CONTENTS

	1	Page
Contents		vi
List of Tables		viii
List of Figures		ix
List of Abbreviations and Symbols		XV
Chapter		
1. Introduction		1
1.1 Background and Rationale		1
1.2 Cardiovascular system		3
1.2.1 The heart		3
1.2.2 The vascular system		9
1.2.3 The autonomic nervous system		16
2. Cardiovascular Effects of an n-Butanol Extract from Fresh Fruits	34	
of Randia siamensis		
2.1 Abstract		34
2.2 Introduction		
2.3 Objectives		37
2.4 Materials and Methods		37
2.4.1 Plant material		37
2.4.2 Preparation of Randia siamensis extract		37
2.4.3 Pharmacological studies of the R. siamensis extract	39	
2.4.4 Drugs and chemicals		45
2.4.5 Data analysis		46
2.5 Results		46
2.6 Discussion		62
2.7 Conclusion		66
3. Bioactive Constituents from Fresh Fruits of Randia siamensis		67
3.1 Abstract		67

3.2 Introduction

CONTENTS (CONTINUED)

	Page	
3.4 Materials and Methods	68	
3.4.1 Extraction and Isolation	68	
3.4.2 Structural determination	71	
3.4.3 Pharmacological studies of the isolated compounds	72	
3.4.4 Drugs and chemicals	76	
3.4.5 Data analysis and statistics	76	
3.5 Results	76	
3.6 Discussion	86	
3.7 Conclusion	87	
4. Cardiovascular Effects of Tyramine, a Positive Chronotropic and Inotropic		
Effect Substance Isolated from Fresh Fruits of Randia siamensis		
4.1 Abstract	88	
4.2 Introduction	89	
4.3 Objectives	89	
4.4 Materials and Methods	90	
4.5 Results	90	
4.6 Discussion	98	
4.7 Conclusion	101	
Bibliography	103	
Appendix	117	
Vitae	139	

vii

68

LIST OF TABLES

Table			Page
1	Amounts and cardiovascular effects of compounds isolated from	85	
	the Randia siamensis extract.		
2	Selected ¹ H-NMR (8 value) data for saponins 7,8,10 and 11.		122
3	Selected ¹³ C-NMR (8 value) data for saponins 7,8,10 and 11.	123	

LIST OF FIGURES

Figure			Page
1	Normal electrical pathways of the heart		5
2	Action potential phases and currents		6
3	Cardiac excitation-contraction coupling and Ca^{2+} transport in ventricular	8	
	myocyte		
4	Excitation-contraction coupling in vascular smooth muscle	11	
5	Local controls of blood vessels by nitric oxide inducing vasodilatation		15
6	Neurotransmitter releases from pre-and post-ganglionic neurons of	17	
	sympathetic and parasympathetic nervous systems and the adrenal medul	la	
7	Mechanisms of sympathetic stimulation in the heart		188
	Synthesis, storage, release and inactivation of norepinephrine		21
9	Comparison of effects of intravenous epinephrine and norepinephrine	23	
	in man		
10	Sequence of events of the cardiac contraction induced by $\boldsymbol{8}$ -adrenergic		25
	receptor agonists, epinephrine and norepinephrine		
11	Mechanisms of ${\bf 8}$ -adrenergic receptor agonist mediated the inotropic		27
	and lusitropic effects		
12	Mechanisms of 8_{1} -adrenergic receptor mediated vasoconstriction	29	
13	Mechanisms of epinephrine inducing the vasodilatation via ${\bf 8}_2$ -adrenergi	ic 3	31
	receptor		
14	Parasympathetic cholinergic system at the heart and blood vessels	32	
15	Fresh fruits (A) and the climbing tree (B) of Randia siamensis	36	
16	Flow chart showing preparation of n-butanol extract from fresh fruits		38
	of Randia siamensis		
17	In vivo preparation of anesthetized rat		40
18	In vitro preparation of the atrium and the thoracic aortic ring		43

Effects of norepinephrine (A and B) or isoproterenol (C and D)
on the mean arterial blood pressure (MAP, left) and heart rate
(HR, right) before or after blocking with phentolamine (phento) or
propranolol (prop) in anesthetized rats.

LIST OF FIGURES (CONTINUED)

Figure Page 20 Effects of epinephrine on the mean arterial blood pressure (MAP, left) 48 and heart rate (HR, right) before or after blocking with propranolol (prop), or propranolol and phentolamine (phento) in anesthetized rats. 21 Effects of propranolol (prop) and/or phentolamine (phento) on changes 50 in the mean arterial blood pressure (MAP, left), and the positive chronotropic effect (increase in heart rate, right) of R. siamensis extract in anesthetized rats. 22 Typical recording showing effects of intravenous injections of the 51 *R. siamensis* extract (0.4-12 mg/kg) on the heart rate (A) and the blood pressure (B). 23 Effects of the depletion of sympathetic neurotransmitters by reserpine on 52 the increase in mean arterial blood pressure (MAP, A) and the positive chronotropic effect (increase in HR, B) of R. siamensis extract in anesthetized rats. 24 Effects of propranolol (prop, A, C and D) and/or atropine 54 (atrop, B and C) on the positive chronotropic effects of spontaneous contraction of the right atrium (A-C) or on the positive inotropic effects of the electrical field-stimulated contraction of the left atrium (D) to R. siamensis extract 25 Typical recording showing effects of the R. siamensis extract on the 55 increase in the rate of spontaneous contraction of the right atrium (A) and the increase in the strength of the electrical field-stimulated contraction of the left atrium (B).

26

Effects of the depletion of the sympathetic neurotransmitters by reserpine on the positive chronotropic effect of spontaneous contraction of the right atrium (A) or on the positive inotropic effect of the electrical field-stimulated contraction of the left atrium (B) to *R. siamensis* extract.

LIST OF FIGURES (CONTINUED)

Figure		Page
27	Effects of N ^G -nitro-L-arginine (LNA, 3x10 ⁻⁴ M) or removal of vascular	58
	endothelium (A), phentolamine (B), or LNA and/or reserpine induced	
	depletion of the sympathetic neurotransmitters (C and D) on the contractile	response of
	the thoracic aortic rings to R. siamensis extract (A-C) or phenylephrine (D)	
28	Typical recording showing a cumulative addition of the <i>R. siamensis</i>	59
	extract (0.01-3 mg/ml) increased force of contraction of the endothelium	
	-intact thoracic aortic ring pre-incubated with 3×10^{-4} M LNA.	
29	Effects of 3×10^{-4} M LNA, removal of vascular endothelium (A),	60
	and/or the depletion of the sympathetic neurotransmitters by reserpine	
	(B) on the dilator response (preconstricted with $3x10^{-6}$ M phenylephrine)	
	of the thoracic aortic rings to R. siamensis extract.	
30	Typical recording showing a dose-dependent relaxation of an endothelium	61
	-intact thoracic aortic ring, preconstricted with $3x10^{-6}$ M phenylephrine	
	(PE), to the <i>R. siamensis</i> extract (0.01-3 mg/ml).	
31	Flow chart showing isolation of constituents from the <i>R. siamensis</i> extract	70 32
	Illustration showing preparation of a vessel segment on two 40 ${f 8}$ m	75
	stainless steel wires (A), a dual wire myograph chamber (B) and auto	
	dual wire myograph system set-up (C).	
33	Structures of compounds isolated from the Randia siamensis extract	78
34	Typical recording showing effects of intravenous injections of tyramine	80

(0.3 and 1 mg/kg, A), pseudoginsenoside-RT₁ (30 mg/kg, B) and pseudoginsenoside-RP₁ (30 mg/kg, C) on heart rate (above) and blood pressure (below).

Effects of tyramine (A and B), pseudoginsenoside-RT₁ (C and D) or 81
pseudoginsenoside-RP₁ (E and F) on mean arterial blood pressure
(MAP, left) and heart rate (HR, right) in anesthetized rats. Each point
represents mean <u>8</u> S.E.M. of 6 experiments.

LIST OF FIGURES (CONTINUED)

Figure

Page

36	Typical recording showing a cumulative addition of pseudoginsenoside	83
	-RT ₁ (10^{-7} - 10^{-2} M) (A) and pseudoginsenoside-RP ₁ (10^{-5} - 10^{-3} M)	
	(B) caused a concentration-dependent relaxation of the endothelium-intact	
	rat mesenteric artery, preconstricted with 10^{-6} M phenylephrine.	
37	Effects of pseudoginsenoside- RT_1 (A) and pseudoginsenoside- RP_1 (B)	84
	on the dilator response of endothelium-intact and -denuded mesenteric	
	arteries, preconstricted with 10^{-6} M phenylephrine.	
38	Effects of atropine (atrop), propranolol (prop) and/or phentolamine	91
	(phento) on changes in the mean arterial blood pressure (MAP, left),	
	and the positive chronotropic effect (increase in heart rate, right) of	
	tyramine in anesthetized rats.	
39	Effects of the depletion of sympathetic neurotransmitters by reserpine	92
	on the increase in mean arterial blood pressure (MAP, A) and the positive c	hronotropic
	effect (increase in HR, B) of tyramine in anesthetized rats.	
40	Effects of propranolol (prop) on the positive chronotropic effects of	93
	spontaneous contraction of the right atrium (A) or on the positive inotropic	
	effects of the electrical field-stimulated contraction of the left atrium (B)	
	to tyramine.	
41	Effects of the depletion of the sympathetic neurotransmitters by	94
	Encets of the depiction of the sympaticite neuronanismitters by	71

reserpine on the positive chronotropic effect of spontaneous contraction of the right atrium (A) or on the positive inotropic effect of the electrical field-stimulated contraction of the left atrium (B) to tyramine.

42 Effects of N^G-nitro-L-arginine (LNA, 3x10⁻⁴ M) or removal of 96 vascular endothelium (A), phentolamine (B and C), or LNA and/or reserpine induced depletion of the sympathetic neurotransmitters (D) on the contractile response of the thoracic aortic rings to tyramine.

LIST OF FIGURES (CONTINUED)

Figure			Page
43	Effects of 3×10^{-4} M LNA and removal of vascular endothelium (A)	97	
	or the depletion of the sympathetic neurotransmitters by reserpine (B)		
	on the dilator response (preconstricted with 3×10^{-6} M phenylephrine)		
	of the thoracic aortic rings to tyramine.		
44	Illustration showing the stepwise normalization procedure (A) and the		119
	exponential curve fitting and calculation of IC_{100} (B).		
45	Representative HPLC chromatogram under the UV detection at 210	127	
	and 254 nm, and the spectra of two major constituents of the		
	R. siamensis extract.		
46	Representative HPLC chromatogram under the UV detection at 210	128	
	and 254 nm, and the spectrum of compound 1, Kaempferol-3-O		
	- β -xylose (1-2)- β -galactoside.		
47	Representative HPLC chromatogram under the UV detection at 210	129	
	and 254 nm, and the spectrum of compound 2, Kaempferol-3-O		
	$-\beta$ -galactoside.		
48	Representative HPLC chromatogram under the UV detection at 210	130	
	and 254 nm, and the spectrum of compound 3, Pseudoginsenoside- RP_1 .		
49	Representative HPLC chromatogram under the UV detection at 210	131	
	and 254 nm, and the spectrum of compound 4, Pseudoginsenoside- RT_1		
	methyl ester.		
50	Representative HPLC chromatogram under the UV detection at 210	132	
	and 254 nm, and the spectrum of compound 5, Tyramine.		
51	Representative HPLC chromatogram under the UV detection at 210	133	
	and 254 nm, and the spectrum of compound 6, Pseudoginsenoside- RT_1 .		
52	Representative HPLC chromatogram under the UV detection at 210	134	
	and 254 nm, and the spectrum of compound 7, Pseudoginsenosides- RT_5 .		
53	Representative HPLC chromatogram under the UV detection at 210	135	

and 254 nm, and the spectrum of compound 8, Pseudoginsenosides- RT_3 .

LIST OF FIGURES (CONTINUED)

Figure

Page

54	Representative HPLC chromatogram under the UV detection at 210 136	
	and 254 nm, and the spectrum of compound 9, 5-O-[Z] caffeoylquinic acid.	
55	Representative HPLC chromatogram under the UV detection at 210 137	
	and 254 nm, and the spectrum of compound 10, Pseudoginsenosides- RT_4 .	
56	Representative HPLC chromatogram under the UV detection at 210	138
	and 254 nm, and the spectrum of compound 11, Pseudoginsenosides- RT_2 .	

LIST OF ABBREVIATIONS AND SYMBOLS

ACh	=	acetylcholine
ADR	=	adrenergic receptors
ATP	=	adenosine triphosphate
Atrop	=	atropine
AV node	=	atrioventricular node
BH_4	=	tetrahydrobiopterin
bpm	=	beat per minute
°C	=	degree Celsius
CaCl ₂	=	calcium chloride dihydrate
Cal	=	calmodulin
cAMP	=	cyclic adenosine monophosphate
CDCl ₃	=	chloroform- d_{δ}
cGMP	=	cyclic guaosine monophosphate
CHCl ₃	=	chlorofrom
COMT	=	catechol- <i>O</i> -methyl transferase
COSY	=	correlated spectroscopy
¹³ C NMR	=	carbon-13 Nuclear Magnetic Resonance
DAG	=	diacylglycerol
2D NMR	=	Two dimensional nuclear Magnetic Resonance
DMSO	=	dimethyl- d_6 sulfoxide
DOPA	=	dihydroxyphenylalanine
DP	=	diastolic pressure
E	=	epinephrine
EDRF	=	endothelium-derived relaxing factor
EMT	=	extraneuronal monoamine transporter
endo	=	endothelium
eNOS	=	endothelial nitric oxide synthase
g	=	gram

GC	=	gas chromatography
GTP	=	guanosine triphosphate
HMBC	=	Heteronuclear Multiple Bond Coherent

LIST OF ABBREVIATIONS AND SYMBOLS (CONTINUED)

HMQC	=	Heteronuclear Multiple Quantum Coherent	
¹ H NMR	=	proton Nuclear Magnetic Resonance	
HPLC	=	High Performance Liquid Chromatography	
HR	=	heart rate	
Hz	=	hertz	
IC	=	internal circumference	
$I_{\mathrm{K.ACh}}$	=	inwardly rectifying potassium channel	
IP_3	=	inositol triphosphate	
i.p.	=	intraperitoneal	
ISO	=	isoproterenol	
i.v.	=	intravenous	
K_{Ca} channel	=	calcium-activated potassium channel	
KCl	=	potassium chloride	
$KH_2PO_4 =$	potassium dihydrogen orthophosphate		
kg	=	= kilogram	
L	=	liter	
LNA	=	N ^G -nitro-L-arginine	
L-NMMA	=	N-monomethyl-L-arginine	
М	=	Molar	
MAO	=	monoamine oxidase	
MAP	=	mean arterial blood pressure	
MeOH	=	methanol	
mg	=	milligram	
MgSO ₄	=	magnesium sulphate	
min	=	minute	

ml	=	milliliter
MLCK	=	myosin light chain kinase
mm	=	millimeter
mM	=	milli Molar
MPLC	=	Moderate Pressure Liquid Chromatography
M receptor	=	muscarinic receptor

LIST OF ABBREVIATIONS AND SYMBOLS (CONTINUED)

MS	=	Mass Spectrometry	
msec	=	millisecond	
Myofil	=	myofilament	
NaCl	=	sodium chloride	
Na ₂ EDTA	=	disodium etylenediaminetetraacetic acid	
NaHCO ₃	=	sodium hydrogen carbonate	
NANC	=	non-adrenergic, non-cholinergic	
NCX	=	sodium/calcium exchange	
NE	=	norepinephrine	
NET	=	norepinephrine transporter	
NOESY=	Nuclear	Overhauser Enhanced Spectroscopy	
nm	=	nanometer	
nm NMR	=	nanometer Nuclear Magnetic Resonance	
NMR	=	Nuclear Magnetic Resonance	
NMR nNOS	=	Nuclear Magnetic Resonance neuronal nitric oxide synthase	
NMR nNOS NO	=	Nuclear Magnetic Resonance neuronal nitric oxide synthase nitric oxide	
NMR nNOS NO PE	=	Nuclear Magnetic Resonance neuronal nitric oxide synthase nitric oxide phenylephrine	
NMR nNOS NO PE Phento	= = =	Nuclear Magnetic Resonance neuronal nitric oxide synthase nitric oxide phenylephrine phentolamine	
NMR nNOS NO PE Phento PIP ₂	-	Nuclear Magnetic Resonance neuronal nitric oxide synthase nitric oxide phenylephrine phentolamine phosphatidyl inositol bisphosphate	
NMR nNOS NO PE Phento PIP ₂ PKG		Nuclear Magnetic Resonance neuronal nitric oxide synthase nitric oxide phenylephrine phentolamine phosphatidyl inositol bisphosphate protein kinase G	

ppm	=	part per million
PSS	=	physiological salt solution
Prop	=	propranolol
RP	=	reversed phase
RyR	=	ryanodine receptor
SA node	=	sinoatrial node
S.E.M.	=	standard error of mean value
SP	=	systolic pressure
SR	=	sarcoplasmic reticulum

LIST OF ABBREVIATIONS AND SYMBOLS (CONTINUED)

TFA	=	trifluoroacetic acid
TLC	=	Thin Layer Chromatography
TnC	=	troponin C
8 m	=	micrometer
UV	=	ultraviolet
V	=	volt
VMT	=	vesicle monoamine transporter
VSCC	=	voltage-sensitive calcium channel
δ	=	chemical shift