Chapter 2

Pitch Detection Algorithms

Tone information mainly depends on the pitch of the speech. Pitch detection is
the first task for tone classification. Frequency components of the speech include the
fundamental frequency and the harmonic frequency called formant. Pitch is
determined by the fundamental frequency (F0) of the speech signal. To extract
fundamental frequency, both frequency domain methods and time domain methods
can be used.

In this Chapter, the backgrounds of pitch detection are introduced first. Then
the implementations are described. The experiments and discussion are presented
after that. Finally it is the summary of this chapter.

2.1  Backgrounds

In this section, first the pre-processing techniques of Pitch Tracking are
introduced. Then it is the Pitch Tracking Algorithm. After that the smoothing
technique of pitch contour is presented. Finally it is feature extraction of pitch
contour.

2.1.1 Pre-processing of Pitch Tracking

The speech signal includes very rich harmonic components. The minimum FO
is about 80 Hz and the maximum is about 500 Hz. Most of them are in the range of
100-200 Hz. Thus the signal may involve 30-40 harmonic components. And the FO
component is often not the strongest one. Because the first formant usually is between
300-1000 Hz. The 2-8 harmonic components usually stronger than fundamental
component (Wang et al., 2001). The rich harmonic components let the pitch tracking
become very complex. It usually has the harmonic errors and sub-harmonic errors. To
improve the reliability some pre-processing of signal is necessary.

Since, the range of FO is generally in the range of 80-500 Hz, then the
frequency components above 500 Hz is useless for pitch detection. Thus a low-pass
filter with pass-band frequency above 500 Hz would be useful in improving the
performance of pitch detection. Generally, we use the low-pass-filter with 900 Hz
(Liang et al., 1999).

Also to reduce the effects of the formant structure, the nonlinear processing is
usually used in pitch tracking.



y(n) = Clx(n)] (2-1)

Where x(n) is the original signal. y(»n) is the processed-signal. C[ ] is the nonlinear
function.
One of the nonlinear technique is center-clipping (Rabiner ef af., 1977; Kechu

et al., 2000) of speech which is first introduced by M. M. Sondhi (Cited by Rabiner et
al., 1977). The relation between input x(n)and y(») is:

(x(n)_cf_)s x(n)?_CL
y(n) = clc[x(n)] = o, 1x(n)| <C, (2-2)
(x(n)+CL)’L x(n)SCL

Another nonlinear clipping we call is infinite-peak-clipping ( Rabiner et al,
1977; Kechu et al., 2000). The function is described in (2-3):

1, x(n)z2C,
y(n) =sgn [x(n):l =< 0, lx (")I< C, (2-3)
_'l: x(n)S CL

where C is the clipping threshold. Generally C; is about 30% of the maximum
magnitude of signal. In application the C; should be as high as possible. To get the
high C;, we can catch the peak value of the first 1/3 and the last 1/3 of signal and use
the less one to be the maximum magnitude. Then we set the 60-80% of this maximum
magnitude to be ;.

The effect of center-clipping and infinit-peak-clipping is clearly shown in the
Figure 2-1 (a, b, ¢). From Figure 2-1 (b), after center-clipping, the autocorrelation
only leave several pulse that show the reduction of the confused secondary peak.
From Figure 2-1 (c), the first peak is very clear. Also the secondary peak value is
reduced. All of these
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{(c¢) sgn[x(n)]and Auto-correlation sgn[x(#n)]
Figure 2-1 x(n),clc[x(n)],sgn[x(n)] and the Auto-correlation

show that the center-clipping and infinite-clipping is effective in reducing the effects
of the formant structure.

2.1.2 Pitch Tracking Algorithms

Basically, pitch detection algorithms use short-term analysis techniques. For
every frame x, we get a score f(T/x,) that is a function of the candidate pitch

periods T . Algorithm determine the optimal pitch by maximizing (2-4).

I, =argmax f(T/x,) (2-4)

A commonly used method to estimate pitch is based on detecting the highest

value of the auto-correlation function { Rabiner ef al, 1976; Rabiner et al, 1977,
Kechu et al, 2000) in the region of interest. Given a discrete time signal x(n),

defined for all n , the auto-correlation function is generally defined in (2-5):

N

R (m)=lim Z x(n)x(n+m) (2-5)

N=e DN +1,570

The autocorrelation function of a signal is basically a (non-invertible)
transformation of the signal that is useful for displaying structure in the waveform.

Thus, for pitch detection, if we assume x(n) is exactly periodic with period P, i.e,
x(n)=x(n+P) forall n, then it is easily shown that:

R.(m)=R.(m+P) 2-6)

i.e., the autocorrelation is also periodic with the same period. Conversely, periodicity
in the autocorrelation function indicates periodicity in the signal.

For a nonstationary signal, such as speech, the concept of a long-time
autocorrelation measurement as given by (2-5) is not really meaningful. Thus, it is
reasonable to define a short-time autocorrelation function, which operates on short
segments of the signal as:



N

]—L-ZOI: x(n+h)w )][x n+l+m)w(n+m] O0<sm<M, (2-7)

R (m)=

where x(n) is an appropriate window for analysis, N is the section length

being analyzed, N' is the number of signal samples used in the computation of
R(m), M, is the number of autocorrelation points to be computed, and / is the index

of the starting sample of the frame. For pitch detection applications N' is generally
set to the value in (2-8):

N'=N-m (2-8)

So that only the N' samples in the analysis frame (ie,
x(D),x(1+1),...,x(1+ N-1)) are used in the autocorrelation computation. Values of
(1)x( p

200 and 300 have generally been used for M, and N, respectively, it is

corresponding to a maximum pitch period of 20 ms (200 samples at a 10 kHz
sampling rate) and a 30 ms analysis frame size.

A variation of autocorrelation analysis for measuring the periodicity of voiced
speech uses the AMDF (Rabiner et al, 1976; Kechu et al, 2000), defined by the
relation in (2-9):

D, :%i|x(n)-_x(n-—m)1, m=0,1,..,m (2-9)
n=l

Where x(n) are the samples of input speech and x(n-m), are the samples time
shifted m seconds. The vertical bars denote taking the magnitude of the difference
x(n)—x{n—m). Thus a difference signal Drm, is formed by delaying the input speech
various amounts, subtracting the delayed waveform from the original, and summing
the magnitude of the differences between sample values. The difference signal is
always zero at delay = 0, and is particularly small at delays corresponding to the pitch
period of a voiced sound.

The AMDF is a variation of ACF (Autocorrelation Function) analysis where,
instead of correlating the input speech at various delays (where multiplication and
summations are formed at each value), a difference signal is formed between the
delayed speech and the original, and at each delay value the absolute magnitude is
taken. Unlike the autocorrelation or cross-correlation function, however, the AMDF
calculations require no multiplication, a desirable property for real-time applications.



For each value of delay, computation is made over an integrating window of N
samples. To generate the entire range of delays, the window is “cross difference” with
the full analysis interval. An advantage of this method is that the relative sizes of the
nulls tend to remain constant as a function of delay. This is because there is always
full overlap of data between the two segments being cross difference.

In extractors of this type, the limiting factor on accuracy is the inability to
completely separate the fine structure from the effects of the spectral envelope. For
this reason, decision logic and prior knowledge of voicing are used along with the
function itself to help make the pitch decision more reliable.

2.1.3 Smoothing

Generally, the pitch determination described above is still error-prone. The
erroneous voiced/unvoiced decisions and inaccurate voiced pitch hypotheses can lead
to noisy and undependable feature measurements. Then a smoothing stage is
necessary in improving the performance of the system.

The basic concept of a linear smoother is the separation of signals based on
their non-overlapping frequency content. For nonlinear smoothers it is more
conventent to consider separating signals based on whether they can be considered
smooth or rough (noise-like). Thus a signal x(n) can be considered as

x(n)=S{x(n) 1+ R[x(n)] (2-10)

where S| ] is the smooth part of the signal x(n) and R[ ] is the rough part of

the signal x(n) . The candidate proposed by Tukey (Cited by Rabiner et al., 1975) for
extracting f [x(n):] from x{n) was to use running medians of the data. Running

medians have several good properties which make them good candidates for a
smoother. These include the following properties.

Property 1: Medianl:ax(n)] =g median[x(n):l .

Property 2: Medians will not smear out sharp discontinuities in the data, as
long as the duration of the discontinuity exceeds some critical duration.
Property 3: Medians will approximately follow polynomials.

Although median smoothing preserves sharp discontinuities in the data, it fails
to provide sufficient smoothing of the undesirable noise-like components for which
the smoothing was originally designed. A fairly good solution is a smoothing
algorithm based on a combination of running medians and linear smoothing. Since the
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running medians provide a fair amount of smoothing already, the linear smoothing
can consist of a fairly low-order system and still give adequate results. Tukey
proposed the use of a 3-point Hanning window as one candidate for the linear
smoaother.

2.1.4 Feature Extraction

Due to the smoothness of a pitch contour, the 3™ order polynomial using least-
mean-square and Orthogonal polynomial approximation are chosen to fit the pitch
contour.

For least-mean-square approximation (Kechu et al, 2000), it expresses the
approximation function as the sum of weighted observation value.

Sums =iaixi (2-11)

J=l

Where f,,, 1s the estimated function, a; is the weighted coefficients, x, is the
observation item (x, =Lx,=x,x, =x%,x,=x’). Then it is to minimize the
expectation value of approximation error (e= f,,,—f) to get the weighted

coefficients a;. In order to minimize the expectation value, we need to get the

derivation of the expectation value and set it to zero. Then the coefficients will be
calculated through equation (2-12).

=

E(xx,)a, = E(fx,) (2-12)

.
It

Orthogonal polynomials are defined in terms of their behavior with respect to
each other and throughout some predetermined range of the independent variable. In
the case of the vectors, if the set was complete it was said to span a vector space and
any vector in that space could be expressed as a linear combination of orthogonal
basis vectors. The first four discrete Legendre polynomials (Wang ef al., 2001; Chen
et al.,1990) can be chosen to represent the pitch contour. They are shown in equation
(2-13).

These polynomials are normalized in length to [0,1]. Where 1 is from 0 to N,
N+1 is the length of pitch contour and N should be bigger than three. Legendre
polynomials is a kind of Orhtogonal polynomials with the simplest weight function
which is equal to 1. They are chosen to represent the pitch contour because they
resemble to the basic pitch contour patterns. A pitch contour segment f{i/N), can then
be as (2-14).
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Where
i (R i )
a,= N+l§f[N]x¢j(N]’ (2-15)

The reconstructed pitch contour will not lose much information since
orthogonol polynomials up to degree of three are used to fit it.

2.2  Implementations

Here, first the implementation of AMDF algorithm is described. Then the
implementation of pitch-tracking algorithm of auto-correlation is introduced. Finally
the framework of classification are presented.

221 AMDF

We only implement a coarse quantization. Figure 2-2 shows a block diagram
of the AMDF pitch detector. The speech signal, is initially sampled at 10 kHz. Then
the signal pass a low-pass filter (0-900 Hz) and set the first 20 samples to be zero. The
clipping threshold is then calculated and the center-clipping is done on the signal.
Then average magnitude difference function is computed on the center-clipped speech
signal at the lag (20—140 samples) through the signal from 20 to 160 samples. The
pitch period is identified as the value of the lag which the minimum AMDF occurs,
Thus a fairly coarse quantization is obtained for the pitch period.
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(AMDF)

¢ Pitch value
Figure 2-2 Block Diagram of the Coarse Pitch Detection using AMDF

Also the five-point median-filter and feature extraction using LMS and
Orthogonal polynomials are implemented according to the introduction above.

2.2.2 Auto-correlation

The modified auto-cormrelation pitch detector based on the center-clipping
method and infinite-peak-clipping is used in our implementation. Figure 2-3 shows a
block diagram of the pitch detection algorithm. The speech signal is sampled at 10
kHz. The method requires that the speech be low-passed filtered to 900 Hz and
sectioned into overlapping 30-ms (300 samples) sections for processing. Since the
pitch period computation for all pitch detectors is performed 100 times/s i.e, every 10
ms, adjacent sections overlap by 20 ms or 200 samples. The first stage of processing
1s the computation of a clipping threshold C, for the current 30-ms section of speech.
The clipping level is set at a value which is 68 percent of the smaller of the peak
absolute sample values in the first and last 10-ms portions of the section. Following
the determination of the clipping level, the 30-ms section of speech is center clipped,
and then infinite peak clipped. Following clipping the auto-correlation function for the
30-ms section is computed over a range of lags from 20 samples to 160 samples (i.e.,
2-ms-20-ms peniod). The location of the maximum in auto-correlation function is
chose asthe pitch period.

Segme;t

LPF (0—%00 HZ)

v

Calculate CL

v

Center-Clipping (C) and infinite-
peak-clipping (V)




v

Autocorrelation Function

v

pitch= index of maximum
auto-correlation value

v

Pitch Value

Figure 2-3 Block Diagram of Pitch Detection Algorithm

using Modified Auto-correlation Method

2.2.3 Classification Framework

The pitch extraction program extracted pitch according to the speech wave file
and corresponding label information. The extracted pitch is smoother using smoothing
program. The smoothed the pitch contour is feed into feature extraction program to
extract pitch feature. Here we use the 4 coefficients of 3-rd order polynomials. Finally
the extracted feature is feed into the pre-trained NN classifier for classification and the

accuracy is calculated correspondingly.

wavefile

Figure 2-4 Classification Framework for Pitch Detection Algorithms

E—

i Label Information

v

NN Classifier

¢ Accuracy

2.3  Experiments and Discussions

2.3.1 Experiments Setting
The experiments mainly include two parts. First part is emphasis on the
observation of the results of these two pitch detection algorithms. And the pre-

Pitch Extraction > Pitch
Smoothing,
¢ 4 coefficient
Feature Extraction > pitch features
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processing effects like the processing of low-pass-filter and center-clipping. The

voiced/unvoiced determination in auto-correlation method is also tested. The speech
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that we used in our experiments is from Thai continuous speech database. Here for
observing the effects, we have done the above experiments for some speeches from
the database. Considering almost all of them shows the similar results. Here we only
use one continuous speech with information “07229” and one single Madarine speech
“hao(3)” which is considered more difficult in pitch tracking because of its big
variation. Second part is worked on a small database that is based on 4-continuous-
Thai-digit sentence. The sentences are chosen according to the general distribution of
3 tones in Thai digit. It includes 14 sentences with 23 1* tone, 10 2" tone and 23 4%
tone. To consider this is only for testing, we record the sound in the office
environment. Sampling frequency is 16K Hz. And we ¢ollect 4 male’s sound and 2
rounds per person. Finally we get 112 speeches. All of the speech is hand labeled with
the wave-surfer software. In our testing, we use the 1% round speech of each person as
training set. And the following are as the testing set. We use our implementation to
detect the pitch contour and extract the pitch feature. A classifier using 3-layer feed-
forward neural network is implemented. The input layer includes four neurons
corresponding to the four extracted tone feature. To represent five tones in Thai
speech, the output layer consists of five separate units. The size of hidden layer is task
dependent and is determined empirically. Different number of hidden neurons is
tested, say 10, 15, 20, 25 etc. and it was found that 15 hidden neurons gave the best
performance.

Figure 2-5 Waveform of Thai Digit(*07229™)

WMWWME&:‘:: :

Figure 2-6 Waveform of Mandarin Speech “hao” with 3 tone

2.3.2 Experiments Results and Discussions

To observe the difference between AMDF and Auto-correlation method, we
test both of them through a Thai continuous digit “07229”, which is shown in Figure
2-5. The pitch is shown in Figure 2-7. From the figure, the pitch information mainly
lies on the voiced part in the speech signal. The silence part of the pitch is shown as
the big wvariation. In the voiced part the pitch tracking show continuously and
smoothly. Then the voicedunvoiced decision is proved to be a very important part of
pitch detection. Also although the pitch track shown in Figure 2-7 can describe the
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trend of the pitch, it still exists some error points which need further processing, that
we say, smoothing. Also in Figure 2-7, it shows both results for Auto-correlation

method and AMDF. We can see that both methods can give us accepted result.
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Figure 2-7 Pitch Track Using Auto-correlation Method and AMDF

2.3.2.1 Voice/Unvoiced Decision and Smoothing

In the implementation of auto-correlation method, we use 0.55 of the frame
energy as the threshold to detect the voiced/unvoiced decision. Figure 2-8 shows the
experiment’s results of it. From Figure 2-8, it can detect the voiced part of the speech
basically although some decision logic need to be further studied.

The smoothing of the pitch contour is necessary after a single pitch contour.
The smoothing procedure is done on a segment-by-segment basis. The pitch mean of
a segment is calculated first. Then the difference of pitch values in two continuous
frames is examined. If it is greater than a predetermined threshold, the one lies farther
away from the mean value is treated as a double, triple or half pitch error and
corrected. The above process is done twice, forward and backward, for each segment
in order to ensure the smoothness of pitch contour. After this, it is the median filter
and a 3-point hanning window. Finally the linear interpolation is done for the very
short pitch to extract the 3-order polynomials feature.

Here we chose a single speech word to be the object. Generally the pitch of 3™
tone in Mandarin is more difficult to classify than other tone because of its big
variations. We chose the Mandarin word “hao” with 3™ tone in the experiment. The
waveform is shown in Figure 2-6. The pitch using Auto-correlation method is

smoothed using the smoothing technique described above.

2.3.2.2 Effects of Pre-processing

In order to observe the effects of low-pass-filter and center-clipping, we did
some experiments on the speech “hao” which is the third tone in Chinese. For AMDF
algorithm, we did not find significant effect of the pre-processing. But the pre-
processing reduced the data and then increased the processing speed. But the effects
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of LPF in auto-correlation method are quite clear and shown in Figure 2-10. In Figure
2-10, the error points reduced from 10 to 4 after adding the processing of LPF.
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Figure 2-8 Voice/Unvoiced Detection in Autocorrelation Method
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Figure 2-9 Smoothing of “hao” (3 tone in Chinese) Pitch Contour

(Hz)
L T -
2o | Tl . ]
150 | e LT P, LR T e - seerTe
100 | LPF 1
50 b, v v T
s . . . . . . . . R (frames)
5 10 15 20 25 ELd 35 40 45 50
(Hz)
250
e e L - -
100 -
Ll No LPF = ==e=- .
. No LFF (frames)

50

60

Figure 2-10 Effects of LPF in Auto-correlation method

2.3.2.3 Feature Extraction

Pitch information mainly lies on the trend of pitch contour. As introduced

above, two methods, LMS and Orthogonol polynomial, are used to extract the pattern

of pitch contour. The experiment is shown in Figure 2-11. From the figure, both of
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them are working well. But finally which one can get better performance in
recognition system needs the further research and experiments. Also Figure 2-12
shows the shape of the four discrete Legendre bases for the space of pitch contour
length. From Figure 2-12, we can see that the four discrete Legendre bases can be
used to express the basic pitch contour.
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Figure 2-11 The pitch pattern extracted

i

Figure 2-12 Four Discrete Legendre bases
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2.3.2.4 Classification

This is the second part of the experiments in this Chapter. A three-layer feed-
forward neural network is used for classification. According to our observation, we
use the auto-correlation pitch detection and orthogonal polynomial for our testing. All
feature vectors are normalized to lie between —1.0 and 1.0 using the min-max

normalization shown in equation 2-14.

normf, =2.0x| L ZMnE ) o (2-14)
max F, —min F;

The total performance of the testing for Thai digit is about 79.02% (177 from

224). The confusion-matrix is shown in Table 2-1 from where the confusion between

tone 1(low) and tone 4 (high) are found. Since only 3 tones exists for all Thai digit,

there are only 3 tones shown in the confusion-matrix.
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Table 2-1 Confusion-matrix of Tone Classification for Thai Digit

Tone 1 2 4 Percent(%o)
1 69 4 19 75
2 5 a3 2 82.5
4 15 2 75 81.52

The same experiments is also done on vowel aa speech in the continuous
speech database (Thongprasert et al., 2002) which include 18 speakers with 20
utterances each. The vowel aa speech lying in the first 15 utterances of each speaker
are taken as training data. The rest is testing data. The confusion-matrix is shown in
Table 2-2.

Table 2-2 Confusion-matrix of Tone Classification for Vowel aa Speech

Tone 0 | 2 3 4 Percent(%)
0 82 3 5 4 6 82
1 5 54 5 [ 2 14 67.5
2 4 11 34 49 34
3 3 0 3 42 1 85.71
4 1 13 1 4 25 56.8

Here we use tone 0,1,2,3, 4 represent tone mid, low, falling, high, nsing
separately. The lost of accuracy mainly lies in the confusion between the 1* tone
(low) and the 4" tone (rising), the 2* tone (falling) and the 3* tone (high). The
reason for such results can be found from the 5-Thai-tone contour shown in Figure 2-
13 and the effects of continuous interaction.

250 Rivrg

Figure 2-13 Average FO contours of the five Thai tones produced in isolation
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From the figure, we can see the initial level of tone 1 and tone 4, tone 2 and
tone 3 is similar. Also because of the continuous interaction of speech, the trend of
tone may not meet the final level for tone 4,2. Also here only 4 features are used in
classification. So it’s possible the accuracy will be improved if more features are
added.

24 Summary

We described, in this chapter, the two pitch detection algorithms and the
related techniques including preprocessing, post-processing and extraction of pitch
pattern. According to our observing of the experiments. We found that both auto-
correlation method and AMDF algorithm can provide the accepted results generally.
Through the observing of preprocessing technique in both techniques, we didn’t find
the big effects of preprocessing on AMDF. But the obvious effects of low-pass-filter
is shown in the experiment using auto-correlation method. At the same time, we have
tested the smoothing using median-filter and voiced/unvoiced decision in auto-
correlation method. Both of them showed the positive results. Finally, we used two
methods to extract the pitch pattern through the smoothed pitch contour. According to
the experiments figure, both of them works quite well. But in this case we need the
smoothed pitch segment. For pitch detection the voice/unvoiced determination and the
segmenting of pitch contour are another important issue that we did not discussed
much here. The reason is that we are using the labeled speech data. The
voiced/voiceless information is known from the label information. A simple
classification testing has been done on our implementation. The results show the basic
working of our implementation. The 79.02% accuracy is reached. Big confusion lies
between tone 1 and tone 4. From the typical shape of pitch contour, we can find that
the beginning part of these two tones is going to be the same trend that makes them
easily to be confused. Through the work described here, we have implemented 2 pitch
detection algorithms. Both of them can give the satisfied pitch contour based on our
experiments. Based on extracted pitch, the big variation of pitch contour still existed.
The further processing of pitch contour to reduce the vanation of pitch contour and
improve the tone classification performance is necessary. In next Chapter, the
configuration of tone feature is discussed that include the related issue about tone-
critical segment, scaling, normalization, tone feature setting. The implementations and

the experiments are also described.



