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ABSTRACT 

 

The electromyography (EMG) signal can be contaminated with noise 

during data collection. For example, when the EMG signal is acquired from muscles in 

the torso, the electrocardiography (ECG) signal coming from heart activity can 

interfere. In this thesis, we proposed a novel method on noise removal and the signal-

to-noise ratio (SNR) estimation algorithms. For the noise removal method, a technique 

based on discrete stationary wavelet transform (DSWT) is proposed to remove ECG 

interference from the EMG signal while taking into account the SNR. The contaminated 

EMG signal is decomposed using 5-level DSWT with the Symlet wavelet function. A 

clean EMG signal can then be obtained by inverse DSWT mapping of the new 

thresholded coefficients. The performance based on mean absolute error, correlation 

coefficient, and relative error shows that the DSWT method is better than a high-pass 

filter. For the SNR estimation method, we present a novel SNR estimation in the EMG 

signal contaminated with the ECG interference. We calculate the features from the 

EMG signals. Then, the features are used as an input of a neural network (NN). The 

NN output is an SNR estimate. The results showed that the waveform length was the 

best feature for estimating SNR. It gave the highest average correlation coefficient at 

0.9663. These results suggested that the waveform length was able to be deployed not 

only in an EMG recognition system but also in an EMG signal quality measurement 

when the EMG signal was contaminated with the ECG interference. 
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CHAPTER 1  

INTRODUCTION 

Electromyography (EMG) records electric currents produced in muscle 

contractions, acquired using electrodes. The electrode converts an ion current to an 

electron current so that it can be amplified and recorded by an electronic circuit. The 

EMG signal is generated from motor units, which are nerve-muscle functional units of 

the neuromuscular system [1,2]. The potential difference can be measured by either 

non-invasive electrodes for surface EMG signals or by invasive electrodes for needle 

EMG sampling intramuscular EMG signals [3].  

There are a variety of applications for EMG signals. The EMG signal 

can be used not only as an electrodiagnostic medical technique but also as a 

neurophysiological technique for evaluating and recording the electrical activity 

produced by skeletal muscles [4,5]. Moreover, the EMG signal recorded from a muscle 

contraction has a variety of uses in clinical applications [6], evolvable hardware chip 

(EHC) development [7], robotic applications [8], modern human-computer interaction 

[9], and electrical wheelchair control [10]. 

An essential element for enabling the above-described applications is an 

EMG recognition system. The EMG recognition system consists of three cascaded 

modules, namely; data pre-processing, feature extraction, and classification [11,12]. 

The primary purpose of data pre-processing is to remove noise in the EMG signal, 

which is contaminated by the environment as it passes through or by various tissues 

[13]. In this thesis, we studied on noise detection and noise removal. 

 

1.1. Literature review 

1.1.1. Contamination in EMG 

From literature reviews, there are four important types of noise 

contaminated in EMG signals, namely, (1) electrocardiography (ECG) interference [17-

30], (2) power line interference [16,31-34], (3) motion artifact [14,35-37] and (4) 

baseline noise [14-15,38-39]. Details on each type of noise are as follows. 
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1.1.1.1.  Electrocardiography (ECG) interference 

ECG determines the electrical activity of the heart over a specified 

period of time. ECG is not only used for measurement and recording of electrical 

activity but also helps in measuring the rhythm and invariability of heart beat [40-43]. 

Fig. 1.1 shows the waveform of a normal ECG signal consisting of a P-wave, a QRS 

complex and a T-wave. The ECG waveform initiates with the P-wave. The QRS 

complex represents ventricular depolarization and is composed of three waves, which 

are the Q-wave, the R-wave and the S-wave. ECG interference has bandwidth in the 

range of 0.05 – 100 Hz [21-22]. The EMG signal can be contaminated by the ECG 

interference in some applications because of the proximity between the EMG 

measurement location such as trunk muscles and the heart. One of ECG interference 

removal algorithm applications is in EMG data acquisition for shoulder disarticulation 

prosthesis control where the electrodes are placed at the pectoralis muscle as shown in 

Fig. 1.2, which is very close to the heart [21]. As a result, contamination by ECG 

interference is unavoidable. Fig. 1.3 shows an example of the EMG signal contaminated 

with the ECG interference at a signal-to-noise ratio (SNR) level of 0 dB in time domain 

and power spectrum in frequency domain on the top and the bottom panels, 

respectively. 

 

Fig. 1.1. ECG waveform consisting of a P-wave, a QRS complex, and a T-wave [28]. 
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Fig. 1.2. Pectoralis muscle [21]. 

 

Fig. 1.3. The amplitude of EMG signals contaminated with ECG interference in the 

time domain at SNR 0 dB (Top panel) and its corresponding power spectrum in the 

frequency domain (Bottom panel). Dotted line: xu is an uncontaminated EMG signal. 

Solid line: xc is an EMG signal contaminated with ECG interference. 
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1.1.1.2.  Power line interference 

The power line interference is an essential source of noise. It is caused 

by either an induced current from the passing of a time-varying magnetic field on a 

closed loop formed by the electrode leads, the subject, and the signal amplifier or a 

displacement current induced from the capacitive coupling between the electrode leads 

and the subject body [25,31]. The most important source of such noise is power line 

interference at 50 Hz and its harmonics. The amplitude and frequency of the EMG 

signal can be changed by power line interference [32-33]. Moreover, it is possible that 

the amplitude of powerline noise is higher than the amplitude of the desirable EMG 

signal. Therefore, it causes serious reduction in SNR. To alleviate the mentioned 

problem, the use of a suitable electronic device, which has both high common mode 

rejection ratio (CMRR) and shielding cables, can reduce power line interference. Fig. 

1.4 shows the amplitude of EMG signals contaminated with power line noise in time 

domain and its power spectrum in frequency domain at a SNR level of 0 dB. It can be 

clearly seen that the power line noise at 50 Hz occurs in the contaminated EMG signal. 

 

Fig. 1.4. The amplitude EMG signals contaminated with the power line noise in the 

time domain at SNR 0 dB (Top panel) and its corresponding power spectrum in the 

frequency domain (Bottom panel). Dotted line: xu is an uncontaminated EMG signal. 

Solid line: xc is an EMG signal contaminated with power line interference. 
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1.1.1.3.  Motion artifact 

Motion artefact can be divided into two categories, which are an 

electrode motion artefact and a cable motion artefact [37,44]. The electrode motion 

artefact consists of two sources. The first source is a relative movement at the contact 

area between the electrode and the skin. However, this type of artefact can be 

significantly reduced by using a built-in electrode consisting of a conductive gel or 

paste. As a result, this type of artefact is attenuated by the gel layer. The second source 

is the variations in potential difference and the skin potential due to the stretch or 

deformation of the skin. This type of artefact is can be decreased by reducing the skin 

impedance. The electrode motion artifact typically has a frequency range is less than 

20 Hz [25,45-46]. 

The cables are connected between the electrodes and amplifier. They 

have a fundamental capacitance. In cable motion artifact, the voltage magnitude that 

forms in the cable is the multiplication of the current movement and the impedance 

electrode–skin added with the voltage caused by magnetic field. The amounts of the 

detected EMG are similar with that voltage. The frequency range of cable motion 

artifact has typically from 1 to 50 Hz [26,47-48]. There are two facts to reduce cable 

motion artifact: 1) reducing electrode-skin impedance and; 2) applying the shielded 

cables. Nevertheless, these shielded cables can be considered as a source of causing 

cable motion artifact. The resistance and distortion of the insulated cable generated with 

static charges can be caused by moving shielded cables and these cables disappear 

through the measurement system. Another obvious solution is to clear up the cable 

motion artifact is to use active electrodes based on an operational amplifier because of 

high input impedance and low output impedance which is built as a unity gain buffer 

[25]. Fig. 1.5 shows the amplitude of EMG signals contaminated with motion artifact 

in time domain and its power spectrum in frequency domain at a SNR level of 0 dB.
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Fig. 1.5. The amplitude EMG signals contaminated with motion artefact in the time 

domain at SNR 0 dB (Top panel) and its corresponding power spectrum in the 

frequency domain (Bottom panel). Dotted line: xu is an uncontaminated EMG signal. 

Solid line: xc is an EMG signal contaminated with motion artifact. 

 

1.1.1.4.  Baseline noise 

Baseline noise is a combination of two intrinsic sources, which are 

thermal noise and electrochemical noise [49-50]. It is generated not only from the 

amplification system of electronics, which is also called thermal noise, but also from 

the electro-chemical noise, which is located at the skin-electrode interface [51]. Fig. 1.6 

shows an example of the baseline noise contaminated in the EMG signals at various 

levels on the top panel and its corresponding filtered the EMG signals at the bottom 

panel. 
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Fig. 1.6. An example of the baseline noise contaminated in EMG signals at various 

levels on the top panel and its corresponding filtered EMG signals at the bottom panel 

[15]. 

1.1.2. Noise removal techniques 

There are several noise removal techniques in the literature review 

depending on the type of noise. This section will give the details of noise removal 

techniques describing by three types of noise including 1) ECG interference [52-62], 2) 

power line interference [49,62-63], and 3) motion artifact [44-47]. Details of each 

technique are as follws. 

1.1.2.1. ECG interference 

• Digital filter  

High pass filtering is one of the most popular methods used for 

eliminating ECG interference from EMG signals [64-66]. Most of energy of ECG 

interference is in the range of 0 to 30 Hz. Therefore, high pass digital filtering with a 

30 Hz cut-off frequency is used. There are two designs of high pass digital filtering 

used for ECG interference removal, i.e. a Butterworth filter [17], [21], [29], [30] and a 
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digital finite impulse response filter [20] as details shown in Table 1.1. High pass digital 

filtering is not only easily to implement but also performs satisfactory at rest and 

excellence at all levels of muscle voluntary contraction (MVC) evaluated. Hence, it 

provides the optimal balance between ease of implementation time investment and 

performance across all contractions and heart rate levels [17]. Moreover, another 

advantage is that the signal from additional channel does not require. However, some 

parts of EMG signals in the range of 0-30 Hz are also removed.  

 

Table 1.1. High pass digital filtering used for removing ECG interference from the 

EMG signal. 

Authors Method 

Janessa 2006 [17] 

and Vinzenz 2011 

[29] 

High pass digital filtering using a fourth-order Butterworth 

filter 

with cut-off frequency of 30 Hz. 

Nienke 2012 [30] High pass digital filtering using a second-order bi-directional  

Butterworth filter with cut-off frequency of 30 Hz 

Sara 2016 [20] High pass digital filtering using a digital finite impulse 

response filter  

with 100 coefficients based on a Hamming window design 

criteria at  

a cut-off frequency of 30 Hz 

Zhou 2006 [21] High pass digital filtering using a second-order 

Butterworth filter with cut-off frequency of 60 Hz, which 

provided the most suitable signals for myoelectric prosthesis 

control  

 

• Template subtraction  

Template subtraction is very useful for removing ECG interference from 

the contaminated EMG signals [67-68]. There are three main stages of template 

subtraction, namely, 1) creation of ECG template, 2) detection of ECG interference 

from the contaminated EMG signals, and 3) subtraction of ECG interference from the 

contaminated EMG signals [17], [20], [21], [23] as shown in Fig. 1.7. One advantage  
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(a) 

 

(b) 

 

(c) 

Fig. 1.7. Procedures of template subtraction (a) Create ECG template, (b) Detect ECG 

interference in the contaminated EMG signals, and (c) Subtract ECG template from the 

contaminated EMG signals [21]. 
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of template subtraction method is its ability to remove the ECG interference without 

losing the EMG signals [21]. However, the template subtraction method may not be 

used for some clinical applications such as myoelectric prosthesis control because of 

its requirement on individual template creation for each participant and its heavy 

computation burdens of cross-correlation [17] [21]. Moreover, it requires additional 

ECG signal acquisition for accurate detection of QRS algorithms [21]. 

 

• Adaptive filter 

Adaptive filter is a successful technique used for eliminating ECG 

interference from EMG signals because it is able to remove ECC signals from 

contaminated EMG signals when the spectra of EMG signals and ECG noise are 

overlapping [69-72]. Moreover, it can follow any change on the signal and noise by 

adaptively adjusting the filter coefficients, which are expected in some situations such 

as during a fatigue process [18,88,89]. Therefore, it can optimize the performance when 

it is applied to several types of muscles [19].  

 

 

Fig. 1.8. Block diagram of an adaptive filter used for removing ECG interference 

Fig. 1.8 shows the principle of the adaptive filter used for removing ECG 

interference from the contaminated EMG signals [18]. There are two input signals for 

the adaptive filter, xc and n1. While xc is the contaminated EMG signal, which is the 
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combination between the uncontaminated EMG signal xu and the ECG interference n0, 

n1 is the reference signal that is correlated with the ECG interference n0. The adaptive 

filter is used to estimate the noise 𝑛̂0. Then, 𝑥𝑐𝑙, an estimate for the uncontaminated 

EMG signal 𝑥̂𝑢, can be determined by subtracting  𝑛̂0 from the contaminated EMG 

signal xc. 

 

Fig. 1.9. The structure of the linear adaptive ECG noise canceller [21], [23]. 

There are 2 types of adaptive filter in the literature review, i.e., a linear 

adaptive filter and a nonlinear adaptive filter. Details of each type of the adaptive filter 

are given as follws. 

• Linear techniques  

Fig. 1.9 shows a structure of the linear adaptive ECG noise canceller, which is 

defined in the time domain by using a finite impulse response filter (FIR) with a length 

of N points [73-74]. The output of the linear adaptive ECG noise canceller can be 

expressed as [18],[20],[21] 

                                 𝑦𝑗=∑ 𝑤𝑖,𝑗𝑛1,𝑗−𝑖+1
𝑁
i=1 .             (1.1)                                                                   

The algorithms used to optimize the coefficients 𝑤𝑖,𝑗 include fast recursive least 

square algorithm (FRLS) [18], recursive least square algorithm (RLS) [19], [20], and 

least mean square algorithm (LMS) [21], [23]. Moreover, Table 1.2 shows the sources 
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of EMG signals and ECG reference signals as well as the parameters used in the linear 

adaptive filter from previous publications [18], [19], [20], [21], [23]. The adaptive filter 

or the adaptive noise canceller (ANC) is very suitable for adjusting the amplitude and 

phase of the reference signal to estimate the noise in the contaminated EMG signals. 

Then, the estimated noise is subtracted from the contaminated EMG signals so that the 

clean EMG signals can be obtained. However, it was reported in [20] that the noise was 

not well estimated and there is still noise in the estimate for the uncontaminated EMG 

signal. Moreover, some parts of uncontaminated EMG signals may be eliminated [20]. 

Another disadvantage of ANC was its heavy computational cost resulting in the 

difficulty for the implementation on clinical applications [20]. 

• Nonlinear techniques  

Nonlinear adaptive filters used for ECG interference removal from previous 

publications include an artificial neural network (ANN) and an adaptive neuro-fuzzy 

inference system (ANFIS) [75-76]. Either ANN or ANFIS is applied for estimating 

ECG interference contaminated in the EMG signals similar to the linear adaptive noise 

canceller [77].  

ANN is one of the successful nonlinear adaptive filters used for 

removing ECG interference [78]. In [22] and [24] the back propagation network (BPN) 

was used to estimate the ECG interference presenting in the EMG signals. Fig.1.10 

shows a block diagram of a nonlinear adaptive filter based on BPN used for ECG 

interference removal [24]. The network architecture consists of two neurons in the input 

layer, 35 neurons in the one hidden layer and one neuron in the output layer.  
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Table 1.2. Algorithms, sources of EMG and ECG reference signals, and parameters 

used in the adaptive filter.  

Authors Algorithms Sources of EMG and ECG 

reference signals 

Parameters 

Marque 2005 

[18] 

Fast recursive least  

square algorithm 

(FRLS) 

• EMG from erector 

spinae muscles 

• ECG from left scapula 

N/A 

Guohua 2009 

[19] 

Recursive least  

square algorithm  

(RLS) 

• EMG from the right 

trapezius muscles  

• ECG from the left 

trapezius muscles 

Filter order 12 

Forgetting factor  0.999 

Regularization factor 0.1 

Zhou  2005 

[23], Zhou  

2007 [21],  

Least mean square  

algorithm (LMS) 

• EMG from the 

reinnervated pectoralis 

muscles of the amputee 

• ECG from the pectoralis 

minor muscle 

N/A 

Sara 2016 

[20] 

Adaptive neuro- 

fuzzy inference  

system (ANFIS) 

• EMG from biceps and 

deltoid muscles of the 

right side  

• ECG from the pectoralis 

muscle of the left side 

N/A 

Kezi 2009 

[22] 

Back propagation  

network (BPN) 

• EMG from electrode site 

on the trunk and neck 

• ECG from the rectus 

abdominis, external 

oblique and erector 

spinae muscles 

Epochs 1000, Goal =  

0.65, Momentum =0.9,  

Show = 5, Learning rate  

= 0.5, Time infinity, 2  

neurons in the input  

layer, 35 neurons in one  

hidden layer (TANSIG)  

and one neuron in the  

output layer (PURELIN). 
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Fig. 1.10. Block diagram of a nonlinear adaptive filter based on BPN used for ECG 

interference removal  [24]. 

The parameters used for training BPN to remove the ECG interference 

from EMG signals are as follows [22], [24]:epochs =1000, goal = 0.65, momentum 

=0.9, show = 5, learning rate = 0.5 and time = infinity. One of the disadvantages of 

BPN is that it requires multiple inputs and heavy computations because of its layers 

[20].  

ANFIS combine network of the strengths of neutral network and fuzzy system. 

As a result, the calculation time for ANFIS technique is lower than that for ANN 

method [20]. Fig.1.11 shows the ANFIS structure used for ECG interference removal 

[20]. The ANFIS structure generally consists of two source inputs, five hidden layers, 

and one output. Details of the five hidden layers are as follows: the first layer is a 
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fuzzifier, the second layer is the fuzzy rules, the third layer is for normalization, the 

fourth layer is for identifying effective parameters and the fifth layer is the destination 

output. According to the Fig.1.11, the delayed ECG signal and the ECG interference 

contaminated with EMG signal were used for the ANFIS inputs. This delayed ECG 

signal was occurred when the ECG signal and ECG interference from different sources 

were collected. By using this delayed ECG signal, the noise estimation procedure is 

more efficient and effective. 

 

Fig. 1.11. Block diagram of a nonlinear adaptive filter based on ANFIS used for ECG 

interference removal [20]. 

• Wavelet transform 

Wavelet transform is one of the ECG removal techniques in EMG signals. In 

contrast to an adaptive filter, one of its advantages is that it does not require a separately 

additional ECG reference channel [79-80]. Moreover, it is simple and fast [81]. 

However, some artifacts may remain in the contaminated EMG signal and part of the 

desired EMG signal may be removed [82]. Most energy of ECG interference is 

contributed to the wavelet coefficients located high-scale low-frequency components. 

Thus, with a proper threshold, we can remove most of ECG artifacts by truncating or 

shrinking the wavelet coefficients, which are the dominant part of the ECG interference. 

Fig. 1.12 shows a schematic description of ECG interference removal using 

wavelet transform [23]. In the first stage, the EMG signal contaminated by the ECG 

interference 𝑥𝑐 was decomposed by the wavelet transform into various subband signals. 
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Then, in the second stage, the subband signals are separated into two types of scales 

including low-scale high-frequency components and high-scale low-frequency 

components. Thirdly, the wavelet coefficients obtained from high-scale low-frequency 

components, which are contaminated by the ECG interference, are processed with a 

nonlinear thresholding procedure. In other words, the values of coefficient higher than 

the value of the threshold were set to zero. The values of threshold can be adjusted 

depending on the coefficients of background ECG interference, which are much greater 

than the neighbouring coefficients. Finally, the clean EMG signals 𝑥𝑐𝑙 is obtained from 

the new coefficients by using inverse wavelet transform.  

 

Fig. 1.12. Schematic description of ECG interference removal using wavelet transform 

Fig. 1.13 shows an example of signal components from the ECG interference 

removal technique using wave transform. Fig. 1.13(a) shows the EMG signal 

contaminated by the ECG interference. After an seven-level wavelet decomposition 

with the forth-order Symlet wavelet as a wavelet function [21], the coefficients in high-

scale low-frequency components at level cD5, cD6, and cD7 are shown in the left 
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panels of Fig.1.13 (b), (c), and (d), respectively. Then, they were processed with the 

nonlinear thresholding procedure. The coefficients after thresholding at level cD5, cD6, 

and cD7 are shown in the right panel of Fig.1.13 (b), (c), and (d), respectively. We can 

clearly see that the coefficients higher than the threshold were set to zero. Finally, Fig. 

1.13(e) shows the clean EMG signal 𝑥𝑐𝑙, which is obtained from the new coefficients 

by using inverse wavelet transform. Similarly, in [23], the forth-order Symlet wavelet 

was used as a wavelet function with eight-level wavelet decomposition. The nonlinear 

thresholding technique was applied with the coefficients of four-lowest frequency 

components, namely cD5, cD6, cD7, and cD8.  

 

Fig.1.13. An example of signal components from the ECG interference removal 

technique using wavelet transform [21].  

• Combination techniques 

Combination techniques are generally composed of the combination of two or 

more methods to eliminate the ECG interference from the EMG signals. Details of the 

combination techniques are as follows.  
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▪ Template subtraction combined with a high pass filter 

Combination method of a high pass filter with a template subtraction is used for 

removing the ECG interference contaminated in the EMG signals [17]. Five high pass 

filter with cut-off frequencies 20, 30, 40, 50, and 60 Hz were applied to the signals after 

performing with the template subtraction. However, the results show that there is no 

statistical improvement on the performance of the template subtraction combined with 

the high pass filter [17].  

▪ Artificial neural network combined with wavelet   transform 

Artificial neutral network (ANN) and wavelet transform is combined and used 

for removing ECG interference from EMG signals [24]. Fig.1.14 shows a block 

diagram of the combination technique based on ANN and wavelet transform [24]. 

Firstly, the ECG interference is removed from the contaminated EMG signals by using 

a nonlinear adaptive filer based on the neural network. Therefore, a large amount of 

ECG noises are removed during this process. However, low-frequency noise 

components remain in the signals, which can be further removed by using wavelet 

transform with a nonlinear thresholding technique in the second stage.  

 

Fig.1.14. A combination of ANN and wavelet transform technique [24]. 

▪ ANFIS combined with wavelet transform 

Combination of an adaptive neuro-fuzzy inference system (ANFIS) and a 

wavelet transfrom is a successful ECG removal technique in the contaminated EMG 

signals [20,83]. Fig.1.15 shows a block diagram of the combination technique based on 

ANFIS and wavelet transform [19]. ANFIS, which can be considered as a nonlinear 

adaptive noise filtering, was used for removing ECG interference in the first step [84]. 
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Then, the wavelet transfrom with nonlinear thresholding process, was used in the 

second step for removing the residual ECG interference between 0 and 15 Hz. In other 

words, the output signals from ANFIS was decomposed by the fourth order Symlet 

wavelet. Then, the wavelet coefficients in the low frequency scales were processed with 

a nonlinear thresholding tecnique, where the absolute value of the coefficients greater 

than a predefined threshold was set to zero [20].  

 

Fig. 1.15. A combination of ANFIS and wavelet transform [20]. 

• Performance evaluations 

Table 1.3 shows the comparisons of mean and standard deviation from 

various techniques discussed in Section 1.1.2.1 for removal of ECG interference from 

the contaminated EMG signal. Results showed that the performance based on SNR, 

RE, R, and MFRE, from the combination technique are better than other removal 

techniques, i.e. ANFIS, ANN, template subtraction, adaptive filtering, wavelet 

transform, and high pass filtering. ANFIS combined with wavelet transform is faster 

than a combination method of ANN and wavelet transform. As a result, although the 

similar performance between ANFIS+wavelet and ANN+wavelet is obtained, ANFIS 

combined with wavelet uses less computation time than a combination of ANN and 

wavelet transform. 
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Table.1.3. Comparisons of mean and standard deviation from various techniques for 

removal of ECG interference from the contaminated EMG signal.                                                          

Methods SNR (dB) RE R MFRE ET (s) 

ANFIS-wavelet [20] 14.97±1.34 0.02±0.02 0.99±0.02 0.12±0.01 0.27 

ANN-wavelet [24] 15.41±1.57 0.01±0.00 0.98±0.00   

ANFIS [20] 12.27±1.06 0.04±0.01 0.97±0.01 0.21±0.05 0.12 

ANN [20] 

ANN [24] 

11.85±1.16 

11.90±1.53 

0.05±0.02 

0.05±0.02 

0.96±0.01 

0.96±0.01 

0.23±0.03 0.31 

Subtraction [20] 

Subtraction [24] 

11.41±0.91 

11.47±1.33 

0.05±0.02 

0.05±0.02 

0.96±0.01 

0.96±0.00 

0.26±0.07 0.42 

RLS [20] 7.89±1.33 0.12±0.03 0.92±0.02 0.65±0.11 69 

RLS [24] 8.09±1.29 0.12±0.04 0.92±0.02   

Wavelet [20] 

Wavelet [24] 

5.26±0.69 

5.36±0.81 

0.14±0.12 

0.15±0.03 

0.86±0.03 

0.86±0.03 

0.71±0.13 

 

0.15 

HPF [20] 

HPF [24] 

7.75±0.79 

7.63±0.49 

0.12±0.05 

0.11±0.04 

0.89±0.01 

0.02±0.01  

0.82±0.12 

 

0.03 

ET: Estimated calculation time  

1.1.2.2. Power line interference   

• Digital filter  

Digital filter is used for removing power line interference from contaminated 

EMG signals [85-87]. The digital Butterworth filter proposed by Mello [26] was 

designed based on the frequencies characteristics of the power line signal. Thus, it was 

implemented as the convolution of six stop-band second-order Butterworth digital 

filters with rejection bands of 59–61, 119–121, 179–181, 239–241, 299-301, and 359-

361 Hz. Moreover, a high-pass second-order Butterworth digital filter with cut-off 

frequency of 10 Hz and a low-pass eight-order Butterworth digital filter with cut-off 

frequency of 400 Hz were used for removing low and high frequency noise. The zero-

phase filters were implemented on both the forward and reverse directions to obtain 

zero phase distortion. Note that, the stop-band filter was used instead of a notch filter 
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because it gave a better efficiency when the power line noise became a broadband noise 

with increased energy in higher harmonics due to saturation by the amplification.  

Later, Butterworth, Chebyshev, and Elliptic digital comb filters were used for 

removing power line interference from the contaminated EMG signals in [16]. They 

were implemented as a cascade of four stop-band second-order filters with rejection 

bands of 49–51, 99–101, 149–151 and 199–201 Hz. Moreover, zero-phase digital 

filtering was performed to avoid any phase shift [16]. 

• Adaptive filter 

Fig. 1.16 shows a basic structure of the adaptive Laguerre filter, which can be 

considered as a generalization of transversal filter. While L0(z) is a single pole low-pass 

filter, L(z) is a first order all-pass filter. The poles of all-pass filters are the same as the 

poles of low pass filter. The transfer function of L0(z) and L(z) are given by [27] 

 

.                                              𝐿𝑜(𝑧) =
√1−𝑎2

1−𝑎𝑧−1
                                                             (1.2) 

.                                             𝐿(𝑧) =
𝑧−1−𝑎

1−𝑎𝑧−1
, |𝑎| < 1.                                              (1.3) 

 

Fig. 1.16. The adaptive Laguerre filter [27]. 

The weight of the adaptive Laguerre filter was optimized using an LMS 

algorithm as given by 
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    𝑊(𝑘 + 1) = 𝑊(𝑘) + 𝜇𝑈(𝑘)𝑒(𝑘).             (1.4) 

Fig. 1.17 shows a block diagram of the adaptive power line noise canceller 

based on the adaptive Laguerre filter proposed in [27]. The reference signal that is 

correlated with the ECG interference is mathematically constructed by [27] 

𝑃𝐿𝐼𝑟𝑒𝑓 = cos(2𝜋50𝑡)+cos(2𝜋100𝑡)+cos(2𝜋200𝑡)+cos(2𝜋300𝑡)+cos(2𝜋400𝑡).         (1.5) 

The LMS algorithm was used for adjusting the locations of the poles and zeros. 

As a result, the optimum weights of the Laguerre filter can be obtained. Finally, the 

power line interference y(k) was estimated by the weighted linear combination of the 

filter outputs in the adaptive Laguerre filter.  

 

Fig. 1.17. Block diagram of the adaptive power line noise canceller based on an 

adaptive Laguerre filter proposed in [27]. 

In [16], the adaptive Laguerre filter was applied to remove power interference 

at frequency 50, 100, 150, and 200 Hz for comparisons with other techniques. As a 

result, the complex poles of the adaptive Laguerre filter was set at the frequencies of 

75, 125 and 175 Hz, respectively as suggested in the design by [27].  

• Wavelet transform  

Discrete stationary wavelet packet transform (DSWPT) is used to remove power 

line interference from the contaminated EMG signals [16,90-92]. DSWPT is a shift-

invariant transformation [93]. Fig. 1.18 shows the diagram of decomposition step in 

DSWPT. While the signal cAj at level j is decomposed by a low pass filter Fj resulting 

in the low frequency signal cAj+1 at level j +1, the signal cAj at level j is decomposed 
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by a high pass filter Gj resulting in the high frequency signal cDj+1 at level j +1. The 

fourth-order Meyer wavelet was used as a wavelet function with three-level wavelet 

decomposition.  

 

 

Fig. 1.18. The block diagram of decomposition step in DSWPT. 

Fig. 1.19 shows the flowchart used for removing power line interference at 

frequency 50, 100, 150, and 200 Hz based on DSWPT [16]. It consisted of 5 steps: (1) 

Detrend and resample signal to obtain a sampling frequency of 1000 Hz, (2) Perform 

DSWPT decomposition, (3) Estimate rough amplitude and phase of the noise signals, 

(4) Estimate fine amplitude and phase of the noise signals, and (5) Estimate the EMG 

signal by subtracting the fine estimation of power line interference from Step (4) from 

the contaminated EMG signal.   
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Fig. 1.19. The flowchart used for removing power line interference based on DSWPT 

[16]. 

• Performance evaluations  

Table 1.4 shows the comparisons of mean and standard deviation from various 

techniques discussed in Section 1.1.2.2 for removal of power line interference from the 

contaminated EMG signal using R. The DSWPT technique can present the best 

performance for simulation data and real data compared with the other filters, i.e., the 

digital Butterworth filter Type 1 and 2 [26], the adaptive Laguerre filter [28], 

Chebyshev filter [26], and Elliptic filter [26]. Moreover, it is important to note that the 

obtained correlation coefficient results remain almost constant for all the analyzed 
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cases, independently of the SNR values of the noisy signal. The correlation coefficient 

is 0.98–0.99. 

Table 1.4. Comparisons of mean and standard deviation from various techniques for 

removal of power line interference from the contaminated EMG signal using R [16]. 

SNR -20 dB -10 dB 0 dB 10 dB 20 dB 

Without filtering 0.1±0.08 0.3±0.07 0.71±0.03 0.95±0.00 1 

DSWPT [16] 0.98±0.04 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 

Adaptive filter [16] 0.1±0.08 0.3±0.08 0.68±0.09 0.91±0.01 0.94±0.02 

Butterworth (Type 1) [16] 0.39±0.20 0.78±0.09 0.95±0.02 0.98±0.01 0.98±0.01 

Butterworth (Type 2) [16] 0.49±0.09 0.86±0.04 0.96±0.02 0.98±0.01 0.98±0.01 

Cheyshev (Type2) [16] 0.33±0.08 0.74±0.05 0.96±0.02 0.99±0.01 0.99±0.01 

Elliptic (Type 2) [16] 0.33±0.08 0.74±0.05 0.96±0.02 0.99±0.01 0.99±0.01 

 

1.1.2.3.  Motion artifact  

• Digital filter 

There are a variety of digital filtering techniques for removing motion artifacts 

from previous publications. A high-pass eighth-order Chebyshev filter with cut-off 

frequency of 20 Hz is used for removing the motion artifacts from contaminated EMG 

signals in [30]. Fig. 1.20 (a)-(c) show the synthetic signal simulating two bursts of 

muscular contraction with a SNR 15 dB, the same signal corrupted by a real motion 

artifact and noise removal by the Chebyshev filter.  We can see that the Chebyshev 

filter is not suitable for extracting bursts in the case of high motion artifacts superposed 

to the trace. In addition, a high-pass second-order Butterworth filter at a corner 

frequency of 20 Hz and a slope of 12 dB per octave is used for removing the motion 

artifacts from contaminated EMG signals in [14].  

A moving average filter is also used for removing motion artifacts from EMG 

signals [30]. It was implemented by using a window consisting of 49 samples and 

shifting on the signal by one sample step at sampling frequency 1000 Hz. The average 
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data sample was estimated in each step. As a result, the value obtained from these steps 

was assigned to the central window sample. Then, the motion artifact was removed by 

subtracting the average data sample from the contaminated EMG signal. Moreover, a 

moving median filter was used to estimate the motion artifact and was subtracted from 

the contaminated EMG signal [30].  

 

Fig. 1.20. (a) The synthetic signal generated by amplitude modulating a white noise 

sequence in order to obtain a signal simulating two bursts of muscular contraction with 

a SNR 15 dB. (b) The same signal corrupted by a real motion artifact. (c) Noise removal 

by the high pass filter. (d) Noise removal by moving average filter. (e) Noise removal 

by moving median filter. (f) Noise removal by wavelet procedures [30]. 
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• Wavelet transform 

Adaptive thresholding in wavelet transform was used for removing motion 

artifacts from contaminated EMG signals [30]. The wavelet function used was an 

orthogonal Meyer wavelet. After the contaminated signal was decomposed using 

discrete wavelet transform, the wavelet coefficients were categorized into 2 classes, 

namely, a burst zone comprising the mixture of artifacts and EMG signals and an inter-

burst zone consisting of only the artifacts. Then, the adaptive threshold was computed 

to suppress the wavelet coefficients from the artifacts. Finally, an inverse discrete 

wavelet transform was used to produce the cleaned EMG signal. Fig. 1.20 (d)-(f) shows 

the performance results of noise removal by moving average filter, moving median 

filter, and wavelet procedures in [30]. Results show that the wavelet transform 

technique gives the best performance.  

Table 1.5. Comparisons of mean and variance of the MSE values from 4 techniques for 

removal of motion artifacts in [30]. 

MSE High-pass Moving median Moving average Wavelet 

Mean value 2.41.10-3 1.78.10-3 1.5.10-3 1.3.10-3 

Variance 2.6.10-6 7.1.10-7 6.7.10-7 4.4.10-7 

 

Table 1.5 shows the comparisons of mean and variance of the MSE values from 

4 techniques for removal of motion artifacts from the contaminated EMG signal 

discussed in Section 1.1.2.1. Results show that the wavelet transform technique gives 

the best performance, which agrees well with the signal plots shown in Fig. 1.20. 

 

1.2. Research objective 

• To develop a novel algorithm for estimating SNR and removing the noise 

contaminated in the EMG signal in order to obtain the high quality EMG signal. 
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1.3. Research scope 

• In this thesis, only three types of noise contaminated in the EMG signal, namely, 

ECG interference, power line interference, and motion artifact, will be focused. 

1.4. Contribution to this thesis 

 This thesis studied the contaminations in the EMG signal and 

corresponding noise removal techniques. We have developed a novel SNR estimating 

algorithm and a novel noise removal algorithm for three types of noise contaminated in 

the EMG signal, i.e. ECG interference, power line interference, and motion artifact. On 

the one hand, for the SNR estimating algorithm, we calculate the feature that is 

popularly used in recognizing EMG signals. Then, the feature is used as an input of a 

neural network (NN). The NN output is an SNR estimate. The results showed that the 

high average correlation coefficient was obtained. On the other hand, for the noise 

removal algorithm, we proposed to remove noise from the EMG signal while taking 

into account the SNR. The contaminated EMG signal is decomposed using DSWT. The 

coefficients for the levels that are contaminated by noise are set to zero when their 

absolute values are less than or equal to a threshold determined for each SNR level. A 

clean EMG signal can then be obtained by inverse DSWT mapping of the new 

thresholded coefficients. The performance based on mean absolute error, correlation 

coefficient, and relative error shows that the DSWT method is better than a high-pass 

filter. 

 1.5. Thesis structure 

 This thesis is partitioned into five chapters including Chapter 1 

Introduction, Chapter 2 Background Chapter 3 Materials and Methods, Chapter 4 

Results and Discussion, and Chapter 5 Conclusions. The details of each chapter are 

described as follows. 

 Chapter 1 represents the introduction to EMG signal, applications of 

EMG signal, and an EMG recognition system. The literature review based on types of 

noise contaminated in EMG signals is presented to point out the study direction.  
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 Chapter 2 describes the background theories of methods used in this 

research consisting of discrete stationary wavelet transform (DSWT), feature 

calculation and neural network. 

 Chapter 3 presents the data generation and methods used in this thesis.  

The methods can be divided into five main sections: ECG interference removal 

algorithm based on DSWT, SNR estimation in EMG signals contaminated with ECG 

interference, threshold estimation EMG signals contaminated with ECG interference, 

SNR estimation in EMG signals contaminated with powerline interference, SNR 

estimation in EMG signals contaminated with motion artifact. 

 Chapter 4 shows and discusses the results from the EMG signal 

analysis described in Chapter 3. The results are divided into five main sections 

according to the methods in Chapter 3: removal of ECG interference based on DSWT, 

threshold estimation EMG signals contaminated with ECG interference, SNR 

estimation in EMG signals contaminated with ECG interference, SNR estimation in 

EMG signals contaminated with power line interference, and SNR estimation in EMG 

signals contaminated with motion artifact. 

 Chapter 5 presents the conclusions of the noise removal algorithm in the 

EMG signals contaminated, SNR estimation in EMG signals contaminated with noise, 

and threshold estimation in EMG signals contaminated with noise described in Chapter 

3, the summary of this thesis, and future work. 
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CHAPTER 2  

BACKGROUND 

In this chapter, the background theories of methods used in this research 

are mentioned. The details of discrete stationary wavelet transform (DSWT) are 

presented in Section 2.1. The description of feature calculation and neural network are 

described in Section 2.2 and Section 2.3, respectively. 

 

2.1 DSWT 

DWT may be replaced with DSWT in some applications where time-

invariance is required. DSWT can be implemented by removing the down-samplers and 

up-samplers in DWT, and by modifying the filters by upsampling the coefficients from 

the previous decomposition level. However, DSWT is a redundant transform, which 

contains the same number of samples between the input and the output at each 

decomposition level [94].  

Let x[n] be a signal to be decomposed using L- level DSWT. Two 

outputs from first level decomposition consist of the approximation coefficients, cA1, 

from the convolution between a low-pass filter h1[n] and the input signal x[n] and the 

detail coefficients, cD1, from the convolution between a high-pass filter g1[n] and the 

input signal x[n]. Note that the lengths of x[n], cA1, and cD1 are the same. In the next 

level decomposition, the approximation coefficients, cA1, will be used as input. The 

filters h1[n] and g1[n] are modified by upsampling to h2[n] and g2[n]. The outputs from 

second level decomposition can be obtained by convolving cA1 with h2[n] and g2[n] 

resulting in the approximation coefficients cA2 and the detail coefficients cD2, 

respectively. We can keep repeating these operations until the decomposition level L is 

reached. Fig.2.1 (a) and (b) shows an example of 5-level DSWT decomposition and the 

upsampling operation for the filters at each decomposition level, respectively. Fig. 2.2 

shows an example of 5-level DSWT reconstruction, where hj[n] and gj[n] are 

reconstruction low-pass and high-pass filters at level j, respectively. 
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(a) 

(b) 

Fig. 2.1. (a) Example of 5-level DSWT decomposition. (b) Upsampling operation for 

the filters in each decomposition level [95]. 

 

Fig. 2.2. Example of 5-level DSWT reconstruction [95]. 
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2.2 Feature calculation 

Feature calculation plays a vital role in improving the performance of 

the EMG signal recognition system. It is not only a process for reducing the 

dimensionality of the EMG signals but also useful in extracting significant information. 

Based on the literature review, the features used with the EMG signal can be 

categorized into 3 groups, namely, amplitude based features, frequency based features, 

and statistics based features. We selected two popular features from each group as a 

representation. We do not randomly select any features into our algorithm development 

to increase relevance and avoid redundancy.  In this thesis, six popular features for the 

EMG signal recognition are used in estimating SNR including skewness (SKEW), 

kurtosis (KURT), mean absolute value (MAV), wavelength (WL), zero crossing (ZC), 

and mean frequency (MNF). While KURT and SKEW are statistics based features, 

MAV and WL represent the category of amplitude based features. Besides, ZC and 

MNF are from the category of frequency based features. Brief details of each feature 

calculation are as follows. 

• SKEW is a measure of asymmetry in probability distribution from EMG 

amplitudes. It is given by [96,97] 

                   SKEW =  

1

N
∑ (xi-μ)

3N
i=1

(√
1

N
∑ (xi-μ)2N
i=1 )

3 ,            (2.1) 

where  is an average value, xi is the normalized EMG amplitude, and N is 

the total number of EMG samples under calculation. 

• KURT is used to measure the tail characteristic of the probability 

distribution from the EMG amplitudes. It can be expressed as [97-99] 

                   KURT = [
1

N
∑ xi

4N
i=1

(
1

N
∑ xi

2N
i=1 )

2] -3.               (2.2) 
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• MAV is defined as one of the most popular features and widely used in the 

analysis of the EMG signal. MAV can be calculated by an average of the 

absolute values of the EMG amplitudes in a sampled segment. It can be 

given by [11,100]  

 

MAV=
1

N
∑|xi|

N

i=1

          (2.3) 

• WL is used for measuring the complication of the EMG signal and the 

increase in the length of EMG waveform over a time segment, which can be 

expressed as [11] 

 

WL= ∑|xi+1-xi|

N-1

i=1

                    (2.4) 

• ZC is determined to quantify the frequency information of the EMG signal. 

It is defined as the number of times that the EMG amplitudes pass the zero 

level. We can add the threshold to prevent low voltage fluctuations or 

background noise. ZC is described by [11,101] 

                                        ZC= ∑ [f(xi×xi+1)and|xi-xi+1|≥10]N-1
i=1                               (2.5) 

                     where          


 

=
otherwise0

0if1
)(

,

x,
xf  

•  MNF is the sum of the product of the EMG power spectrum and the 

frequency divided by the total sum of the spectrum intensity. It is also known 

as not only the average frequency but also the center frequency or the spectral 

center of gravity [11,102]. It can be given by [11,103]  

  

               MNF = ∑ f
j
Pj

M
j=1 ∑ Pj

M
j=1⁄                                          (2.6) 
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where f
j
 is the frequency of the spectrum at frequency bin j, Pjis the EMG 

power spectrum at frequency bin j, and M is the number of the frequency 

bins. 

2.3 Neural network   

Neural network (NN) has been successfully applied to a variety of 

applications, such as speech recognition [104], image analysis [105] and adaptive 

control [106]. In this paper, NN was used to estimate the SNR when the features 

described in Section 2.1 were the input. We used a two-layer feedforward network with 

a sigmoid transfer function in the hidden layer and a linear transfer function in the 

output layer. Levenberg-Marquardt optimization was performed as a network training 

function in updating weight and bias values [107]. We evaluated performance between 

the SNR target and the estimated SNR from NN using a correlation coefficient (CC), 

which can be expressed as [17,20,108] 

        CC =
∑ (𝑠𝑡(𝑖)−𝑠𝑡̅)(𝑠𝑒(𝑖)−𝑠𝑒̅)𝑁

𝑖=1

√∑ (𝑠𝑡(𝑖)−𝑠𝑡̅)2𝑁
𝑖=1 √∑ (𝑠𝑒(𝑖)−𝑠𝑒̅)2𝑁

𝑖=1

,                                        (2.7) 

where st is the true SNR and se is the estimated SNR. CC values measure the correlation 

between outputs and targets. While a CC value of 1 means a close relationship, a CC 

value of 0 is a random relationship. 

 



35 

 

CHAPTER 3  

METHODS 

In this chapter, the data generation and methods used in this research are 

described. The details of data are described in Section 3.1. The materials and methods 

of ECG interference removal algorithm based on DSWT and SNR estimation in EMG 

signals contaminated with ECG interference are described in Section 3.2 and Section 

3.3. The materials and methods for threshold estimation in EMG signals contaminated 

with ECG interference, SNR estimation in EMG signals contaminated with power line 

interference, and SNR estimation in EMG signals contaminated with motion artifact 

are mentioned in Section 3.4, Section 3.5, and Section 3.6, respectively. 

3.1. Data generation 

3.1.1. Simulated EMG 

Simulated EMG signals were used in this thesis because we would like 

to make sure that there was no noise contaminated in the EMG signal.  The simulated 

EMG is generated by filtering white Gaussian noise with a band-pass filter, whose 

transfer function is given by [108] 

                                H(f) = 
jfU

2
f

(fL+jf)(fU+jf)
2                                                 (3.1) 

where fL is the lower frequency parameter, which is random from 30-60 Hz and fU is the 

upper-frequency parameter, which is random from 30-100 Hz plus fL. The band-pass 

filter H(f) was implemented based on Least P-norm optimal IIR filter design. The length 

of each signal was 2000 samples, which is equivalent to 2 s at a sampling rate of 1000 

Hz. Fig. 3.1 shows the waveform of simulated EMG generated with    fL = 45 Hz and 

fU = 110 Hz in the time domain (Top panel) and corresponding power spectra in the 

frequency domain (Bottom panel). We can see that the power spectrum from simulated 

EMG signal (solid line) agrees well with that from the bandpass filter H(f) (dotted line). 
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3.1.2.   Simulated ECG 

We generate simulated ECG signals using a dynamical model based on 

three coupled ordinary differential equations, which can be expressed as [109] 

                                     ẋ = x-y                                                              (3.2) 

                                     ẏ = αy+x                                         (3.3) 

                                            z = - ∑ ai∆θi exp (-
∆θi

2

2bi
2) -(z-z0)i∈{P,Q,R,S,T}

̇
                      (3.4) 

where, α=1-√x2+y2 , ∆θi=(θ-θi) mod 2π, θ = atan2(y,x) (the four quadrant arctangent 

of the real parts of the elements of x and y, with -π ≤ atan2(y,x) ≤ π) and ω is the angular 

velocity of the trajectory as it moves around the limit cycle. The parameters i, ai, and 

bi for the PQRST points were suggested by visualization of ECG from a healthy subject. 

In this paper, the values used for all three parameters in the simulation are given in 

Table 3.1. The simulated ECG signal was generated with a sampling frequency of 256 

Hz. Mean heart rate was randomly selected from 60-100 beats per minute. We chose 

the length of the analyzed signals to be 2 s. The heart rate was randomly selected 

between 60-100 beats per minute. As a result, two to three normal beats of ECG 

interferences were seen in the contaminated EMG signals as shown in Fig. 4.1. If the 

length was too short, we might not see the ECG interference and could not compute the 

optimum threshold. We required additional calculations to set the heart rate, which were 

not included in Equation (3.2)-(3.4). Fig. 3.2 shows an example of simulated ECG 

signals from 2 mean heart rates in the time domain (Top panel) and their power spectra 

in the frequency domain (Bottom panel). 
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Fig. 3.1. Simulated EMG in the time domain (Top panel) and its power spectrum in the 

frequency domain (Bottom panel). Solid line: Power spectrum from the simulated EMG 

signal. Dotted line: Frequency response of the bandpass filter H(f). 

Table 3.1. Specific parameters used for generating simulated ECG. 

Parameter Description P Q R S T 

i (degrees) Angles of extrema -70 -15 0 15 100 

ai z-position of 

extrema 

1.2 -5.0 30.0 -7.5 0.75 

bi Gaussian width of 

peaks 

0.25 0.1 0.1 0.1 0.4 
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Fig. 3.2. Examples of simulated ECG signals in the time domain (Top panel) and their 

power spectra in the frequency domain (Bottom panel) when the mean heart rates are 

60 (solid line) and 100 (dotted line) beats per minute.  

3.1.3.   Real ECG 

The real ECG signal was obtained from the MIT-BIH arrhythmia 

database. We acquire a normal ECG beat from 40 records with 20 s for each record. 

Subsequently, each record was resampled from 360 Hz to 1000 Hz to match with the 

sampling rate of the EMG signal. Finally, each 20-s data were segmented into 2 s data.  

3.1.4. Simulated power line interference 

Simulated power line interference is generated by adding a sine wave 

with a random phase (without harmonics) to the required SNR level. The simulated 

power line interference signal was generated with a sampling frequency of 1000 Hz. 
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Phase is random between [0 2] and frequency is random between 49.5 and 50.5 Hz 

[110].  

3.1.5. Simulated motion artifact 

Simulated motion artifact was generated by filtering white Gaussian 

noise with the fourth-order Butterworth low-pass filter at a cut-off frequency 20 Hz. A 

sampling frequency of 1000 Hz was used [14,111]. 

3.1.6.   EMG contamination 

We generated 9 types of EMG signals contaminated with ECG 

interference, namely with SNR levels from, -20 dB to 20 dB at 5 dB increments. The 

SNR was calculated using the equation given by 

                                                                                                           (3.5)   

where Px was an average power of the EMG signal and Pn was an average power of the 

ECG interference. Two datasets were generated. While the first dataset consisted of the 

simulated EMG signal contaminated with the simulated ECG interference, the second 

dataset comprised the simulated EMG signal contaminated with real ECG interference. 

Details of generating each dataset are as follows. 

• Simulated EMG contaminated with simulated ECG (SMSC): Fifty simulated 

ECG signals and 50 simulated EMG signals were randomly chosen and mixed 

with amplitude scaling to produce the EMG signals contaminated with ECG at 

each desired level of SNR. 

• Simulated EMG contaminated with real ECG (SMRC): The procedure was 

similar as for the first dataset, except that the simulated ECG signals were 

replaced with real ECG signals. As a result, fifty simulated EMG signals 

contaminated with real ECG interference were obtained at each SNR level. 

,
P

P
log10SNR 10 










=

n

x
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3.2. Removal of ECG interference based on DSWT 

                   

  

 
 

Fig. 3.3.  General block diagram of noise removal in the contaminated EMG signal. 

We describe a noise removal model in this section. Fig. 3.3 shows a 

general block diagram of noise removal in the contaminated EMG signal where xu is an 

uncontaminated EMG signal, n0 is ECG interference, xc is a contaminated EMG signal, 

and xcl is a contaminated EMG signal that is cleaned by noise removal. After noise 

removal, the performance of the technique can be measured using criteria based on the 

mean absolute error (MAE), correlation coefficient (CC), and relative error (RE). We 

determined three performance measurement methods in this thesis, i.e., the mean 

absolute error (MAE), correlation coefficient (CC), and relative error (RE). While MAE 

measures the difference of the clean EMG signal from the uncontaminated EMG signal 

in the time domain, RE measures the difference in the frequency domain. On the other 

hand, CC indicates the similarity between the clean and uncontaminated EMG signals. 

We determined all three measure methods to demonstrate the consistent performance 

of the proposed algorithm. The MAE can be expressed as [16] 

                       MAE=
1

𝑁
∑|𝑥𝑢 − 𝑥𝑐𝑙|.                                                       (3.6) 

The closer MAE is to 0, the better is the noise removal. The CC is given by [16,17], 

        CC =
∑ (𝑥𝑢(𝑖)−𝑥̅𝑢)(𝑥𝑐𝑙(𝑖)−𝑥̅𝑐𝑙)𝑁

𝑖=1

√∑ (𝑥𝑢(𝑖)−𝑥̅𝑢)2𝑁
𝑖=1 √∑ (𝑥𝑐𝑙(𝑖)−𝑥̅𝑐𝑙)2𝑁

𝑖=1

,                                          (3.7) 

where 𝑥𝑢 is the mean value of uncontaminated EMG signal and 𝑥𝑐𝑙 is the mean value of 

the cleaned EMG signal. The closer CC is to 1, the better is the noise removal. The RE 

can be expressed as [20, 24] 

Noise removal technique 
𝑥𝑐 𝑥𝑢 𝑥𝑐𝑙 

𝑛0 
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                                           RE= 
∑{𝑃𝑥𝑢(𝑓)-𝑃𝑥𝑐𝑙

(𝑓)}2

∑ 𝑃𝑥𝑢 (𝑓)
2  ,                                                                      (3.8) 

where 𝑃𝑥𝑢
(𝑓) is the power spectrum of uncontaminated EMG signal and 𝑃𝑥𝑐𝑙

(𝑓) the 

power spectrum of the cleaned EMG signal. The closer RE is to 0, the better is the noise 

removal. 

The proposed method for removing the ECG interference from the EMG 

signal based on DSWT consists of 3 main stages, namely, DSWT decomposition, 

thresholding, and DSWT reconstruction. Details on each stage are as follows. 

Stage (1) Decompose the contaminated EMG signal using 5-level DSWT with the 

Symlet wavelet function. The Symlet wavelet function was chosen in this 

paper from the guideline on its successful removal of ECG interference from 

EMG signal in previous publications [21, 24]. Table 3.2 shows the frequency 

bands for the wavelet coefficients in the decomposition. We can see that the 

cutoff frequency of HPF used for removing ECG interference, which is 30 

Hz [17, 21, 29, 30], agrees well the combined frequency range of cA5 and 

cD5.      

Table 3.2. Frequency bands in the 5-level DSWT decomposition. 

Level (k) cAk (Hz) cDk (Hz) 

1 0-250 250-500 

2 0-125 125-250 

3 0-62.5 62.5-125 

4 0-31.25 31.25-62.5 

5 0-15.625 15.625-31.25 

    

Stage (2)  Process the coefficients at cD4 and cD5, which are contaminated by the ECG 

interference, with a nonlinear thresholding procedure. In other words, the 

coefficients for cD4 and cD5, whose absolute values are less than or equal to 

the threshold value, are set to zero. The threshold values are varied from 0 to 

10 with increments of 1. As a result, 1111 = 121 combinations of threshold 
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levels for cD4 and cD5 are tested. The thresholds that give the best 

performance based on MAE are selected as optimal. Note that the 

coefficients in cA5 are set to zero because there are no EMG components in 

this frequency band. 

Stage (3) Obtain the clean EMG signal by applying inverse DSWT to the new 

coefficients after thresholding from Stage (2). 

The performance of the DSWT method was compared with the linear 

filter technique based on Butterworth HPF [17]. The Butterworth filter was designed 

using a fourth-order HPF with cutoff frequency 30 Hz and was implemented in both 

forward and reverse directions to avoid phase distortions. The performance of the 

DSWT method was evaluated and compared based on MAE, CC, and RE using mean 

and standard deviation from 50 signal implementations at each SNR.  

3.3. SNR estimation in EMG signals contaminated with ECG 

interference 

3.3.1. Feature evaluation in EMG signals contaminated with ECG 

interference 

We describe the method used for evaluating features in this section. 

Firstly, we generated the EMG signals contaminated with the ECG interferences at 5 

SNR levels from -20 dB to 0 dB with a step size of 5. The SNR [-20, 0] dB was of 

interest because we obtained an excellent detection on the type of noise when the SNR 

is lower than 0 dB [37]. After the type of noise was known, SNR was estimated with 

the algorithm that was appropriate to the detected type of noise. The dataset contained 

the contamination of the simulated EMG signal with the real ECG interference. Fifty 

real ECG signals were randomly chosen and were amplitude scaling with fifty 

simulated EMG signals at each SNR level. The SNR was calculated using the Equation 

(3.5). 

Secondly, after the contaminated EMG signal was generated, it was 

normalized to have unit energy. Normalization was described by  



43 

 

      x𝑖= 
x𝑗

√∑ xj
2N

i=1

                                                             (3.9) 

where xi is the normalized EMG amplitude, xj is the EMG amplitude, and N is the length 

of the signal. Subsequently, the cD4 and cD5 coefficients were determined from the 

normalized EMG signals. The cD4 and cD5 coefficients were of interest in this study 

because their frequency bands, namely 31.25-62.5 Hz and 15.625-31.25 Hz, correspond 

to the frequency component of the ECG interference. Moreover, the Symlet wavelet 

function was used as suggested from [21].    

Finally, we generated six features, namely, SKEW, KURT, MAV, WL, 

ZC, and MNF, from 50 normalized contaminated EMG signals, cD4, and cD5 

coefficients for each SNR level. The boxplots of each feature as a function of 5 SNR 

levels were used in the evaluation.  

3.3.2. Training and testing data preparation for SNR estimation 

The EMG signals contaminated with the ECG interference were 

generated using uniformly random SNR in the range of [-20, 0] dB. Subsequently, we 

generated two datasets. The first dataset comprised the contamination of simulated 

EMG signal with the simulated ECG interference. The second dataset contained the 

contamination of the simulated EMG signal with the real ECG interference. Details of 

each dataset generation are as follows. 

• Contamination of simulated EMG with simulated ECG (SMSC): Three 

hundred pairs of simulated ECG and EMG signals were randomly selected 

and combined with amplitude scaling to obtain the EMG signals 

contaminated with the ECG interference in the range of SNR levels from -

20 to 0 at a uniform random distribution. This dataset was used in the 

training step. 

• Contamination of simulated EMG with real ECG (SMRC): This dataset has 

the same generation process as the SMSC dataset except substituting the 

simulated ECG signals with the real ECG signals. One hundred simulated 

EMG signals and 100 real ECG signals were randomly chosen. 

Subsequently, they were combined to achieve SNR in the range of [-20 0] 
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dB with a uniform random distribution. This dataset was used in the testing 

step. 

After EMG contamination, we normalize signals and calculate features 

from both SMSC and SMRC dataset using the method described in Section 3.2. 

 

3.3.3. SNR estimation algorithm 

 

Fig. 3.4. Flowchart of SNR estimation algorithm. 

Start 

Stage (5) Evaluate performance 

between the target and 

estimated SNR 

Stage (4) Test NN with SMRC 

dataset 

Stage (3) Normalize SMRC 

features 

Stage (2) Train NN with SMSC 

dataset 

Stage (1) Normalize SMSC 

features 

Stage (6) Repeat Stage (1)-(5) 

five times 

End 
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The proposed method for estimating SNR consists of 6 main stages 

shown in the flowchart of Fig. 3.4. Details on each stage in the flowchart are as follows. 

• Stage (1) Normalize each feature from the SMSC dataset by  

                                                        z= 
 f -


                                                                 (3.10) 

where f is a feature,  and  are the mean and standard deviation of each 

feature, respectively.  

• Stage (2) Train NN with the normalized features from Stage (1).  The input 

vectors and targets vectors will be randomly divided into three sets as 

follows: 70% will be used for training, 15% will be used to validate that the 

network is generalizing and to stop training before overfitting. The last 15% 

will be used as a completely independent test of generalization. The number 

of hidden neurons is 20. 

• Stage (3) Normalize each feature from the SMRC dataset using Equation 

(3.10) and use them as the testing data.  

• Stage (4) Apply the trained NN from Stage (2) to the testing data from Stage 

(3).  

• Stage (5) Evaluate performance between the SNR target and the estimated 

SNR from NN using CC. 

• Stage (6) Repeat Stage (1)-(5) for five times using new generated SMSC 

and SMRC data. Evaluate the performance of the proposed algorithm using 

the mean and standard deviation from 5 CC values. 

 

3.4. Threshold estimation in EMG signals contaminated with ECG 

interference 

3.4.1.   Training and testing data preparation 

The EMG signals contaminated with the ECG interference were 

generated using uniformly random SNR in the range of [-20, 0] dB. Subsequently, we 
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generated two datasets. The first dataset comprised the contamination of simulated 

EMG signal with the simulated ECG interference. The second dataset contained the 

contamination of the simulated EMG signal with the real ECG interference. Details of 

each dataset generation are as follows. 

• Contamination of simulated EMG with simulated ECG (SMSC): Three 

hundred pairs of simulated ECG and EMG signals were randomly selected 

and combined with amplitude scaling to obtain the EMG signals 

contaminated with the ECG interference in the range of SNR levels from -

20 to 0 at a uniform random distribution. Subsequently, the two optimal 

thresholds, i.e. Th1 for cD4 and Th2 for cD5, were determined using the 

method described in Section 3.2. This dataset was used in the training step.  

• Contamination of simulated EMG with real ECG (SMRC): This dataset has 

the same generation process as the SMSC dataset except substituting the 

simulated ECG signals with the real ECG signals. One hundred simulated 

EMG signals and 100 real ECG signals were randomly chosen. 

Subsequently, they were combined to achieve SNR in the range of [-20 0] 

dB with a uniform random distribution. This dataset was used in the testing 

step to estimate the threshold values Th1est and Th2est. 

After EMG contamination, we normalize signals and calculate features 

from both SMSC and SMRC dataset using the method described in Section 3.2.  

3.4.2. Threshold estimation algorithm 

The proposed method for estimating the threshold value for ECG 

interference removal based on DSWT has the same generation process as the SNR 

estimation algorithm as shown in the flowchart of Fig. 3.4 except substituting the 

threshold input with the SNR input. 
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3.5. SNR estimation in EMG signals contaminated with power line 

interference 

3.5.1. Feature evaluation in EMG signals contaminated with power line 

interference 

We describe the method used for evaluating features in this section. 

Firstly, we generated the EMG signals contaminated with the power line interference 

at 5 SNR levels from -20 dB to 0 dB with a step size of 5. The SNR [-20, 0] dB was of 

interest because we obtained an excellent detection on the type of noise when the SNR 

is lower than 0 dB [37]. After the type of noise was known, SNR was estimated with 

the algorithm that was appropriate to the detected type of noise. The dataset contained 

the contamination of the simulated EMG signal with the simulated power line 

interference. Fifty simulated power line interference signals were randomly chosen and 

were amplitude scaling with fifty simulated EMG signals at each SNR level. The SNR 

was calculated using the Equation (3.5). 

Secondly, after the contaminated EMG signal was generated, it was 

normalized to have unit energy. Normalization was described by Equation (3.9). 

Finally, we generated six features, namely, SKEW, KURT, MAV, WL, 

ZC, and MNF, from 50 normalized contaminated EMG signals, cD4, and cD5 

coefficients for each SNR level. The boxplots of each feature as a function of 5 SNR 

levels were used in the evaluation.  

3.5.2. Training and testing data preparation for SNR estimation 

The EMG signals contaminated with the power line interference were 

generated using uniformly random SNR in the range of [-20, 0] dB. Subsequently, we 

generated two datasets. The first dataset comprised the contamination of simulated 

EMG signal with the simulated power line interference. Details of each dataset 

generation are as follows. 

• Contamination of simulated EMG with simulated power line interference 

(SMSC): Three hundred pairs of simulated power line interference and 

EMG signals were randomly selected and combined with amplitude scaling 
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to obtain the EMG signals contaminated with the power line interference in 

the range of SNR levels from -20 to 0 at a uniform random distribution. 

This dataset was used in the training step. One hundred simulated EMG 

signals and 100 simulated power line interference signals were randomly 

chosen. Subsequently, they were combined to achieve SNR in the range of 

[-20 0] dB with a uniform random distribution. This dataset was used in the 

testing step. 

After EMG contamination, we normalize signals and calculate features 

from SMSC dataset using the method described in Section 3.2. 

3.5.3. SNR estimation algorithm 

The proposed method for estimating SNR has the same generation 

process as the SNR estimation algorithm as shown in the flowchart of Fig. 3.4 except 

substituting the powerline interference input with the ECG interference input. 

3.6. SNR estimation in EMG signals contaminated with motion 

artifact  

3.6.1. Feature evaluation in EMG signals contaminated with motion 

artifact 

We describe the method used for evaluating features in this section. 

Firstly, we generated the EMG signals contaminated with the motion artifact at 5 SNR 

levels from -20 dB to 0 dB with a step size of 5. The SNR [-20, 0] dB was of interest 

because we obtained an excellent detection on the type of noise when the SNR is lower 

than 0 dB [37]. After the type of noise was known, SNR was estimated with the 

algorithm that was appropriate to the detected type of noise. The dataset contained the 

contamination of the simulated EMG signal with the simulated motion artifact. Fifty 

simulated motion artifact signals were randomly chosen and were amplitude scaling 

with fifty simulated EMG signals at each SNR level. The SNR was calculated using the 

Equation (3.5). 
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Secondly, after the contaminated EMG signal was generated, it was 

normalized to have unit energy. Normalization was described by Equation (3.9). 

Finally, we generated six features, namely, SKEW, KURT, MAV, WL, 

ZC, and MNF, from 50 normalized contaminated EMG signals, cD4, and cD5 

coefficients for each SNR level. The boxplots of each feature as a function of 5 SNR 

levels were used in the evaluation.  

 

3.6.2. Training and testing data preparation for SNR estimation 

The EMG signals contaminated with the motion artifact were generated 

using uniformly random SNR in the range of [-20, 0] dB. Subsequently, we generated 

two datasets. The first dataset comprised the contamination of simulated EMG signal 

with the simulated motion artifact. Details of each dataset generation are as follows. 

• Contamination of simulated EMG with simulated motion artifact (SMSC): 

Three hundred pairs of simulated motion artifact and EMG signals were 

randomly selected and combined with amplitude scaling to obtain the EMG 

signals contaminated with the motion artifact in the range of SNR levels 

from -20 to 0 at a uniform random distribution. This dataset was used in the 

training step. One hundred simulated EMG signals and 100 simulated 

motion artifact signals were randomly chosen. Subsequently, they were 

combined to achieve SNR in the range of [-20 0] dB with a uniform random 

distribution. This dataset was used in the testing step. 

After EMG contamination, we normalize signals and calculate features 

from SMSC dataset using the method described in Section 3.2. 

3.6.3. SNR estimation algorithm 

The proposed method for estimating SNR has the same generation 

process as the SNR estimation algorithm as shown in the flowchart of Fig. 3.4 except 

substituting the motion artifact input with the ECG interference input. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

In this chapter, the results of the ECG interference removal algorithm 

based on DSWT as described in Chapter 3 are shown and discussed. The results of 

performance evaluation for the ECG interference removal algorithm based on DSWT 

using MAE, CC, and RE, respectively, compared to HPF as mentioned in Section 4.1. 

The results of feature evaluation and SNR estimation for ECG interference 

contaminated in the EMG signal as given in Section 4.2. The results of threshold 

estimation in EMG signals contaminated with ECG interference Section 4.3. The 

results of feature evaluation and SNR estimation for power line interference as 

discussed in Section 4.4 and motion artifact as described in Section 4.5. 

4.1. Removal of ECG interference based on DSWT 

4.1.1. Results 

We implemented the ECG interference removal algorithm based on 

DSWT as described in Section 3.2. In this section, we demonstrate the results of its 

performance using MAE, CC, and RE in Table 4.1, 4.2, and 4.3, respectively.  

Table 4.1 shows a comparison of MAE for DSWT and HPF noise 

removal techniques using SMSC and SMRC datasets indicating that DSWT 

outperforms HPF. Across the SMSC cases, MAE from DSWT decreased approximately 

from 0.15 to 0.08 when SNR increased from -20 to 20 dB. However, MAE for HPF 

was quite comparable at every SNR, at approximately 0.20. Across SMRC cases, we 

can see a similar trend as with SMSC for SNR from 0 to 20 dB. However, with SNR 

from -20 to -5 dB, MAE across SMRC was higher than across SMSC when compared 

by SNR.  

A comparison of CC for DSWT and HPF noise removal techniques 

across SMSC and SMRC datasets is shown in Table 4.2. The results show that CC for 

DSWT was better than for HPF. When the SNR increased from -20 to 20 dB, the CC 
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for DSWT increased from 0.96 to 0.99 across SMSC cases. However, CC for HPF was 

entirely consistent at approximately 0.96, independent of the SNR. With SMRC data, 

at SNR from 0 to 20 dB, we can see a similar trend as with SMSC.  

Table 4.1. Comparison of MAE for DSWT and HPF noise removal techniques. 

SNR(dB) SMSC SMRC 

DSWT HPF DSWT HPF 

-20 0.1598±0.0301 0.2296±0.0359 0.4146±0.1034 0.7396±0.2293 

-15 0.1468±0.0305 0.2071±0.0465 0.2968±0.0717 0.4181±0.1266 

-10 0.1286±0.0252 0.2122±0.0520 0.1930±0.0401 0.2894±0.0567 

-5 0.1180±0.0289 0.2021±0.0393 0.1600±0.0306 0.2477±0.0493 

0 0.1168±0.0295 0.2097±0.0441 0.1311±0.0288 0.2167±0.0430 

5 0.1070±0.0226 0.2057±0.0501 0.1070±0.0248 0.2129±0.0488 

10 0.0986±0.0223 0.2189±0.0460 0.0987±0.0212 0.2021±0.0421 

15 0.0871±0.0195 0.2060±0.0409 0.0942±0.0225 0.2137±0.0440 

20 0.0829±0.0187 0.2129±0.0464 0.0832±0.0180 0.2065±0.2078 

 

Table 4.2. Comparison of CC for DSWT and HPF noise removal techniques. 

SNR(dB) SMSC SMRC 

DSWT HPF DSWT HPF 

-20 0.9564±0.0156 0.9529±0.0143 0.8373±0.0808 0.5813±0.1577 

-15 0.9717±0.0105 0.9634±0.0169 0.9161±0.0356 0.7948±0.1021 

-10 0.9815±0.0066 0.9615±0.0197 0.9611±0.0171 0.9019±0.0512 

-5 0.9856±0.0067 0.9663±0.0125 0.9738±0.0097 0.9418±0.0268 

0 0.9863±0.0075 0.9634±0.0162 0.9813±0.0084 0.9582±0.0175 

5 0.9889±0.0047 0.9645±0.0186 0.9876±0.0069 0.9609±0.0184 

10 0.9915±0.0038 0.9601±0.0180 0.9903±0.0043 0.9655±0.0151 

15 0.9937±0.0028 0.9652±0.0137 0.9919±0.0038 0.9624±0.0154 

20 0.9944±0.0028 0.9618±0.0171 0.9943±0.0023 0.9644±0.0155 
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Table 4.3. Comparison of RE for DSWT and HPF noise removal techniques. 

SNR(dB) SMSC SMRC 

DSWT HPF DSWT HPF 

-20 0.0153±0.0199 0.0514±0.0420 0.2045±0.2263 45.38±67.2631 

-15 0.0142±0.0152 0.0607±0.0546 0.1054±0.2155 2.0230±3.7012 

-10 0.0120±0.0136 0.0774±0.0634 0.0164±0.0170 0.2648±0.4327 

-5 0.0124±0.0210 0.0647±0.0399 0.0586±0.0624 0.0724±0.0866 

0 0.0258±0.0340 0.0798±0.0550 0.0346±0.0389 0.0666±0.0560 

5 0.0380±0.0435 0.0791±0.0617 0.0102±0.0129 0.0723±0.0616 

10 0.0074±0.0094 0.0892±0.0582 0.0047±0.0069 0.0651±0.0496 

15 0.0137±0.0172 0.0727±0.0464 0.0051±0.0057 0.0825±0.0494 

20 0.0066±0.0117 0.0770±0.0521 0.0046±0.0048 0.0748±0.0547 

However, for SNR from -20 to -5 dB, CC across SMRC was lower than across SMSC 

when compared at similar SNR.  

Table 4.4. Comparison of optimal threshold levels based on MAE. 

SNR(dB) SMSC SMRC 

cD4 cD5 cD4 cD5 

-20 7.98±1.86 5.76±1.29 4.70±2.44 3.74±2.51 

-15 9.42±0.84 5.30±1.09 6.02±1.60 4.70±2.53 

-10 8.00±0.90 4.92±1.29 7.36±1.75 5.02±1.86 

-5 7.42±0.99 4.90±1.11 7.26±1.12 5.78±1.63 

0 7.42±0.97 4.76±0.92 7.26±1.10 5.14±1.26 

5 7.12±1.02 5.04±1.34 7.12±0.92 4.70±1.04 

10 7.16±1.09 5.34±1.26 7.22±0.79 4.90±1.31 

15 7.00±0.99 5.62±1.24 7.48±1.18 5.30±1.30 

20 7.16±1.15 5.38±1.14 7.40±1.23 5.22±1.07 
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A comparison of RE for DSWT and HPF noise removal techniques is 

shown in Table 4.3. Across SMSC, RE for DSWT was better than for HPF. Across 

SMRC, we can see that DSWT (0.2) provided a significantly better average RE than 

HPF (45.4) at SNR -20 dB. Also, a similar pattern is seen for SNR -15 and -10 dB.  

The SNR of the contaminated EMG signal affected the optimal threshold 

level. Table 4.4 shows the optimal threshold levels based on MAE in DSWT noise 

removal. For DSWT, significant differences in the threshold levels between the two 

datasets are observed at SNR -20 and -15 dB for both cD4 and cD5. The threshold 

levels with SMRC are smaller than those with SMSC, which may be caused by an 

attempt to remove other types of artifacts, such as power line interference, 

contaminating the EMG signals.    

4.1.2. Discussion 

In this section, we explored more insights of the results from Section 

4.1.1. Fig. 4.1 shows an example of signals from DSWT thresholding. Fig. 4.1(a) shows 

the EMG signal contaminated with simulated ECG at SNR of -20 dB. Fig. 4.1(b) depicts 

the signals from DSWT at cD4 decomposition level before thresholding with a dotted 

line and after thresholding with a solid line. The optimal threshold is 8. Therefore, the 

coefficients from cD4 decomposition level before thresholding, whose absolute values 

are greater than 8, are truncated to 0. Fig.4.1(c) shows similar processing for 

coefficients in cD5 decomposition level with the optimal threshold 6. Fig. 4.1(d)-(f) 

show the results from the EMG signal  
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Fig. 4.1. While the left column shows an example of results with SMSC, the right 

column shows an example of results with SMRC data. The top, middle, and bottom 

rows show EMG signal contaminated with ECG at SNR -20 dB, signals from DSWT 

at cD4 decomposition level, and signals from DSWT at cD5 decomposition level, 

respectively. Dotted line: Detail coefficients before thresholding. Thick line: Detail 

coefficients after thresholding. 

contaminated with real ECG at SNR of -20 dB. The optimal thresholds for the 

coefficients in cD4 and cD5 decomposition levels are 6 and 3, respectively. We can see 

the ECG signal component in cD4 of SMRC, but it is invisible in SMSC. These results 

indicate that the real ECG signal has the frequency range 32.5-62.5 Hz, which cannot 

be removed using the Butterworth HPF with cutoff frequency 30 Hz as proposed in 

[10]. 

After thresholding, the cleaned EMG signal was reconstructed. Fig. 

4.2(a) shows the cleaned EMG signal from DSWT obtained by inverse DSWT of 

thresholded coefficients, from Fig. 4.1(b)-(c), compared with the cleaned EMG signal 

from HPF (Fig. 4.2(b)) and the uncontaminated EMG signal (Fig. 4.2(c)). We can see 
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that both DSWT and HPF give similar waveforms compared to the uncontaminated 

EMG signal. Fig. 4.3(a) shows the absolute errors of cleaned EMG signal from DSWT 

and uncontaminated EMG signal (solid line) compared to those of the cleaned EMG 

signal from HPF and uncontaminated EMG signal (dotted line). We can see that the 

results from DSWT are better than from HPF, which matches the MAE for DSWT 

(0.1771) being better than that for HPF (0.2563). Fig. 4.3(b) shows the power spectrum 

for DSWT (thick line) compared with those for HPF (thin line) and uncontaminated 

EMG (dotted line). The power spectrum for DSWT is closer to that from 

uncontaminated EMG compared to that from HPF. These results are in agreement with 

RE. In other words, RE for DSWT is 0.0131 compared to 0.0460 for HPF. 

Fig. 4.2. Example of cleaned signals and the uncontaminated EMG signal from SMSC. 

(a) Cleaned EMG signal obtained by inverse DSWT of thresholded decomposition, 

from Fig. 7(b)-(c) . (b) Cleaned EMG signal from HPF. (c) Uncontaminated EMG 

signal. 
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Fig. 4.3. Comparison of cleaned EMG signals and uncontaminated EMG signal in 

SMSC data. (a) Absolute errors of cleaned EMG signal from DSWT and 

uncontaminated EMG signal (solid line) compared to those of cleaned EMG signal 

from HPF and uncontaminated EMG signal (dotted line). (b) The power spectrum of 

cleaned EMG signal from DSWT (thick line) compared to that of uncontaminated EMG 

signal (dotted line) and cleaned EMG signal from HPF (thin line). 

Similar results were obtained from SMRC data. Fig. 4.4 shows cleaned 

signals and their corresponding uncontaminated EMG signal in SMRC data. In Fig. 4.4 

(b), we can see that HPF cannot completely remove ECG interference at a time around 

0.4-0.6s, 1.2s, and 1.8-2s. These may be caused by other types of noise, such as power 

line interference in the EMG signals. However, the cleaned EMG signal from DSWT 

shown in Fig. 4.4(a) not only provides a significantly better result than HPF but also 

has an excellent agreement with the uncontaminated EMG signal shown in Fig. 4.4 (c). 
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Fig. 4.4. Example of cleaned signals and the uncontaminated EMG signal from SMRC. 

(a) Cleaned EMG signal from DSWT based algorithm as in Fig. 7(e)-(f). (b) Cleaned 

EMG signal from HPF. (c) Uncontaminated EMG signal. 

The absolute errors of cleaned EMG signal from DSWT and 

uncontaminated EMG signal (solid line) compared to those of cleaned EMG signal 

from HPF and uncontaminated EMG signal (dotted line) are shown in Fig. 4.5(a). We 

can see that DSWT gives better results than HPF does. As a result, MAE and CC for 

DSWT are noticeably better than those for HPF. In other words, while MAE and CC 

for DSWT are 0.4490 and 0.8353, MAE and CC for HPF are 0.8298 and 0.4831. Fig. 

4.5(b) shows the power spectra for DSWT (thick line), HPF (thin line), and 

uncontaminated EMG (dotted line). We can see that the power spectrum for DSWT is 

comparable with that for uncontaminated EMG. However, the power spectrum for HPF 

is significantly different from that of uncontaminated EMG. These results agree with 

RE for DSWT (0.1947) compared with that for HPF (43.6027). 
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Fig. 4.5. Comparison of cleaned EMG signals and uncontaminated EMG signal from 

SMRC. (a) Absolute errors of cleaned EMG signal from DSWT and uncontaminated 

EMG signal (solid line) compared to those of cleaned EMG signal from HPF and 

uncontaminated EMG signal (dotted line). (b) The power spectrum of cleaned EMG 

signal from DSWT (thick line) compared to that of uncontaminated EMG signal (dotted 

line) and cleaned EMG signal from HPF (thin line). 

When there are variations in the EMG recording, the power spectra of 

the EMG signal change. For example, the dominant frequency of the EMG recording 

decreases as a result of muscle fatigue, which can be measured using the median 

frequency [23]. The performances that we reported were based on the average and 

standard deviation of MAE, CC, and RE from the simulated EMG signals generated by 

the band-pass filter with variation in bandwidths. Therefore, the proposed approach 

would be applicable from the perspective of variations in the EMG recording. 
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4.2. SNR estimation in EMG signals contaminated with ECG 

interference 

4.2.1. Results 

4.2.1.1. Feature evaluation 

We determined six features with the contaminated EMG signals at five 

SNR levels generated using the method given in Section 3.3.1. Fig. 4.6 shows the 

boxplots from six features determined using SMRC data as a function of SNR. Fig. 

4.6(a) shows the boxplots of SKEW from raw, cD4, and cD5 data in the top, middle, 

and bottom panels, respectively. Fig. 4.6(b)-(f) show similar boxplots from other five 

features, namely, KURT, MAV, WL, ZC, and MNF. The WL feature from the raw 

EMG data gives the best separation of boxplot as shown in the top panel of Fig. 4.6(d). 

However, the SKEW features from cD4 and cD5 decomposition levels do not give good 

separation of boxplot as shown in Fig 4.6(a). 

4.2.1.2. SNR estimation 

We implemented the SNR estimation algorithm as described in Section 

3.3.2 and demonstrated the performance of SNR estimation for a single feature and 

paired features using CC in Table 4.5 and 4.6, respectively. Table 4.5 shows the mean 

and standard deviation for CC from different single features obtained with the SMRC 

data when these six features are calculated using raw, cD4, and cD5 EMG data. We can 

see that the WL feature from the raw EMG data gives the best average CC at 0.9663. 

The best average CCs from cD4 and cD5 are 0.7738 and 0.8359, respectively. These 

results show that the SNR estimation of the EMG signal contaminated with the ECG 

interference using the raw EMG data is better than that from the DSWT data. Table 4.6 

shows the mean and standard deviation for CC from different pairs of features obtained 

with the SMRC data. We can see that the combination of WL and MNF (WL+MNF) 

from the raw EMG data gives the best average CC at 0.9566. Fig 4.7 shows an example 

of the correlation plot for the SNR estimation from NN with the WL feature from the 
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raw EMG data. The cc value of 0.9784 agrees well with the results from the WL feature 

using the raw data (0.9663 ± 0.0085) shown in Table 4.5. 

(a) SKEW (b) KURT 

(c) MAV (d) WL 

 

(e) ZC (f) MNF 

Fig. 4.6. Boxplots of feature values determined using the SMRC data as a function of 

SNR. (a) SKEW. (b) KURT. (c) MAV. (d) WL. (e) ZC. (f) MNF. 
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Table 4.5. Mean and standard deviation of CC from different single features obtained 

with the SMRC data. 

Features Raw cD4 cD5 

SKEW 0.5541 ± 0.0754 -0.0896 ±0.0935 0.2054 ± 0.1834 

KURT 0.6400± 0.0409 0.6982 ± 0.0877 0.7678 ± 0.0162 

MAV 0.4903 ± 0.1109 0.7152 ± 0.0244 0.7137 ± 0.0219 

WL 0.9663 ± 0.0085 0.7738 ± 0.0244 0.8264 ± 0.0282 

ZC 0.8321 ± 0.0358 0.5064 ± 0.0602 0.8359 ± 0.0208 

MNF 0.9146 ± 0.0296 0.7114 ± 0.0858 0.5247 ± 0.0679 

 

Table 4.6. Mean and standard deviation of CC from different pairs of features obtained 

with the SMRC data.  

Features Raw cD4 cD5 

SKEW+KURT 0.3765±0.1037 0.5980±0.1137 0.7398±0.0573 

SKEW+WL 0.7591±0.2312 0.6599±0.0518 0.8295±0.0374 

SKEW+ZC 0.7686±0.0848 0.3412±0.0292 0.7966±0.0833 

SKEW+MAV 0.3903±0.1008 0.5491±0.1365 0.6882±0.0475 

SKEW+MNF 0.7743±0.0894 0.7103±0.0545 0.5002±0.0312 

KURT+WL 0.9475±0.0261 0.7192±0.0353 0.8649±0.0281 

KURT+ZC 0.8822±0.0329 0.6907±0.0673 0.8005±0.0278 

KURT+MAV 0.5172±0.0533 0.6732±0.0508 0.7083±0.0327 

KURT+MNF 0.8844±0.0364 0.7385±0.0414 0.7211±0.0685 

WL+ZC 0.8837±0.0470 0.7177±0.0473 0.8382±0.0248 

WL+MAV 0.9144±0.0392 0.7235±0.0458 0.8586±0.0184 

WL+MNF 0.9566±0.0097 0.6953±0.0821 0.7251±0.0841 

ZC+MAV 0.8597±0.0417 0.6994±0.0549 0.7936±0.0229 

ZC+MNF 0.9272±0.0229 0.7158±0.0517 0.7610±0.1661 

MAV+MNF 0.8517±0.0870 0.7331±0.0392 0.5857±0.1108 
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Fig. 4.7. Correlation plot between the SNR target and the estimated SNR from NN 

when the input is the WL features determined using the SMRC dataset. 

4.2.2. Discussion 

In this section, we investigated more insights into the results from 

Section 4.2.1. Fig. 4.8(Left column) shows the raw, cD4, and cD5 EMG data from 

SMRC, respectively. Fig. 4.8(Right column) shows their corresponding absolute 

difference of two adjacent amplitudes from the signals in the left column. It is evident 

that the absolute difference of two adjacent amplitudes from the WL feature determined 

using the raw EMG and cD5 data are better than those from the cD4 data. As a result, 

the average CC value from WL using the raw EMG data provides the best result at 
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0.9663 compared to that from cD4 at 0.7738 and cD5 at 0.8264. Moreover, these results 

are in agreement with the boxplots shown in Fig. 4.6(d).  

We can gain more insight into SKEW and KURT from histograms. Fig. 

4.9(Left column) shows histograms from raw, cD4, and cD5 in the top, middle, and 

bottom rows, respectively. We can see that the histograms from the cD4 and cD5 data 

are more symmetry than those from the raw EMG data. As a result, the SKEW values 

are more overlapped. These results agree with the boxplot of SKEW values as a 

function of 5 SNR levels shown in Fig. 4.6(a). Also, they agree with the average CC 

values. In other words, the raw EMG data give better average CC (0.5541) compared 

to that from cD4 (-0.0896) and cD5 (0.2054) data when SKEW is used as a feature. 

However, the tailedness of histograms can be distinguished among raw, cD4, and cD5 

EMG data when SNRs increase. Therefore, the average CC values from KURT using 

raw, cD4, and cD5 data are comparable and better than those from SKEW at 0.6400, 

0.6982, and 0.7678, respectively. These are also supported by the degree of separation 

of the boxplots shown in Fig. 4.6(a)-(b).  

We can understand MNF better with power spectra. Fig. 4.9(Right 

column) shows the power spectra from the raw, cD4, and cD5 EMG data in the top, 

middle, and bottom rows, respectively. The power spectra from the raw EMG and cD4 

data have a higher degree of separation than those from the cD5 data with SNR 

increment. In other words, the cD5 data do not give a difference in MNF when SNRs 

increase because of their similarity in power spectra. Therefore, the average CC value 

from MNF using the raw EMG data gives the best result (0.9146) compared to those 

from MNF using the cD4 (0.7114) and cD5 (0.5247) data. Also, we can see that it has 

an excellent agreement separation from boxplots indicated in Fig. 4.6(f). 
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(a) Raw EMG signals. (d) |xi+1-xi| of signals from (a). 

 

(b) cD4 decomposition level. 

 

(e) |xi+1-xi| of signals from (b). 

 

(c) cD5 decomposition level. 

 

(f) |xi+1-xi| of signals from (c). 

Fig. 4.8. Example of the SMRC signals and their corresponding absolute of difference 

of two adjacent amplitudes (|xi+1-xi|) are shown in the left and right columns, 

respectively. The top, middle, and bottom rows show the results from raw EMG signals, 

cD4 decomposition level, and cD5 decomposition level, respectively. 
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(a) Histograms from raw EMG signals. (d) Power spectra from raw EMG signals. 

(b) Histograms from cD4 decomposition level. (e) Power spectra from cD4 decomposition level. 

(c) Histograms from cD5 decomposition level. (f) Power spectra from cD5 decomposition level. 

 

Fig. 4.9. Histograms and power spectra from the SMRC data are shown in the left and 

right columns, respectively. The top, middle, and bottom rows show the results from 

raw EMG signals, cD4 decomposition level, and cD5 decomposition level, 

respectively. 
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4.3. Threshold estimation in EMG signals contaminated with ECG 

interference 

4.3.1. Results 

We implemented the threshold value estimation algorithm using the 

SNR in the EMG signal contaminated with the ECG interference as the input of neural 

network. The method was described in Section 3.4. Table 4.7 shows five trials of mean 

and standard deviation for the threshold values (Th1, Th2) and their estimations (Th1est, 

Th2est) from 100 SMRC testing data when the training data are from 300 SMSC 

datasets. As a result, the average values of Th1 (7.77- 8.04) are slightly lower than those 

of Th1est (9.20 - 9.37). However, the average values of Th2 (5.72-6.19) and Th2est (5.94-

6.14) are comparable. Moreover, the average values of MSETh1 and MSETh2 are 

comparable in all trials.  

 

Table 4.7. Mean and standard deviation of Th1, Th2, Th1est, Th2est, and MSE from the 

SMRC data.  

Trials Th1 Th1est MSETh1 Th2 Th2est MSETh2 

1st 7.77±1.52 9.27±0.73 5.55±9.91 5.91±2.09 6.06±0.81 5.32±8.36 

2nd 8.03±1.68 9.20±0.86 5.64±8.28 6.01±1.98 6.14±0.55 4.59±7.01 

3rd 7.93±1.41 9.32±0.89 4.42±5.12 5.72±1.97 5.98±0.40 4.30±6.73 

4th 7.92±1.59 9.27±0.84 4.83±7.09 6.19±1.99 5.95±0.92 4.92±7.96 

5th 8.04±1.54 9.37±0.87 5.23±6.44 5.90±1.90 5.94±0.41 4.04±6.42 

 

After Th1 and Th2 are estimated, they are used in DSWT noise removal 

algorithm. A comparison of CC for DSWT noise removal algorithm based on estimated 

threshold (DSWTest), DSWT noise removal algorithm based on optimal threshold 

(DSWTopt), HPF noise removal techniques across SMRC dataset is shown in Table 4.8. 

The results show that CC values from DSWTest and DSWTopt are better than those from 

HPF for SMRC dataset. It cannot be deniable that the DSWTopt gives the best result 

from the 1st to 5th trial. These results indicate that it is possible to estimate Th1 and Th2 

using simulated data and employ the results to the real data. 
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Moreover, after Th1 and Th2 are estimated, they are used in DSWT 

noise removal algorithm. A comparison of CC for DSWT noise removal algorithm 

based on estimated threshold (DSWTest), DSWT noise removal algorithm based on 

optimal threshold (DSWTopt), bandpass filter (BPF) noise removal techniques across 

SMRC dataset is shown in Table 4.9. The cut-off frequency of BPF 15.625-31.25 Hz 

was used. The results show that CC values from DSWTest and DSWTopt are better than 

those from BPF for SMRC dataset. It cannot be deniable that the DSWTopt gives the 

best result from the 1st to 5th trial. These results indicate that it is possible to estimate 

Th1 and Th2 using simulated data and employ the results to the real data. 

 

Table 4.8. Comparison of CC for HPF, DSWTopt and DSWTest noise removal 

techniques from SMRC dataset.  

 

Trials HPF DSWTopt DSWTest  

1st 0.8469 ± 0.1352 0.9482 ± 0.0441 0.9419 ± 0.0510 

2nd 0.8495 ± 0.1370 0.9477 ± 0.0434 0.9402 ± 0.0533 

3rd 0.8567 ± 0.1284 0.9510 ± 0.0373 0.9461 ± 0.0400 

4th 0.8572 ± 0.1368 0.9494 ± 0.0402 0.9445 ± 0.0427 

5th 0.8686 ± 0.1123 0.9500 ± 0.0421 0.9444 ± 0.0467 

 

 

Table 4.9. Comparison of CC for BPF, DSWTopt and DSWTest noise removal 

techniques from SMRC dataset.  

Trials BPF DSWTopt DSWTest 

1st 0.3270 ± 0.1683 0.9455 ± 0.0479 0.9396 ± 0.0504 

2nd 0.3088 ± 0.1782 0.9479 ± 0.0461 0.9425 ± 0.0512 

3rd 0.3047 ± 0.1926 0.9557 ± 0.0395 0.9498 ± 0.0482 

4th 0.3188 ± 0.1675 0.9570 ± 0.0350 0.9517 ± 0.0385 

5th 0.3050 ± 0.1627 0.9505 ± 0.0401 0.9447 ± 0.0439 
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4.4. SNR estimation in EMG signals contaminated with power line 

interference 

4.4.1. Results 

4.4.1.1. Feature evaluation  

We determined six features from the contaminated EMG signals at five SNR 

levels generated using the method given in Section 3.5.1. Fig. 4.10 shows the boxplots 

from six features determined using SMSC data as a function of SNR. Fig. 4.10(a) shows 

the boxplots of SKEW from raw, cD4, and cD5 data in the top, middle, and bottom 

panels, respectively. Fig. 4.10(b)-(f) show similar boxplots from other 5 features, 

namely, KURT, MNF, WL, ZC, and MAV. The KURT feature from the raw, cD4, and 

cD5 data gives the best separation of boxplot as shown in in the top, middle, and bottom 

panel of Fig. 4.10(b). However, the SKEW feature from cD4 and cD5 decomposition 

levels does not give a good separation of boxplot as shown in Fig 4.10(a). 

4.4.1.2. SNR estimation  

We implemented the SNR estimation algorithm as described in Section 3.5.2 

and demonstrated the performance of SNR estimation for single feature and paired 

features using CC in Table 4.10 and 4.11, respectively. Table 4.10 shows the mean and 

standard deviation for CC from different single features obtained with the SMSC data 

when these 6 features are calculated using raw, cD4, and cD5 EMG data. We can clearly 

see that the KURT feature from the raw EMG data gives the best average CC at 0.9928. 

The best average CC from cD4 is 0.9830. Furthermore, the average CC values from the 

MAV feature are close to those from the KURT feature at approximately 0.9866, 

0.9701, and 0.7018, respectively. Table 4.11 shows the mean and standard deviation 

for CC from different pairs of features obtained with the SMRC data. We can clearly 

see that the combination of (KURT+MAV) and (KURT+MNF) from the raw EMG data 

give the best average CC at 0.9951. Fig 4.9 shows an example of the correlation plot 

for the SNR estimation from NN with the KURT feature from the raw EMG data. The 



69 

 

CC value of 0.9936 agrees well with the results from the KURT feature using the raw 

data (0.9928 ± 0.0035) as shown in Table 4.10. 

(a) SKEW (b) KURT 

(c) MAV (d) WL 

     

(e) ZC 

   

(f)  MNF 

Fig. 4.10. Boxplots of feature values determined using SMSC data as a function of 

SNR. (a) SKEW.  (b) KURT. (c) MAV. (d) WL. (e) ZC. (f) MNF 
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Table 4.10. Mean and standard deviation of CC from different single features obtained 

with SMRC data. 

Feature Raw cD4 cD5 

SKEW 0.3662 ± 0.0929 0.6745 ± 0.0654 0.1779 ± 0.1184 

KURT 0.9928 ± 0.0035 0.9830 ± 0.0013 0.6464 ± 0.0482 

MAV 0.9866 ± 0.0018 0.9701 ± 0.0054 0.7018 ± 0.0449 

WL 0.9156 ± 0.0145 0.8033 ± 0.0388 0.4236 ± 0.0890 

ZC 0.8869 ± 0.0230 0.0603 ± 0.0441 0.6818 ± 0.0446 

MNF 0.9304 ± 0.0157 0.0476 ± 0.0713 0.6700 ± 0.0285 

 

 

Table 4.11. Mean and standard deviation of CC from different pairs of features obtained 

with SMRC data. 

 

Feature Raw cD4 cD5 

SKEW+KURT 0.9935 ± 0.0013 0.9806 ± 0.0059 0.9853 ± 0.0044 

SKEW+WL 0.9148 ± 0.0343 0.9735 ± 0.0364 0.9834 ± 0.0108 

SKEW+ZC 0.8666 ± 0.0446 0.9895 ± 0.0028 0.9865 ± 0.0057 

SKEW+MAV 0.9838 ± 0.0098 0.9872 ± 0.0032 0.9876 ± 0.0032 

SKEW+MNF 0.9332 ± 0.0262 0.9892 ± 0.0016 0.9872 ± 0.0047 

KURT+WL 0.9940 ± 0.0022 0.9799 ± 0.0169 0.9884 ± 0.0028 

KURT+ZC 0.9940 ± 0.0017 0.9875 ± 0.0026 0.9879 ± 0.0042 

KURT+MAV 0.9951 ± 0.0013 0.9864 ± 0.0026 0.9869 ± 0.0025 

KURT+MNF 0.9951 ± 0.0006 0.9879 ± 0.0030 0.9895 ± 0.0029 

WL+ZC 0.9299 ± 0.0314 0.9773 ± 0.0111 0.9888 ± 0.0029 

WL+MAV 0.9878 ± 0.0033 0.9893 ± 0.0023 0.9883 ± 0.0023 

WL+MNF 0.9563 ± 0.0038 0.9852 ± 0.0060 0.9867 ± 0.0024 

ZC+MAV 0.9870 ± 0.0049 0.9837 ± 0.0142 0.9850 ± 0.0045 

ZC+MNF 0.9622 ± 0.0068 0.9876 ± 0.0028 0.9876 ± 0.0033 

MAV+MNF 0.9903 ± 0.0021 0.9884 ± 0.0021 0.9874 ± 0.0024 
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Fig. 4.11. Correlation plot between the SNR target and the estimated SNR from NN 

when the input is the KURT features determined using the SMRC dataset. 

4.4.2. Discussion 

In this section, we investigated more insights into the results from 

Section 4.4.1. Fig. 4.12(Left column) shows the raw, cD4, and cD5 EMG data from 

SMSC, respectively. Fig. 4.12(Right column) shows their corresponding absolute 

difference of two adjacent amplitudes from the signals in the left column. It is evident 

that the absolute difference of two adjacent amplitudes from the WL feature determined 

using the raw EMG and cD4 data are better than those from the cD5 data. As a result, 

the average CC value from WL using the raw EMG data provides the best result at 
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0.9156 compared to that from cD4 at 0.8033 and cD5 at 0.4236. Moreover, these results 

are in agreement with the boxplots shown in Fig. 4.10 (d).  

We can gain more insight into SKEW and KURT from histograms. Fig. 

4.13(Left column) shows histograms from raw, cD4, and cD5 in the top, middle, and 

bottom rows, respectively. We can see that the histograms from the cD4 and cD5 data 

are more symmetry than those from the raw EMG data. As a result, the SKEW values 

are more overlapped. These results agree with the boxplot of SKEW values as a 

function of 5 SNR levels shown in Fig. 4.10(a). Also, they agree with the average CC 

values. In other words, cD4 data give better average CC (0.6745) compared to that from 

the raw EMG (0.3662) and cD5 (0.1779) data when SKEW is used as a feature. 

However, the tailedness of histograms can be distinguished among raw, cD4, and cD5 

EMG data when SNRs increase. Therefore, the average CC values from KURT using 

raw, cD4, and cD5 data are better than those from SKEW at 0.9928, 0.9830, and 0.6464, 

respectively. These are also supported by the degree of separation of the boxplots 

shown in Fig. 4.10(a)-(b).  

We can understand MNF better with power spectra. Fig. 4.13(Right 

column) shows the power spectra from the raw, cD4, and cD5 EMG data in the top, 

middle, and bottom rows, respectively. The power spectra from the raw EMG and cD4 

data have a higher degree of separation than those from the cD5 data with SNR 

increment. In other words, the cD5 data do not give a difference in MNF when SNRs 

increase because of their similarity in power spectra. Therefore, the average CC value 

from MNF using the raw EMG data gives the best result (0.9304) compared to those 

from MNF using the cD4 (0.0476) and cD5 (0.6700) data. Also, we can see that it has 

an excellent agreement separation from boxplots indicated in Fig. 4.10(f). 
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(a) Raw EMG signals. (d) |xi+1-xi| of signals from (a). 

(b) cD4 decomposition level. (e) |xi+1-xi| of signals from (b). 

(c) cD5 decomposition level. (f) |xi+1-xi| of signals from (c). 

 

Fig. 4.12. Example of SMSC signal and its corresponding absolute of difference of two 

adjacent amplitudes (|xi+1− xi|) are shown in the left and right columns, respectively. 

The top, middle, and bottom rows show the results from raw EMG signals, DSWT at 

cD4 decomposition level, and DSWT at cD5 decomposition level, respectively. 
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(a) Histograms from raw EMG signals. 

 

(d) Power spectra from raw EMG signals. 

 

(b) Histograms from cD4 decomposition level. 

 

(e) Power spectra from cD4 decomposition level. 

 

(c) Histograms from cD5 decomposition level. 

 

(f) Power spectra from cD5 decomposition level. 

 

Fig. 4.13. Histograms and power spectra from SMSC data are shown in the left and 

rigth columns, respectively. The top, middle, and bottom rows show the results from 

raw EMG signals, DSWT at cD4 decomposition level, and DSWT at cD5 

decomposition level, respectively. 
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4.5. SNR estimation in EMG signals contaminated with motion artifact 

4.5.1. Results 

4.5.1.1. Feature evaluation 

We determined six features with the contaminated EMG signals at five SNR 

levels generated using the method given in Section 3.6.1. Fig. 4.14 shows the boxplots 

from six features determined using SMSC data as a function of SNR. Fig. 4.14(a) shows 

the boxplots of SKEW from raw, cD4, and cD5 data in the top, middle, and bottom 

panels, respectively. Fig. 4.14(b)-(f) show similar boxplots from other 5 features, 

namely, KURT, MNF, WL, ZC, and MAV. The MNF feature from the cD4 data gives 

the best separation of boxplot as shown in in the top and middle panel of Fig. 4.14(b). 

Moreover, the WL and ZC features have a similar pattern of boxplots as shown in Fig. 

19(c) and (d). However, the SKEW feature from cD4 and cD5 decomposition levels 

does not give a good separation of boxplot as shown in Fig 4.14(a). 

4.5.1.2. SNR estimation 

We implemented the SNR estimation algorithm as described in Section 3.6.2 

and demonstrated the performance of SNR estimation for single feature and paired 

features using CC in Table 4.12 and 4.13, respectively. Table 4.12 shows the mean and 

standard deviation for CC from different single features obtained with the SMSC data 

when these 6 features are calculated using raw, cD4, and cD5 EMG data. We can clearly 

see that the MNF feature from the cD4 data gives the best average CC at 0.9770. The 

best average CC from the raw EMG data is 0.9699. Furthermore, the average CC values 

from the WL feature are consistent at approximately 0.9671, 0.9725, and 0.6023, 

respectively. The average CC values from the ZC feature are comparable that from the 

WL feature. Table 4.13 shows the mean and standard deviation for CC from different 

pairs of features obtained with the SMRC data. We can clearly see that the combination 

of WL and MNF (WL+MNF) from the raw EMG data give the best average CC at 

0.9856. Fig 4.15 shows an example of the correlation plot for the SNR estimation from 

NN with the MNF feature from the raw EMG data. The cc value of 0.9635 agrees well 
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with the results from the MNF feature using the raw data (0.9699 ± 0.0076) as shown 

in Table 4.12. 

 

(a) SKEW 

 

(b) KURT 

 

(c) MAV 

 

(d) WL 

        

(e) ZC 

      

(f)  MNF 

Fig. 4.14. Boxplots of feature values determined using SMSC data as a function of 

SNR. (a) SKEW.  (b) KURT. (c) MAV. (d) WL. (e) ZC. (f) MNF 
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Table 4.12. Mean and standard deviation of CC from different single features 

obtained with SMRC data. 

Feature Raw cD4 cD5 

SKEW 0.0853 ± 0.1223 0.0060 ± 0.1736 0.0344 ± 0.0822 

KURT 0.1503 ± 0.1301 0.0702 ± 0.1484 0.0104 ± 0.0377 

WL 0.9671 ± 0.0055 0.9725 ± 0.0019 0.6023 ± 0.0672 

ZC 0.9548 ± 0.0055 0.9522 ± 0.0107 0.5117 ± 0.1105 

MAV 0.1935 ± 0.0535 -0.0073 ± 0.2066 0.0298 ± 0.0715 

MNF 0.9699 ± 0.0076 0.9770 ± 0.0021 0.5709 ± 0.0816 

 

Table 4.13. Mean and standard deviation of CC from different pairs of features 

obtained with SMRC data. 

Feature Raw cD4 cD5 

SKEW+KURT 0.3329 ± 0.0886 0.0194 ± 0.0573 0.3096 ± 0.0988 

SKEW+WL 0.9624 ± 0.0075 0.2548 ± 0.1905 0.2194 ± 0.1965 

SKEW+ZC 0.9495 ± 0.0118 0.1804 ± 0.1710 0.2097 ± 0.2187 

SKEW+MAV 0.3121 ± 0.1124 0.3376 ± 0.0944 0.2909 ± 0.0749 

SKEW+MNF 0.9682 ± 0.0072 0.2574 ± 0.1266 0.2410 ± 0.1890 

KURT+WL 0.9547 ± 0.0142 0.2572 ± 0.1409 0.2901 ± 0.1294 

KURT+ZC 0.9476 ± 0.0161 0.2855 ± 0.1340 0.2983 ± 0.1122 

KURT+MAV 0.3027 ± 0.0996 0.2537 ± 0.1337 0.2505 ± 0.1488 

KURT+MNF 0.9701 ± 0.0062 0.2534 ± 0.1098 0.2706 ± 0.1016 

WL+ZC 0.9665 ± 0.0047 0.2726 ± 0.1624 0.3146 ± 0.0724 

WL+MAV 0.9633 ± 0.0072 0.2959 ± 0.1248 0.2859 ± 0.0617 

WL+MNF 0.9856 ± 0.0027 0.3133 ± 0.0606 0.2949 ± 0.0558 

ZC+MAV 0.9469 ± 0.0149 0.2789 ± 0.0813 0.2827 ± 0.0981 

ZC+MNF 0.9776 ± 0.0029 0.2583 ± 0.1676 0.3272 ± 0.0766 
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Fig. 4.15. Correlation plot between the SNR target and the estimated SNR from NN 

when the input is the KURT features determined using the SMRC dataset. 

 

4.5.2. Discussion 

In this section, we investigated more insights into the results from 

Section 4.5.1. Fig. 4.16(Left column) shows the raw, cD4, and cD5 EMG data from 

SMRC, respectively. Fig. 4.16(Right column) shows their corresponding absolute 

difference of two adjacent amplitudes from the signals in the left column. It is evident 

that the absolute difference of two adjacent amplitudes from the MNF feature 

determined using the raw EMG and cD4 data are better than those from the cD5 data. 

As a result, the average CC value from WL using the raw EMG data provides the best 
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result at 0.9699 compared to that from cD4 at 0.9770 and cD5 at 0.5709. Moreover, 

these results are in agreement with the boxplots shown in Fig. 4.14 (d).  

We can gain more insight into SKEW and KURT from histograms. Fig. 

4.17(Left column) shows histograms from raw, cD4, and cD5 in the top, middle, and 

bottom rows, respectively. We can see that the histograms from the cD4 and cD5 data 

are more symmetry than those from the raw EMG data. As a result, the SKEW values 

are more overlapped. These results agree with the boxplot of SKEW values as a 

function of 5 SNR levels shown in Fig. 4.14(a). Also, they agree with the average CC 

values. In other words, the raw EMG data give better average CC (0.0853) compared 

to that from cD4 (0.0060) and cD5 (0.0344) data when SKEW is used as a feature. 

However, the tailedness of histograms can be distinguished among raw, cD4, and cD5 

EMG data when SNRs increase. Therefore, the average CC values from KURT using 

raw and cD4 data are comparable and better than those from SKEW at 0.1503 and 

0.0702, respectively. These are also supported by the degree of separation of the 

boxplots shown in Fig. 4.14(a)-(b).  

We can understand MNF better with power spectra. Fig. 4.17(Right 

column) shows the power spectra from the raw, cD4, and cD5 EMG data in the top, 

middle, and bottom rows, respectively. The power spectra from the raw EMG and cD4 

data have a higher degree of separation than those from the cD5 data with SNR 

increment. In other words, the cD5 data do not give a difference in MNF when SNRs 

increase because of their similarity in power spectra. Therefore, the average CC value 

from MNF using the raw EMG data gives the best result (0.9699) compared to those 

from MNF using the cD4 (0.9770) and cD5 (0.5709) data. Also, we can see that it has 

an excellent agreement separation from boxplots indicated in Fig. 4.14(f). 
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(a) 

Raw EMG signals. (d) |xi+1-xi| of signals from (a). 

(b) 

cD4 decomposition level. (e) |xi+1-xi| of signals from (b). 

(c) 

cD5 decomposition level. (f) |xi+1-xi| of signals from (c). 

 

Fig. 4.16. Example of SMSC signal and its corresponding absolute of difference of two 

adjacent amplitudes (|xi+1-xi|) are shown in the left and right columns, respectively. 

The top, middle, and bottom rows show the results from raw EMG signals, DSWT at 

cD4 decomposition level, and DSWT at cD5 decomposition level, respectively. 
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(a) Histograms from raw EMG signals. 

 

(d) Power spectra from raw EMG signals. 

 

(b) Histograms from cD4 decomposition level. 

 

(e) Power spectra from cD4 decomposition 

level. 

(c) Histograms from cD5 decomposition level. (f) Power spectra from cD5 decomposition level. 

Fig. 4.17. Histograms and power spectra from SMSC data are shown in the left and 

right columns, respectively. The top, middle, and bottom rows show the results from 

raw EMG signals, DSWT at cD4 decomposition level, and DSWT at cD5 

decomposition level, respectively. 



82 

 

CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

 In this chapter, we present the conclusions of this thesis and future work. 

The conclusions can be divided into 5 main modules: removal of ECG interference 

based on DSWT, SNR estimation in EMG signals contaminated with ECG interference, 

threshold estimation in EMG signals contaminated with ECG interference, SNR 

estimation in EMG signals contaminated with power line interference, and SNR 

estimation in EMG signals contaminated with motion artifact are described in Section 

5.1.1, Section 5.1.2, Section 5.1.3, Section 5.1.4, and Section 5.1.5, respectively. In 

addition, the future work is presented in Section 5.2. 

5.1. Conclusions 

5.1.1. Removal of ECG interference based on DSWT 

We presented an application of DSWT to removing ECG interference in 

EMG signals with consideration of SNR level. The proposed method consists of 3 main 

steps, namely, DSWT decomposition, thresholding, and DSWT reconstruction. In the 

first step, the contaminated EMG signal is decomposed using 5-level DSWT with the 

Symlet wavelet function. In the second step, the coefficients in cD4 and cD5, which are 

contaminated by the ECG interference, are subjected to nonlinear thresholding. In other 

words, the detail coefficients, whose absolute values are less than or equal to the 

threshold level, are set to zero. The threshold level was varied from 0 to 10 with step 

size 1. Finally, in the third step, the cleaned EMG signal was reconstructed by inverse 

DSWT of the thresholded coefficients.  

The proposed method was evaluated using simulated EMG signals 

contaminated with ECG interference at 9 SNR levels from -20 to 20 dB with 5 dB 

increments. There were two types of ECG interference in this study, namely, simulated 

and real ECG signals. With both types of data, MAE, CC, and RE for DSWT were 

better than those for HPF. Moreover, DSWT significantly outperforms HPF at the low 
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SNR from -10 dB to -20 dB. Results show that an EMG signal contaminated with ECG 

at different SNR levels requires different threshold levels. The optimal threshold for 

each SNR level in this paper was obtained offline by exhaustive search, which is 

impractical for real-time applications. The results suggest a possible future research 

direction in developing a system that can estimate the SNR level in an EMG signal 

contaminated with ECG interference. 

5.1.2. SNR estimation in EMG signals contaminated with ECG 

interference 

We presented the method for estimating SNR in the EMG signal 

contaminated with the ECG interference consisting of two main parts, namely, feature 

evaluation and SNR estimation. We evaluated six popular features used in the EMG 

recognition system consisting of SKEW, KURT, MAV, WL, ZC, and MNF. The results 

show that WL gave the best performance. Subsequently, WL was used as an input of 

NN for SNR estimation. While we used the simulated EMG data artificially 

contaminated with the simulated ECG data in the training stage, the simulated EMG 

data artificially contaminated with the real ECG data were used in the testing stage. The 

best average correlation coefficient at 0.9663 can be obtained when WL is used as an 

input of NN.  

5.1.3. Threshold estimation in EMG signals contaminated with 

ECG interference 

We presented the method for estimating the optimum threshold applied 

with DSWT for removing the ECG interference contaminated in the EMG signal. SNR 

was used as an input of NN for threshold estimation. While we used the simulated EMG 

data artificially contaminated with the simulated ECG data in the training stage, the 

simulated EMG data artificially contaminated with the real ECG data were used in the 

testing stage. The estimate threshold values, Th1est and Th2est, can be obtained from the 

NN output. The results show that CC values from DSWTest are comparable to those 

from DSWTopt. However, both of them are better than those from HPF. These results 
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indicate that the estimate Th1 and Th2 using simulated data can be employed to the real 

data. 

5.1.4. SNR estimation in EMG signals contaminated with power 

line interference 

We presented the method for estimating SNR in the EMG signal 

contaminated with the power line interference consisting of two main parts, namely, 

feature evaluation and SNR estimation. The results show that KURT gave the best 

performance. Subsequently, KURT was used as an input of NN for SNR estimation. 

We used the simulated EMG data artificially contaminated with the simulated power 

line interference in the training and testing stages. The best average correlation 

coefficient at 0.9936 can be obtained when KURT is used as an input of NN.  

5.1.5. SNR estimation in EMG signals contaminated with motion 

artifact 

We presented the method for estimating SNR in the EMG signal 

contaminated with the motion artifact consisting of two main parts, namely, feature 

evaluation and SNR estimation. The results show that MNF gave the best performance. 

Subsequently, MNF was used as an input of NN for SNR estimation. We used the 

simulated EMG data artificially contaminated with the simulated motion artifact in the 

training and testing stages. The best average correlation coefficient at 0.9635 can be 

obtained when MNF is used as an input of NN. 

5.2. Future work 

We show that an EMG signal contaminated with ECG at different SNR 

levels requires different threshold levels. The optimal threshold for each SNR level in 

this thesis (Section 4.1) was obtained offline by exhaustive search, which is impractical 

for real-time applications. The results suggest a possible research direction in 

developing a system that can estimate the SNR level in an EMG signal contaminated 

with ECG interference.  



85 

 

Therefore, we have developed the new method of SNR estimation in the 

EMG signal contaminated with the ECG interference using the feature from the EMG 

signal as the input of NN. Subsequently, we have developed the new method of 

threshold estimation in the EMG signal contaminated with the ECG interference using 

SNR as the input of NN. When we cascade these two systems, we can obtain the optimal 

threshold values from the NN, when the feature from the EMG signal is the input. As a 

result, the optimal threshold for each SNR level can be obtained online, which is 

practical for real-time applications. 

 Possible future research directions are as follows.  

• We may reduce computational complexity by estimating the optimal 

threshold values from the EMG feature directly, if the SNR estimate 

is not required in the application. 

• In this thesis, we apply the proposed technique to the EMG signal 

contaminated with the ECG interference only. In the future, we may 

apply the proposed techniques to power line interference and motion 

artefact. 

• We may further improve the proposed technique so that it can be 

used with combination of multiple types of noise, such as ECG 

interference combined with power line interference, motion artefact 

combined with power line interference, and ECG interference 

combined with motion artifact.   
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