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ABSTRACT

The electromyography (EMG) signal can be contaminated with noise
during data collection. For example, when the EMG signal is acquired from muscles in
the torso, the electrocardiography (ECG) signal coming from heart activity can
interfere. In this thesis, we proposed a novel method on noise removal and the signal-
to-noise ratio (SNR) estimation algorithms. For the noise removal method, a technique
based on discrete stationary wavelet transform (DSWT) is proposed to remove ECG
interference from the EMG signal while taking into account the SNR. The contaminated
EMG signal is decomposed using 5-level DSWT with the Symlet wavelet function. A
clean EMG signal can then be obtained by inverse DSWT mapping of the new
thresholded coefficients. The performance based on mean absolute error, correlation
coefficient, and relative error shows that the DSWT method is better than a high-pass
filter. For the SNR estimation method, we present a novel SNR estimation in the EMG
signal contaminated with the ECG interference. We calculate the features from the
EMG signals. Then, the features are used as an input of a neural network (NN). The
NN output is an SNR estimate. The results showed that the waveform length was the
best feature for estimating SNR. It gave the highest average correlation coefficient at
0.9663. These results suggested that the waveform length was able to be deployed not
only in an EMG recognition system but also in an EMG signal quality measurement

when the EMG signal was contaminated with the ECG interference.
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CHAPTER 1

INTRODUCTION

Electromyography (EMG) records electric currents produced in muscle
contractions, acquired using electrodes. The electrode converts an ion current to an
electron current so that it can be amplified and recorded by an electronic circuit. The
EMG signal is generated from motor units, which are nerve-muscle functional units of
the neuromuscular system [1,2]. The potential difference can be measured by either
non-invasive electrodes for surface EMG signals or by invasive electrodes for needle
EMG sampling intramuscular EMG signals [3].

There are a variety of applications for EMG signals. The EMG signal
can be used not only as an electrodiagnostic medical technique but also as a
neurophysiological technique for evaluating and recording the electrical activity
produced by skeletal muscles [4,5]. Moreover, the EMG signal recorded from a muscle
contraction has a variety of uses in clinical applications [6], evolvable hardware chip
(EHC) development [7], robotic applications [8], modern human-computer interaction
[9], and electrical wheelchair control [10].

An essential element for enabling the above-described applications is an
EMG recognition system. The EMG recognition system consists of three cascaded
modules, namely; data pre-processing, feature extraction, and classification [11,12].
The primary purpose of data pre-processing is to remove noise in the EMG signal,
which is contaminated by the environment as it passes through or by various tissues

[13]. In this thesis, we studied on noise detection and noise removal.

1.1. Literature review
1.1.1. Contamination in EMG
From literature reviews, there are four important types of noise
contaminated in EMG signals, namely, (1) electrocardiography (ECG) interference [17-
30], (2) power line interference [16,31-34], (3) motion artifact [14,35-37] and (4)

baseline noise [14-15,38-39]. Details on each type of noise are as follows.



1.1.1.1. Electrocardiography (ECG) interference

ECG determines the electrical activity of the heart over a specified
period of time. ECG is not only used for measurement and recording of electrical
activity but also helps in measuring the rhythm and invariability of heart beat [40-43].
Fig. 1.1 shows the waveform of a normal ECG signal consisting of a P-wave, a QRS
complex and a T-wave. The ECG waveform initiates with the P-wave. The QRS
complex represents ventricular depolarization and is composed of three waves, which
are the Q-wave, the R-wave and the S-wave. ECG interference has bandwidth in the
range of 0.05 — 100 Hz [21-22]. The EMG signal can be contaminated by the ECG
interference in some applications because of the proximity between the EMG
measurement location such as trunk muscles and the heart. One of ECG interference
removal algorithm applications is in EMG data acquisition for shoulder disarticulation
prosthesis control where the electrodes are placed at the pectoralis muscle as shown in
Fig. 1.2, which is very close to the heart [21]. As a result, contamination by ECG
interference is unavoidable. Fig. 1.3 shows an example of the EMG signal contaminated
with the ECG interference at a signal-to-noise ratio (SNR) level of 0 dB in time domain
and power spectrum in frequency domain on the top and the bottom panels,

respectively.

R

|

Q-T

Fig. 1.1. ECG waveform consisting of a P-wave, a QRS complex, and a T-wave [28].
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Fig. 1.3. The amplitude of EMG signals contaminated with ECG interference in the
time domain at SNR 0 dB (Top panel) and its corresponding power spectrum in the
frequency domain (Bottom panel). Dotted line: x, is an uncontaminated EMG signal.

Solid line: xc is an EMG signal contaminated with ECG interference.



1.1.1.2. Power line interference

The power line interference is an essential source of noise. It is caused
by either an induced current from the passing of a time-varying magnetic field on a
closed loop formed by the electrode leads, the subject, and the signal amplifier or a
displacement current induced from the capacitive coupling between the electrode leads
and the subject body [25,31]. The most important source of such noise is power line
interference at 50 Hz and its harmonics. The amplitude and frequency of the EMG
signal can be changed by power line interference [32-33]. Moreover, it is possible that
the amplitude of powerline noise is higher than the amplitude of the desirable EMG
signal. Therefore, it causes serious reduction in SNR. To alleviate the mentioned
problem, the use of a suitable electronic device, which has both high common mode
rejection ratio (CMRR) and shielding cables, can reduce power line interference. Fig.
1.4 shows the amplitude of EMG signals contaminated with power line noise in time
domain and its power spectrum in frequency domain at a SNR level of 0 dB. It can be

clearly seen that the power line noise at 50 Hz occurs in the contaminated EMG signal.
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Fig. 1.4. The amplitude EMG signals contaminated with the power line noise in the
time domain at SNR 0 dB (Top panel) and its corresponding power spectrum in the
frequency domain (Bottom panel). Dotted line: xy is an uncontaminated EMG signal.

Solid line: xc is an EMG signal contaminated with power line interference.



1.1.1.3. Motion artifact

Motion artefact can be divided into two categories, which are an
electrode motion artefact and a cable motion artefact [37,44]. The electrode motion
artefact consists of two sources. The first source is a relative movement at the contact
area between the electrode and the skin. However, this type of artefact can be
significantly reduced by using a built-in electrode consisting of a conductive gel or
paste. As a result, this type of artefact is attenuated by the gel layer. The second source
is the variations in potential difference and the skin potential due to the stretch or
deformation of the skin. This type of artefact is can be decreased by reducing the skin
impedance. The electrode motion artifact typically has a frequency range is less than
20 Hz [25,45-46].

The cables are connected between the electrodes and amplifier. They
have a fundamental capacitance. In cable motion artifact, the voltage magnitude that
forms in the cable is the multiplication of the current movement and the impedance
electrode—skin added with the voltage caused by magnetic field. The amounts of the
detected EMG are similar with that voltage. The frequency range of cable motion
artifact has typically from 1 to 50 Hz [26,47-48]. There are two facts to reduce cable
motion artifact: 1) reducing electrode-skin impedance and; 2) applying the shielded
cables. Nevertheless, these shielded cables can be considered as a source of causing
cable motion artifact. The resistance and distortion of the insulated cable generated with
static charges can be caused by moving shielded cables and these cables disappear
through the measurement system. Another obvious solution is to clear up the cable
motion artifact is to use active electrodes based on an operational amplifier because of
high input impedance and low output impedance which is built as a unity gain buffer
[25]. Fig. 1.5 shows the amplitude of EMG signals contaminated with motion artifact

in time domain and its power spectrum in frequency domain at a SNR level of 0 dB.
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Fig. 1.5. The amplitude EMG signals contaminated with motion artefact in the time
domain at SNR 0 dB (Top panel) and its corresponding power spectrum in the
frequency domain (Bottom panel). Dotted line: xy is an uncontaminated EMG signal.

Solid line: xc is an EMG signal contaminated with motion artifact.

1.1.1.4. Baseline noise

Baseline noise is a combination of two intrinsic sources, which are
thermal noise and electrochemical noise [49-50]. It is generated not only from the
amplification system of electronics, which is also called thermal noise, but also from
the electro-chemical noise, which is located at the skin-electrode interface [51]. Fig. 1.6
shows an example of the baseline noise contaminated in the EMG signals at various

levels on the top panel and its corresponding filtered the EMG signals at the bottom

panel.
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Fig. 1.6. An example of the baseline noise contaminated in EMG signals at various
levels on the top panel and its corresponding filtered EMG signals at the bottom panel
[15].

1.1.2. Noise removal techniques
There are several noise removal techniques in the literature review
depending on the type of noise. This section will give the details of noise removal
techniques describing by three types of noise including 1) ECG interference [52-62], 2)
power line interference [49,62-63], and 3) motion artifact [44-47]. Details of each

technique are as follws.
1.1.2.1. ECG interference

e Digital filter
High pass filtering is one of the most popular methods used for
eliminating ECG interference from EMG signals [64-66]. Most of energy of ECG
interference is in the range of 0 to 30 Hz. Therefore, high pass digital filtering with a
30 Hz cut-off frequency is used. There are two designs of high pass digital filtering
used for ECG interference removal, i.e. a Butterworth filter [17], [21], [29], [30] and a



digital finite impulse response filter [20] as details shown in Table 1.1. High pass digital
filtering is not only easily to implement but also performs satisfactory at rest and
excellence at all levels of muscle voluntary contraction (MVC) evaluated. Hence, it
provides the optimal balance between ease of implementation time investment and
performance across all contractions and heart rate levels [17]. Moreover, another
advantage is that the signal from additional channel does not require. However, some
parts of EMG signals in the range of 0-30 Hz are also removed.

Table 1.1. High pass digital filtering used for removing ECG interference from the
EMG signal.

Authors Method

Janessa 2006 [17] High pass digital filtering using a fourth-order Butterworth

and Vinzenz 2011 filter

[29] with cut-off frequency of 30 Hz.

Nienke 2012 [30] High pass digital filtering using a second-order bi-directional
Butterworth filter with cut-off frequency of 30 Hz

Sara 2016 [20] High pass digital filtering using a digital finite impulse

response filter

with 100 coefficients based on a Hamming window design

criteria at
a cut-off frequency of 30 Hz
Zhou 2006 [21] High pass digital filtering wusing a second-order

Butterworth filter with cut-off frequency of 60 Hz, which
provided the most suitable signals for myoelectric prosthesis
control

e Template subtraction

Template subtraction is very useful for removing ECG interference from
the contaminated EMG signals [67-68]. There are three main stages of template
subtraction, namely, 1) creation of ECG template, 2) detection of ECG interference
from the contaminated EMG signals, and 3) subtraction of ECG interference from the
contaminated EMG signals [17], [20], [21], [23] as shown in Fig. 1.7. One advantage
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Fig. 1.7. Procedures of template subtraction (a) Create ECG template, (b) Detect ECG
interference in the contaminated EMG signals, and (c) Subtract ECG template from the

contaminated EMG signals [21].
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of template subtraction method is its ability to remove the ECG interference without
losing the EMG signals [21]. However, the template subtraction method may not be
used for some clinical applications such as myoelectric prosthesis control because of
its requirement on individual template creation for each participant and its heavy
computation burdens of cross-correlation [17] [21]. Moreover, it requires additional
ECG signal acquisition for accurate detection of QRS algorithms [21].

e Adaptive filter

Adaptive filter is a successful technique used for eliminating ECG
interference from EMG signals because it is able to remove ECC signals from
contaminated EMG signals when the spectra of EMG signals and ECG noise are
overlapping [69-72]. Moreover, it can follow any change on the signal and noise by
adaptively adjusting the filter coefficients, which are expected in some situations such
as during a fatigue process [18,88,89]. Therefore, it can optimize the performance when

it is applied to several types of muscles [19].

x{::l’u+nﬂ xll:-r.le-l:

Signal source v Van R .
EMO) P

ng

/

Adaptive filter

o/

Fig. 1.8. Block diagram of an adaptive filter used for removing ECG interference

ECG

SQUrce

Fig. 1.8 shows the principle of the adaptive filter used for removing ECG
interference from the contaminated EMG signals [18]. There are two input signals for

the adaptive filter, xc and n1. While xc is the contaminated EMG signal, which is the
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combination between the uncontaminated EMG signal x, and the ECG interference no,
ny is the reference signal that is correlated with the ECG interference no. The adaptive
filter is used to estimate the noise 71,. Then, x.;, an estimate for the uncontaminated
EMG signal X, can be determined by subtracting i, from the contaminated EMG

signal xc.

Signal §
source

(EMG) - Cleaned EMG
n,

[ -1 A1,
BCo F Pl e
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“‘l, ;}22'( H‘} .,I'I )\ H!.*‘Iln-'l I/- -',I

|
"y

T -
3
A

Fig. 1.9. The structure of the linear adaptive ECG noise canceller [21], [23].

There are 2 types of adaptive filter in the literature review, i.e., a linear
adaptive filter and a nonlinear adaptive filter. Details of each type of the adaptive filter

are given as follws.
e Linear techniques

Fig. 1.9 shows a structure of the linear adaptive ECG noise canceller, which is
defined in the time domain by using a finite impulse response filter (FIR) with a length
of N points [73-74]. The output of the linear adaptive ECG noise canceller can be
expressed as [18],[20],[21]

yi= Zfil Wi, jN,j—i+1 - (1.1)

The algorithms used to optimize the coefficients w; ; include fast recursive least

square algorithm (FRLS) [18], recursive least square algorithm (RLS) [19], [20], and

least mean square algorithm (LMS) [21], [23]. Moreover, Table 1.2 shows the sources
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of EMG signals and ECG reference signals as well as the parameters used in the linear
adaptive filter from previous publications [18], [19], [20], [21], [23]. The adaptive filter
or the adaptive noise canceller (ANC) is very suitable for adjusting the amplitude and
phase of the reference signal to estimate the noise in the contaminated EMG signals.
Then, the estimated noise is subtracted from the contaminated EMG signals so that the
clean EMG signals can be obtained. However, it was reported in [20] that the noise was
not well estimated and there is still noise in the estimate for the uncontaminated EMG
signal. Moreover, some parts of uncontaminated EMG signals may be eliminated [20].
Another disadvantage of ANC was its heavy computational cost resulting in the
difficulty for the implementation on clinical applications [20].

¢ Nonlinear techniques

Nonlinear adaptive filters used for ECG interference removal from previous
publications include an artificial neural network (ANN) and an adaptive neuro-fuzzy
inference system (ANFIS) [75-76]. Either ANN or ANFIS is applied for estimating
ECG interference contaminated in the EMG signals similar to the linear adaptive noise

canceller [77].

ANN is one of the successful nonlinear adaptive filters used for
removing ECG interference [78]. In [22] and [24] the back propagation network (BPN)
was used to estimate the ECG interference presenting in the EMG signals. Fig.1.10
shows a block diagram of a nonlinear adaptive filter based on BPN used for ECG
interference removal [24]. The network architecture consists of two neurons in the input

layer, 35 neurons in the one hidden layer and one neuron in the output layer.
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Table 1.2. Algorithms, sources of EMG and ECG reference signals, and parameters

used in the adaptive filter.

Authors Algorithms Sources of EMG and ECG Parameters
reference signals

Marque 2005 Fast recursive least EMG from erector N/A

[18] square algorithm spinae muscles
(FRLS) e ECG from left scapula
Guohua 2009 Recursive least e EMG from the right Filter order 12
[19] square algorithm trapezius muscles Forgetting factor 0.999
(RLS) e ECG from the Ileft Regularization factor 0.1

trapezius muscles

Zhou 2005  Least mean square EMG from the N/A

[23], Zhou algorithm (LMS) reinnervated pectoralis
2007 [21], muscles of the amputee
e ECG from the pectoralis
minor muscle
Sara 2016 Adaptive neuro- e EMG from biceps and N/A
[20] fuzzy inference deltoid muscles of the
system (ANFIS) right side

e ECG from the pectoralis
muscle of the left side
Kezi 2009 Back propagation EMG from electrode site Epochs 1000, Goal =
[22] network (BPN) on the trunk and neck 0.65, Momentum =0.9,
e ECG from the rectus Show =5, Learning rate
abdominis, external = 0.5, Time infinity, 2
obligue and erector neurons in the input
spinae muscles layer, 35 neurons in one
hidden layer (TANSIG)
and one neuron in the
output layer (PURELIN).
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Fig. 1.10. Block diagram of a nonlinear adaptive filter based on BPN used for ECG

interference removal [24].

The parameters used for training BPN to remove the ECG interference
from EMG signals are as follows [22], [24]:epochs =1000, goal = 0.65, momentum
=0.9, show = 5, learning rate = 0.5 and time = infinity. One of the disadvantages of
BPN is that it requires multiple inputs and heavy computations because of its layers
[20].

ANFIS combine network of the strengths of neutral network and fuzzy system.
As a result, the calculation time for ANFIS technique is lower than that for ANN
method [20]. Fig.1.11 shows the ANFIS structure used for ECG interference removal
[20]. The ANFIS structure generally consists of two source inputs, five hidden layers,

and one output. Details of the five hidden layers are as follows: the first layer is a
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fuzzifier, the second layer is the fuzzy rules, the third layer is for normalization, the
fourth layer is for identifying effective parameters and the fifth layer is the destination
output. According to the Fig.1.11, the delayed ECG signal and the ECG interference
contaminated with EMG signal were used for the ANFIS inputs. This delayed ECG
signal was occurred when the ECG signal and ECG interference from different sources
were collected. By using this delayed ECG signal, the noise estimation procedure is

more efficient and effective.

Contarminated EMG
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~
(K
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L
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élk)y .1
E ANFIS (2} *  Denoised EMG
ECG n(k)

Lo

.,

Fig. 1.11. Block diagram of a nonlinear adaptive filter based on ANFIS used for ECG

interference removal [20].
e Wauvelet transform

Wavelet transform is one of the ECG removal techniques in EMG signals. In
contrast to an adaptive filter, one of its advantages is that it does not require a separately
additional ECG reference channel [79-80]. Moreover, it is simple and fast [81].
However, some artifacts may remain in the contaminated EMG signal and part of the
desired EMG signal may be removed [82]. Most energy of ECG interference is
contributed to the wavelet coefficients located high-scale low-frequency components.
Thus, with a proper threshold, we can remove most of ECG artifacts by truncating or

shrinking the wavelet coefficients, which are the dominant part of the ECG interference.

Fig. 1.12 shows a schematic description of ECG interference removal using
wavelet transform [23]. In the first stage, the EMG signal contaminated by the ECG

interference x,. was decomposed by the wavelet transform into various subband signals.



16

Then, in the second stage, the subband signals are separated into two types of scales
including low-scale high-frequency components and high-scale low-frequency
components. Thirdly, the wavelet coefficients obtained from high-scale low-frequency
components, which are contaminated by the ECG interference, are processed with a
nonlinear thresholding procedure. In other words, the values of coefficient higher than
the value of the threshold were set to zero. The values of threshold can be adjusted
depending on the coefficients of background ECG interference, which are much greater
than the neighbouring coefficients. Finally, the clean EMG signals x; is obtained from

the new coefficients by using inverse wavelet transform.

Xe

l

Wavelet transform

Y Y

Low-scale high-frequency components High-scale low-frequency components

Y

Thresholding

Y

Inverse wavelet transform

l

Xei

Fig. 1.12. Schematic description of ECG interference removal using wavelet transform

Fig. 1.13 shows an example of signal components from the ECG interference
removal technique using wave transform. Fig. 1.13(a) shows the EMG signal
contaminated by the ECG interference. After an seven-level wavelet decomposition
with the forth-order Symlet wavelet as a wavelet function [21], the coefficients in high-

scale low-frequency components at level cD5, cD6, and cD7 are shown in the left
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panels of Fig.1.13 (b), (c), and (d), respectively. Then, they were processed with the
nonlinear thresholding procedure. The coefficients after thresholding at level cD5, cD6,
and cD7 are shown in the right panel of Fig.1.13 (b), (c), and (d), respectively. We can
clearly see that the coefficients higher than the threshold were set to zero. Finally, Fig.
1.13(e) shows the clean EMG signal x.;, which is obtained from the new coefficients
by using inverse wavelet transform. Similarly, in [23], the forth-order Symlet wavelet
was used as a wavelet function with eight-level wavelet decomposition. The nonlinear
thresholding technique was applied with the coefficients of four-lowest frequency

components, namely cD5, cD6, cD7, and cD8.
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Fig.1.13. An example of signal components from the ECG interference removal

technique using wavelet transform [21].
e Combination techniques

Combination techniques are generally composed of the combination of two or
more methods to eliminate the ECG interference from the EMG signals. Details of the

combination techniques are as follows.
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= Template subtraction combined with a high pass filter

Combination method of a high pass filter with a template subtraction is used for
removing the ECG interference contaminated in the EMG signals [17]. Five high pass
filter with cut-off frequencies 20, 30, 40, 50, and 60 Hz were applied to the signals after
performing with the template subtraction. However, the results show that there is no
statistical improvement on the performance of the template subtraction combined with
the high pass filter [17].

= Artificial neural network combined with wavelet transform

Artificial neutral network (ANN) and wavelet transform is combined and used
for removing ECG interference from EMG signals [24]. Fig.1.14 shows a block
diagram of the combination technique based on ANN and wavelet transform [24].
Firstly, the ECG interference is removed from the contaminated EMG signals by using
a nonlinear adaptive filer based on the neural network. Therefore, a large amount of
ECG noises are removed during this process. However, low-frequency noise
components remain in the signals, which can be further removed by using wavelet

transform with a nonlinear thresholding technique in the second stage.

ECG

Contaminated
EMG —_— ANC I wavelet — (leaned EMG

Fig.1.14. A combination of ANN and wavelet transform technique [24].
= ANFIS combined with wavelet transform

Combination of an adaptive neuro-fuzzy inference system (ANFIS) and a
wavelet transfrom is a successful ECG removal technique in the contaminated EMG
signals [20,83]. Fig.1.15 shows a block diagram of the combination technique based on
ANFIS and wavelet transform [19]. ANFIS, which can be considered as a nonlinear

adaptive noise filtering, was used for removing ECG interference in the first step [84].
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Then, the wavelet transfrom with nonlinear thresholding process, was used in the
second step for removing the residual ECG interference between 0 and 15 Hz. In other
words, the output signals from ANFIS was decomposed by the fourth order Symlet
wavelet. Then, the wavelet coefficients in the low frequency scales were processed with
a nonlinear thresholding tecnique, where the absolute value of the coefficients greater

than a predefined threshold was set to zero [20].

xC
Contarmunated
EMG

l :

i [ Denoised
ECG —3 ANFIS > Wavelet > EMG

cl

Fig. 1.15. A combination of ANFIS and wavelet transform [20].

e Performance evaluations

Table 1.3 shows the comparisons of mean and standard deviation from
various techniques discussed in Section 1.1.2.1 for removal of ECG interference from
the contaminated EMG signal. Results showed that the performance based on SNR,
RE, R, and MFRE, from the combination technique are better than other removal
techniques, i.e. ANFIS, ANN, template subtraction, adaptive filtering, wavelet
transform, and high pass filtering. ANFIS combined with wavelet transform is faster
than a combination method of ANN and wavelet transform. As a result, although the
similar performance between ANFIS+wavelet and ANN+wavelet is obtained, ANFIS
combined with wavelet uses less computation time than a combination of ANN and

wavelet transform.
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Table.1.3. Comparisons of mean and standard deviation from various techniques for

removal of ECG interference from the contaminated EMG signal.

Methods SNR (dB) RE R MFRE  ET(s)
ANFIS-wavelet [20]  14.97+1.34 0.02+0.02 0.99+0.02 0.12+0.01 0.27
ANN-wavelet [24] 15.41+1.57 0.01+0.00 0.98+0.00
ANFIS [20] 12.27+1.06 0.04+0.01 0.97£0.01 0.21+0.05 0.12
ANN [20] 11.85+1.16 0.05+0.02 0.96+£0.01 0.23+0.03 0.31
ANN [24] 11.90+#1.53 0.05+0.02 0.96+0.01
Subtraction [20] 11.41+0.91 0.05£0.02 0.96+0.01 0.26+0.07 0.42
Subtraction [24] 11.47£1.33 0.05+0.02 0.96+0.00
RLS [20] 7.89+1.33 0.1240.03 0.92+0.02 0.65+0.11 69
RLS [24] 8.09+1.29 0.12+0.04 0.92+0.02
Wavelet [20] 5.26+0.69 0.14+0.12 0.86+0.03 0.71+0.13 0.15
Wavelet [24] 5.36£0.81 0.15+0.03 0.86+0.03
HPF [20] 7.75+0.79 0.12+0.05 0.89+0.01 0.82+0.12 0.03
HPF [24] 7.63+0.49 0.11+0.04 0.02+0.01
ET: Estimated calculation time
1.1.2.2. Power line interference

e Digital filter

Digital filter is used for removing power line interference from contaminated
EMG signals [85-87]. The digital Butterworth filter proposed by Mello [26] was

designed based on the frequencies characteristics of the power line signal. Thus, it was

implemented as the convolution of six stop-band second-order Butterworth digital
filters with rejection bands of 59-61, 119-121, 179-181, 239-241, 299-301, and 359-

361 Hz. Moreover, a high-pass second-order Butterworth digital filter with cut-off

frequency of 10 Hz and a low-pass eight-order Butterworth digital filter with cut-off

frequency of 400 Hz were used for removing low and high frequency noise. The zero-

phase filters were implemented on both the forward and reverse directions to obtain

zero phase distortion. Note that, the stop-band filter was used instead of a notch filter
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because it gave a better efficiency when the power line noise became a broadband noise
with increased energy in higher harmonics due to saturation by the amplification.

Later, Butterworth, Chebyshev, and Elliptic digital comb filters were used for
removing power line interference from the contaminated EMG signals in [16]. They
were implemented as a cascade of four stop-band second-order filters with rejection
bands of 49-51, 99-101, 149-151 and 199-201 Hz. Moreover, zero-phase digital
filtering was performed to avoid any phase shift [16].

e Adaptive filter

Fig. 1.16 shows a basic structure of the adaptive Laguerre filter, which can be
considered as a generalization of transversal filter. While Lo(z) is a single pole low-pass
filter, L(z) is a first order all-pass filter. The poles of all-pass filters are the same as the

poles of low pass filter. The transfer function of Lo(z) and L(z) are given by [27]

Lo(z) = 12)

L(z) = 2= lal < 1. (1.3)

1-az™1’

x(k)

'\l'o “‘1

Fig. 1.16. The adaptive Laguerre filter [27].

The weight of the adaptive Laguerre filter was optimized using an LMS

algorithm as given by
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Wk +1) = W(k) + uU(k)e(k). (1.4)

Fig. 1.17 shows a block diagram of the adaptive power line noise canceller
based on the adaptive Laguerre filter proposed in [27]. The reference signal that is
correlated with the ECG interference is mathematically constructed by [27]

PLL.c; = cos(2m50t)+cos(2m100t)+cos(2mw200t)+cos(2300t)+cos(2w400t). (1.5)

The LMS algorithm was used for adjusting the locations of the poles and zeros.
As a result, the optimum weights of the Laguerre filter can be obtained. Finally, the
power line interference y(k) was estimated by the weighted linear combination of the
filter outputs in the adaptive Laguerre filter.

z(k)= EMG+PLI + e(k)
=
. y(k)
Ccos
Mathematical Adaptive Laguerre
Construction of PLIT Structure

Fig. 1.17. Block diagram of the adaptive power line noise canceller based on an
adaptive Laguerre filter proposed in [27].

In [16], the adaptive Laguerre filter was applied to remove power interference
at frequency 50, 100, 150, and 200 Hz for comparisons with other techniques. As a
result, the complex poles of the adaptive Laguerre filter was set at the frequencies of

75, 125 and 175 Hz, respectively as suggested in the design by [27].

e \Wavelet transform

Discrete stationary wavelet packet transform (DSWPT) is used to remove power
line interference from the contaminated EMG signals [16,90-92]. DSWPT is a shift-
invariant transformation [93]. Fig. 1.18 shows the diagram of decomposition step in
DSWPT. While the signal cA; at level j is decomposed by a low pass filter F; resulting

in the low frequency signal cAj+1 at level j +1, the signal cAj at level j is decomposed
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by a high pass filter G;j resulting in the high frequency signal cDj+1 at level j +1. The
fourth-order Meyer wavelet was used as a wavelet function with three-level wavelet

decomposition.

One-Dimensional SWT

G;
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level j
where Convolve with filter X

Filter computation

level j+1

FJ 1 2 F_;+1
where Upsample
G; | 1 2 I G
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C.AO =8 FO=LO_D GO =H£_D

Fig. 1.18. The block diagram of decomposition step in DSWPT.

Fig. 1.19 shows the flowchart used for removing power line interference at
frequency 50, 100, 150, and 200 Hz based on DSWPT [16]. It consisted of 5 steps: (1)
Detrend and resample signal to obtain a sampling frequency of 1000 Hz, (2) Perform
DSWPT decomposition, (3) Estimate rough amplitude and phase of the noise signals,
(4) Estimate fine amplitude and phase of the noise signals, and (5) Estimate the EMG
signal by subtracting the fine estimation of power line interference from Step (4) from

the contaminated EMG signal.



24

iy N
Signal contaminated with noise
Y=M4X X X 4K

l

Signal conditioning
[Detrend and resample (f, =1kHz]]

\ "

'

DSWPT coefficients
st .5ta =5t « 5k
{}“i.r.' *T31 A “.4.5]

'

" B
Rough estimation of the amplitude and phase
Step 3 of the noise signals

) ” A
Koo Kygg v Kisp v Koy )

'

[ .
Fine estimation of the amplitude and phase
Step 4 of the noise signals

00

Step 1

Step 2

d % % %
Ko Kygg v Bygg v gy

'

Estimation of the electromyogram signal

Step 5 A A A A A
m y xi'." }{”]C' x'ISC KECC

Fig. 1.19. The flowchart used for removing power line interference based on DSWPT
[16].

e Performance evaluations

Table 1.4 shows the comparisons of mean and standard deviation from various
techniques discussed in Section 1.1.2.2 for removal of power line interference from the
contaminated EMG signal using R. The DSWPT technique can present the best
performance for simulation data and real data compared with the other filters, i.e., the
digital Butterworth filter Type 1 and 2 [26], the adaptive Laguerre filter [28],
Chebyshev filter [26], and Elliptic filter [26]. Moreover, it is important to note that the

obtained correlation coefficient results remain almost constant for all the analyzed
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cases, independently of the SNR values of the noisy signal. The correlation coefficient

is 0.98-0.99.

Table 1.4. Comparisons of mean and standard deviation from various techniques for

removal of power line interference from the contaminated EMG signal using R [16].

SNR -20 dB -10 dB 0dB 10 dB 20 dB
Without filtering 0.1+0.08  0.3t0.07 0.713¥0.03 0.95+0.00 1
DSWPT [16] 0.98+0.04 0.99+0.01 0.99+0.01 0.99+0.01  0.99+0.01
Adaptive filter [16] 0.1+0.08  0.3t0.08 0.68+0.09 0.91+0.01  0.94+0.02
Butterworth (Type 1) [16]  0.3920.20  0.78+0.09 0.95:0.02 0.98+0.01  0.98+0.01
Butterworth (Type 2) [16]  0.49+0.09  0.86+0.04 0.96+0.02 0.98+0.01  0.98+0.01
Cheyshev (Type2) [16] 0.33:0.08  0.74+0.05 0.96+0.02 0.99+0.01  0.99+0.01
Elliptic (Type 2) [16] 0.33:0.08  0.74+0.05 0.96+0.02 0.99+0.01  0.99+0.01

1.1.2.3. Motion artifact

e Digital filter

There are a variety of digital filtering techniques for removing motion artifacts
from previous publications. A high-pass eighth-order Chebyshev filter with cut-off
frequency of 20 Hz is used for removing the motion artifacts from contaminated EMG
signals in [30]. Fig. 1.20 (a)-(c) show the synthetic signal simulating two bursts of
muscular contraction with a SNR 15 dB, the same signal corrupted by a real motion
artifact and noise removal by the Chebyshev filter. We can see that the Chebyshev
filter is not suitable for extracting bursts in the case of high motion artifacts superposed
to the trace. In addition, a high-pass second-order Butterworth filter at a corner
frequency of 20 Hz and a slope of 12 dB per octave is used for removing the motion

artifacts from contaminated EMG signals in [14].

A moving average filter is also used for removing motion artifacts from EMG
signals [30]. It was implemented by using a window consisting of 49 samples and

shifting on the signal by one sample step at sampling frequency 1000 Hz. The average
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data sample was estimated in each step. As a result, the value obtained from these steps
was assigned to the central window sample. Then, the motion artifact was removed by
subtracting the average data sample from the contaminated EMG signal. Moreover, a
moving median filter was used to estimate the motion artifact and was subtracted from
the contaminated EMG signal [30].
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Fig. 1.20. (a) The synthetic signal generated by amplitude modulating a white noise
sequence in order to obtain a signal simulating two bursts of muscular contraction with
a SNR 15 dB. (b) The same signal corrupted by a real motion artifact. (c) Noise removal
by the high pass filter. (d) Noise removal by moving average filter. () Noise removal

by moving median filter. (f) Noise removal by wavelet procedures [30].
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e Wavelet transform

Adaptive thresholding in wavelet transform was used for removing motion
artifacts from contaminated EMG signals [30]. The wavelet function used was an
orthogonal Meyer wavelet. After the contaminated signal was decomposed using
discrete wavelet transform, the wavelet coefficients were categorized into 2 classes,
namely, a burst zone comprising the mixture of artifacts and EMG signals and an inter-
burst zone consisting of only the artifacts. Then, the adaptive threshold was computed
to suppress the wavelet coefficients from the artifacts. Finally, an inverse discrete
wavelet transform was used to produce the cleaned EMG signal. Fig. 1.20 (d)-(f) shows
the performance results of noise removal by moving average filter, moving median
filter, and wavelet procedures in [30]. Results show that the wavelet transform

technique gives the best performance.

Table 1.5. Comparisons of mean and variance of the MSE values from 4 techniques for

removal of motion artifacts in [30].

MSE High-pass Moving median Moving average Wavelet
Mean value  2.41.10° 1.78.10° 1.5.103 1.3.103
Variance 2.6.10° 7.1.107 6.7.107 4.4.107

Table 1.5 shows the comparisons of mean and variance of the MSE values from
4 techniques for removal of motion artifacts from the contaminated EMG signal
discussed in Section 1.1.2.1. Results show that the wavelet transform technique gives

the best performance, which agrees well with the signal plots shown in Fig. 1.20.

1.2.  Research objective

e To develop a novel algorithm for estimating SNR and removing the noise

contaminated in the EMG signal in order to obtain the high quality EMG signal.
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1.3.  Research scope

e Inthisthesis, only three types of noise contaminated in the EMG signal, namely,
ECG interference, power line interference, and motion artifact, will be focused.

1.4. Contribution to this thesis

This thesis studied the contaminations in the EMG signal and
corresponding noise removal techniques. We have developed a novel SNR estimating
algorithm and a novel noise removal algorithm for three types of noise contaminated in
the EMG signal, i.e. ECG interference, power line interference, and motion artifact. On
the one hand, for the SNR estimating algorithm, we calculate the feature that is
popularly used in recognizing EMG signals. Then, the feature is used as an input of a
neural network (NN). The NN output is an SNR estimate. The results showed that the
high average correlation coefficient was obtained. On the other hand, for the noise
removal algorithm, we proposed to remove noise from the EMG signal while taking
into account the SNR. The contaminated EMG signal is decomposed using DSWT. The
coefficients for the levels that are contaminated by noise are set to zero when their
absolute values are less than or equal to a threshold determined for each SNR level. A
clean EMG signal can then be obtained by inverse DSWT mapping of the new
thresholded coefficients. The performance based on mean absolute error, correlation
coefficient, and relative error shows that the DSWT method is better than a high-pass
filter.

1.5. Thesis structure

This thesis is partitioned into five chapters including Chapter 1
Introduction, Chapter 2 Background Chapter 3 Materials and Methods, Chapter 4
Results and Discussion, and Chapter 5 Conclusions. The details of each chapter are

described as follows.

Chapter 1 represents the introduction to EMG signal, applications of
EMG signal, and an EMG recognition system. The literature review based on types of

noise contaminated in EMG signals is presented to point out the study direction.
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Chapter 2 describes the background theories of methods used in this
research consisting of discrete stationary wavelet transform (DSWT), feature

calculation and neural network.

Chapter 3 presents the data generation and methods used in this thesis.
The methods can be divided into five main sections: ECG interference removal
algorithm based on DSWT, SNR estimation in EMG signals contaminated with ECG
interference, threshold estimation EMG signals contaminated with ECG interference,
SNR estimation in EMG signals contaminated with powerline interference, SNR

estimation in EMG signals contaminated with motion artifact.

Chapter 4 shows and discusses the results from the EMG signal
analysis described in Chapter 3. The results are divided into five main sections
according to the methods in Chapter 3: removal of ECG interference based on DSWT,
threshold estimation EMG signals contaminated with ECG interference, SNR
estimation in EMG signals contaminated with ECG interference, SNR estimation in
EMG signals contaminated with power line interference, and SNR estimation in EMG

signals contaminated with motion artifact.

Chapter 5 presents the conclusions of the noise removal algorithm in the
EMG signals contaminated, SNR estimation in EMG signals contaminated with noise,
and threshold estimation in EMG signals contaminated with noise described in Chapter

3, the summary of this thesis, and future work.
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CHAPTER 2

BACKGROUND

In this chapter, the background theories of methods used in this research
are mentioned. The details of discrete stationary wavelet transform (DSWT) are
presented in Section 2.1. The description of feature calculation and neural network are

described in Section 2.2 and Section 2.3, respectively.

21 DSWT

DWT may be replaced with DSWT in some applications where time-
invariance is required. DSWT can be implemented by removing the down-samplers and
up-samplers in DWT, and by modifying the filters by upsampling the coefficients from
the previous decomposition level. However, DSWT is a redundant transform, which
contains the same number of samples between the input and the output at each

decomposition level [94].

Let x[n] be a signal to be decomposed using L- level DSWT. Two
outputs from first level decomposition consist of the approximation coefficients, cAl,
from the convolution between a low-pass filter hi[n] and the input signal x[n] and the
detail coefficients, cD1, from the convolution between a high-pass filter g:[n] and the
input signal x[n]. Note that the lengths of x[n], cAl, and cD1 are the same. In the next
level decomposition, the approximation coefficients, cAl, will be used as input. The
filters h1[n] and g1[n] are modified by upsampling to hz[n] and g2[n]. The outputs from
second level decomposition can be obtained by convolving cAl with hz[n] and g2[n]
resulting in the approximation coefficients cA2 and the detail coefficients cD2,
respectively. We can keep repeating these operations until the decomposition level L is
reached. Fig.2.1 (a) and (b) shows an example of 5-level DSWT decomposition and the
upsampling operation for the filters at each decomposition level, respectively. Fig. 2.2
shows an example of 5-level DSWT reconstruction, where hj[n] and gj[n] are

reconstruction low-pass and high-pass filters at level j, respectively.
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Fig. 2.1. (a) Example of 5-level DSWT decomposition. (b) Upsampling operation for

the filters in each decomposition level [95].
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Fig. 2.2. Example of 5-level DSWT reconstruction [95].
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2.2 Feature calculation

Feature calculation plays a vital role in improving the performance of
the EMG signal recognition system. It is not only a process for reducing the
dimensionality of the EMG signals but also useful in extracting significant information.
Based on the literature review, the features used with the EMG signal can be
categorized into 3 groups, namely, amplitude based features, frequency based features,
and statistics based features. We selected two popular features from each group as a
representation. We do not randomly select any features into our algorithm development
to increase relevance and avoid redundancy. In this thesis, six popular features for the
EMG signal recognition are used in estimating SNR including skewness (SKEW),
kurtosis (KURT), mean absolute value (MAV), wavelength (WL), zero crossing (ZC),
and mean frequency (MNF). While KURT and SKEW are statistics based features,
MAYV and WL represent the category of amplitude based features. Besides, ZC and
MNF are from the category of frequency based features. Brief details of each feature

calculation are as follows.

e SKEW is a measure of asymmetry in probability distribution from EMG
amplitudes. It is given by [96,97]

1 3
NZ{'\il (xi=20)

3
( Lz, (x,»-u)2>

where p is an average value, xi is the normalized EMG amplitude, and N is

SKEW = , (2.1)

the total number of EMG samples under calculation.

e KURT is used to measure the tail characteristic of the probability

distribution from the EMG amplitudes. It can be expressed as [97-99]

lzl\i x4
W -3, (2.2)
—Zizlxi

KURT =
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MAV is defined as one of the most popular features and widely used in the
analysis of the EMG signal. MAV can be calculated by an average of the

absolute values of the EMG amplitudes in a sampled segment. It can be

given by [11,100]

N
1
MAV= X,Z |x;| (2.3)

WL is used for measuring the complication of the EMG signal and the
increase in the length of EMG waveform over a time segment, which can be
expressed as [11]

N-1
WL:Z"XH—I_XI" (24)
i=1

ZC is determined to quantify the frequency information of the EMG signal.
It is defined as the number of times that the EMG amplitudes pass the zero
level. We can add the threshold to prevent low voltage fluctuations or
background noise. ZC is described by [11,101]

ZC= Zﬁ\ill [fCx; %11 )and|x;-x ;41 |>10] (2.9)

1if x<0
where f(x)= .
0, otherwise

MNF is the sum of the product of the EMG power spectrum and the
frequency divided by the total sum of the spectrum intensity. It is also known
as not only the average frequency but also the center frequency or the spectral
center of gravity [11,102]. It can be given by [11,103]

MNF =52, P/ ZF Py (2.6)
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where ]; is the frequency of the spectrum at frequency bin j, Pjis the EMG

power spectrum at frequency bin j, and M is the number of the frequency

bins.

2.3 Neural network

Neural network (NN) has been successfully applied to a variety of
applications, such as speech recognition [104], image analysis [105] and adaptive
control [106]. In this paper, NN was used to estimate the SNR when the features
described in Section 2.1 were the input. We used a two-layer feedforward network with
a sigmoid transfer function in the hidden layer and a linear transfer function in the
output layer. Levenberg-Marquardt optimization was performed as a network training
function in updating weight and bias values [107]. We evaluated performance between
the SNR target and the estimated SNR from NN using a correlation coefficient (CC),
which can be expressed as [17,20,108]

CC = — 2t Gt D=0 (s -5) 2.7)
L0502 S (se(D-s50)?

where st is the true SNR and s. is the estimated SNR. CC values measure the correlation
between outputs and targets. While a CC value of 1 means a close relationship, a CC

value of 0 is a random relationship.



35

CHAPTER 3

METHODS

In this chapter, the data generation and methods used in this research are
described. The details of data are described in Section 3.1. The materials and methods
of ECG interference removal algorithm based on DSWT and SNR estimation in EMG
signals contaminated with ECG interference are described in Section 3.2 and Section
3.3. The materials and methods for threshold estimation in EMG signals contaminated
with ECG interference, SNR estimation in EMG signals contaminated with power line
interference, and SNR estimation in EMG signals contaminated with motion artifact

are mentioned in Section 3.4, Section 3.5, and Section 3.6, respectively.

3.1. Data generation
3.1.1. Simulated EMG

Simulated EMG signals were used in this thesis because we would like
to make sure that there was no noise contaminated in the EMG signal. The simulated
EMG is generated by filtering white Gaussian noise with a band-pass filter, whose

transfer function is given by [108]

HH = 2, 3.1)
(L Nt

where fi_is the lower frequency parameter, which is random from 30-60 Hz and fy is the
upper-frequency parameter, which is random from 30-100 Hz plus f.. The band-pass
filter H(f) was implemented based on Least P-norm optimal IR filter design. The length
of each signal was 2000 samples, which is equivalent to 2 s at a sampling rate of 1000
Hz. Fig. 3.1 shows the waveform of simulated EMG generated with  f. = 45 Hz and
fu = 110 Hz in the time domain (Top panel) and corresponding power spectra in the
frequency domain (Bottom panel). We can see that the power spectrum from simulated

EMG signal (solid line) agrees well with that from the bandpass filter H(f) (dotted line).
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3.1.2. Simulated ECG

We generate simulated ECG signals using a dynamical model based on

three coupled ordinary differential equations, which can be expressed as [109]

X = ox-@y (3.2)
y=aytax (3.3)

' N
z=- ZiE{P,Q,R,S,T} a;A0; exp (' W) -(z-2y) (3.4)

where, a=1-,/42+y? , A0,=(6-6;) mod 2z, =atan2(y,x) (the four quadrant arctangent
of the real parts of the elements of x and y, with -z <atan2(y,x) <x) and w is the angular
velocity of the trajectory as it moves around the limit cycle. The parameters &, ai, and
bi for the PQRST points were suggested by visualization of ECG from a healthy subject.
In this paper, the values used for all three parameters in the simulation are given in
Table 3.1. The simulated ECG signal was generated with a sampling frequency of 256
Hz. Mean heart rate was randomly selected from 60-100 beats per minute. \We chose
the length of the analyzed signals to be 2 s. The heart rate was randomly selected
between 60-100 beats per minute. As a result, two to three normal beats of ECG
interferences were seen in the contaminated EMG signals as shown in Fig. 4.1. If the
length was too short, we might not see the ECG interference and could not compute the
optimum threshold. We required additional calculations to set the heart rate, which were
not included in Equation (3.2)-(3.4). Fig. 3.2 shows an example of simulated ECG
signals from 2 mean heart rates in the time domain (Top panel) and their power spectra

in the frequency domain (Bottom panel).
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Fig. 3.1. Simulated EMG in the time domain (Top panel) and its power spectrum in the
frequency domain (Bottom panel). Solid line: Power spectrum from the simulated EMG

signal. Dotted line: Frequency response of the bandpass filter H(f).

Table 3.1. Specific parameters used for generating simulated ECG.

Parameter Description P Q R S T

& (degrees) Angles of extrema -70 -15 0 15 100

ai z-position of 1.2 -5.0 30.0 -7.5 0.75
extrema

bi Gaussian widthof 0.25 0.1 0.1 0.1 04

peaks
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Fig. 3.2. Examples of simulated ECG signals in the time domain (Top panel) and their
power spectra in the frequency domain (Bottom panel) when the mean heart rates are
60 (solid line) and 100 (dotted line) beats per minute.

3.1.3. Real ECG

The real ECG signal was obtained from the MIT-BIH arrhythmia
database. We acquire a normal ECG beat from 40 records with 20 s for each record.
Subsequently, each record was resampled from 360 Hz to 1000 Hz to match with the

sampling rate of the EMG signal. Finally, each 20-s data were segmented into 2 s data.

3.1.4. Simulated power line interference

Simulated power line interference is generated by adding a sine wave
with a random phase (without harmonics) to the required SNR level. The simulated

power line interference signal was generated with a sampling frequency of 1000 Hz.
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Phase is random between [0 2r] and frequency is random between 49.5 and 50.5 Hz
[110].

3.1.5. Simulated motion artifact

Simulated motion artifact was generated by filtering white Gaussian
noise with the fourth-order Butterworth low-pass filter at a cut-off frequency 20 Hz. A
sampling frequency of 1000 Hz was used [14,111].

3.1.6. EMG contamination

We generated 9 types of EMG signals contaminated with ECG
interference, namely with SNR levels from, -20 dB to 20 dB at 5 dB increments. The
SNR was calculated using the equation given by

n

SNR =10 |ogm(§j, (3.5)

where Py was an average power of the EMG signal and P, was an average power of the
ECG interference. Two datasets were generated. While the first dataset consisted of the
simulated EMG signal contaminated with the simulated ECG interference, the second
dataset comprised the simulated EMG signal contaminated with real ECG interference.

Details of generating each dataset are as follows.

e Simulated EMG contaminated with simulated ECG (SMSC): Fifty simulated
ECG signals and 50 simulated EMG signals were randomly chosen and mixed
with amplitude scaling to produce the EMG signals contaminated with ECG at
each desired level of SNR.

e Simulated EMG contaminated with real ECG (SMRC): The procedure was
similar as for the first dataset, except that the simulated ECG signals were
replaced with real ECG signals. As a result, fifty simulated EMG signals

contaminated with real ECG interference were obtained at each SNR level.
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3.2. Removal of ECG interference based on DSWT

xC
—»@—» Noise removal techniqgue [—

Fig. 3.3. General block diagram of noise removal in the contaminated EMG signal.

We describe a noise removal model in this section. Fig. 3.3 shows a
general block diagram of noise removal in the contaminated EMG signal where X, is an
uncontaminated EMG signal, no is ECG interference, X is a contaminated EMG signal,
and Xxq is a contaminated EMG signal that is cleaned by noise removal. After noise
removal, the performance of the technique can be measured using criteria based on the
mean absolute error (MAE), correlation coefficient (CC), and relative error (RE). \We
determined three performance measurement methods in this thesis, i.e., the mean
absolute error (MAE), correlation coefficient (CC), and relative error (RE). While MAE
measures the difference of the clean EMG signal from the uncontaminated EMG signal
in the time domain, RE measures the difference in the frequency domain. On the other
hand, CC indicates the similarity between the clean and uncontaminated EMG signals.
We determined all three measure methods to demonstrate the consistent performance

of the proposed algorithm. The MAE can be expressed as [16]
MAE=1 S, - xql. (36)

The closer MAE is to 0, the better is the noise removal. The CC is given by [16,17],

CC = — Zima G -F) Ead %) 3.7)
[P -5 [E e -5e?

where x, is the mean value of uncontaminated EMG signal and x; is the mean value of
the cleaned EMG signal. The closer CC is to 1, the better is the noise removal. The RE
can be expressed as [20, 24]
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_ Py ()P (N
LPe, (P’

RE (3.8)
where P, (f) is the power spectrum of uncontaminated EMG signal and P (f) the

power spectrum of the cleaned EMG signal. The closer RE is to 0, the better is the noise

removal.

The proposed method for removing the ECG interference from the EMG
signal based on DSWT consists of 3 main stages, namely, DSWT decomposition,

thresholding, and DSWT reconstruction. Details on each stage are as follows.

Stage (1) Decompose the contaminated EMG signal using 5-level DSWT with the
Symlet wavelet function. The Symlet wavelet function was chosen in this
paper from the guideline on its successful removal of ECG interference from
EMG signal in previous publications [21, 24]. Table 3.2 shows the frequency
bands for the wavelet coefficients in the decomposition. We can see that the
cutoff frequency of HPF used for removing ECG interference, which is 30
Hz [17, 21, 29, 30], agrees well the combined frequency range of cA5 and
cD5.

Table 3.2. Frequency bands in the 5-level DSWT decomposition.

Level (k) cAk (Hz) cDk (Hz)
1 0-250 250-500
2 0-125 125-250
3 0-62.5 62.5-125
4 0-31.25 31.25-62.5
5 0-15.625 15.625-31.25

Stage (2) Process the coefficients at cD4 and cD5, which are contaminated by the ECG
interference, with a nonlinear thresholding procedure. In other words, the
coefficients for cD4 and cD5, whose absolute values are less than or equal to
the threshold value, are set to zero. The threshold values are varied from 0 to

10 with increments of 1. As aresult, 11x11 = 121 combinations of threshold
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levels for cD4 and cD5 are tested. The thresholds that give the best
performance based on MAE are selected as optimal. Note that the
coefficients in cA5 are set to zero because there are no EMG components in

this frequency band.

Stage (3) Obtain the clean EMG signal by applying inverse DSWT to the new

coefficients after thresholding from Stage (2).

The performance of the DSWT method was compared with the linear
filter technique based on Butterworth HPF [17]. The Butterworth filter was designed
using a fourth-order HPF with cutoff frequency 30 Hz and was implemented in both
forward and reverse directions to avoid phase distortions. The performance of the
DSWT method was evaluated and compared based on MAE, CC, and RE using mean

and standard deviation from 50 signal implementations at each SNR.

3.3.  SNR estimation in EMG signals contaminated with ECG

interference

3.3.1. Feature evaluation in EMG signals contaminated with ECG

interference

We describe the method used for evaluating features in this section.
Firstly, we generated the EMG signals contaminated with the ECG interferences at 5
SNR levels from -20 dB to 0 dB with a step size of 5. The SNR [-20, 0] dB was of
interest because we obtained an excellent detection on the type of noise when the SNR
is lower than 0 dB [37]. After the type of noise was known, SNR was estimated with
the algorithm that was appropriate to the detected type of noise. The dataset contained
the contamination of the simulated EMG signal with the real ECG interference. Fifty
real ECG signals were randomly chosen and were amplitude scaling with fifty
simulated EMG signals at each SNR level. The SNR was calculated using the Equation
(3.5).

Secondly, after the contaminated EMG signal was generated, it was

normalized to have unit energy. Normalization was described by
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x= —t— (3.9)

where X; is the normalized EMG amplitude, x; is the EMG amplitude, and N is the length
of the signal. Subsequently, the cD4 and cD5 coefficients were determined from the
normalized EMG signals. The cD4 and cD5 coefficients were of interest in this study
because their frequency bands, namely 31.25-62.5 Hz and 15.625-31.25 Hz, correspond
to the frequency component of the ECG interference. Moreover, the Symlet wavelet
function was used as suggested from [21].

Finally, we generated six features, namely, SKEW, KURT, MAV, WL,
ZC, and MNF, from 50 normalized contaminated EMG signals, cD4, and cD5
coefficients for each SNR level. The boxplots of each feature as a function of 5 SNR

levels were used in the evaluation.
3.3.2. Training and testing data preparation for SNR estimation

The EMG signals contaminated with the ECG interference were
generated using uniformly random SNR in the range of [-20, 0] dB. Subsequently, we
generated two datasets. The first dataset comprised the contamination of simulated
EMG signal with the simulated ECG interference. The second dataset contained the
contamination of the simulated EMG signal with the real ECG interference. Details of
each dataset generation are as follows.

e Contamination of simulated EMG with simulated ECG (SMSC): Three
hundred pairs of simulated ECG and EMG signals were randomly selected
and combined with amplitude scaling to obtain the EMG signals
contaminated with the ECG interference in the range of SNR levels from -
20 to O at a uniform random distribution. This dataset was used in the
training step.

e Contamination of simulated EMG with real ECG (SMRC): This dataset has
the same generation process as the SMSC dataset except substituting the
simulated ECG signals with the real ECG signals. One hundred simulated
EMG signals and 100 real ECG signals were randomly chosen.

Subsequently, they were combined to achieve SNR in the range of [-20 0]
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dB with a uniform random distribution. This dataset was used in the testing
step.
After EMG contamination, we normalize signals and calculate features
from both SMSC and SMRC dataset using the method described in Section 3.2.

3.3.3.  SNR estimation algorithm

Stage (1) Normalize SMSC
features

Stage (2) Train NN with SMSC
dataset

\4

Stage (3) Normalize SMRC
features

\4

Stage (4) Test NN with SMRC
dataset

Stage (5) Evaluate performance
between the target and
estimated SNR

A
Stage (6) Repeat Stage (1)-(5)
five times

End

Fig. 3.4. Flowchart of SNR estimation algorithm.
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The proposed method for estimating SNR consists of 6 main stages

shown in the flowchart of Fig. 3.4. Details on each stage in the flowchart are as follows.

3.4.

Stage (1) Normalize each feature from the SMSC dataset by
= L# (3.10)

where f is a feature, x and o are the mean and standard deviation of each
feature, respectively.

Stage (2) Train NN with the normalized features from Stage (1). The input
vectors and targets vectors will be randomly divided into three sets as
follows: 70% will be used for training, 15% will be used to validate that the
network is generalizing and to stop training before overfitting. The last 15%
will be used as a completely independent test of generalization. The number
of hidden neurons is 20.

Stage (3) Normalize each feature from the SMRC dataset using Equation
(3.10) and use them as the testing data.

Stage (4) Apply the trained NN from Stage (2) to the testing data from Stage
(3).

Stage (5) Evaluate performance between the SNR target and the estimated
SNR from NN using CC.

Stage (6) Repeat Stage (1)-(5) for five times using new generated SMSC
and SMRC data. Evaluate the performance of the proposed algorithm using

the mean and standard deviation from 5 CC values.

Threshold estimation in EMG signals contaminated with ECG

interference

3.4.1. Training and testing data preparation

The EMG signals contaminated with the ECG interference were

generated using uniformly random SNR in the range of [-20, 0] dB. Subsequently, we
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generated two datasets. The first dataset comprised the contamination of simulated
EMG signal with the simulated ECG interference. The second dataset contained the
contamination of the simulated EMG signal with the real ECG interference. Details of

each dataset generation are as follows.

e Contamination of simulated EMG with simulated ECG (SMSC): Three
hundred pairs of simulated ECG and EMG signals were randomly selected
and combined with amplitude scaling to obtain the EMG signals
contaminated with the ECG interference in the range of SNR levels from -
20 to 0 at a uniform random distribution. Subsequently, the two optimal
thresholds, i.e. Thl for cD4 and Th2 for cD5, were determined using the
method described in Section 3.2. This dataset was used in the training step.

e Contamination of simulated EMG with real ECG (SMRC): This dataset has
the same generation process as the SMSC dataset except substituting the
simulated ECG signals with the real ECG signals. One hundred simulated
EMG signals and 100 real ECG signals were randomly chosen.
Subsequently, they were combined to achieve SNR in the range of [-20 0]
dB with a uniform random distribution. This dataset was used in the testing
step to estimate the threshold values Thlest and Th2est.

After EMG contamination, we normalize signals and calculate features
from both SMSC and SMRC dataset using the method described in Section 3.2.

3.4.2. Threshold estimation algorithm

The proposed method for estimating the threshold value for ECG
interference removal based on DSWT has the same generation process as the SNR
estimation algorithm as shown in the flowchart of Fig. 3.4 except substituting the
threshold input with the SNR input.
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3.5.  SNR estimation in EMG signals contaminated with power line

interference

3.5.1. Feature evaluation in EMG signals contaminated with power line

interference

We describe the method used for evaluating features in this section.
Firstly, we generated the EMG signals contaminated with the power line interference
at 5 SNR levels from -20 dB to 0 dB with a step size of 5. The SNR [-20, 0] dB was of
interest because we obtained an excellent detection on the type of noise when the SNR
is lower than 0 dB [37]. After the type of noise was known, SNR was estimated with
the algorithm that was appropriate to the detected type of noise. The dataset contained
the contamination of the simulated EMG signal with the simulated power line
interference. Fifty simulated power line interference signals were randomly chosen and
were amplitude scaling with fifty simulated EMG signals at each SNR level. The SNR
was calculated using the Equation (3.5).

Secondly, after the contaminated EMG signal was generated, it was
normalized to have unit energy. Normalization was described by Equation (3.9).

Finally, we generated six features, namely, SKEW, KURT, MAV, WL,
ZC, and MNF, from 50 normalized contaminated EMG signals, cD4, and cD5
coefficients for each SNR level. The boxplots of each feature as a function of 5 SNR

levels were used in the evaluation.
3.5.2. Training and testing data preparation for SNR estimation

The EMG signals contaminated with the power line interference were
generated using uniformly random SNR in the range of [-20, 0] dB. Subsequently, we
generated two datasets. The first dataset comprised the contamination of simulated
EMG signal with the simulated power line interference. Details of each dataset
generation are as follows.

e Contamination of simulated EMG with simulated power line interference
(SMSC): Three hundred pairs of simulated power line interference and

EMG signals were randomly selected and combined with amplitude scaling
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to obtain the EMG signals contaminated with the power line interference in
the range of SNR levels from -20 to O at a uniform random distribution.
This dataset was used in the training step. One hundred simulated EMG
signals and 100 simulated power line interference signals were randomly
chosen. Subsequently, they were combined to achieve SNR in the range of
[-20 0] dB with a uniform random distribution. This dataset was used in the
testing step.

After EMG contamination, we normalize signals and calculate features

from SMSC dataset using the method described in Section 3.2.

3.5.3.  SNR estimation algorithm

The proposed method for estimating SNR has the same generation
process as the SNR estimation algorithm as shown in the flowchart of Fig. 3.4 except

substituting the powerline interference input with the ECG interference input.

3.6. SNR estimation in EMG signals contaminated with motion

artifact

3.6.1. Feature evaluation in EMG signals contaminated with motion

artifact

We describe the method used for evaluating features in this section.
Firstly, we generated the EMG signals contaminated with the motion artifact at 5 SNR
levels from -20 dB to 0 dB with a step size of 5. The SNR [-20, 0] dB was of interest
because we obtained an excellent detection on the type of noise when the SNR is lower
than 0 dB [37]. After the type of noise was known, SNR was estimated with the
algorithm that was appropriate to the detected type of noise. The dataset contained the
contamination of the simulated EMG signal with the simulated motion artifact. Fifty
simulated motion artifact signals were randomly chosen and were amplitude scaling
with fifty simulated EMG signals at each SNR level. The SNR was calculated using the
Equation (3.5).
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Secondly, after the contaminated EMG signal was generated, it was
normalized to have unit energy. Normalization was described by Equation (3.9).

Finally, we generated six features, namely, SKEW, KURT, MAV, WL,
ZC, and MNF, from 50 normalized contaminated EMG signals, cD4, and cD5
coefficients for each SNR level. The boxplots of each feature as a function of 5 SNR

levels were used in the evaluation.

3.6.2. Training and testing data preparation for SNR estimation

The EMG signals contaminated with the motion artifact were generated
using uniformly random SNR in the range of [-20, 0] dB. Subsequently, we generated
two datasets. The first dataset comprised the contamination of simulated EMG signal
with the simulated motion artifact. Details of each dataset generation are as follows.

e Contamination of simulated EMG with simulated motion artifact (SMSC):
Three hundred pairs of simulated motion artifact and EMG signals were
randomly selected and combined with amplitude scaling to obtain the EMG
signals contaminated with the motion artifact in the range of SNR levels
from -20 to O at a uniform random distribution. This dataset was used in the
training step. One hundred simulated EMG signals and 100 simulated
motion artifact signals were randomly chosen. Subsequently, they were
combined to achieve SNR in the range of [-20 0] dB with a uniform random
distribution. This dataset was used in the testing step.

After EMG contamination, we normalize signals and calculate features
from SMSC dataset using the method described in Section 3.2.

3.6.3. SNR estimation algorithm

The proposed method for estimating SNR has the same generation
process as the SNR estimation algorithm as shown in the flowchart of Fig. 3.4 except

substituting the motion artifact input with the ECG interference input.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, the results of the ECG interference removal algorithm
based on DSWT as described in Chapter 3 are shown and discussed. The results of
performance evaluation for the ECG interference removal algorithm based on DSWT
using MAE, CC, and RE, respectively, compared to HPF as mentioned in Section 4.1.
The results of feature evaluation and SNR estimation for ECG interference
contaminated in the EMG signal as given in Section 4.2. The results of threshold
estimation in EMG signals contaminated with ECG interference Section 4.3. The
results of feature evaluation and SNR estimation for power line interference as

discussed in Section 4.4 and motion artifact as described in Section 4.5.

4.1. Removal of ECG interference based on DSWT

4.1.1. Results

We implemented the ECG interference removal algorithm based on
DSWT as described in Section 3.2. In this section, we demonstrate the results of its

performance using MAE, CC, and RE in Table 4.1, 4.2, and 4.3, respectively.

Table 4.1 shows a comparison of MAE for DSWT and HPF noise
removal techniques using SMSC and SMRC datasets indicating that DSWT
outperforms HPF. Across the SMSC cases, MAE from DSWT decreased approximately
from 0.15 to 0.08 when SNR increased from -20 to 20 dB. However, MAE for HPF
was quite comparable at every SNR, at approximately 0.20. Across SMRC cases, we
can see a similar trend as with SMSC for SNR from 0 to 20 dB. However, with SNR
from -20 to -5 dB, MAE across SMRC was higher than across SMSC when compared
by SNR.

A comparison of CC for DSWT and HPF noise removal techniques
across SMSC and SMRC datasets is shown in Table 4.2. The results show that CC for
DSWT was better than for HPF. When the SNR increased from -20 to 20 dB, the CC
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for DSWT increased from 0.96 to 0.99 across SMSC cases. However, CC for HPF was
entirely consistent at approximately 0.96, independent of the SNR. With SMRC data,

at SNR from 0 to 20 dB, we can see a similar trend as with SMSC.

Table 4.1. Comparison of MAE for DSWT and HPF noise removal techniques.

SNR(dB) SMSC SMRC
DSWT HPF DSWT HPF

-20 0.1598+0.0301 0.2296+0.0359 0.4146+0.1034 0.7396+0.2293
-15 0.1468+0.0305 0.2071+0.0465 0.2968+0.0717 0.4181+0.1266
-10 0.128620.0252 0.2122+0.0520 0.1930+0.0401 0.2894:+0.0567
-5 0.1180+0.0289 0.2021+0.0393 0.1600+0.0306 0.2477+0.0493
0 0.1168+0.0295 0.2097+0.0441 0.1311+0.0288 0.2167+0.0430
5 0.1070£0.0226 0.2057+0.0501 0.1070+0.0248 0.2129+0.0488
10 0.0986+0.0223 0.2189+0.0460 0.0987+0.0212 0.2021+0.0421
15 0.0871+0.0195 0.2060+0.0409 0.0942+0.0225 0.2137+0.0440
20 0.0829+0.0187 0.2129+0.0464 0.0832+0.0180 0.2065+0.2078

Table 4.2. Comparison of CC for DSWT and HPF noise removal techniques.

SNR(dB) SMsC SMRC
DSWT HPF DSWT HPF

-20 0.9564:0.0156 0.9529+0.0143 0.8373:0.0808 0.5813+0.1577
-15 0.9717+0.0105 0.9634+0.0169 0.9161+0.0356 0.7948+0.1021
-10 0.9815+0.0066 0.9615+0.0197 0.9611+0.0171 0.9019:+0.0512
5 0.985620.0067 0.9663+0.0125 0.9738+0.0097 0.9418+0.0268
0 0.9863+0.0075 0.9634+0.0162 0.9813+0.0084 0.9582:+0.0175
5 0.9889+0.0047 0.9645+0.0186 0.987620.0069 0.9609:+0.0184
10 0.9915+0.0038 0.9601+0.0180 0.9903+0.0043 0.9655+0.0151
15 0.9937+0.0028 0.9652+0.0137 0.9919+0.0038 0.9624:+0.0154
20 0.9944+0.0028 0.9618+0.0171 0.9943+0.0023 0.9644:+0.0155
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Table 4.3. Comparison of RE for DSWT and HPF noise removal techniques.

SNR(dB) SMSC SMRC
DSWT HPF DSWT HPF
-20 0.0153+0.0199 0.0514+0.0420 0.2045+0.2263 45.38+67.2631
-15 0.014240.0152  0.0607+0.0546 0.1054%0.2155 2.0230+3.7012
-10 0.0120+0.0136 0.0774+0.0634 0.016420.0170 0.2648+0.4327
5 0.0124+0.0210  0.0647+0.0399 0.0586+0.0624 0.0724+0.0866
0 0.0258+0.0340  0.0798+0.0550 0.0346+0.0389  0.0666:+0.0560
5 0.0380+0.0435 0.0791+0.0617 0.0102+0.0129 0.0723+0.0616
10 0.0074+0.0094  0.0892+0.0582 0.0047+0.0069 0.0651:+0.0496
15 0.013740.0172  0.0727+0.0464 0.0051+0.0057 0.0825+0.0494
20 0.0066+0.0117  0.0770+0.0521 0.0046+0.0048 0.0748+0.0547

However, for SNR from -20 to -5 dB, CC across SMRC was lower than across SMSC

when compared at similar SNR.

Table 4.4. Comparison of optimal threshold levels based on MAE.

SNR(dB) SMSC SMRC
cD4 cD5 cD4 cD5

-20 7.98+1.86 5.76+1.29 4.70+2.44 3.74+2.51
-15 9.42+0.84 5.30+1.09 6.02+1.60 4.70+2.53
-10 8.00+0.90 4.92+1.29 7.36+1.75 5.02+1.86
-5 7.42+0.99 4.90+1.11 7.26+1.12 5.78+1.63
0 7.42+0.97 4.76+0.92 7.26+1.10 5.14+1.26
5 7.12+1.02 5.04+1.34 7.12+0.92 4.70+1.04
10 7.16+1.09 5.34+1.26 7.22+0.79 4.90+1.31
15 7.00+0.99 5.62+1.24 7.48+1.18 5.30+1.30
20 7.16+1.15 5.38+1.14 7.40+1.23 5.22+1.07
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A comparison of RE for DSWT and HPF noise removal techniques is
shown in Table 4.3. Across SMSC, RE for DSWT was better than for HPF. Across
SMRC, we can see that DSWT (0.2) provided a significantly better average RE than
HPF (45.4) at SNR -20 dB. Also, a similar pattern is seen for SNR -15 and -10 dB.

The SNR of the contaminated EMG signal affected the optimal threshold
level. Table 4.4 shows the optimal threshold levels based on MAE in DSWT noise
removal. For DSWT, significant differences in the threshold levels between the two
datasets are observed at SNR -20 and -15 dB for both cD4 and cD5. The threshold
levels with SMRC are smaller than those with SMSC, which may be caused by an
attempt to remove other types of artifacts, such as power line interference,
contaminating the EMG signals.

4.1.2. Discussion

In this section, we explored more insights of the results from Section
4.1.1. Fig. 4.1 shows an example of signals from DSWT thresholding. Fig. 4.1(a) shows
the EMG signal contaminated with simulated ECG at SNR of -20 dB. Fig. 4.1(b) depicts
the signals from DSWT at cD4 decomposition level before thresholding with a dotted
line and after thresholding with a solid line. The optimal threshold is 8. Therefore, the
coefficients from cD4 decomposition level before thresholding, whose absolute values
are greater than 8, are truncated to 0. Fig.4.1(c) shows similar processing for
coefficients in cD5 decomposition level with the optimal threshold 6. Fig. 4.1(d)-(f)

show the results from the EMG signal
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Fig. 4.1. While the left column shows an example of results with SMSC, the right
column shows an example of results with SMRC data. The top, middle, and bottom
rows show EMG signal contaminated with ECG at SNR -20 dB, signals from DSWT
at cD4 decomposition level, and signals from DSWT at cD5 decomposition level,
respectively. Dotted line: Detail coefficients before thresholding. Thick line: Detail

coefficients after thresholding.

contaminated with real ECG at SNR of -20 dB. The optimal thresholds for the
coefficients in cD4 and cD5 decomposition levels are 6 and 3, respectively. We can see
the ECG signal component in cD4 of SMRC, but it is invisible in SMSC. These results
indicate that the real ECG signal has the frequency range 32.5-62.5 Hz, which cannot
be removed using the Butterworth HPF with cutoff frequency 30 Hz as proposed in
[10].

After thresholding, the cleaned EMG signal was reconstructed. Fig.
4.2(a) shows the cleaned EMG signal from DSWT obtained by inverse DSWT of
thresholded coefficients, from Fig. 4.1(b)-(c), compared with the cleaned EMG signal
from HPF (Fig. 4.2(b)) and the uncontaminated EMG signal (Fig. 4.2(c)). We can see
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that both DSWT and HPF give similar waveforms compared to the uncontaminated
EMG signal. Fig. 4.3(a) shows the absolute errors of cleaned EMG signal from DSWT
and uncontaminated EMG signal (solid line) compared to those of the cleaned EMG
signal from HPF and uncontaminated EMG signal (dotted line). We can see that the
results from DSWT are better than from HPF, which matches the MAE for DSWT
(0.1771) being better than that for HPF (0.2563). Fig. 4.3(b) shows the power spectrum
for DSWT (thick line) compared with those for HPF (thin line) and uncontaminated
EMG (dotted line). The power spectrum for DSWT is closer to that from
uncontaminated EMG compared to that from HPF. These results are in agreement with
RE. In other words, RE for DSWT is 0.0131 compared to 0.0460 for HPF.

Fig. 4.2. Example of cleaned signals and the uncontaminated EMG signal from SMSC.
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(a) Cleaned EMG signal obtained by inverse DSWT of thresholded decomposition,
from Fig. 7(b)-(c) . (b) Cleaned EMG signal from HPF. (c) Uncontaminated EMG

signal.
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Fig. 4.3. Comparison of cleaned EMG signals and uncontaminated EMG signal in
SMSC data. (a) Absolute errors of cleaned EMG signal from DSWT and
uncontaminated EMG signal (solid line) compared to those of cleaned EMG signal
from HPF and uncontaminated EMG signal (dotted line). (b) The power spectrum of
cleaned EMG signal from DSWT (thick line) compared to that of uncontaminated EMG
signal (dotted line) and cleaned EMG signal from HPF (thin line).

Similar results were obtained from SMRC data. Fig. 4.4 shows cleaned
signals and their corresponding uncontaminated EMG signal in SMRC data. In Fig. 4.4
(b), we can see that HPF cannot completely remove ECG interference at a time around
0.4-0.6s, 1.2s, and 1.8-2s. These may be caused by other types of noise, such as power
line interference in the EMG signals. However, the cleaned EMG signal from DSWT
shown in Fig. 4.4(a) not only provides a significantly better result than HPF but also

has an excellent agreement with the uncontaminated EMG signal shown in Fig. 4.4 (c).
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(a) Cleaned EMG signal from DSWT (SMRC)
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Fig. 4.4. Example of cleaned signals and the uncontaminated EMG signal from SMRC.
(a) Cleaned EMG signal from DSWT based algorithm as in Fig. 7(e)-(f). (b) Cleaned
EMG signal from HPF. (¢) Uncontaminated EMG signal.

The absolute errors of cleaned EMG signal from DSWT and
uncontaminated EMG signal (solid line) compared to those of cleaned EMG signal
from HPF and uncontaminated EMG signal (dotted line) are shown in Fig. 4.5(a). We
can see that DSWT gives better results than HPF does. As a result, MAE and CC for
DSWT are noticeably better than those for HPF. In other words, while MAE and CC
for DSWT are 0.4490 and 0.8353, MAE and CC for HPF are 0.8298 and 0.4831. Fig.
4.5(b) shows the power spectra for DSWT (thick line), HPF (thin line), and
uncontaminated EMG (dotted line). We can see that the power spectrum for DSWT is
comparable with that for uncontaminated EMG. However, the power spectrum for HPF
is significantly different from that of uncontaminated EMG. These results agree with

RE for DSWT (0.1947) compared with that for HPF (43.6027).
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Fig. 4.5. Comparison of cleaned EMG signals and uncontaminated EMG signal from
SMRC. (a) Absolute errors of cleaned EMG signal from DSWT and uncontaminated
EMG signal (solid line) compared to those of cleaned EMG signal from HPF and
uncontaminated EMG signal (dotted line). (b) The power spectrum of cleaned EMG
signal from DSWT (thick line) compared to that of uncontaminated EMG signal (dotted
line) and cleaned EMG signal from HPF (thin line).

When there are variations in the EMG recording, the power spectra of
the EMG signal change. For example, the dominant frequency of the EMG recording
decreases as a result of muscle fatigue, which can be measured using the median
frequency [23]. The performances that we reported were based on the average and
standard deviation of MAE, CC, and RE from the simulated EMG signals generated by
the band-pass filter with variation in bandwidths. Therefore, the proposed approach

would be applicable from the perspective of variations in the EMG recording.
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4.2. SNR estimation in EMG signals contaminated with ECG

interference
4.2.1. Results

4.2.1.1. Feature evaluation

We determined six features with the contaminated EMG signals at five
SNR levels generated using the method given in Section 3.3.1. Fig. 4.6 shows the
boxplots from six features determined using SMRC data as a function of SNR. Fig.
4.6(a) shows the boxplots of SKEW from raw, cD4, and cD5 data in the top, middle,
and bottom panels, respectively. Fig. 4.6(b)-(f) show similar boxplots from other five
features, namely, KURT, MAV, WL, ZC, and MNF. The WL feature from the raw
EMG data gives the best separation of boxplot as shown in the top panel of Fig. 4.6(d).
However, the SKEW features from cD4 and cD5 decomposition levels do not give good

separation of boxplot as shown in Fig 4.6(a).
4.2.1.2. SNR estimation

We implemented the SNR estimation algorithm as described in Section
3.3.2 and demonstrated the performance of SNR estimation for a single feature and
paired features using CC in Table 4.5 and 4.6, respectively. Table 4.5 shows the mean
and standard deviation for CC from different single features obtained with the SMRC
data when these six features are calculated using raw, cD4, and cD5 EMG data. We can
see that the WL feature from the raw EMG data gives the best average CC at 0.9663.
The best average CCs from cD4 and cD5 are 0.7738 and 0.8359, respectively. These
results show that the SNR estimation of the EMG signal contaminated with the ECG
interference using the raw EMG data is better than that from the DSWT data. Table 4.6
shows the mean and standard deviation for CC from different pairs of features obtained
with the SMRC data. We can see that the combination of WL and MNF (WL+MNF)
from the raw EMG data gives the best average CC at 0.9566. Fig 4.7 shows an example

of the correlation plot for the SNR estimation from NN with the WL feature from the
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raw EMG data. The cc value of 0.9784 agrees well with the results from the WL feature

using the raw data (0.9663 + 0.0085) shown in Table 4.5.
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Fig. 4.6. Boxplots of feature values determined using the SMRC data as a function of

SNR. (2) SKEW. (b) KURT. (c) MAV. (d) WL. (¢) ZC. (f) MNF.
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Table 4.5. Mean and standard deviation of CC from different single features obtained
with the SMRC data.

Features Raw cD4 cD5
SKEW 0.5541 +0.0754  -0.0896 +0.0935 0.2054 +0.1834
KURT 0.6400£ 0.0409  0.6982 + 0.0877 0.7678 + 0.0162
MAV 0.4903 £0.1109  0.7152 +0.0244 0.7137 £ 0.0219

WL 0.9663 + 0.0085  0.7738 £ 0.0244 0.8264 + 0.0282
ZC 0.8321 £0.0358  0.5064 * 0.0602 0.8359 + 0.0208
MNF 0.9146 +£0.0296  0.7114 +0.0858 0.5247 £ 0.0679

Table 4.6. Mean and standard deviation of CC from different pairs of features obtained
with the SMRC data.

Features Raw cD4 cD5
SKEW+KURT 0.3765+0.1037 0.5980+0.1137 0.7398+0.0573
SKEW+WL 0.7591+0.2312 0.6599+0.0518 0.8295+0.0374
SKEW+ZC 0.7686+0.0848 0.3412+0.0292 0.7966+0.0833
SKEW+MAV 0.3903+0.1008 0.5491+0.1365 0.6882+0.0475
SKEW+MNF 0.7743+0.0894 0.7103+0.0545 0.5002+0.0312
KURT+WL 0.9475+0.0261 0.719240.0353 0.8649+0.0281
KURT+ZC 0.8822+0.0329 0.6907+0.0673 0.8005+0.0278
KURT+MAV 0.5172+0.0533 0.6732+0.0508 0.7083+0.0327
KURT+MNF 0.8844+0.0364 0.7385+0.0414 0.7211+0.0685
WL+ZC 0.8837+0.0470 0.717740.0473 0.8382+0.0248
WL+MAV 0.9144+0.0392 0.7235+0.0458 0.8586+0.0184
WL+MNF 0.9566+0.0097 0.6953+0.0821 0.7251+0.0841
ZC+MAV 0.8597+0.0417 0.6994+0.0549 0.7936+0.0229
ZC+MNF 0.9272+0.0229 0.7158+0.0517 0.7610+0.1661
MAV+MNF 0.8517+0.0870 0.7331+0.0392 0.5857+0.1108
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R=0.9784
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Fig. 4.7. Correlation plot between the SNR target and the estimated SNR from NN
when the input is the WL features determined using the SMRC dataset.

4.2.2. Discussion

In this section, we investigated more insights into the results from
Section 4.2.1. Fig. 4.8(Left column) shows the raw, cD4, and cD5 EMG data from
SMRC, respectively. Fig. 4.8(Right column) shows their corresponding absolute
difference of two adjacent amplitudes from the signals in the left column. It is evident
that the absolute difference of two adjacent amplitudes from the WL feature determined
using the raw EMG and cD5 data are better than those from the cD4 data. As a result,

the average CC value from WL using the raw EMG data provides the best result at
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0.9663 compared to that from cD4 at 0.7738 and cD5 at 0.8264. Moreover, these results
are in agreement with the boxplots shown in Fig. 4.6(d).

We can gain more insight into SKEW and KURT from histograms. Fig.
4.9(Left column) shows histograms from raw, cD4, and cD5 in the top, middle, and
bottom rows, respectively. We can see that the histograms from the cD4 and cD5 data
are more symmetry than those from the raw EMG data. As a result, the SKEW values
are more overlapped. These results agree with the boxplot of SKEW values as a
function of 5 SNR levels shown in Fig. 4.6(a). Also, they agree with the average CC
values. In other words, the raw EMG data give better average CC (0.5541) compared
to that from cD4 (-0.0896) and cD5 (0.2054) data when SKEW is used as a feature.
However, the tailedness of histograms can be distinguished among raw, cD4, and cD5
EMG data when SNRs increase. Therefore, the average CC values from KURT using
raw, cD4, and cD5 data are comparable and better than those from SKEW at 0.6400,
0.6982, and 0.7678, respectively. These are also supported by the degree of separation
of the boxplots shown in Fig. 4.6(a)-(b).

We can understand MNF better with power spectra. Fig. 4.9(Right
column) shows the power spectra from the raw, cD4, and cD5 EMG data in the top,
middle, and bottom rows, respectively. The power spectra from the raw EMG and cD4
data have a higher degree of separation than those from the cD5 data with SNR
increment. In other words, the cD5 data do not give a difference in MNF when SNRs
increase because of their similarity in power spectra. Therefore, the average CC value
from MNF using the raw EMG data gives the best result (0.9146) compared to those
from MNF using the cD4 (0.7114) and cD5 (0.5247) data. Also, we can see that it has

an excellent agreement separation from boxplots indicated in Fig. 4.6(f).
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Fig. 4.8. Example of the SMRC signals and their corresponding absolute of difference

of two adjacent amplitudes (|xi+1-xi|]) are shown in the left and right columns,

respectively. The top, middle, and bottom rows show the results from raw EMG signals,

cD4 decomposition level, and cD5 decomposition level, respectively.
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Fig. 4.9. Histograms and power spectra from the SMRC data are shown in the left and
right columns, respectively. The top, middle, and bottom rows show the results from
raw EMG signals, cD4 decomposition level, and cD5 decomposition level,

respectively.
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4.3. Threshold estimation in EMG signals contaminated with ECG

interference

4.3.1. Results

We implemented the threshold value estimation algorithm using the
SNR in the EMG signal contaminated with the ECG interference as the input of neural
network. The method was described in Section 3.4. Table 4.7 shows five trials of mean
and standard deviation for the threshold values (Th1, Th2) and their estimations (ThZ1es,
Th2et) from 100 SMRC testing data when the training data are from 300 SMSC
datasets. As a result, the average values of Thl (7.77- 8.04) are slightly lower than those
of Thles (9.20 - 9.37). However, the average values of Th2 (5.72-6.19) and Th2es (5.94-
6.14) are comparable. Moreover, the average values of MSEth: and MSEh, are

comparable in all trials.

Table 4.7. Mean and standard deviation of Thl, Th2, Thles, Th2est, and MSE from the
SMRC data.

Trials Thl Thlest MSEh1 Th2 Th2est MSETh2
st 7.77£1.52 9.27+0.73 5.55%+9.91 5.91+2.09 6.06+0.81 5.32+8.36
2nd  8.03+1.68 9.20+0.86 5.64+8.28 6.01+1.98 6.14+0.55 4.59+7.01
3rd  7.93+1.41 9.32+0.89 4.42+5.12 5.72+1.97 5.98+0.40 4.30+6.73
4th  7.92+1.59 9.27+0.84 4.83+7.09 6.19+1.99 5.95+0.92 4.92+7.96
5th  8.04£1.54 9.37+0.87 5.23+6.44 5.90+1.90 5.94+0.41 4.04+6.42

After Thl and Th2 are estimated, they are used in DSWT noise removal
algorithm. A comparison of CC for DSWT noise removal algorithm based on estimated
threshold (DSWTes), DSWT noise removal algorithm based on optimal threshold
(DSWTopt), HPF noise removal techniques across SMRC dataset is shown in Table 4.8.
The results show that CC values from DSWTest and DSWT oyt are better than those from
HPF for SMRC dataset. It cannot be deniable that the DSWTqp gives the best result
from the 1% to 5" trial. These results indicate that it is possible to estimate Th1 and Th2

using simulated data and employ the results to the real data.



67

Moreover, after Thl and Th2 are estimated, they are used in DSWT
noise removal algorithm. A comparison of CC for DSWT noise removal algorithm
based on estimated threshold (DSWTest), DSWT noise removal algorithm based on
optimal threshold (DSWTopt), bandpass filter (BPF) noise removal techniques across
SMRC dataset is shown in Table 4.9. The cut-off frequency of BPF 15.625-31.25 Hz
was used. The results show that CC values from DSWTest and DSWT ot are better than
those from BPF for SMRC dataset. It cannot be deniable that the DSWT ot gives the
best result from the 1% to 5% trial. These results indicate that it is possible to estimate
Thl and Th2 using simulated data and employ the results to the real data.

Table 4.8. Comparison of CC for HPF, DSWTot and DSWTest noise removal
techniques from SMRC dataset.

Trials HPF DSWTopt DSWTest

1% 0.8469 £ 0.1352  0.9482 +0.0441 0.9419 + 0.0510
2n 0.8495+0.1370 0.9477 +0.0434 0.9402 + 0.0533
3 0.8567 +£0.1284 0.9510 +0.0373 0.9461 + 0.0400
4 0.8572 +£0.1368 0.9494 +0.0402 0.9445 £ 0.0427
5t 0.8686 +0.1123  0.9500 + 0.0421 0.9444 + 0.0467

Table 4.9. Comparison of CC for BPF, DSWTq and DSWTes noise removal

techniques from SMRC dataset.

Trials BPF DSWTopt DSWTest

1st 0.3270 £0.1683 0.9455 + 0.0479 0.9396 + 0.0504
2nd 0.3088 £0.1782 0.9479 £ 0.0461 0.9425 + 0.0512
3rd 0.3047 £0.1926 0.9557 £ 0.0395 0.9498 + 0.0482
4th 0.3188 £0.1675 0.9570 +£0.0350 0.9517 + 0.0385
5th 0.3050 £ 0.1627 0.9505 + 0.0401 0.9447 +0.0439
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4.4, SNR estimation in EMG signals contaminated with power line

interference
4.4.1. Results

4.4.1.1. Feature evaluation

We determined six features from the contaminated EMG signals at five SNR
levels generated using the method given in Section 3.5.1. Fig. 4.10 shows the boxplots
from six features determined using SMSC data as a function of SNR. Fig. 4.10(a) shows
the boxplots of SKEW from raw, cD4, and cD5 data in the top, middle, and bottom
panels, respectively. Fig. 4.10(b)-(f) show similar boxplots from other 5 features,
namely, KURT, MNF, WL, ZC, and MAV. The KURT feature from the raw, cD4, and
cD5 data gives the best separation of boxplot as shown in in the top, middle, and bottom
panel of Fig. 4.10(b). However, the SKEW feature from cD4 and cD5 decomposition

levels does not give a good separation of boxplot as shown in Fig 4.10(a).
4.4.1.2. SNR estimation

We implemented the SNR estimation algorithm as described in Section 3.5.2
and demonstrated the performance of SNR estimation for single feature and paired
features using CC in Table 4.10 and 4.11, respectively. Table 4.10 shows the mean and
standard deviation for CC from different single features obtained with the SMSC data
when these 6 features are calculated using raw, cD4, and cD5 EMG data. We can clearly
see that the KURT feature from the raw EMG data gives the best average CC at 0.9928.
The best average CC from cD4 is 0.9830. Furthermore, the average CC values from the
MAV feature are close to those from the KURT feature at approximately 0.9866,
0.9701, and 0.7018, respectively. Table 4.11 shows the mean and standard deviation
for CC from different pairs of features obtained with the SMRC data. We can clearly
see that the combination of (KURT+MAYV) and (KURT+MNF) from the raw EMG data
give the best average CC at 0.9951. Fig 4.9 shows an example of the correlation plot
for the SNR estimation from NN with the KURT feature from the raw EMG data. The
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CC value of 0.9936 agrees well with the results from the KURT feature using the raw
data (0.9928 + 0.0035) as shown in Table 4.10.
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Fig. 4.10. Boxplots of feature values determined using SMSC data as a function of
SNR. (a) SKEW. (b) KURT. (c) MAV. (d) WL. (e) ZC. (f) MNF
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Table 4.10. Mean and standard deviation of CC from different single features obtained

with SMRC data.

Feature Raw cD4 cD5

SKEW 0.3662 + 0.0929 0.6745 + 0.0654 0.1779 £0.1184
KURT 0.9928 + 0.0035 0.9830 + 0.0013 0.6464 + 0.0482
MAV 0.9866 + 0.0018 0.9701 + 0.0054 0.7018 + 0.0449
WL 0.9156 + 0.0145 0.8033 £ 0.0388 0.4236 + 0.0890
ZC 0.8869 + 0.0230 0.0603 + 0.0441 0.6818 + 0.0446
MNF 0.9304 +0.0157 0.0476 £ 0.0713 0.6700 + 0.0285

Table 4.11. Mean and standard deviation of CC from different pairs of features obtained

with SMRC data.

Feature Raw cD4 cD5
SKEW+KURT 0.9935 + 0.0013 0.9806 + 0.0059 0.9853 + 0.0044
SKEW+WL 0.9148 + 0.0343 0.9735 + 0.0364 0.9834 +0.0108
SKEW+ZC 0.8666 + 0.0446 0.9895 + 0.0028 0.9865 + 0.0057
SKEW+MAV 0.9838 + 0.0098 0.9872 + 0.0032 0.9876 + 0.0032
SKEW+MNF 0.9332 + 0.0262 0.9892 + 0.0016 0.9872 +0.0047
KURT+WL 0.9940 + 0.0022 0.9799 + 0.0169 0.9884 + 0.0028
KURT+ZC 0.9940 + 0.0017 0.9875 + 0.0026 0.9879 + 0.0042
KURT+MAV 0.9951 + 0.0013 0.9864 + 0.0026 0.9869 + 0.0025
KURT+MNF 0.9951 + 0.0006 0.9879 + 0.0030 0.9895 + 0.0029
WL+ZC 0.9299 + 0.0314 0.9773 £0.0111 0.9888 £ 0.0029
WL+MAV 0.9878 + 0.0033 0.9893 + 0.0023 0.9883 + 0.0023
WL+MNF 0.9563 + 0.0038 0.9852 + 0.0060 0.9867 + 0.0024
ZC+MAV 0.9870 + 0.0049 0.9837 £ 0.0142 0.9850 + 0.0045
ZC+MNF 0.9622 + 0.0068 0.9876 + 0.0028 0.9876 + 0.0033
MAV+MNF 0.9903 + 0.0021 0.9884 + 0.0021 0.9874 + 0.0024
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Fig. 4.11. Correlation plot between the SNR target and the estimated SNR from NN
when the input is the KURT features determined using the SMRC dataset.

4.4.2. Discussion

In this section, we investigated more insights into the results from
Section 4.4.1. Fig. 4.12(Left column) shows the raw, cD4, and cD5 EMG data from
SMSC, respectively. Fig. 4.12(Right column) shows their corresponding absolute
difference of two adjacent amplitudes from the signals in the left column. It is evident
that the absolute difference of two adjacent amplitudes from the WL feature determined
using the raw EMG and cD4 data are better than those from the cD5 data. As a result,

the average CC value from WL using the raw EMG data provides the best result at
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0.9156 compared to that from cD4 at 0.8033 and cD5 at 0.4236. Moreover, these results
are in agreement with the boxplots shown in Fig. 4.10 (d).

We can gain more insight into SKEW and KURT from histograms. Fig.
4.13(Left column) shows histograms from raw, cD4, and cD5 in the top, middle, and
bottom rows, respectively. We can see that the histograms from the cD4 and cD5 data
are more symmetry than those from the raw EMG data. As a result, the SKEW values
are more overlapped. These results agree with the boxplot of SKEW values as a
function of 5 SNR levels shown in Fig. 4.10(a). Also, they agree with the average CC
values. In other words, cD4 data give better average CC (0.6745) compared to that from
the raw EMG (0.3662) and cD5 (0.1779) data when SKEW is used as a feature.
However, the tailedness of histograms can be distinguished among raw, cD4, and cD5
EMG data when SNRs increase. Therefore, the average CC values from KURT using
raw, cD4, and cD5 data are better than those from SKEW at 0.9928, 0.9830, and 0.6464,
respectively. These are also supported by the degree of separation of the boxplots
shown in Fig. 4.10(a)-(b).

We can understand MNF better with power spectra. Fig. 4.13(Right
column) shows the power spectra from the raw, cD4, and cD5 EMG data in the top,
middle, and bottom rows, respectively. The power spectra from the raw EMG and cD4
data have a higher degree of separation than those from the cD5 data with SNR
increment. In other words, the cD5 data do not give a difference in MNF when SNRs
increase because of their similarity in power spectra. Therefore, the average CC value
from MNF using the raw EMG data gives the best result (0.9304) compared to those
from MNF using the cD4 (0.0476) and cD5 (0.6700) data. Also, we can see that it has

an excellent agreement separation from boxplots indicated in Fig. 4.10(f).
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Fig. 4.12. Example of SMSC signal and its corresponding absolute of difference of two
adjacent amplitudes (|xi+1— xi|) are shown in the left and right columns, respectively.
The top, middle, and bottom rows show the results from raw EMG signals, DSWT at

cD4 decomposition level, and DSWT at cD5 decomposition level, respectively.
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Fig. 4.13. Histograms and power spectra from SMSC data are shown in the left and

rigth columns, respectively. The top, middle, and bottom rows show the results from
raw EMG signals, DSWT at cD4 decomposition level, and DSWT at cD5

decomposition level, respectively.
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4.5. SNR estimation in EMG signals contaminated with motion artifact
4.5.1. Results

45.1.1. Feature evaluation

We determined six features with the contaminated EMG signals at five SNR
levels generated using the method given in Section 3.6.1. Fig. 4.14 shows the boxplots
from six features determined using SMSC data as a function of SNR. Fig. 4.14(a) shows
the boxplots of SKEW from raw, cD4, and cD5 data in the top, middle, and bottom
panels, respectively. Fig. 4.14(b)-(f) show similar boxplots from other 5 features,
namely, KURT, MNF, WL, ZC, and MAV. The MNF feature from the cD4 data gives
the best separation of boxplot as shown in in the top and middle panel of Fig. 4.14(b).
Moreover, the WL and ZC features have a similar pattern of boxplots as shown in Fig.
19(c) and (d). However, the SKEW feature from cD4 and cD5 decomposition levels

does not give a good separation of boxplot as shown in Fig 4.14(a).
45.1.2. SNR estimation

We implemented the SNR estimation algorithm as described in Section 3.6.2
and demonstrated the performance of SNR estimation for single feature and paired
features using CC in Table 4.12 and 4.13, respectively. Table 4.12 shows the mean and
standard deviation for CC from different single features obtained with the SMSC data
when these 6 features are calculated using raw, cD4, and cD5 EMG data. We can clearly
see that the MNF feature from the cD4 data gives the best average CC at 0.9770. The
best average CC from the raw EMG data is 0.9699. Furthermore, the average CC values
from the WL feature are consistent at approximately 0.9671, 0.9725, and 0.6023,
respectively. The average CC values from the ZC feature are comparable that from the
WL feature. Table 4.13 shows the mean and standard deviation for CC from different
pairs of features obtained with the SMRC data. We can clearly see that the combination
of WL and MNF (WL+MNF) from the raw EMG data give the best average CC at
0.9856. Fig 4.15 shows an example of the correlation plot for the SNR estimation from
NN with the MNF feature from the raw EMG data. The cc value of 0.9635 agrees well
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with the results from the MNF feature using the raw data (0.9699 + 0.0076) as shown
in Table 4.12.
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Fig. 4.14. Boxplots of feature values determined using SMSC data as a function of
SNR. (a) SKEW. (b) KURT. (c) MAV. (d) WL. (e) ZC. (f) MNF
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Table 4.12. Mean and standard deviation of CC from different single features
obtained with SMRC data.

Feature Raw cD4 cD5

SKEW 0.0853 £ 0.1223 0.0060 + 0.1736 0.0344 + 0.0822
KURT 0.1503 + 0.1301 0.0702 £ 0.1484 0.0104 +0.0377
WL 0.9671 + 0.0055 0.9725 £ 0.0019 0.6023 + 0.0672
ZC 0.9548 + 0.0055 0.9522 + 0.0107 0.5117 £ 0.1105
MAV 0.1935 + 0.0535 -0.0073 £ 0.2066 0.0298 + 0.0715
MNF 0.9699 + 0.0076 0.9770 £ 0.0021 0.5709 + 0.0816

Table 4.13. Mean and standard deviation of CC from different pairs of features

obtained with SMRC data.

Feature Raw cD4 cD5
SKEW+KURT 0.3329 + 0.0886 0.0194 £ 0.0573 0.3096 + 0.0988
SKEW+WL 0.9624 + 0.0075 0.2548 + 0.1905 0.2194 £ 0.1965
SKEW+ZC 0.9495 + 0.0118 0.1804 +0.1710 0.2097 £ 0.2187
SKEW+MAV 0.3121 +0.1124 0.3376 + 0.0944 0.2909 + 0.0749
SKEW+MNF 0.9682 + 0.0072 0.2574 £ 0.1266 0.2410 £ 0.1890
KURT+WL 0.9547 + 0.0142 0.2572 £ 0.1409 0.2901 £ 0.1294
KURT+ZC 0.9476 £ 0.0161 0.2855 + 0.1340 0.2983 £ 0.1122
KURT+MAV 0.3027 £ 0.0996 0.2537 £ 0.1337 0.2505 £ 0.1488
KURT+MNF 0.9701 + 0.0062 0.2534 +0.1098 0.2706 £ 0.1016
WL+ZC 0.9665 + 0.0047 0.2726 + 0.1624 0.3146 £ 0.0724
WL+MAV 0.9633 + 0.0072 0.2959 + 0.1248 0.2859 + 0.0617
WL+MNF 0.9856 + 0.0027 0.3133 £ 0.0606 0.2949 £ 0.0558
ZC+MAV 0.9469 + 0.0149 0.2789 + 0.0813 0.2827 = 0.0981
ZC+MNF 0.9776 + 0.0029 0.2583 £ 0.1676 0.3272 £ 0.0766
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Fig. 4.15. Correlation plot between the SNR target and the estimated SNR from NN
when the input is the KURT features determined using the SMRC dataset.

4.5.2. Discussion

In this section, we investigated more insights into the results from
Section 4.5.1. Fig. 4.16(Left column) shows the raw, cD4, and cD5 EMG data from
SMRC, respectively. Fig. 4.16(Right column) shows their corresponding absolute
difference of two adjacent amplitudes from the signals in the left column. It is evident
that the absolute difference of two adjacent amplitudes from the MNF feature
determined using the raw EMG and cD4 data are better than those from the cD5 data.

As a result, the average CC value from WL using the raw EMG data provides the best
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result at 0.9699 compared to that from cD4 at 0.9770 and cD5 at 0.5709. Moreover,
these results are in agreement with the boxplots shown in Fig. 4.14 (d).

We can gain more insight into SKEW and KURT from histograms. Fig.
4.17(Left column) shows histograms from raw, cD4, and cD5 in the top, middle, and
bottom rows, respectively. We can see that the histograms from the cD4 and cD5 data
are more symmetry than those from the raw EMG data. As a result, the SKEW values
are more overlapped. These results agree with the boxplot of SKEW values as a
function of 5 SNR levels shown in Fig. 4.14(a). Also, they agree with the average CC
values. In other words, the raw EMG data give better average CC (0.0853) compared
to that from cD4 (0.0060) and cD5 (0.0344) data when SKEW is used as a feature.
However, the tailedness of histograms can be distinguished among raw, cD4, and cD5
EMG data when SNRs increase. Therefore, the average CC values from KURT using
raw and cD4 data are comparable and better than those from SKEW at 0.1503 and
0.0702, respectively. These are also supported by the degree of separation of the
boxplots shown in Fig. 4.14(a)-(b).

We can understand MNF better with power spectra. Fig. 4.17(Right
column) shows the power spectra from the raw, cD4, and cD5 EMG data in the top,
middle, and bottom rows, respectively. The power spectra from the raw EMG and cD4
data have a higher degree of separation than those from the cD5 data with SNR
increment. In other words, the cD5 data do not give a difference in MNF when SNRs
increase because of their similarity in power spectra. Therefore, the average CC value
from MNF using the raw EMG data gives the best result (0.9699) compared to those
from MNF using the cD4 (0.9770) and cD5 (0.5709) data. Also, we can see that it has

an excellent agreement separation from boxplots indicated in Fig. 4.14(f).
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Fig. 4.16. Example of SMSC signal and its corresponding absolute of difference of two
adjacent amplitudes (|xi+1-xi|) are shown in the left and right columns, respectively.
The top, middle, and bottom rows show the results from raw EMG signals, DSWT at

cD4 decomposition level, and DSWT at cD5 decomposition level, respectively.



81

120 -45
i+s, —-20dB
50 £ %) ——-10dB | |
100 - ) pooosoon 0dB
-55 [
60
80 ’>\
3 g -65
§_ 60 g:-m )
e § 75 :
40 + & b
-80
-85
20 -
-90 -
0 1 : : - : : ; -95 - - - - - - : -
-0.08 0.06 0.04 -0.02 0 0.02 0.04 0.06 0.08 0 50 100 150 200 250 300 350 400 450 500
Amplitude (V) Frequency (Hz)
(a) Histograms from raw EMG signals. (d) Power spectra from raw EMG signals.
150 T -40
—-20 dB —-20dB
—-10dB —-10dB
-------- 0dB -50 -
-60 H
100 S i
3 § aolff
3
50 o
i
-100 -
0 T o . . . . . . 40 L . . . . . . . .
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0 50 100 150 200 250 300 350 400 450 500
Amplitude (V) Frequency (Hz)
(b) Histograms from cD4 decomposition level. (e) Power spectra from cD4 decomposition
level.
150 -40
— 20 dB — 20dB
—-10dB —-10dB
-------- 0dB 50 s 0dB
-60
100 g
3
50 o
-90
-100 TrTr ITVSTIVITITININ,
10 v”v”WV”’WV‘?Vv'rvvvwvvwwwvvvv
0 T L L . Y -110 & L L 1 L L I L J
0.1 008 -006 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0 50 100 150 200 250 300 350 400 450 500
Amplitude (V) Frequency (Hz)
(c) Histograms from cD5 decomposition level. | (f) Power spectra from cD5 decomposition level.

Fig. 4.17. Histograms and power spectra from SMSC data are shown in the left and

right columns, respectively. The top, middle, and bottom rows show the results from
raw EMG signals, DSWT at cD4 decomposition level, and DSWT at cD5

decomposition level, respectively.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this chapter, we present the conclusions of this thesis and future work.
The conclusions can be divided into 5 main modules: removal of ECG interference
based on DSWT, SNR estimation in EMG signals contaminated with ECG interference,
threshold estimation in EMG signals contaminated with ECG interference, SNR
estimation in EMG signals contaminated with power line interference, and SNR
estimation in EMG signals contaminated with motion artifact are described in Section
5.1.1, Section 5.1.2, Section 5.1.3, Section 5.1.4, and Section 5.1.5, respectively. In

addition, the future work is presented in Section 5.2.

5.1. Conclusions

5.1.1. Removal of ECG interference based on DSWT

We presented an application of DSWT to removing ECG interference in
EMG signals with consideration of SNR level. The proposed method consists of 3 main
steps, namely, DSWT decomposition, thresholding, and DSWT reconstruction. In the
first step, the contaminated EMG signal is decomposed using 5-level DSWT with the
Symlet wavelet function. In the second step, the coefficients in cD4 and cD5, which are
contaminated by the ECG interference, are subjected to nonlinear thresholding. In other
words, the detail coefficients, whose absolute values are less than or equal to the
threshold level, are set to zero. The threshold level was varied from 0 to 10 with step
size 1. Finally, in the third step, the cleaned EMG signal was reconstructed by inverse
DSWT of the thresholded coefficients.

The proposed method was evaluated using simulated EMG signals
contaminated with ECG interference at 9 SNR levels from -20 to 20 dB with 5 dB
increments. There were two types of ECG interference in this study, namely, simulated
and real ECG signals. With both types of data, MAE, CC, and RE for DSWT were
better than those for HPF. Moreover, DSWT significantly outperforms HPF at the low
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SNR from -10 dB to -20 dB. Results show that an EMG signal contaminated with ECG
at different SNR levels requires different threshold levels. The optimal threshold for
each SNR level in this paper was obtained offline by exhaustive search, which is
impractical for real-time applications. The results suggest a possible future research
direction in developing a system that can estimate the SNR level in an EMG signal
contaminated with ECG interference.

5.1.2. SNR estimation in EMG signals contaminated with ECG

interference

We presented the method for estimating SNR in the EMG signal
contaminated with the ECG interference consisting of two main parts, namely, feature
evaluation and SNR estimation. We evaluated six popular features used in the EMG
recognition system consisting of SKEW, KURT, MAV, WL, ZC, and MNF. The results
show that WL gave the best performance. Subsequently, WL was used as an input of
NN for SNR estimation. While we used the simulated EMG data artificially
contaminated with the simulated ECG data in the training stage, the simulated EMG
data artificially contaminated with the real ECG data were used in the testing stage. The
best average correlation coefficient at 0.9663 can be obtained when WL is used as an
input of NN.

5.1.3. Threshold estimation in EMG signals contaminated with

ECG interference

We presented the method for estimating the optimum threshold applied
with DSWT for removing the ECG interference contaminated in the EMG signal. SNR
was used as an input of NN for threshold estimation. While we used the simulated EMG
data artificially contaminated with the simulated ECG data in the training stage, the
simulated EMG data artificially contaminated with the real ECG data were used in the
testing stage. The estimate threshold values, Thlest and Th2es, can be obtained from the
NN output. The results show that CC values from DSWTes are comparable to those

from DSWTopt. However, both of them are better than those from HPF. These results
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indicate that the estimate Thl and Th2 using simulated data can be employed to the real
data.

5.1.4. SNR estimation in EMG signals contaminated with power

line interference

We presented the method for estimating SNR in the EMG signal
contaminated with the power line interference consisting of two main parts, namely,
feature evaluation and SNR estimation. The results show that KURT gave the best
performance. Subsequently, KURT was used as an input of NN for SNR estimation.
We used the simulated EMG data artificially contaminated with the simulated power
line interference in the training and testing stages. The best average correlation
coefficient at 0.9936 can be obtained when KURT is used as an input of NN.

5.1.5. SNR estimation in EMG signals contaminated with motion

artifact

We presented the method for estimating SNR in the EMG signal
contaminated with the motion artifact consisting of two main parts, namely, feature
evaluation and SNR estimation. The results show that MNF gave the best performance.
Subsequently, MNF was used as an input of NN for SNR estimation. We used the
simulated EMG data artificially contaminated with the simulated motion artifact in the
training and testing stages. The best average correlation coefficient at 0.9635 can be

obtained when MNF is used as an input of NN.

5.2. Future work

We show that an EMG signal contaminated with ECG at different SNR
levels requires different threshold levels. The optimal threshold for each SNR level in
this thesis (Section 4.1) was obtained offline by exhaustive search, which is impractical
for real-time applications. The results suggest a possible research direction in
developing a system that can estimate the SNR level in an EMG signal contaminated

with ECG interference.
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Therefore, we have developed the new method of SNR estimation in the
EMG signal contaminated with the ECG interference using the feature from the EMG
signal as the input of NN. Subsequently, we have developed the new method of
threshold estimation in the EMG signal contaminated with the ECG interference using
SNR as the input of NN. When we cascade these two systems, we can obtain the optimal
threshold values from the NN, when the feature from the EMG signal is the input. As a
result, the optimal threshold for each SNR level can be obtained online, which is
practical for real-time applications.

Possible future research directions are as follows.

e We may reduce computational complexity by estimating the optimal
threshold values from the EMG feature directly, if the SNR estimate
is not required in the application.

e In this thesis, we apply the proposed technique to the EMG signal
contaminated with the ECG interference only. In the future, we may
apply the proposed techniques to power line interference and motion
artefact.

e We may further improve the proposed technique so that it can be
used with combination of multiple types of noise, such as ECG
interference combined with power line interference, motion artefact
combined with power line interference, and ECG interference

combined with motion artifact.
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When the electromyograply (EMG) signal is acquired from nnmscles in the torso, the electro-
cardiography (1LC(G) signal coming from heart activity can interfere. As a result, the EMG
sigual can be contaminated diring data collection. In this paper, a technique based on discrete
stationary wavelet transforin (DSWIY) is proposed to remove ECG interference from the EMG
slgnal while taking into account the signal-to-noise ratio (SNR). The contaminated EMG signal
d using 5-level DSWT with the Symlel wavelel [unction. The cocllicients lor levels
4 and 5, which are contmninated by ECG, are set to zero when thelr absolute values are less
than or equal Lo a threshold determined lor cach SNR level. A clean EMG signal can then be
obtained by inverse DSWT mapping of the new thresholded coefficients. We evaluated the
perlormance of the proposed algoritlun using sinndated EMG conlaminated with bolle simu-
lated and real ECG sipnals, at 9 SNTR. levels from —20 to 204B with 5dB increments. The
perlormance baged on mean absolule error, correlation cocllicient and relative error shows Lhat
the DSWT methad is betrer than a high-pass filter.

is decomy

Keywords: EMG signal; COG signal; wavclel translorm; SNR.

1. Introduction

Electromyography (EMG) records electric currents produced in muscle contractions
acquired using cleetrodes. The clectrode converts an ion current to an eclectron
current so that it can be amplified and recorded by an electronic cireuit. The EMG

signal is generated [rom motor units, which are nerve—inuscle functional units of

the nouromuscular system. The potential difference can be measured by cithor
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non-invasive electrodes for surface EMG signals or by invasive electrodes for needle
EMG sampling intramusecular EMG signals [1].

There are a variety of applications for EMG signals. The EMG signal can be used
not only as an electrodiagnostic medical technique but also as a neurophysiological
technique for evaluating and recording the electrical activity produced by skeletal
muscles [2]. Moreover, the EMG signal recorded from a muscle contraction has a
variety of uses in clinical applications [3], evolvable hardware chip development [4],
modern human-computer interaction [5], and electrical wheelchair control [6].

An essential element for enabling the above-described applications is an EMG
recognition system. The EMG recognition system consists of three cascaded modules,
namely; data pre-processing, feature extraction and classification [7]. The primary
purpose of data pre-processing is to remove noise in the EMG signal, which is con-
taminated by the environment as it passes through various tissues [8]. We focus on
removing the electrocardiography (ECG) interference from a eontaminated EMG
signal in this work. ECG reflects the electrical activity of the heart, and is not only
used for measuring and recording that electrical activity but also to assess the
rhythm and invariability of a heartbeat. The ECG interference in some applications
can contaminate the EMG signal because of the proximity of the trunk muscles and
the heart. An example is the measurement of EMG signal from the pectoralis muscle,
which can be used as a control signal for shoulder disarticulation prosthesis [9].

From a literature review, there are five techniques for removing ECG interference
from a contaminated EMG signal: (1) linear filter [9, 10, 12, 13]; (2) template
subtraction [9-11, 14]; (3) adaptive filters including linear ones [9, 11, 14, 16, 17] and
non-linear techniques [9, 14-18|; (4) wavelet transform [9, 14]; and (5) combined
techniques such as template subtraction combined with a high pass filter [10],
artificial neural network {ANN) combined with wavelet transform [15], and adaptive
neuro-fuzzy inference system (ANFIS) combined with wavelet transform [11].

Among all the techniques used for removing the ECG interference from the
EMG signal, only the linear filter and the wavelet transform do not require a
separate additional ECG reference channel. Advantages of these two approaches are
their convenient use and the reducing cost of an electrode. Among the linear filter
techniques, high pass filtering is one of the most popular methods used for elimi-
nating ECG interference from EMG signals. Most energy of ECG interference is in
the range from 0 to 30Hz. Therefore, a high-pass filter (HPF) with 30 Hz cutoff
frequency is used. There are two designs of HPF used for ECG interference removal,
namely Butterworth filter [9, 10, 12, 13] and digital finite impulse response filter [11].
In previous studies, the discrete wavelet transform (DWT) with thresholding was
proposed to remove ECG interference from EMG signals [9-11]. However, the
threshold levels were fixed and determined without consideration of signal-to-noise
ratio (SNR). To extend the studies [9-11], we explore the effects of SNR on the
appropriate threshold level in an algorithm removing ECG component from EMG
signals by using wavelet transform.

2050001-2
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The discrete stationary wavelet transform (DSWT) is of interest because of
its two crucial properties, time invariance and Gibb phenomena suppression,
which benefit a noise removal algorithm as described in Ref. 19. The noise removal
algorithm employing these two properties performed very well in eliminating
the power line interference from EMG signals in Ref. 20. We use DSWT in this
paper because these two properties can be deployed. Moreover, it opens an oppor-
tunity for simultaneously removing both ECG interference and power line interfer-
ence using only one wavelet transform. As a result, we can reduce the computational
complexity of the noise removal algorithm. We proposed the DSWT algorithm
with a thresholding procedure for removing ECG from EMG signals. The effects of
SNR on the threshold level were evaluated with the EMG signal having 9 alternative
SNR levels.

The rest of this paper is organized as follows. Section 2 gives briefly relevant
details on the DSWT. Section 3 explains the methods for data generation, the pro-
posed ECG removal technique based on DSWT, and the performance metrics used
for evaluation. Results are given in Sec. 4. The discussion is provided in Sec. 5.
Finally, conclusions are drawn in Sec. 6.

2, DSWT

DWT may be replaced with DSWT in some applications where time-invariance is
required. DSWT can be implemented by removing the down-samplers and up-
samplers in DWT, and by modifying the filters by upsampling the coefficients from
the previous decomposition level. However, DSWT is a redundant transform, which
contains the same number of samples between the input and the output at each
decomposition level.

Let xz(n| be asignal to be decomposed using L-level DSWT. Two outputs from the
first level decomposition consist of the approximation coefficients, cAl, from the
convolution between the low-pass filter h,[n] and the input signal z[r] and the detail
coefficients, ¢D1, from the convolution between the high-pass filter g [n| and the
input signal z[n|. Note that the lengths of z[n], cAl and ¢D1 are the same. In the
next level decomposition, the approximation coefficients, cA1, will be used as input.
The filters &, [n] and g, [n] are modified by upsampling to i,[n] and g;[n]. The cutputs
from second level decomposition can be obtained by convolving ¢Al with hy[n]
and g;[n| resulting in the approximation coefficients cA2 and the detail coefficients
cD2; respectively. We can keep repeating these operations until the decomposition
level L is reached. Figures 1(a) and 1(b) shows an example of 5-level DSWT
decomposition and the upsampling operation for the filters at each decomposition
level, respectively. Figure 2 shows an example of 5-level DSWT reconstruction,
where #/[n] and g/[n] are reconstruction low-pass and high-pass filters at level j,
respectively.
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Fig. 1. [a} Example of §level DEWT decomposition. (b} Upsampling operation for the filters in each
decomposition lewel.

3. Materials and Methods
3.1. Data generation
3.1.1. Sitmulated EMG

A simulated EMG is generated by filtering a white Gaussian noise with a band-pass
filter, whose transfer function is given by [21]
i

(fo + 38} (fo + ifF
where fr isthe lower frequency parameter, which is random from 30-60 Hz and fi; is
the upper-frequency parameter, which is randorm from 30-100 Hz plus ;. The length
of each signal is 2000 samples, which is equivalent to 2s at a sampling rate of
1000 Hz, Figure 3 shows the waveform of the simulated EMG generated with
fr— 45Hz and fy — 110Hz in the time domain (Top panel} and corresponding
power spectra in the frequency domain (Bottom panel}. We can see that the power

spectrum from the simulated EMG signal (solid line} agrees well with that from the
bandpass filter H(f} (dotted line).

H(f) — (1}
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Fig. 2. Example of 5-level DSWT reconstruction.

3.1.2. Simulaied ECG

We generate a simulated ECG signal using a dynamical model based on three
coupled ordinary differential equations, which can be expressed as [22]

T = ax — wy, {2)
' AG?
z=— az-A&eXp(f 25;) —{z— zp), (4)
ie{P.Q.R5T} i
1 T T T T T T T T r
S 0.5 ]
o
©
g2 0
=3
Eoos
4 ) ) ) ) ) ) ) . )
0 0.2 04 0.6 08 1 1.2 14 16 18 2

Time (s)

o

Power spectrum (dB)
8 3

0 50 100 150

200 250 300 350 400 450 5H00
Frequency (Hz)

Fig. 3. Simulated EMG in the time domain {(Top panel) and its power speetrum in the frequency domain
{Bottom panel). Sclid line: Power spectrum from the simulated EMG signal. Dotted line: Frequency

response of the bandpass filter H{f).
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Table 1. Specific parameters used for generating the simulated ECG.

Parameter Description P Q R S T

6; (degrees) Angles of extrema -70 -15 0 15 100
a; z-position of extrema 1.2 -50 300 75 0.75
b, Gaussian width of peaks  0.25 0.1 0.1 0.1 0.4

where o =1 — (/22 + 32, Ad; = (6 — ;) mod 2m, § = atan2(y, z) (the four quadrant
arctangent of the real parts of the elements of  and y, with —7 < atan2(y, z) < «)
and w is the angular velocity of the trajectory as it moves around the limit cycle. The
parameters 6;, a; and b; for the PQRST points are suggested by visualization of ECG
from a healthy subject. In this paper, the values used for all three parameters in the
simulation are given in Table 1. The simulated ECG signal was generated with a
sampling frequency of 256 Hz. Mean heart rate was randomly selected from 60-100
beats per min. Figure 4 shows an example of simulated ECG signals from 2 mean

heart rates in the time domain {Top panel) and their power spectra in the frequency
domain {Bottom panel).

3.1.3. Real ECG

The real ECG signal was obtained from the MIT-BIH arrhythmia database. We
acquired a normal ECG beat from 40 records with 20 s for each record. Subsequently,

-
o

-

Amplitude (V)
o
©

o}
05 L L L L L L L L L
0 02 04 06 08 1 1.2 14 16 1.8 2
Time (s)
o o] . T T T T T T
2 .
Saf 1
g
] %,
@ 3
® 40 S, g
]
8 o L eemssgsn
0 20 40 60 80 100 120 140
Frequency (Hz)

Fig. 4. Examples of simulated ECG signals in the time domain (Top panel) and their power spectra in the

frequency domain (Bottom panel) when the mean heart rates are 60 (solid line) and 100 (dotted line) beats
per min.
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each record was resampled from 360 to 1000 Hz to match with the sampling rate of
the EMG signal. Finally, each 20-s data were segmented into 2 s data.

3.1.4. EM(G contamination

We generated 9 types of EMG signals contaminated with the ECG interference,
namely with SNR. levels from —20 to 20dB at 5dB increments. The SNR. was
calculated using the equation given by

SNR = 10 logrg (%), (5)

n

where P, was an average power of the EMG signal and P, was an average power of
the ECG interference. Two datasets were generated. While the first dataset consisted
of the simulated EMG signal contaminated with the simulated ECG interference, the
second dataset comprised the simulated EMG signal contaminated with the real
ECG interference. Details of generating each dataset are as follows:

Simulated EMG contaminated with simulated ECG (SMSC): Fifty simulated
ECG signals and 50 simulated EMG signals were randomly chosen and mixed with
amplitude scaling to produce the EMG signals contaminated with ECG at each
desired level of SNR.

Simulated EMG contaminated with real ECG (SMR.C): The procedure was similar
to the first dataset, except that the simulated ECG signal was replaced with the
real ECG signal. As a result, fifty simulated EMG signals contaminated with real
ECG interference were obtained at each SNR level.

3.2. Methods

‘We describe a noise removal model in this section. Figure 5 shows a general block
diagram of noise removal in the contaminated EM( signal, where z, is an uncon-
taminated EMG signal, ng is an ECG interference, z, is a contaminated EMG signal
and % is a contaminated EMG signal that is cleaned by nocise removal algorithm.
After noise removal, the performance of the technique can be measured using criteria
based on the mean absolute error (MAE), correlation coeflicient (CC) and relative
error (RE). The MAE can be expressed as [20]

1
MAE :ﬁzhﬂ — . (6)

lng
Xy X Kot
4’@—4 Noise removal technique »

Fig. 5. General block diagram of noise removal in the contaminated EMG signal.
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The closer the MAE is to 0, the better is the noise removal. The CC is given by
(10, 11, 20],
zij\il (w,{t) — &) (wali) — 74)

VEL @) - 2,0 S8 (aali) - 20)°
where Z,, is the mean value of uncontaminated EMG signal and Z,, is the mean value
of cleaned EMG signal. The closer the CC is to 1, the better is the noise removal. The
RE can be expressed as [11, 15]
S = PP

2P () '
where P, (f) is the power spectrum of uncontaminated EMG signal and P, (f) the

power spectrum of cleaned EMG signal. The closer the RE is to 0, the better is the
noise removal.

cc = )

RE

(8)

3.2.1. ECG interference remowal algorithm based on DSWT

The proposed method for removing the ECG interference from the EMG signal based
on DSWT consists of three main stages, namely, DSWT decomposition, thresholding
and DSWT reconstruction. Details on each stage are as follows:

Stage (1) Decompose the contaminated EMG signal using 5-level DSWT with the
Symlet wavelet function. The Symlet wavelet function was chosen in this
paper from the guideline on its sucecessful removal of ECG interference
from EMG signal in previous publications [9, 15]. Table 2 shows the fre-
quency bands for the wavelet coeflicients in the decomposition. We can see
that the cutoff frequency of HPF used for removing ECG interference,
which is 30 Hz [9, 10, 12, 13], agrees well with the ecombined frequency
range of ¢A5 and ¢D5.

Stage (2) Process the coefficients at ¢cD4 and cD5, which are contaminated by the
ECG interference, with a non-linear thresholding procedure. In other
words, the coefficients for ¢4 and ¢D5, whose absolute values are less
than or equal to the threshold value, are set to zero. The threshold values
are varied from § to 10 with increments of 1. As a result, 11 x 11 = 121

Table 2. Frequency bands in the 5-level DSWT
decomposition.

Level (k) cAk (Hz) cDk (Hz)

1 0-250 250-500

2 0-125 125-250

3 0-62.5 62.5-125

4 0-31.25 31.25-62.5
5 0-15.625 15.625-31.25
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combinations of threshold levels for ¢D4 and c¢D5 are tested. The
thresholds that give the best performance based on MAE are selected as
optimal. Note that the coefficients in cA5 are set to zero because there are
nc EMG components in this frequency band.

Stage (3) Obtain the cleaned EMG signal by applying inverse DSWT to the new
coefficients after thresholding from Stage (2).

3.2.2. Performance measurements

The performance of the DSWT method was compared with the linear filter technique
based on Butterworth HPF [10]. The Butterworth filter was designed using a fourth-
order HPF with cutoff frequency 30 Hz and was implemented in both forward and
reverse directions to avoid phase distortions. The performance of the DSWT method
was evaluated and compared based on MAE, CC and RE using mean and standard
deviation from 50 signal implementations at each SNR.

4. Results

‘We implemented the ECG interference removal algorithm based on DSWT as de-
scribed in Secs. 3.2.1 and demonstrated its performance using MAE, CC and RE in
Tables 3, 4 and 5, respectively. Table 3 shows a comparison of MAE for DSWT and
HPF noise removal techniques using SMSC and SMRC datasets. Results indicate
that DSWT outperforms HPF. Across the SMSC cases, MAE from DSWT decreased
approximately from 0.15 to (.08 when SNR increased from —20 to 20dB. However,
MAE for HPF was quite comparable at every SNR, at approximately 0.20. Across
SMRC cases, a similar trend as with SMSC for SNR. from 0 to 20dB was obtained.
However, with SNR. from —20 to —5dB, MAE across SMRC was higher than across
SMSC when compared by SNR.

A eomparison of CC for DSWT and HPF noise removal techniques across SMSC
and SMRC datasets is shown in Table 4. The results show that CC for DSWT was

Table 3. Comparison of MAE for DSWT and HPF noise removal techniques.

SNR (dB) SMSC SMRC!
DSWT HPF DSWT HPF
—20 0.1598+0.0301  0.2296+0.0359 04146 +0.1034  0.7396 £0.2293
-1 01468+ 0.0305 0.2071+0.0465  0.2068 £0.0717  0.4181+0.1266
-10 0.1286+0.0252  0.21224+0.0520 0.1930+0.0401  0.2894 +0.0567
-5 0.1180£0.0289 0202100393  0.1600-£0.0306  0.2477£0.0493
0 0.1168+0.0205  0.2007+0.0441  0.1311+0.0288  0.2167+0.0430
5 0.1070+£0.0226  0.2057£0.0501  0.1070+£0.0248  0.21294+0.0488
10 0.0086+0.0223 0218900460  0.0987£0.0212  0.2021+0.0421
15 0.0871+0.0195 0.2060+£0.0409  0.0942+0.0225 0.21374+0.0440
20 0.08294+0.0187 0.21294+0.0464  0.0832+0.0180  0.2065+0.2078
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Table 4. Comparison of CC for DSWT and HPF noise removal techniques.

SNR. (dB) SMSC SMRC
DSWT HPF DSWT HFF
—20 0.9564=0.0156 0.95290.0143  0.8373:£0.0808 0.5813+0.1577
~15 0.0717+0.0105  0.9634-00169  0.91614+0.0356  0.79484+0.1021
-10 0.9815+0.0066  0.9615-£00197  0.9611+0.0171 09019 +0.0512
-5 0.98560.0067  0.9663£00125 0.9738£0.0097 09418 +0.0268
0 09863+0.0075 0963400162 0.9313+0.0084 09582+0.0175
5 0983090.0047 0.9645£00136 0.98760.0069 09609 %0.0184
10 09915+0.0038  0.9601-£0.0180  0.9903+0.0043 09655 +0.0151
15 09937+0.0028 0965200137  0.9919+0.0038 09624 +0.0154
20 0.9944+0.0028  0.9618+00171  0.99434+0.0023 09644 +0.0155

better than for HPF. When the SNR increased from —20 to 20 dB, the CC for DSWT
increased from 0.96 to 0.99 across SMSC cases. However, CC for HPF was entirely
consistent at approximately 0.96, independent of the SNR. With SMRC data, at
SNR, from @ to 20 dB, a similar trend as with SMSC was seen. However, for SNR, from
—20 to —5dB, CC across SMRC was lower than across SMSC when compared at
similar SNR.

A comparison of RE for DSWT and HPF noise removal techniques is shown in
Table 5. Across SMSC, RE for DSWT was better than for HPF. Across SMRC, we
can see that DSWT (0.2) provided a significantly better average RE than HPF (45.4)
at SNR —20dB. Also, a similar pattern is seen for SNR —15 and —10dB.

The SNR of the contaminated EMG signal affected the optimal threshold
level. Table 6 shows the optimal threshold levels based on MAE in DSWT noise
removal. Significant differences in the threshold levels between the two datasets are
observed at SNR —20 and —15dB for both ¢D4 and ¢D5. The threshold levels with
SMRC are smaller than those with SMSC, which may be caused by an attempt to
remove other types of artifacts, such as power line interference, contaminating the
EMG signals.

Table 5. Comparison of RE for DSWT and HPF noise removal techniques.

SNR (dB) SMSC SMRC
DSWT HPF DSWT HPF
—20 0.01524£0.0199  0.051420.0420 0.204540.2263  45.38 £ 67.2631
—15 0.0142£0.0152 0.0607+£0.0546  0.1054 £ 0.2155 2.0230+£3.7012
~10 0.0120£0.0136 00774200634  0.0164£0.0170  0.2648%0.4327
-5 00124400210  0.0647£0.0309 0.0586+0062¢  0.072440.0866
0 0.0258 £0.0340  0.0798 £0.0550  0.0346 £ 0.0389 0.0666 £ 0.0560
5 0.0380+£0.0435  0.0791£0.0617 0.010240.0120  0.072340.0616
10 0.0074£0.0094 0.0892+0.0582  0.0047+ 0.0069 0.0651+ 0.0496
15 0.0137£0.0172  0.0727+0.0464  0.0051+£0.0057 0.0825+0.0494
20 0.0066 £0.0117  0.0770+£0.0521  0.0046 £ 0.0048 0.0748 £0.0547
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Table 6. Comparison of optimal threshold levels based on MAE.

SNR (dB) SMSC SMRC
cD4 cD5 cD4 cD5
—20 798+£186 5764129 470+£244 3.74£251
—15 9424084 530+£1.09 6.02+1.60 4.70+£2.53
-10 8.00+£0.90 4924129 736+175 5024+1.86
-5 7.42£0.99 490+111 726£1.12 578L£1.63
0 742+£097 4764092 726+1.10 5144+1.26
5 7.12£1.02 5.04+1.34 T712£092 4.70L£1.04
10 716£1.09 534+1.26 7224079 4.90+1.31
15 7.00+£099 5624124 748+1.18 530+1.30
20 716+115 538+114 T740+£1.23 522+£1.07

5. Discussion

In this section, we explored more insights into the results from Sec. 4. Figure 6 shows
an example of signals from DSWT thresholding. Figure 6(a) shows the EMG signal
contaminated with the simulated ECG at SNR of —20dB. Figure 6(b) depicts the

SMsC SMRC
0 (a) Contaminated EMG - (d) Contaminated EMG
8 40 g 40
= g2
& o £
=20
=20
0 05 1 15 2 [1] 05 1 15 2
Time (s) Time (s)
(b) cD4 coefficient (e) cD4 coefficient
20 20 g 4 3
20
] 05 1 15 2 1] 05 1 15 2
Time {s) Time (s)
» (c) cD5 coefficlent 20 (f) cD5 coefficlent
o @
3 E

Fig. 6. While the left column shows an example of results with SMSC, the right column shows an example
of results with SMRC data. The top, middle and bottom rows show EM( signal contaminated with ECG
at SNR —20dB, signals from DSWT at ¢D4 decomposition level and signals from DSWT at cD5 de-
composition level, respectively. Dotted line: Detail coefficients before thresholding. Thick line: Detail

coefficients after thresholding.

1
Time (s)

Before thrasholding

m— After thresholding
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signals from DSWT at cD4 decomposition level before thresholding with a dotted
line and after thresholding with a solid line. The optimal threshold is 8. Therefore,
the ecoefficients from ¢D4 decomposition level before thresholding, whose absclute
values are greater than 8, are truncated to 0. Figure 6{c) shows similar processing for
coeflicients in ¢D5 decomposition level with the optimal threshold 6. Figures 6(d)—-6({)
show the results from the EMG signal contaminated with real ECG at SNR. of
—20dB. The optimal thresholds for the coefficients in ¢cD4 and ¢D5 decomposition
levels are 6 and 3, respectively. We can see the ECG signal component in c¢D4 of
SMRC, but it is invisible in SMSC. These results indicate that the real ECG signal
has the frequency range 31.25-62.5 Hz, which cannot be removed using the Butter-
worth HPF with cutoff frequency 30 Hz as proposed in Ref. 10.

After thresholding, the cleaned EMG signal was reconstructed. Figure 7(a) shows
the cleaned EMG signal from DSWT obtained by inverse DSWT of thresholded
coefficients, from Figs. 6(b)—6(c), compared with the cleaned EMG signal from HPF
(Fig. 7(b)) and the uncontaminated EMG signal (Fig. 7(c)}. We can see that both
DSWT and HPF give similar waveforms compared to the uncontaminated EMG
signal. Figure 8(a) shows the absolute errors of cleaned EMG signal from DSWT and

Amplitude

0 02 04 08 08 1 12 14 18 18 2
Time (s)

(a) Cleaned EMG signal from DSWT (SMSC)

Amplitude

Time (s)

(b) Cleaned EMG signal from HPF (SMSC)

Amplitude

Time (s)

(¢) Uncontaminated EMG signal (SMSC)
Fig. 7. Example of cleaned signals and the uncontaminated EMG signal from SMSC. (a) Cleaned EMG

signal obtained by inverse DSWT of thresholded decomposition, from Figs. 7(b) and 7(c). (b) Cleaned
EMG signal from HPF. (c) Uncontaminated EMG signal.
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Fig. 8. Comparison of cleaned EMG signals and uncontaminated EMG signal in SMSC data. (a)
Absolute errors of cleaned EMG signal from DSWT and uncontaminated EMG signal (solid line) com-
pared to those of cleaned EMG signal from HPF and uncontaminated EMG signal (dotted line). (b) The
power spectrum of cleaned EMG signal from DSWT (thick line) compared to that of uncontaminated
EMG signal (dotted line) and cleaned EMG signal from HPF (thin line).

uncontaminated EMG signal (solid line) compared to those of the cleaned EMG
signal from HPF and uncontaminated EMG signal (dotted line). We can see that the
results from DSWT are better than from HPF, which matches the MAE for DSWT
(0.1771) being better than that for HPF (0.2563). Figure 8(b) shows the power
spectrum for DSWT (thick line) compared with those for HPF (thin line) and
uncontaminated EMG (dotted line). The power spectrum for DSWT is closer to
that from uncontaminated EMG compared tc that from HPF. These results are
in agreement with RE. In other words, RE for DSWT is 0.0131 compared to 0.0460
for HPF.

Similar results were obtained from SMRC data. Figure 9 shows cleaned signals
and their corresponding uncontaminated EMG signal in SMRC data. In Fig. 9(b), we
can s¢e that HPF cannot completely remove ECG mnterference at a time around 0.4—
0.6, 1.2 and 1.8-2s. These may be caused by other types of noise, such as power line
interference in the EMG signals. However, the cleaned EMG signal from DSWT
shown in Fig. 9(a) not only provides a significantly better result than HPF but also
has an excellent agreement with the uncontaminated EMG signal shown in Fig. 9(c).

The absolute errors of cleaned EMG signal from DSWT and uncontaminated
EMG signal (solid line) compared to those of cleaned EMG signal from HPF and
uncontaminated EMG signal {dotted line) are shown in Fig. 10{a}. We can see that
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(c) Uncontaminated EMG signal (SMRC)

Fig. 9. Example of cleaned sighals and the uncontaminated EM signal from SMRC. (a) Cleaned EMG
signal from DSWT based algorithm, as in Figs. 7(e) and 7(f). (b) Cleaned EMG signal from HPF. (c)
Uncontaminated EMG signal.

DSWT gives better results than HPF does. As a result, MAE and CC for DSWT are
noticeably better than those for HPF. In other words, while MAE and CC for DSWT
are 0.4490 and 0.8353, MAE and CC for HPF are 0.8298 and 0.4831. Figure 10(b)
shows the power spectra for DSWT (thick line}, HPF (thin line) and uncontami-
nated EMG (dotted line). We can see that the power spectrum for DSWT is com-
parable with that for uncontaminated EMG. However, the power spectrum for HPF
is significantly different from that of uncontaminated EMG. These results agree with
RE for DSWT (0.1947) compared with that for HPF (43.6027).

‘When there are variations in the EMG recording, the power spectra of the EMG
signal change. For example, the dominant frequency of the EMG recording decreases
as a result of muscle fatigue, which can be measured using the median frequency [23].
The performances that we reported were based on the average and standard devi-
ation of MAE, CC and RE from the simulated EMG signals generated by the band-
pass filter with variation in bandwidths. Therefore, the proposed approach would be
applicable from the perspective of variations in the EMG recording.
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Fig. 10. Comparison of cleaned EMG signals and uncontaminated EMG signal from SMRC. (a) Absolute
errors of cleaned EMG signal from DSWT and uncontaminated EMG signal (solid line) compared to those
of cleaned EMG signal from HPF and uncontaminated EMG signal (dotted line). (b) The power spectrum
of cleaned EMG signal from DSWT (thick line) compared to that of uncontaminated EMG signal (dotted
line) and cleaned EMG signal from HPF (thin line).

6. Conclusions

‘We present an application of DSWT to removing ECG interference in EMG signals
with consideration of SNR, level. The proposed method consists of three main steps,
namely, DSWT decomposition, thresholding and DSWT reconstruction. In the first
step, the contaminated EMG signal is decomposed using 5-level DSWT with the
Symlet wavelet function. In the second step, the coefficients in ¢D4 and ¢D5, which
are contaminated by the ECG interference, are subjected to non-linear thresholding.
In other words, the detail coeflicients, whose absolute values are less than or equal to
the threshold level, are set to zerc. The threshold level is varied from 0 to 10 with step
size 1. Finally, in the third step, the cleaned EMG signal is reconstructed by inverse
DSWT of the thresholded coefficients.

The proposed method was evaluated using the simulated EMG signal contami-
nated with the ECG interference at 9 SNR levels from —20 to 20dB with 5dB
increments. There were two types of ECG interference in this study, namely, sim-
ulated and real ECG signals. With both types of data, MAE, CC and RE for DSWT
were better than those for HPF. Moreover, DSWT significantly outperformed HPF
at the low SNR from —-10 to —20dB. Results show that the EMG signal
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contaminated with ECG at different SNR levels requires different threshold levels.
The optimal threshold for each SNR, level in this paper was obtained offline by
exhaustive search, which is impraetical for real-time applications. The results suggest
a possible future research direction in developing a system that can estimate the SNR,
level in an EMG signal contaminated with ECG interference.
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Abstract—The electromyography (EMG) signal records the
electrical potential difference across the skeletal muscle in every
part of the body whereas the electrocardiography (ECG) signal
measures the electrical potential difference across only the heart.
For example, when the EMG signal is collected from museles in
the torso, the ECG signal coming up from the heart activity can
interfere with the EMG signal. In this way, the EMG signal can
be contaminated with the ECG interference during data
collection. In this paper, we propose the improved optimal
thresholding method based on discrete stationary wavelet
transform (DSWT) in various 5-level SNR used for removing the
ECG interference from the contaminated EMG signal. No prior
studies have evaluated the performance evaluation of mean
absolute error (MAE) and correlation coefficient (CC) for this
proposed methed to estimate the optimal threshold value in SNR
5 levels. The results show that the ECG interference is removed
from the contaminated EMG signal by using the optimal wavelet
thresholding method based on DSWT at various 5 levels of SNR.
A proposed removal technique is better than the traditional
thresholding method.

Keywords—  electromyography (EMG),
discrete stationary waveles transform (DSWT)

ECG interference,

I. INTRODUCTION

The EMG signal is generated from motor units, which are
the nerve-muscle functional unit of the neuromuscular system
[1]. The petential difference can be measured by either non-
invasive electrodes from surface EMG signals or invasive
electrodes from needle EMG or intramuscular EMG signals
[2]. In this paper, we focus on the EMG signal acquired using
surface electrodes only. The electrodes convert an ion current
to an electron current so that it can be amplified and acquired
by an electronics circuit.

The amplitude of the EMG signal can be ranged either from
0 to 10 mV (peak-to-peak) or 0 to 1.5 mV (rms). Moreover, the
frequency range of EMG signal is limited te O Hz to 500 Hz for
the usable energy of the signal However, the dominant energy
of the EMG signal is in between 50 Hz and 150 Hz range. The
EMG signal recorded from a muscle contraction has a variety
of usefulness including clinical applications [3], robotic
applications [4], engineering applications [5], modern human
computer interaction [6], electrical wheelchair centrol [7], and
industrial applications [8].

978-1-5386-3555-1/18/$31.00 ©2018 IEEE

253

Prapakorn Klabkiay, MD
Department of Orthopaedic Surgery and Physical Medicine
Faculty of Medicine, Prince of Songkia University,
Hat Yai, Songkhla, Thailand
kprapako@medicine psu.ac.th

One of important processes used in above described
applications is a development of EMG recognition system. The
EMG recognition system consists of three cascaded modules,
namely, data pre-processing, feature extraction, and
classification [7]. The main process in data pre-processing is to
remove neise in the EMG signal, which is contaminated from
environment while passing on different tissues [8]. We will
focus on removing the electrocardiography (ECG) interference
from the contaminated EMG signal in this work. The EMG
signal records the electrical potential difference across the
skeletal muscle in every part of the body whereas the ECG
signal measures the electrical potential difference across only
the heart. However, when the EMG signal is collected from
muscles in the torso, it may be interfered by the ECG signal
coming up from the heart activity.

In previous studies, the diserete wavelet transform (DWT)
with thresholding value was proposed to remove the ECG
interference from the EMG signal [11], [12], [13]. However,
the performance was evaluated with the EMG signal
contaminated with the ECG interference at signal to noise ratio
(SNR) 0 dB only. To extend the studies in [11], [12], [13], we
study the ECG interference removal algorithm from the
contaminated EMG signal using the discrete stationary wavelet
transform (DSWT) with the optimal thresholding method at
various SNR levels.

II. MATERIALS AND METHODS
A. Simulation Data

All EMG data were cellected by a commercial EMG
measurement system (MP150, BIOPAC system). For
amplifying the EMG signals, they were used with a gain of
1000 across the bandwidth from 10 to 500 Hz. The EMG data
were recorded at a sampling frequency rate of 1000 Hz. The
EMG signal with SNR > 18 dB was considered as the
uncontaminated EMG signal. The ECG interference was
obtained from MIT-BIH arrhythmia database. There are 5
levels of the EMG signal contaminated with the ECG
interference, namely, -20 dB, -10 dB, 0 dB, 10 dB, and 20 dB.
Twenty normal ECG recordings were chosen and randomly
multiplied by an amplitude scaling to produce the EMG signal
contaminated with the ECG interference at each SNR level.



B.  Proposed algorithm

The proposed algorithm for removing the ECG
interference from the EMG signal consists of 3 main stages
namely DSWT decomposition, thresholding, and DSWT
reconstruction. Details on each stage are as follows.

e Stage (I): Decompose the contaminated EMG signal

using three-level DSWT with the Meyer wavelet
function.

Stage (2): Process the approximation coefficients at
level 1, 2, and 3, which are contaminated by the ECG
interference, with a nonlinear thresholding procedure.

Stage (3): Obtain the clean EMG signal from the new
coefficients by using inverse DSWT.

The first stage is to decompose the EMG signal
contaminated by the ECG interference using DSWT. DSWT is
a shift-invariant transformation. The EMG signal was
decomposed using the Meyer wavelet function into various
subbands as shown in Fig. 1. Then, in the second stage, the
subband signals are separated into two types including
approximation coefficients and detail coefficients. The
approximation cecefficients (cA:, cAc and cAs), which are
contaminated by the ECG interference, are processed with a
nonlinear thresholding procedurs. In other words, the
approximation coefficients, which have their absolute values
greater than or equal to the threshold value, are set to zero. To
obtain the optimal threshold value for removing ECG
interference from contaminated EMG signal, the thresholding
level from 0 to 10 with a step size of 1 were tested. The
threshold value that gives the best performance based on either
mean absolute error (MAE) or correlation coefficient (CC) are
selected as the optimal threshold. The MAE can be expressed
as [9]

MAE = %Z(xu —x) (1

where X, is uncontaminated EMG signal and Xx; is a

contaminated EMG signal that is cleaned by a noise removal
process. The closer value of MAE to 0 indicates the better
result of noise removal The CC is given by [16], [11], [13]

N

(0,0 - X)W, () - %)

,/Z(x,, (i)fx_ﬂ(f))z\fz (x, (= x, 00

The closer value of CC to 1 mdicates the better result of noise
removal.

In the third stage, the clean EMG signal is obtained from
the new coefficients by using inverse DSWT signal for
reconstruction.

CcC= 2)
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Fig. 1.
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Fig. 2. The comparison between the EMG signal contaminated with the ECG
interference at SNR ¢ dB (Red) and the uncontaminated EMG signal (Black) in
time domain (top panel) and frequency domain (bottom panel).

1I1. RESULTS AND DISCUSSION

A. DSWT Decomposition

Fig. 2 shows an example of the EMG signal contaminated
with the ECG interference at SNR 0 dB (Red) and the
uncontaminated EMG signal (Black) i time domain (top
panel} and frequency domain (bottom panel). We can clearly
see the ECG interference comtaminated in the EMG signal in
the time domain. Moreover, the frequency components of the
ECG interference are clearly visible in the frequency domain.
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decomposition Lo the EMG signal contaminated with ECG interference al SNR
0 dB (Red) and the uncontaminated EMG signal (Black) in the time domain
(Left column) and in the frequency domain (Right column). ‘The approximation
coefficients at Tevel 1, 2, and 3 are shown the top, middle, and bottom rows,
respectively.
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decomposition Lo the EMG signal contaminated with ECG interference al SNR
0 dB (Red) and the uncontaminated EMG signal (Black) i the time domain
(Left column) and in the frequency domam (Right column). The detail
cocfficients at level 1, 2, and 3 are shown the top, middle, and bottom rows,
respectively,

Fig. 3 and 4 show the approximation and detail coefficients
obtained by applying three-level DSWT decomposition to the
EMG signal contaminated with ECG interference at SNR 0 dB
(Red) and the uncontaminated CMG signal (Black) in the time
domain (Left columm) and in the frequency domain (Right
column), The BCG interference is clearly seen in the
approximation coelficients both in the time domain and
frequency domain,

B. Optimal Wavelet Thresholding

Fig. 5 shows the approximation coefficients at level 1, 2,
and 3 before thresholding (Red) and after thresholding with the
threshold value 2.65 (Black) in the top, middle, and bottom
pancls, respectively. The threshold value 2.65 was selected
from the average of 20 optimal threshold values that gave the
best CC. The approximation cocfficient that has its absolute
value greater than 2.65 is sct o zero.
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Fig. 3. Approximation coeflicienis at level 1, 2, and 3 belore thresholding
(Red) and afler thresholding with the threshold value 2.65 (Black) are shown in
the top, middle, and bollom panels, respectively.

C. DSWT Reconstruction

After the approximation cocfficients were processed with
the thresholding technique, they were combined with the detail
cocfficients and were processed with reconstruction algorithm
through inverse DSWT. Fig. 6 shows a comparison between
the uncontaminated EMG signal (Black) and the reconstructed
clean EMG signal {(Red) and in time domain (top panel) and
frequency domain (bottom panel). We can clearly see very
good agreement between the uncontaminated EMG signal and
the reconstructed clean EMG signal. The CC value determined
from both signals shown in Fig. 6 is 0.9380.
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Fig. 6. Comparison between the uncontaminated EMG signal (Black) and the
reconstructed clean EMG signal (Red) and in time domain (top panel) and
frequency demain (bottom panel).

D. Performance Evaluation

Table 1 shows the performance comparisons for ECG
interference removal using the thresholding technique based on
DSWT from 5 levels of SNR, namely, -20 dB, -16 dB, 0 dB,
10 dB, and 20 dB, with MAE and CC. The best results can be
seen in SNR 20 dB indicating by the closer value of MAE to 0
and the closer value of CC to 1 because the ECG interference is
very low in this case. When the SNR values decrease from 20
dB to -20 dB, the average optimal threshold values decrease
from 4.00 to 0.25 in MAE case and from 3.58 to 0.30 in CC
case. At SNR -20 dB, we can obtain the average MAE 0.39 and
the average CC 0.86 using the proposed technique. These
results indicate that to achieve the best performance on ECG
interference removal, the optimal threshold value must be
adaptive based on the SNR value.

TABLE L PERFORMANCE COMPARISONS FOR ECG INTERFERENCE
REMOVAL USING THE THRESHOLDING TECNIGUE BASED ONDSWT FrROM 5
LEVELS OF SNR.
SNR(dB) __Th_MAE. MAE, Th_ CC™ cC
20 025+ 044 039+007  030+047 086+ 005
-10 0.30£047 0324006  035£049 0514004
0 200+1.12 0264004  265+139 0554001
10 345£1.05 0124001  325£064 0.58£0.00
20 4.00 £ 0.97 0054000 3584112 (594000

“Th MAE shows the average and standard deviation of 20 optimal threshold values that gave the best

MAE.
**Th CC shows the average and standard deviation of 20 optimal thresho Id values that gave the hest CC.

IV. CONCLUSIONS

In summary, this study proposed the technique for
removing the ECG interference from the contaminated EMG
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signal using the optimal wavelet thresholding method based
on DSWT. The threshold values of 0 to 10 with a step size
were tested to obtain the optimal threshold. The performance
of noise removal was evaluated using MAE and CC. Results
show that the EMG signals contaminated with the ECG
interference at different SNR require different optimal
threshold values. These suggest a possible future research
direction on developing the system that can estimate the SNR
values from the EMG signal contaminated with the ECG
interference.
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