CONTENTS

บทคัดย่อ	iii
ABSTRACT	v
ACKNOWLEGEMENTS	vii
CONTENTS	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1
1.2 Literature review	2
1.2.1 Zinnia	2
1.2.1.1 Scientific classification	2
1.2.1.2 Origin/History of zinnia	3
1.2.1.3 The advantages of Zinnia	4
1.2.1.4 The cultivars of Zinnia	7
1.2.2 Propagation of zinnia	8
1.2.2.1 Traditional propagation	8
1.2.2.2 In vitro culture	11
1.2.2.3 Genetic variation	16
1.2.3 Cytogenetic and molecular biological scientific methods	17
1.2.3.1. Flow cytometry	17

CONTENTS (continued)

1.2.3.2. RAPD-PCR	25
1.3 Objectives	29
CHAPTER 2 MATERIALS AND METHODS	30
Plant materials	30
Methods	35
2.1 Cultivar classification by flow cytometry	35
2.2 Cultivar classification by RAPD	40
2.3 Cultivar classification by morphology of guard cell and	
plant height	42
2.4 Chromosome numbers	43
2.5 In vitro culture	44
CHAPTER 3 RESULTS	48
3.1 Cultivar classification by flow cytometry	48
3.2 Cultivar classification by RAPD	58
3.3 Cultivar classification by morphology of guard cell and	
plant height	62
3.4 Chromosome numbers	65
3.5 In vitro culture	67
CHAPTER 4 DISCUSSION	90
4.1 Cultivar classification by flow cytometry	90
4.2 Cultivar classification by RAPD	99

CONTENTS (continued)

4.	.3 Cultivar classification by morphology of guard cell and	
	plant height	100
4.	.4 Chromosome numbers	101
4.	.5 In vitro culture	102
CHAPTER 5 CC	ONCLUSION	106
REFERENCES		109
APENDICES		124
Techniqu	ae Specifications of flow cytometry	125
VITAE		129

LIST OF TABLES

Table 1.1 Use of Zinnia spp.	5
Table 1.2 List of fluorochrome used for flow cytometry	20
Table 2.1 Comparison of morphology of cultivars	31
Table 2.2 Different media composition for in vitro culture	45
Table 2.3 The concentration combination of two growth regulators	46
Table 3.1 DNA contents and intraspecific genome size variation in Zinnia	
by PI staining and investigated by FACSCalibur	49
Table 3.2 DNA contents of Zinnia by PI staining and investigated by Partec PAS	52
Table 3.3 DNA contents of Zinnia by DAPI staining with and without	
1% PVP and using Partec PAS.	53
Table 3.4 Relative AT-Specific Fluorescence (DF)	57
Table 3.5 The list of used primers	59
Table 3.6 The characteristics of guard cell, plant height and flower sizes of zinnia	
cultivars	63
Table 3.7 Chromosome numbers of zinnia species and cultivars	66
Table 3.8 Effect of media types on shoot and root formation in zinnia	
cultivars after 4 weeks in culture	68
Table 3.9 Effect of media types on callus induction in zinnia cultivars	
after 4 weeks in culture	69
Table 3.10 Effect of type of growth regulators on shoot and root formation	
in zinnia cultivars after 4 weeks in culture	73

LIST OF TABLES (continued)

Table 3.11	Effect of type of growth regulators on callus induction	
	in zinnia cultivars after 4 weeks in culture	74
Table 3.12	Effect of kinetin and IBA concentration on shoot and root formation	
	in zinnia cultivars after 4 weeks in culture	78
Table 3.13	Effect of kinetin and IBA concentration on callus induction in zinnia	
	cultivars after 4 weeks in culture	79
Table 3.14	Effect of AgNO ₃ on shoot number, shoot height and root formation	
	in three zinnia cultivars	84
Table 3.15	Effect of AgNO ₃ on callus induction in zinnia cultivars after 4 weeks	
	in culture	85
Table 4.1	Binding and spectral Properties of Selected DNA Fluorochromes	94

LIST OF FIGURES

Page

Figure 1.1 The formula structure of Myene and Gernacrene D	6
Figure 1.2 Tracheary element (TE) formation of in vitro isolated Zinnia	
mesophyll cells	15
Figure 1.3 Example of ploidy analysis of banana (Musa acuminata)	21
Figure 1.4 Example of genome size estimation of banana (Musa acuminata)	23
Figure 1.5 Example of Chromosome analyze by flow cytometry	24
Figure 1.6 The process of random amplified polymorphic DNA (RAPD)	25
Figure 2.1 The seed size of Z. angustifolia cv. 'Starbright' (A), Z. haageana	
cv. 'Persian carpet' (B), Z. elegans cv. ' Dreamland' (C) and	
Z. <i>elegans</i> cv. 'Profusion' (D)	30
Figure 2.2 Z. angustifolia cv. 'Starbright'	32
Figure 2.3 Z. haageana cv. 'Persian carpet' and 'Chippendale daisy'	32
Figure 2.4 Z. elegans cv. 'Profusion'	32
Figure 2.5 Z. elegans cv. 'Sinnita', cv.'Short stuff', cv.'Dreamland',	
cv. 'Jupiter', cv. 'Piccolo' and cv. 'Peter pan'	33
Figure 2.6 Z. elegans cv. 'Border beauty', cv. 'Candy cane', cv. 'Jungle',	
cv. 'Dahlia',cv. 'Giant' and cv. 'Gold medal'	32
Figure 2.7 FACSCalibur in Prince of Songkla university	36
Figure 2.8 Partec PAS in The State Research Center Geisenheim, Germany	36
Figure 3.1 Histogram show Raphanus sativus (M1) compared with Z. angustifolia	50
Figure 3.2 FCM histogram showing combination peaks.	55

LIST OF FIGURES (continued)

Figure 3.3 FCM histogram showing peaks of Z. angustifolia (M1) with	
Z. elegans cv. 'Dreamland' plus A) cv. 'Border beauty' B) cv. 'Giant'	
C) cv. 'Sinnita' D) cv. 'Jupiter' E) cv. 'Short stuff'	56
Figure 3.4 Primer screening in Z. elegans cv. 'Dreamland'	59
Figure 3.5 Electrophoretic analysis of amplification products obtained with	
the primer UBC 89	60
Figure 3.6 Dendrogram of Z. elegan cv. 'Dreamland' (Dr) and Z. haageana	
cv. 'Persian carpet' (Per) accessions (Bionumberic ver 3.0) based	
on cluster analysis of RAPDs with 5 primers.	61
Figure 3.7 Micrographs of guard cells in Zinia	64
Figure 3.8 Correlations between DNA content and some characteristics of zinnia	65
Figure 3.9 Chromosomes of Z. angustifolia cv. 'Starbright' (A), Z haageana cv.	
'Persian carpet' (B), Z. elegans cv. 'Peter pan' (C) and cv. 'Dreamland'(D)	66
Figure 3.10 Z. angustifolia cultured on MS, 1/2 MS, FK and KS media	
after 4 weeks of culture	70
Figure 3.11 Z. haageana cultured on MS, ¹ / ₂ MS, FK and KS media	
after 4 weeks of culture	70
Figure 3.12 Z. elegans cultured on MS, ¹ / ₂ MS, FK and KS media	
after 4 weeks of culture	70
Figure 3.13 Z. angustofolia in KS plus 1 µM BA (A), 1 µM BA + 0.1µM 2,4-D	
(B), 1 μ M BA + 0.1 μ M IBA (C) and 1 μ M BA + 0.1 μ M NAA (D)	75

XV

LIST OF FIGURES (continued)

Figure 3.14 Z.	angustofolia in K	KS plus1uM	Kinetin(A).1uM Kine	$tin + 0.1 \mu M 2.4 - D$
0		r r		,

(B),1 μ M Kinetin+0.1 μ M IBA(C) and 1 μ M Kinetin+0.1 μ M NAA(D) 74

Figure 3.15 Z. haageana in KS plus 1µM BA (A), 1µM BA + 0.1µM 2,4-D (B),

$$1\mu M BA + 0.1\mu M IBA (C)$$
 and $1\mu M BA + 0.1\mu M NAA (D)$ 76

(B),1
$$\mu$$
M Kinetin + 0.1 μ M IBA(C) and 1 μ M Kinetin+0.1 μ M NAA(D) 76

Figure 3.17 Z. elegans in KS plus 1µM BA (A), 1µM BA + 0.1 µM 2,4-D(B),

$$1\mu$$
M BA + 0.1 μ M IBA (C) and 1μ M BA + 0.1 μ M NAA (D) 77

Figure 3.18 Z. elegans in KS plus1µM Kinetin(A),1 µM Kinetin + 0.1µM 2,4-D

(D) , 1µ1VI KIIICUII ± 0.1 µ1VI IDA (C) and 1µ1VI KIIICUII ± 0.1 µ1VI NAA $(D) = 1$

Figure3.19 Z. angustifolia in KS	with various concentration	s of kinetin and IBA	80
----------------------------------	----------------------------	----------------------	----

- Figure 3.20 Z. haageana in KS with various concentrations of kinetin and IBA 81
- Figure 3.21 Z. elegans in KS with various concentrations of kinetin and IBA 82
- Figure 3.22 Z. angustifolia in KS with 5 µM kinetin + 0.5 µM IBA adding

AgNO ₃ 2, 4, 8 and 16 mg/l	86
---------------------------------------	----

Figure 3.23 Z. haageana in KS with 5 μ M kinetin + 0.5 μ M IBA adding

AgNO ₃ 2, 4, 8 and 16 mg/l	86
Figure 3.24 Z. <i>elegans</i> in KS with kinetin 5 μ M + IBA 0.5 μ M adding	

AgNO₃ 2, 4, 8 and 16 mg/l

Figure 3.25 Callus induced on MS medium supplemented with 0.1 µM TDZ

and $1 \,\mu M \,TDZ$

xvi

86

87

LIST OF FIGURES (continued)

	Page
Figure 3.26 Callus induced on MS medium supplemented with 17.6 μ M BA	
and 5.4 µM NAA	88
Figure 3.27 Callus induced on MS medium supplemented with 9 μ M 2, 4-D	
and 9.9 µM IBA	88
Figure 3.28 Organogenesis in Z. elegans cv. 'Dreamland'	89

LIST OF ABBREVIATIONS

2,4-D	=	2,4-Dichlorophenoxyacetic acid
BA	=	N ⁶ benzylaminopurine
CV	=	Coefficient of variation
DAPI	=	4, 6-diamidino-2-phenylindole
DNA	=	Deoxyribonucleic acid
dNTP	=	Deoxyribonucleotide triphosphate
FCM	=	Flow Cytometry
FK	=	Fukuda & Komamine (1980)
KS	=	Kohlenbach & Schmidt (1975)
IBA	=	Idole butyric acid
IS	=	Internal standard
MS	=	Murashige and Skoog (1962)
NAA	=	1-Naphthaleneacetic acid
PCR	=	Polymerase Chain Reaction
pg	=	picogram
PI	=	Propidium iodide
PVP	=	Polyvinylpyrrolidone
RAPD	=	Random Amplified Polymorphic DNA
TDZ	=	Thidiazuron
TE	=	Trachea elementary