL12**, **TL7** and 3β -*E*-feruloylbetulinic acid (**R**)

Table 40 Continued

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{\!\scriptscriptstyle m H}$ / ppm, mult	tiplicity (J/Hz)	HMBC (TL12)
tion	of C*	R	TL12	TL7	TL12	TL7	$^{1}\text{H}\rightarrow ^{13}\text{C}$
25	CH_3	16.3	16.2	16.7	0.88, s	0.92, <i>s</i>	1, 5, 9
26	CH_3	16.4	16.7	16.0	0.96, s	1.04, <i>s</i>	7, 8, 9, 14
27	CH_3	14.9	14.7	14.6	0.99, s	0.95, <i>s</i>	8, 13, 14, 15
28	С	179.2	181.4	18.0		0.79, <i>s</i>	21, 22
29	CH_2	110.6	109.8	109.4	4.64, br s;	4.69, d (2.1);	19, 30
					4.57, br s	4.60, <i>m</i>	
30	CH_3	19.5	19.3	19.3	1.69, s	1.69, <i>s</i>	19, 20, 29
1'	С	167.5	167.2	167.1			
2′	СН	115.0	116.2	116.3	6.30, d (15.9)	6.29, d (15.9)	1', 3', 4'
3′	СН	145.6	144.4	144.3	7.59, d (15.9)	7.59, d (15.9)	1', 2', 4', 5', 9'
4′	С	127.0	127.1	127.2			
5′	СН	109.5	109.3	109.3	7.03, d (1.6)	7.03, d (1.8)	3', 6', 9'
6′	С	146.0	146.7	146.8			
7′	С	147.2	147.8	147.8			
8′	СН	114.6	114.7	114.7	6.91, <i>d</i> (8.1)	6.91, <i>d</i> (8.1)	4',6'
9′	СН	123.0	123.0	123.1	7.06, dd(8.1, 1.6)	7.07, dd (8.1, 1.8)	3', 4', 5', 7'
	OMe	55.5	56.0	56.0	3.94, s	3.93, <i>s</i>	
	OH				5.88, br s	5.85, br s	

* For **TL11** and 3β -*E*-feruloylbetulinic acid

3.2.13 Compound TL13

Compound **TL13** was isolated as a white solid, mp $254-256^{\circ}$ C, $[\alpha]_{D}^{28}$: +10.6° (c = 0.05, MeOH). Its IR spectrum suggested hydroxyl (3426 cm⁻¹), conjugated ester (1723 cm⁻¹) and double bond (1607 cm⁻¹) functionalities. This compound exhibited UV absorption similar to compound **TL12**.

Comparison of the ¹H and ¹³C NMR spectral data (**Table 41**, **Figures 94** and **95**) of compounds **TL13** and **TL12** revealed close structural similarity. The difference was shown in the absence of the aromatic methoxy protons at δ 3.94 (3H, *s*, OMe-6') which was confirmed by HMBC experiment in which H-8' [δ 6.82 (d, *J* = 8.1 Hz)] showed correlation with C-4' (δ 126.9), C-6' (δ 144.8), C-7' (δ 147.2) and C-9' (δ 121.9). Thus, on the basis of its spectroscopic data and comparison with previously reported data (Chen et al., 1999), (**Table 41**), compound **TL13** was assigned as 3β -*E*caffeoylbetulinic acid.

Table 41 ¹H, ¹³C and HMBC spectral data of compounds **TL13**, **TL12** and 3β -*E*-caffeoylbetulinic acid (**R**)

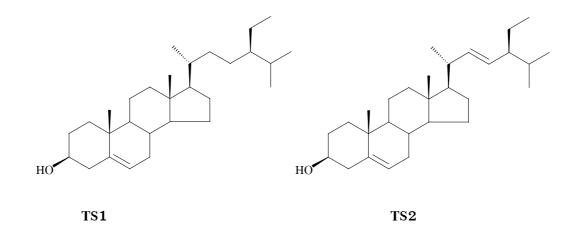
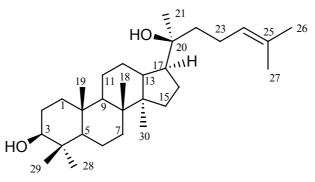

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{_{ m H}}$ / ppm, mu	ltiplicity (J/Hz)	HMBC (TL13)
tion	of C*	R	TL13	TL12	TL13	TL12	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	38.9	38.4	38.4			
2	CH_2	24.6	23.8	23.8			
3	СН	80.8	81.0	80.8	4.58, <i>m</i>	4.89,, dd (11.6,	1', 24
						4.7)	
4	С	38.6	38.0	38.1			
5	CH	56.0	55.4	49.3			
6	CH_2	18.8	18.2	18.2			
7	CH_2	34.9	34.2	30.6			
8	С	41.4	40.7	40.7			
9	СН	51.0	50.4	50.4			
10	С	37.6	37.1	37.2			
11	CH_2	30.5	20.9	20.9			
12	CH_2	26.3	25.4	25.5			
13	СН	38.9	38.4	38.4			
14	С	43.2	42.4	42.4			
15	CH_2	21.5	29.7	32.2			
16	CH_2	33.1	32.2	34.3			

Table 41 Continued

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{_{ m H}}$ / ppm, mu	ltiplicity (J/Hz)	HMBC (TL13)
tion	of C*	R	TL13	TL12	TL13	TL12	$^{1}\text{H}\rightarrow ^{13}\text{C}$
17	С	56.9	56.4	56.4			
18	СН	50.5	49.3	49.3			
19	СН	48.1	47.0	46.9	3.02, m	3.02, m	18, 21
20	С	151.6	150.7	150.4			
21	CH_2	31.5	30.6	29.7			
22	CH_2	37.9	37.2	37.0			
23	CH_3	28.4	28.0	28.0	0.88, s	0.89, s	3, 4, 5, 24
24	CH_3	16.6	16.1	16.0	0.94, s	0.92, s	3, 4, 5, 23
25	CH_3	17.2	16.7	16.2	0.92, s	0.88, s	1, 5, 9
26	CH_3	16.7	16.2	16.7	0.98, s	0.96, s	7, 8, 9, 14
27	CH_3	15.2	14.7	14.7	1.05, s	0.99, s	8, 13, 14, 15
28	С	179.2	179.2	181.4			21, 22
29	CH_2	110.3	109.4	109.8	4.73, br s;	4.64, br s;	19, 30
					4.59, br s	4.57, br s	
30	CH_3	19.8	19.4	19.3	1.71, s	1.69, s	19, 20, 29
1'	С	167.7	167.9	167.2			
2′	СН	116.1	115.3	116.2	6.23, d (15.9)	6.30, d (15.9)	1', 3', 4'
$_{3}'$	СН	144.7	144.9	144.4	7.53, d (15.9)	7.59, d (15.9)	1', 2', 4', 5', 9'
4′	С	127.5	126.9	127.1			
5′	СН	114.3	114.0	109.3	7.05, d (1.8)	7.03, d(1.6)	3', 6', 9'
6′	С	144.0	144.8	146.7			
7'	С	146.5	147.2	147.8			
8′	СН	115.4	115.2	114.7	6.82, d (8.1)	6.91, d (8.1)	4', 6', 7', 9'
9′	CH	122.3	121.9	123.0	6.95, dd (8.1,	7.06, dd (8.1,	3', 5', 7'
					1.8)	1.6)	
	OMe			56.0		3.94, s	
	ОН					5.88, br s	


* For **TL11** and 3β -*E*-caffeoylbetulinic acid

3.2.14 Compound TS1 and TS2

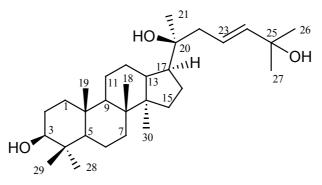
The mixture of **TS1** and **TS2** was isolated as a white solid. Its IR spectrum showed absorption bands at 3425 (hydroxy) and 1642 cm⁻¹ (double bond). The ¹H NMR spectral data (**Figure 96**) contained an oxymethine protons at δ 3.57–3.47 (*m*), three olefinic protons at δ 5.36–5.34 (*d*, *J* = 5.1 Hz), 5.16 (*dd*, *J* = 15.1, 8.4 Hz) and 5.01 (*dd*, *J* = 15.1, 8.4 Hz). The ¹H NMR data was corresponded to previous reported data (Cheenpracha, 2004). Thus, this mixture was identified as β -sitosterol and stigmasterol.

3.2.15 Compound TM1

Compound **TM1** was obtained as a colorless oil, $[\alpha]_D^{28}$: +31.8° (c = 0.30, MeOH). The IR spectrum (**Figure 97**) showed absorption bands at 3440 and 1642 cm⁻¹ for hydroxyl and double bond functionalities, respectively.

In the ¹³C NMR spectrum (Table 42, Figure 99), compound TM1 showed 30 carbon resonances. Characteristic for a tetracyclic dammarane as five methyl singlets at δ 0.77 (H₃-29), 0.84 (H₃-19), 0.88 (H₃-30), 0.96 (H₃-18) and 0.97

(H₃-28) appeared in the ¹H NMR spectrum of **TM1** (**Table 42**, **Figure 98**). The oxymethine proton (H-3) resonated at δ 3.19 (*dd*, J = 10.5, 5.1 Hz) showing J values consistent with axial orientation. The ¹³C NMR spectrum and DEPT experiments revealed the side chain (C-20 to C-27) as having three methyls (δ 17.7, 25.3 and 25.7), two methylenes (δ 22.5 and 40.5), one olefinic methine carbon (δ 124.8), and two quaternary carbons (δ 75.4, 131.5). The olefinic methine proton at δ 5.12 (*tt*, J = 7.2, 1.2 Hz) at C-24 (δ 124.8) showed the HMBC correlations with two vinyl methyl carbons C-26 (δ 25.7), and C-27 (δ 17.7), olefinic carbon C-25 (δ 131.5), and C-23 (δ 22.5). An oxy-methine proton at δ 3.91 (H-3) showed HMBC correlations with C-4 (δ 39.0), C-28 (δ 28.0), and C-29 (δ 15.4) and methyl protons at δ 0.88 (H₃-30) showed HMBC correlations with C-8 (δ 40.3), C-13 (δ 42.3), C-15 (δ 31.2), and C-17 (δ 49.8). Thus on the basis of its spectroscopic data and comparison of the ¹H and ¹³C NMR spectral data with the previously reported data (**Table 42**) (Asakawa et al., 1977), compound **TM1** was assigned as dammarenediol II.


 Table 42
 The ¹H, ¹³C and HMBC spectral data of compounds TM1 and dammarenediol II (R)

Posi-	Туре	$\delta_{ m c}$ / $_{ m I}$	opm)	$\delta_{\!_{ m H}}$ /ppm (multiplicity; J/Hz)	HMBC (TM1)
tion	of C*	R	TM1	TM1	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	39.0	39.1		
2	CH_2	27.4	27.4		
3	СН	78.9	78.9	3.19, dd (10.5, 5.1)	4, 28, 29
4	С	39.1	39.0		
5	СН	55.9	55.9	0.71, <i>m</i>	
6	CH_2	18.3	18.3		
7	CH_2	35.2	35.2		
8	С	40.4	40.3		
9	СН	50.6	50.6	1.24, <i>m</i>	
10	С	37.1	37.1		
11	CH_2	21.5	21.5		
12	CH_2	25.4	24.8		
13	СН	42.3	42.3	1.61 <i>m</i>	
14	С	50.3	50.3		
15	CH_2	31.2	31.2		

Table 42 Continued

Posi-	Туре	$\delta_{ m c}$ /1	opm)	$\delta_{\!_{ m H}}$ /ppm (multiplicity; J/Hz)	HMBC (TM1)
tion	of C*	R	TM1	TM1	$^{1}\text{H}\rightarrow ^{13}\text{C}$
16	CH_2	27.6	27.5		
17	СН	49.9	49.8	1.72, m	
18	CH_3	15.5	15.5	0.96, <i>s</i>	7, 8, 9, 14
19	CH_3	16.2	16.2	0.84, <i>s</i>	1, 5, 9, 10
20	С	75.4	75.4		
21	CH_3	24.8	25.3	1.34, <i>s</i>	17, 20, 22
22	CH_2	40.5	40.5		
23	CH_2	22.6	22.5	2.04, <i>m</i>	20, 22, 24, 25
24	СН	124.7	124.8	5.12, tt (7.2, 1.2)	22, 23, 25, 26, 27
25	С	131.6	131.5		
26	CH_3	25.7	25.7	1.69, <i>s</i>	24, 25, 27
27	CH_3	17.7	17.7	1.62, <i>s</i>	24, 25, 26
28	CH_3	28.0	28.0	0.97, <i>s</i>	3, 4, 5, 29
29	CH_3	15.4	15.4	0.77, <i>s</i>	3, 4, 5, 28
30	CH_3	16.5	16.5	0.88, <i>s</i>	8, 13, 15, 17

3.2.16 Compound TM2

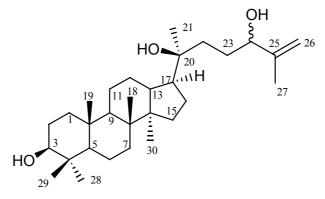
Compound **TM2** was obtained as a white solid, mp 128-129°C, $[\alpha]_D^{28}$: +24.0° (c = 0.20, MeOH). The IR spectrum showed absorption bands at 3304 and 1643 cm⁻¹ for hydroxyl and double bond functionalities, respectively.

The ¹H and ¹³C NMR spectra for the tetracyclic moiety of TM2 (Table 43, Figures 100 and 101) were similar to those of TM1. The difference was in the side chain (C-20 to C-27). Two olefinic methine protons in TM2 with the same chemical

shift at δ 5.70 (*m*) on the sp² carbons at C-23 (δ 122.4) and C-24 (δ 142.0) replaced an olefinic methine proton and two sp² carbons at C-24 and C-25 in **TM1**. Three singlet methyl signals were shown at δ_H 1.13, 1.33 (2 x CH₃): δ_C 25.7, 30.0 and 29.9, respectively. These results were also confirmed by the HMBC correlation as follows: the H₃-26 and H₃-27 (each, δ 1.33) showed correlation with C-25 (δ 70.8) and C-24 (δ 142.0), and H-23 (δ 5.70) with C-25 (δ 70.8), C-24 and C-22 (δ 43.4). The NMR spectroscopic data of the side chain (C-20 to C-27) agreed well with those of isofouquierol (Butruille and Dominguez, 1974) and isofouquierone (Waterman and Ampofo, 1985). Thus, compound **TM2** was identified as isofouquierol.

Table 43 ¹H, ¹³C and HMBC spectral data of compounds TM2 and TM1

Posi-	Туре	$\delta_{ m c}$ /	ppm	$\delta_{\!_{ m H}}$ /ppm (mul	tiplicity; J/Hz)	HMBC (TM2)
tion	of C*	TM1	TM2	TM2	TM1	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH ₂	39.1	39.0			
2	CH_2	27.4	27.5			
3	СН	78.9	79.0	3.20, dd (10.8, 5.4)	3.19, dd (10.5, 5.1)	4, 28, 29
4	С	39.0	39.0			
5	СН	55.9	55.9	0.77, <i>m</i>	0.71, <i>m</i>	
6	CH_2	18.3	18.3			
7	CH_2	35.2	35.2			
8	С	40.3	40.4			
9	СН	50.6	50.6	1.34, m	1.24, m	
10	С	37.1	37.1			
11	CH_2	21.5	21.5			
12	CH_2	24.8	24.9			
13	СН	42.3	42.4	1.73, m	1.61, <i>m</i>	
14	С	50.3	50.3			
15	CH_2	31.2	31.1			
16	CH_2	27.5	27.4			
17	СН	49.8	50.1	1.74, m	1.72, m	
18	CH_3	15.5	15.5	0.96, <i>s</i>	0.96, <i>s</i>	7, 8, 9, 14
19	CH_3	16.2	16.2	0.85, <i>s</i>	0.84, <i>s</i>	1, 5, 9, 10
20	С	75.4	75.1			
21	CH_3	25.3	25.7	1.13, s	1.34, <i>s</i>	17, 20, 22
22	CH_2	40.5	43.4	2.20, <i>m</i>		


Table 43 Continued

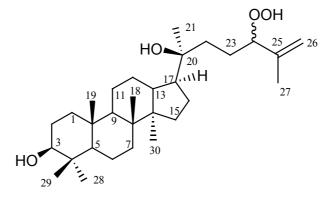
Posi-	Туре	$\delta_{_{ m C}}$ / ppm		$\delta_{\!\scriptscriptstyle m H}$ / ppm (mul	HMBC (TM2)	
tion	of C*	TM1	TM2	TM2	TM1	$^{1}\text{H}\rightarrow ^{13}\text{C}$
23	СН	22.5	122.4	5.70, <i>m</i> **	2.04, m	22, 24, 25
24	СН	124.8	142.0	$5.70, m^{**}$	5.12, tt (7.2, 1.2)	22, 23, 25
25	С	131.5	70.8			
26	CH_3	25.7	30.0	$1.33, s^{***}$	1.69, <i>s</i>	25, 24
27	CH_3	17.7	29.9	$1.33, s^{***}$	1.62, <i>s</i>	25, 24
28	CH_3	28.0	28.0	0.97, <i>s</i>	0.97, <i>s</i>	3, 4, 5, 29
29	CH_3	15.4	15.4	0.77, <i>s</i>	0.77, <i>s</i>	3, 4, 5, 28
30	CH_3	16.5	16.4	0.87, <i>s</i>	0.88, <i>s</i>	8, 13, 14, 15

* For **TM2** ** Deduced from HMQC

*** Six proton integration

3.2.17 Compound TM3

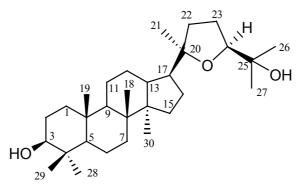
Compound **TM3** was obtained as a white solid, mp 156–158°C, $[\alpha]_D^{28}$: +38.4° (*c* = 0.10, MeOH). The IR spectrum showed absorption bands at 3414 and 1610 cm⁻¹ for hydroxyl and double bond functionalities, respectively.


The ¹H and ¹³C NMR spectra for the tetracyclic moiety of **TM3** (**Table 44**, **Figures 102** and **103**) were similar to those of **TM1**. The difference was in the side chain (C-20 to C-27). The oxy-methine proton at δ 4.09 (H-24) on the carbon at δ 75.9 and two terminal methylene protons δ 4.98 (*br s*, H-26a), and δ 4.86 (*m*, H-26b) and carbons at δ 147.6 (C-25), and δ 110.8 (C-26) of **TM3** replaced an olefinic methine proton and two sp² carbons (C-24 and C-25) of **TM1**. Two singlet methyl signals were shown at δ_H 1.16 and 1.75: δ_C 25.3 and 18.0, respectively. These results were also confirmed by the HMBC correlation as follows: the H₃-27 showed correlation with C-24 (δ 75.9), C-25 (δ 147.6), and C-26 (δ 110.8) and H-24 (δ 4.09) with C-23 (δ 29.7), C-25, C-26 and C-27 (δ 18.0). The NMR spectroscopic data of the side chain (C-20 to C-27) agreed well with those of fouquierol (Butruille and Dominguez, 1974). Thus, compound **TM3** was identified as fouquierol.

Posi-	Туре	$\delta_{_{ m C}}$ /	ppm	$\delta_{_{ m H}}$ / ppm (mul	tiplicity; <i>J</i> /Hz)	HMBC (TM3)
tion	of C*	TM1	ТМЗ	TM3	TM1	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH_2	39.1	39.0			
2	CH_2	27.4	27.5			
3	СН	78.9	79.0	3.21, dd (10.8, 5.1)	3.19, dd (10.5, 5.1)	4, 28, 29
4	С	39.0	39.0			
5	СН	55.9	55.9	0.75, <i>m</i>	0.71, <i>m</i>	
6	CH_2	18.3	18.3			
7	CH_2	35.2	35.2			
8	С	40.3	40.4			
9	СН	50.6	50.6	1.28, <i>m</i>	1.24, <i>m</i>	
10	С	37.1	37.1			
11	CH_2	21.5	21.5			
12	CH_2	24.8	24.8			
13	СН	42.3	42.4	1.65, m	1.61, <i>m</i>	
14	С	50.3	50.3			
15	CH_2	31.2	31.2			
16	CH_2	27.5	27.4			
17	СН	49.8	50.1	1.77, m	1.72, m	
18	CH_3	15.5	15.5	0.97, <i>s</i>	0.96, <i>s</i>	7, 8, 14
19	CH_3	16.2	16.2	0.86, <i>s</i>	0.84, <i>s</i>	1, 5, 9, 10
20	С	35.4	75.2			
21	CH_3	25.3	25.3	1.16, <i>s</i>	1.34, <i>s</i>	17, 20, 22
22	CH_2	40.5	36.0			
23	CH_3	22.5	29.7		2.04 m	
24	СН	124.8	75.9	4.09, <i>m</i>	5.12, tt (7.2, 1.2)	23, 25, 26, 27
25	С	131.5	147.6			
26	CH_2	25.7	110.8	4.98, br s; 4.86, m	1.69, <i>s</i>	24,25,27
27	CH ₃	17.7	18.0	1.75, <i>s</i>	1.62, <i>s</i>	24, 25, 26

Table 44 ¹H, ¹³C and HMBC spectral data of compounds TM3 and TM1

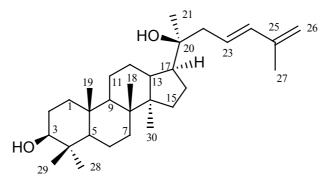
Posi-	Туре	$\delta_{\!_{ m C}}$ / ppm		$\delta_{_{ m H}}$ /ppm (mult	HMBC (TM3)	
tion	of C*	TM1	ТМЗ	TM3	TM1	$^{1}\text{H}\rightarrow ^{13}\text{C}$
28	CH ₃	28.0	28.0	0.99, <i>s</i>	0.97, <i>s</i>	3, 4, 5, 29
29	CH_3	15.4	15.4	0.79, <i>s</i>	0.77, <i>s</i>	3,4,5,28
30	CH_3	16.5	16.5	0.89, <i>s</i>	0.88, <i>s</i>	8, 13, 14, 15


3.2.18 Compound TM4

Compound TM4 was obtained as a white solid, mp 183-185°C, $[\alpha]_D^{28}$: +54.1° (c = 0.04, MeOH). In the ¹³C NMR spectrum, signals were displayed for three oxygenated carbons at δ 75.1, 78.8, and 89.5. Comparison of ¹H and ¹³C NMR spectra (Table 45, Figures 104 and 105) of TM3 and TM4 revealed that an oxy-methine proton (H-24) at δ 4.31 (t, J = 6.31 Hz) and carbon (C-24) at δ 89.5 were shifted downfield while the signals in TM3 displayed at δ_{H} 4.09 and δ_{C} 75.9, indicating that C-24 is connected to a hydroperoxy group. The presence of a hydroperoxy group at C-24 was supported by the molecular formula $C_{30}H_{52}O_4$, a broad downfield signal of a hydroperoxy proton at $\delta_{\!_{
m H}}$ 8.08, and the downfield chemical shift of the oxygenated carbon C-24 at $\delta_{\rm C}$ 89.5. The terminal olefinic methylene protons at δ 5.02 (m, H₂-26) showed the HMBC correlations with vinyl methyl carbon C-27 (δ 17.1), olefinic carbon C-25 (δ 144.1), and C-24 (δ 89.5). An oxy-methine proton at δ 4.31 (t, J = 6.3 Hz, H-24) with C-23 (δ 24.6), C-27 (δ 17.1) and C-26 (δ 113.7). Thus, compound TM4 was $20(S) - 3\beta$, 20-dihydroxy-24-perhydroxydammar-25-ene, determined а as new compound designated as cereotagaloperoxide (Pakhathirathien et al., 2005).

Posi-	Туре	$\delta_{ m c}$ /1	opm)	$\delta_{\!_{ m H}}$ / ppm (mul	tiplicity; J/Hz)	HMBC (TM4)
tion	of C*	TM3	TM4	TM4	ТМЗ	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH_2	39.0	39.0			
2	CH_2	27.5	27.0			
3	СН	79.0	78.8	3.20, dd (11.1,	3.21, dd (10.8,	2, 4, 28, 29
				5.7)	5.1)	
4	С	39.0	38.9			
5	СН	55.9	55.8	0.73, <i>m</i>	0.75, m	
6	CH_2	18.3	18.2			
7	CH_2	35.2	35.2			
8	С	40.4	40.3			
9	СН	50.6	50.6	1.33, m	1.28, <i>m</i>	
10	С	37.1	37.0			
11	CH_2	21.5	21.5			
12	CH_2	24.8	24.8			
13	СН	42.4	42.3	1.63, m	1.65, m	
14	С	50.3	50.3			
15	CH_2	31.2	31.1			
16	CH_2	27.4	27.4			
17	СН	50.1	49.6	1.72, m	1.77, <i>m</i>	
18	CH_3	15.5	15.3	0.96, s	0.97, s	7, 8, 9, 14
19	CH_3	16.2	16.1	0.85, <i>s</i>	0.86, <i>s</i>	1, 5, 9, 10
20	С	75.2	75.1			
21	CH_3	25.3	24.6	1.13, s	1.16, <i>s</i>	17, 20, 22
22	CH_{2}	36.0	36.5			
23	CH_{2}	29.7	24.6			
24	СН	75.9	89.5	4.31, <i>t</i> (6.3)	4.09, <i>m</i>	23, 25
25	С	147.6	144.1			
26	CH_2	110.8	113.7	5.02, <i>m</i>	4.98, br s; 4.86, m	24, 25, 27
27	CH_3	18.0	17.1	1.75, <i>s</i>	1.75, s	24, 25, 26
28	CH_3	28.0	27.8	0.97, <i>s</i>	0.99, <i>s</i>	3, 4, 5, 29
29	CH_3	15.4	15.3	0.78, <i>s</i>	0.79, <i>s</i>	3, 4, 5, 28
30	CH_3	16.5	16.4	0.87, <i>s</i>	0.89, <i>s</i>	8, 13, 14, 15
	OOH			8.08,, br s		

Table 45 ¹H, ¹³C and HMBC spectral data of compounds TM4 and TM3

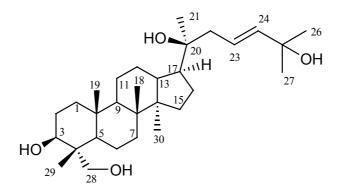

Compound TM5 was obtained as a white solid, mp $205-207^{\circ}$ C, $[\alpha]_{D}^{28}$: +19.3° (c = 0.05, MeOH). Comparison of ¹H and ¹³C NMR spectra (Table 46, Figures 106 and 107) of TM3 and TM5 revealed similar signals for tetracyclic moiety.

The ¹³C NMR spectrum analysed by the aid of DEPT experiment, indicated the presence of eight methyls, four sp³ quaternary carbons and four oxygenated carbons: C-25 (δ 71.4), C-3 (δ 79.0), C-24 (δ 83.3) and C-20 (δ 86.3). The two oxygenated downfield signals (C-20 and C-24) indicated that one tertiary hydroxyl group must be attached to the terminal isopropyl unit and one oxygen formed an ether linkage between C-20 and C-24. This was indeed supported by the HMBC correlations between H₃-21 (δ 1.13)/C-17 (δ 49.6), C-20, and C-22 (δ 35.7) and between H₃-26 (δ 1.12) and H₃-27 (δ 1.21)/C-24, C-25 and C-26. As for the configuration at C-20 and C-24 of the side chain, both were assigned as *S* by comparing the chemical shifts of H-24 (δ 3.73, *t*, *J* = 6.9 Hz), H₃-26 and H₃-27 of TM5 with those reported data (Tanaka et al., 1993). Thus, compound TM5 was determined as ocotillol II.

 Table 46
 ¹H, ¹³C and HMBC spectral data of compounds TM5, TM3 and octotillol-II (R)

Posi-	Туре	$\delta_{_{ m C}}$ / ppm			$\delta_{_{ m H}}$ / ppm (mult	tiplicity; J/Hz)	HMBC (TM5)
tion	of C*	R	TM5	TM3	TM5	TM3	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	39.1	39.1	39.0			
2	CH_2	27.4	27.4	27.5			
3	СН	79.0	79.0	79.0	3.20, dd (10.8,5.7)	3.21, dd (10.8,5.1)	4, 28, 29
4	С	39.0	39.0	39.0			
5	СН	55.9	55.9	55.9	0.71,, <i>m</i>	0.75, <i>m</i>	

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{_{ m H}}$ /ppm (mul	tiplicity; <i>J</i> /Hz)	HMBC (TM5)
tion	of C*	R	TM5	ТМЗ	TM5	ТМЗ	$^{1}\text{H}\rightarrow^{13}\text{C}$
6	CH_2	18.3	18.3	18.3			
7	CH_2	35.3	35.3	35.2			
8	С	40.4	40.4	40.4			
9	СН	50.8	50.8	50.6	1.31, m	1.28, <i>m</i>	
10	С	37.2	37.2	37.1			
11	CH_2	21.6	21.6	21.5			
12	CH_2	25.7	25.7	24.8			
13	СН	43.0	43.0	42.4	1.53, m	1.65, m	
14	С	50.1	49.9	50.3			
15	CH_2	31.5	31.5	31.2			
16	CH_2	27.4	27.4	27.4			
17	СН	49.5	49.6	50.1	1.78, m	1.77, <i>m</i>	
18	CH_3	15.5	15.4	15.5	0.95, s	0.97, <i>s</i>	7, 8, 14
19	CH_3	16.3	16.2	16.2	0.84, <i>s</i>	0.86, <i>s</i>	1, 5, 9, 10
20	С	86.4	86.3	75.2			
21	CH_3	23.6	23.5	25.3	1.13, s	1.16, <i>s</i>	17, 20, 22
22	CH_2	35.7	35.7	36.0			
23	CH_2	26.1	25.7	29.7			
24	СН	83.3	83.3	75.9	3.73, t (6.9)	4.09, <i>m</i>	
25	С	71.4	71.4	147.6			
26	CH_3	24.3	24.3	110.8	1.12, s	4.98, br s; 4.86, m	24, 25, 27
27	CH_3	27.4	27.4	18.0	1.21, <i>s</i>	1.75, s	24, 25, 26
28	CH_3	28.0	28.0	28.0	0.97, s	0.99, <i>s</i>	3, 4, 5, 29
29	CH_3	15.3	15.3	15.4	0.77, <i>s</i>	0.79, <i>s</i>	3, 4, 5, 28
30	CH_3	16.5	16.5	16.5	0.87, <i>s</i>	0.89, <i>s</i>	8, 13, 14, 15


Compound TM6 was obtained as a colorless oil, $\left[\alpha\right]_{D}^{28}$: +62.5° (c = 0.03, MeOH). The ¹³C NMR spectral data of compound TM6 (Table 47, Figure 109) revealed 30 carbon signals which were sorted by DEPT as seven methyl, ten methylene, seven methine and six quaternary carbons. The ¹H NMR spectrum (Table 47, Figure 108) showed the signals of six singlet methyls (δ 0.78, 0.85, 0.88, 0.96, 0.98, 1.14), a vinylic methyl (δ 1.86, H₃-27). The hydroxymethine proton appeared at δ 3.20 (dd, J = 10.8, 5.4 Hz, H-3), two olefinic proton signals were observed at δ 5.71 (dt, 15.6, 7.8 Hz, H-23) and 6.20 (d, J = 15.6 Hz), and exo-methylene protons at δ 4.91 (br s, H-26). The ¹³C NMR signals showed a conjugated diene carbons at δ 125.8 (C-23), 136.5 (C-24), 141.9 (C-25), 115.2 (C-26), an oxygenated quaternary carbon at δ 75.3 (C-20), and one hydroxy methine carbon at δ 79.0 (C-3). The chemical shifts of tetracyclic part of the triterpene skeleton at C-1 to C-19 and C-28 to C-30 were closely related to those of TM1. HMBC correlations between H-24 (δ 6.20) and C-22 (δ 43.9), C-25 (δ 141.9), C-26 (δ 115.2) and C-27 (δ 18.7) confirmed the structure of TM6. Thus, compound TM6 was postulated to be $20(S)-3\beta$, 20-dihydroxydammar-23, 25-diene, a new compound designated as ceriotagalol C.

Under mildly acidic condition in CDCl_3 , an allylic hydroxyl group of fouquierol (**TM3**) isolated from this plant was completely transformed to a conjugated diene within a few days, resulting in a more stable product of compound **TM6**.

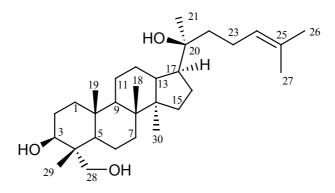
Table 47 ¹H, ¹³C and HMBC spectral data of compounds TM6 and TM1

Posi-	Туре	$\delta_{ m c}$ /1	opm)	$\delta_{\!_{ m H}}$ /ppm (multi	plicity; J/Hz)	HMBC (TM6)
tion	of C*	TM1	TM6	TM6	TM1	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH_2	39.1	39.0			
2	CH_2	27.4	27.5			
3	СН	78.9	79.0	3.20, dd (10.8, 5.4)	3.19, dd (10.5,	4, 28, 29
					5.1)	
4	С	39.0	39.0			
5	СН	55.9	55.9	0.72, <i>m</i>	0.71, <i>m</i>	
6	CH_2	18.3	18.3			
7	CH_2	35.2	35.2			
8	С	40.3	40.4			
9	СН	50.6	50.6	1.31, <i>m</i>	1.24, m	
10	С	37.1	37.1			
11	CH_2	21.5	21.5			
12	CH_2	24.8	24.9			
13	СН	42.3	42.4	1.74, m	1.61, <i>m</i>	
14	С	50.3	50.3			
15	CH_2	31.2	31.1			
16	CH_2	27.5	27.4			
17	СН	49.8	50.1	1.72, s	1.72, s	
18	CH_3	15.5	15.5	0.96, <i>s</i>	0.96, <i>s</i>	7, 8, 9, 14
19	CH_3	16.2	16.2	0.85, <i>s</i>	0.84, <i>s</i>	1, 5, 9, 10
20	С	75.4	75.3			
21	CH_3	25.3	26.0	1.14, <i>s</i>	1.34, <i>s</i>	17, 20, 22
22	CH_2	40.5	43.9	2.28, m		17, 21, 20,
						23, 24
23	СН	22.5	125.8	5.71, dt (15.6, 7.8)	2.04, <i>m</i>	25
24	СН	124.8	136.5	6.20, d (15.6)	5.12, tt (7.2, 1.2)	22, 25, 26, 27
25	С	131.5	141.9			
26	CH_2	25.7	115.2	4.91, br s	1.69, <i>s</i>	24, 25, 27
27	CH_3	17.7	18.7	1.86, <i>s</i>	1.62, <i>s</i>	24, 25, 26
28	CH_3	28.0	28.0	0.98, <i>s</i>	0.97, <i>s</i>	3, 4, 5, 29
29	CH_3	15.4	15.3	0.78, <i>s</i>	0.77, <i>s</i>	3, 4, 5, 28
30	CH_3	16.5	16.4	0.88, <i>s</i>	0.88, <i>s</i>	8, 13, 14, 15

3.2.21 Compound TM7

Compound TM7 was obtained as a colorless oil, $[\alpha]_D^{28}$: +55.6° (c = 0.02, MeOH). The ESITOFMS showed a pseudomolecular ion peak $[M+Na]^+$ at m/z 499.3754, indicating a molecular formula of $C_{30}H_{52}O_4$ (calcd for $C_{30}H_{52}O_4Na$ m/z 499.3763). The IR spectrum showed the same pattern as that of TM2.

In the ¹³C NMR spectrum, signals were displayed for four oxygenated carbons at δ 70.8, 71.9, 75.1, and 76.6. Comparison of ¹H and ¹³C NMR spectra (**Table 48, Figures 110** and **111**) of **TM2** and **TM7** revealed that the latter compound has one more hydroxy methylene group than **TM2**. The ¹³C NMR spectra suggested that **TM7** and **TM2** have similar side-chain, therefore, the additional hydroxy methylene group should be at the tetracyclic moiety. This was assigned at C-28 (δ 71.9) due to HMBC correlations of H₂-28 (δ 3.72, 3.42; each, *d*, *J* = 10.5 Hz) with C-3 (δ 76.6), C-4 (δ 42.0), C-5 (δ 50.6) and C-29 (δ 11.3). ¹³C NMR spectroscopic data of the side chain (C-20 to C-27) of **TM7** agreed well with those of **TM2** (**Table 48**). Thus, compound **TM7** was identified as 20(*S*)-3 β ,20,25,28-tetrahydroxydammar-23-ene, a new compound designated as cereotagalol B (Pakhathirathien et al., 2005).


Table 48 ¹H, ¹³C and HMBC spectral data of compounds TM7 and TM2

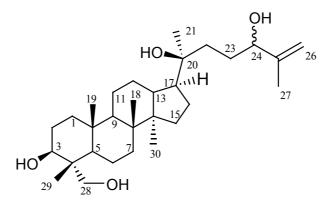
Posi-	Туре	$\delta_{_{ m C}}$ / ppm)		$\delta_{_{ m H}}$ / ppm (mu	HMBC (TM7)	
tion	of C*	TM2	TM7	TM7	TM2	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	39.0	38.7			
2	CH_2	27.5	27.0			
3	СН	79.0	76.6	3.64, dd (8.4,	3.20, dd (10.8,	2, 28, 29
				7.8)	5.4)	

Table 48 Continued

Posi-	Туре	$\delta_{ m c}$ /ppm)		$\delta_{_{ m H}}$ /ppm (mu	ultiplicity; <i>J/</i> Hz)	HMBC (TM7)
tion	of C*	TM2	TM7	TM7	TM2	$^{1}\text{H}\rightarrow^{13}\text{C}$
4	С	39.0	42.0			
5	СН	55.9	50.6	1.35, m	0.77, <i>m</i>	
6	CH_2	18.3	18.4			
7	CH_2	35.2	35.0			
8	С	40.4	40.4			
9	СН	50.6	50.4	0.88, <i>m</i>	1.34, m	
10	С	37.1	37.0			
11	CH_2	21.5	21.5			
12	CH_2	24.9	24.8			
13	СН	42.4	42.4	1.69, <i>m</i>	1.73, m	
14	С	50.3	50.3			
15	CH_2	31.1	31.1			
16	CH_2	27.4	27.5			
17	СН	50.1	49.9	1.74, m	1.74, m	
18	CH_3	15.5	15.5	0.97, <i>s</i>	0.96, <i>s</i>	7, 8, 9, 14
19	CH_3	16.2	16.6	0.90, <i>s</i>	0.85, <i>s</i>	1, 5, 9, 10
20	С	75.1	75.1			
21	CH_3	25.7	25.8	1.13, s	1.13, s	17, 20, 22
22	CH_2	43.4	43.4	2.19, m	2.20, m	20, 23, 24
23	CH_2	122.4	122.4	5.69, m	5.70, m	22, 25
24	СН	142.0	142.1	5.69, <i>m</i>	5.70, m	22, 23, 25
25	С	70.8	70.8			
26	CH_3	30.0	30.0	1.33, <i>s</i>	1.33, s	24, 25, 27
27	CH_3	29.9	29.9	1.33, <i>s</i>	1.33, s	24, 25, 26
28	CH_2	28.0	71.9	3.72, d (10.2);	0.97, <i>s</i>	3, 4, 5, 29
				3.43, d(10.2)		
29	CH_3	15.4	11.3	0.88, <i>s</i>	0.77, <i>s</i>	3, 4, 5, 28
30	CH_3	16.4	16.5	0. 87, <i>s</i>	0.87, <i>s</i>	8, 13, 14, 15

3.2.22 Compound TM8

Compound **TM8** was obtained as a colorless oil, $[\alpha]_D^{28}$: +50.0° (c = 0.02, MeOH). The ¹H and ¹³C NMR spectra for the tetracyclic moiety of **TM8** (**Table 49, Figures 112** and **113**) were similar to those of **TM7**, with signals for the hydroxy methylene group at δ_H 3.72, 3.42 and δ_C 71.9. The difference was in the side-chain (C-20 to C-27) where three methyls (δ 17.7, 25.4 and 25.7), two methylenes (δ 22.5 and 40.5), one olefinic methine carbon (δ 124.7), and two quaternary carbons (δ 75.4, 131.6) were displayed in **TM8**. The olefinic methine proton at δ 5.20 (m) at C-24 (δ 124.8) showed the HMBC correlations with two vinyl methyl carbons C-26 (δ 25.7), and C-27 (δ 17.7), C-25 olefinic carbon (δ 131.6), C-23 (δ 22.5) and C-22 (δ 40.5). The NMR spectroscopic data of the side-chain (C-20 to C-27) agreed well with those of **TM1**. Thus, compound **TM8** was postulated to be 20(*S*)-3 β ,20,28-trihydroxydammar-24-ene, a new compound designated as ceriotagalol D.


Table 49 ¹H, ¹³C and HMBC spectral data of compounds TM8, TM7 and TM1

Posi-	Туре	$\delta_{ m c}$ / ppm		$\delta_{\rm H}$ /ppm (multiplicity; J/Hz)		HMBC (TM8)	
tion	of C*	TM7	TM8	TM1	TM8	TM7	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	38.7	38.7	39.1			
2	CH_2	27.0	27.0	27.4			
3	СН	76.6	76.6	78.9	3.63, dd (7.1,	3.64, dd (8.4,	2, 4, 28, 29
					6.9)	7.8)	
4	С	42.0	42.0	39.0			
5	СН	50.6	50.6	55.9	1.30, <i>m</i>	1.35, m	
6	CH_2	18.4	18.4	18.3			

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{\rm C}$ /ppm $\delta_{\rm H}$ /ppm (multiplicity; J/Hz)		tiplicity; J/Hz)	HMBC (TM8)
tion	of C*	TM7	TM8	TM1	TM8	TM7	$^{1}\text{H}\rightarrow ^{13}\text{C}$	
7	CH ₂	35.0	35.0	35.2				
8	С	40.4	40.3	40.3				
9	СН	50.4	50.4	50.6	0.89, <i>m</i>	0.88, <i>m</i>		
10	С	37.0	37.0	37.1				
11	CH_2	21.5	21.5	21.5				
12	CH_2	24.8	24.8	24.8				
13	СН	42.4	42.2	42.3	1.64, m	1.69, <i>m</i>		
14	С	50.3	50.3	50.3				
15	CH_2	31.1	31.2	31.2				
16	CH_2	27.5	27.5	27.5				
17	СН	49.9	49.8	49.8	1.75, m	1.74, m		
18	CH_3	15.5	15.5	15.5	0.96, <i>s</i>	0.97, s	7, 8, 9, 14	
19	CH_3	16.6	16.5	16.2	0.89, <i>s</i>	0.90, s	1, 5, 9, 10	
20	С	75.1	75.4	75.4				
21	CH_3	25.8	25.4	25.3	1.14, <i>s</i>	1.13, <i>s</i>	17, 20, 22	
22	CH_2	43.4	40.5	40.5	1.49, <i>m</i>	2.19, <i>m</i>		
23	СН	122.4	22.5	22.5		5.69, m		
24	СН	142.1	124.7	124.8	5.20, m	5.69, m	22, 23, 25,	
							26, 27	
25	С	70.8	131.6	131.5				
26	CH_3	30.0	25.7	25.7	1.69, <i>s</i>	1.33, <i>s</i>	24, 25, 27	
27	CH_3	29.9	17.7	17.7	1.62, <i>s</i>	1.33, <i>s</i>	24, 25, 26	
28	CH_2	71.9	71.9	28.0	3.72, d (11.2);	3.72, d (10.2);	3, 4, 5, 29	
					3.42, d(11.2)	3.43, <i>d</i> (10.2)		
29	CH_3	11.3	11.3	15.4	0.88, <i>s</i>	0.88, <i>s</i>	3, 4, 5, 28	
30	CH_3	16.5	16.5	16.5	0.87, <i>s</i>	0.87, <i>s</i>	8, 13, 14, 15	

3.2.23 Compound TM9

Compound **TM9** was obtained as a colorless oil, $[\alpha]_D^{28}$: +52.6° (c = 0.02, MeOH). This compound also exhibited a pseudomolecular ion peak [M+Na]⁺ at m/z 499.3776 in the ESITOFMS, indicating a molecular formula of $C_{30}H_{52}O_4$.

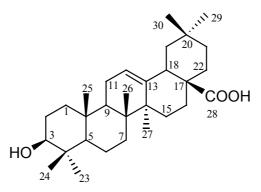

The ¹H and ¹³C NMR spectra for the tetracyclic moiety of **TM9** (**Table 50, Figures 114** and **115**) were similar to those of **TM7**. The difference was in the side- chain (C-20 to C-27). The oxymethine proton at δ 4.04 (H-24) on the carbon at δ 76.5 and two terminal methylene protons δ 4.96, and δ 4.84 (H₂-26) and carbons at δ 147.6 (C-25), and δ 110.9 (C-26) in **TM9** replaced an olefinic methine proton and two sp² carbons at C-24 and C-25 in **TM7**. Two singlet methyl signals were shown at δ_H 1.15 and 1.74: δ_C 25.4 and 17.8, respectively. These results were also confirmed by the HMBC correlation as follows: the H₃-27 showed correlations with C-24 (δ 76.5), C-25 (δ 147.6), and C-26 (δ 110.9) and H-24 with C-22 (δ 36.6) and C-26. The NMR spectroscopic data of the side-chain (C-20 to C-27) agreed well with those of **TM3**. Thus, compound **TM9** was identified as 20(*S*)-3 β ,20,24,28-tetrahydroxy-dammar-25-ene, a new compound designated as cereotagalol A(Pakhathirathien et al., 2005).

Table 50¹H, ¹³C and HMBC spectral data of compounds TM9, TM7 and TM3

Posi-	Туре	$\delta_{_{ m C}}$ / ppm			$\delta_{\!\scriptscriptstyle m H}$ / ppm (mul	HMBC (TM9)	
tion	of C*	TM7	TM9	ТМЗ	TM9	TM7	$^{1}\text{H}\rightarrow ^{13}\text{C}$
1	CH ₂	38.7	38.7	39.0			
2	CH_2	27.0	27.0	27.5			

Table 50 Continued

Posi-	Туре		$\delta_{_{ m C}}$ / ppm		$\delta_{_{ m H}}$ / ppm (mu	ltiplicity; J/Hz)	HMBC (TM9)
tion	of C*	TM7	TM9	ТМЗ	TM9	TM7	$^{1}\text{H}\rightarrow^{13}\text{C}$
3	СН	76.6	76.6	79.0	3.64, <i>t</i> (8.1)	3.64, dd (8.4,	2, 4, 28, 29
						7.8)	
4	С	42.0	42.0	39.0			
5	СН	50.6	50.6	55.9	1.36, <i>m</i>	1.36, m	
6	CH_2	18.4	18.4	18.3			
7	CH_2	35.0	35.0	35.2			
8	С	40.3	40.4	40.4			
9	СН	50.4	50.4	50.6	0.89, <i>m</i>	0.89, <i>m</i>	
10	С	37.0	37.0	37.1			
11	CH_2	21.5	21.5	21.5			
12	CH_2	24.8	24.9	24.8			
13	СН	42.2	42.3	42.4	1.62, m	1.62, m	
14	С	50.3	50.3	50.3			
15	CH_2	31.2	31.2	31.2			
16	CH_2	27.5	27.5	27.4			
17	СН	49.8	50.1	50.1	1.75, m	1.75, m	
18	CH ₃	15.5	15.5	15.5	0.96, <i>s</i>	0.96, <i>s</i>	7, 8, 9, 14
19	CH_3	16.5	16.5	16.2	0.89, <i>s</i>	0.89, <i>s</i>	1, 5, 9, 10
20	С	75.4	75.1	75.2			
21	CH_3	25.4	25.4	25.3	1.15, <i>s</i>	1.15, s	17, 20, 22
22	CH_2	40.5	36.6	36.0			
23	CH_2	22.5	29.3	29.7			
24	СН	124.7	76.5	75.9	4.04, <i>m</i>	4.04, <i>m</i>	22, 26
25	С	131.6	147.6	147.6			
26	CH_2	25.7	110.9	110.8	4.96, m; 4.84,	4.96, br s; 4.84,	24, 25, 27
					т	т	
27	CH_3	17.7	17.8	18.0	1.74, s	1.74, s	24, 25, 26
28	CH_2	71.9	71.9	28.0	3.72, d (10.5);	3.72, d (10.5);	3, 4, 5, 29
					3.42, d (10.5)	3.42, <i>d</i> (10.5)	
29	CH_3	11.3	11.3	15.4	0.88, <i>s</i>	0.88, <i>s</i>	3, 4, 5, 28
30	CH_3	16.5	16.5	16.5	0.87, s	0.87, s	8, 13, 14, 15
* For '		1	I	I	1	•	1

Compound **TO1** was obtained as a white solid, mp $275-276^{\circ}$ C, $[\alpha]_{D}^{28}$: +82.0° (*c* = 0.10, MeOH). The IR spectrum showed absorption bands for hydroxyl group at 3456 cm⁻¹ and double bond at 1690 cm⁻¹. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ¹³C NMR spectral data (**Table 51**, **Figure 117**) showed 30 signals for 30 carbons. Analysis of DEPT-90° and DEPT-135° spectra of this compound suggested the presence of seven methyls (δ 15.6, 16.5, 17.5, 23.8, 26.2, 28.8 and 33.4), eleven methylenes (δ 18.8, 23.8, 23.7, 23.8, 28.1, 28.4, 33.2, 33.4, 34.3, 39.0, 46.6 and 122.6), five methines (δ 42.1, 48.2, 55.9, 78.2 and 144.8) and seven quaternary carbons (δ 31.0, 37.4, 39.4, 39.8, 42.2, 46.7 and 180.0).

The ¹H NMR spectral data (**Table 51**, **Figure 116**) showed characteristic of olenane triterpenoid as seven methyl singlet signals at δ 0.76, 0.78, 0.90, 0.91, 0.93, 0.99 and 1.13. One methyl group was oxidized to carboxyl group which was displayed at δ_c 180.0 and an olefinic proton signal was displayed at δ 5.28 (t, J = 3.3 Hz, H-12). An oxy-methine proton was shown at δ 3.22 (1H, dd, J = 10.8, 4.5 Hz, H-3) with a doublet of doublet splitting pattern together with a large coupling constant with Jax-ax = 10.8 Hz and Jax-eq = 4.5 Hz indicating its axial (α) orientation.

The position of the hydroxyl group at C-3 was determined through an HMBC experiment in which the oxy-methine proton H-3 (δ 3.22) showed correlations with C-1 (δ 38.3), C-2 (δ 26.6), C-4 (δ 38.5), C-23 (δ 27.8), and C-24 (δ 15.3) and methyl protons H₃-29 (δ 0.90) with C-19 (δ 45.8), C-20 (δ 30.5), and C-30 (δ 23.3) and olefinic methine proton H-12 (δ 5.28) with C-9 (δ 47.5), C-11 (δ 23.2), C-14 (δ 41.5), and C-18 (δ 41.0). Thus on the basis of its spectroscopic data and comparison of the ¹H and ¹³C NMR spectral data (**Table 51**) with the previously reported data (Seebacher et al., 2003), compound **TO1** was assigned as oleanolic acid. **Table 51** The ¹H, ¹³C and HMBC spectral data of compounds **TO1** and oleanolic acid (**R**)

Posi-	Туре	$\delta_{_{ m C}}$ /ppm)		$\delta_{ m _{H}}$ /ppm (multiplicity; J/Hz)		HMBC (TO1)
tion	of C*	R **	T01	Т01	R **	$^{1}\text{H}\rightarrow^{13}\text{C}$
1	CH_2	39.0	38.3			
2	CH_2	28.1	26.6			
3	СН	78.2	78.7	3.22, dd (10.8, 4.5)	3.44	1, 2, 4, 23, 24
4	С	39.4	38.5			
5	СН	55.9	55.1			
6	CH_2	18.8	18.1			
7	CH_2	33.4	32.5			
8	С	39.8	39.1			
9	СН	48.2	47.5			
10	С	37.4	36.8			
11	CH_2	23.7	23.2			
12	СН	122.6	122.1	5.28, t (3.3)	5.49	9, 11, 14, 18
13	С	144.8	143.7			
14	С	42.2	41.5			
15	CH_2	28.4	27.5			
16	CH_2	23.8	22.8			
17	С	46.7	46.2			
18	СН	42.1	41.0	2.82, dd (14.4, 3.9)	3.30	12, 13, 14, 16,
						17, 18, 19, 28
19	CH_2	46.6	45.8			
20	С	31.0	30.5			
21	CH_2	34.3	33.7			
22	CH_2	33.2	32.4			
23	CH_3	28.8	27.8	0.99, <i>s</i>	1.24	3, 4, 5, 24
24	CH_3	16.5	15.3	0.76, <i>s</i>	1.02	3, 4, 5, 23
25	CH_3	15.6	15.0	0.93, <i>s</i>	0.93	1, 5, 9, 10
26	CH_3	17.5	16.6	0.78, <i>s</i>	1.04	8, 9, 14
27	CH_3	26.2	25.6	1.13, <i>s</i>	1.30	8, 13, 14, 15
28	С	180.0	180.9			
29	CH_3	33.4	32.8	0.90, <i>s</i>	0.97	19, 20, 30
30	CH_3	23.8	23.3	0.91, <i>s</i>	1.02	19, 20, 29

* For TO1

**In pyridine, not assigned multiplicity

3.3 Biological activities of the pure compounds from C. tagal

The biological activities of the pure compounds (TL1-TL13 and TM1-TM9) from *C. tagal* were tested against KB, BC and NCI-H187 cell lines as shown in Table 52. The crude methylene chloride extract from the hypocotyls exhibited antituberculous (25 μ g/mL) and cytotoxic activity (ED₅₀ 9.91 μ g/mL for KB cell 2.68 μ g/mL for BC cell and 6.30 μ g/ml for NCI-H187 cell) but the crude hexane extract showed only antituberculous activity (100 μ g/ml). Compound TL12 exhibited strong activity in both cell lines, while compounds TL6 and TL11 exhibited strong activity in BC and NCI-H187 cell lines, respectively, compound TL9 exhibited moderate activity in both cell lines, while compounds TL6 exhibited moderate activity in KB cell line, compound TL11 exhibited weak activity in KB and BC cell lines, and compounds TL3-TL5, TL10 and TL13 exhibited strong to moderate activity only in NCI-H187 cell lines.

Compounds	KB	BC	NCI-H187
TL3	_	_	2.90
TL4	_	_	8.48
TL5	_	_	4.80
TL6	8.40	3.71	5.76
TL9	6.38	8.53	6.12
TL10	_	_	6.20
TL11	14.46	11.65	3.55
TL12	3.75	3.04	1.75
TL13	_	_	4.96
	$\mathrm{IC}_{50}(\mu \mathrm{g})$	/mL) value	Level of activity
		> 20	Inactive
	10	- 20	Weakly active
	5 -	10	Moderately active
	<	5	Strongly active
	-		No investigation
-		C .1	

Table 52 Cytotoxic activity of compounds TL3-6 and TL9-TL13 in IC₅₀ (μ g/mL)

The biological activities of the pure compounds (TD1-TD28) from C.

tagal were also tested for antimalarial activity, according to established protocols (Trager

and Jensen 1967, Desjardins et al. 1979). Compounds **TD2**, **TD3**, **TD4**, **TD6**, **TD12**, **TD14**, **TD16**, **TD26** and **TD27** showed activity at 1.55, 2.16, 2.87, 2.81, 3.21, 2.20, 2.72, 7.43 and 6.65 μ g/mL, respectively, whereas the rest of the pure compounds showed no activity. The positive control compound was artemisinin (IC₅₀ 3.3–3.9 nM).

3.4 Conclusion

The investigation of the fruits, hypocotyls and bark of *Ceriops tagal* have led to the isolation of eighteen new compounds, including thirteen diterpenoids (TD1-TD3, TD6-TD7, TD10 and TD20-TD26) and five dammarane triterpenoids (TM4 and TM6-TM9) together with thirty five known compounds, including fifteen diterpenoids (TD4-TD5, TD8-TD9, TD11-TD19 and TD27-TD28), eight triterpenoid esters (TL6-TL13), ten triterpenoids (TL1-TL5, TM1-TM3, TM5 and TO1) and a mixture of two steroids (TS1-TS2). Compounds isolated from the bark were diterpenes: dolabranes (TD1-TD24); pimaranes (TD25-TD26) and kauranes (TD27-TD28). Those isolated from the hypocotyls were triterpenoids: lupanes (TL1-TL13) and dammaranes (TM7-TM9). A mixture of two steroids (TS1 and TS2) was also isolated from the hypocotyls. Compounds isolated from the fruits were also dammarane triterpenoids (TM1-TM6). In addition an oleanane triterpene (TO1) was also isolated from the fruits.

Most of triterpenes were tested for cytotoxic activity (KB, BC and NCI-H187 cell lines), whereas diterpenes were tested for antimalarial activity. For the cytotoxicity test, the presence of CH₂OH and COOH groups at C-28 of lupane triterpenoids seem to be crucial for the activity, especially against NCI-H187 cell lines. 3β -E-Feruloylbetulinic acid (TL12) was the only compound which exhibited strong activity against all three cell lines. Some dolabrane diterpenoids showed weak antimalarial activity (TD2, TD3, TD4, TD6, TD12, TD14, TD16, TD26 and TD27), but this was not enough information to specify the crucial functional group responsible for their activity.

X-ray crystallographic structures of compounds TD1, TD5, TD13, TD25, TD28 and TL7 were shown which supported the proposed structures of those compounds.