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ต่อการดูดซบัน ้ า การกร่อน และความยดืหยุน่ของแผน่ฟิลม์ แผน่ฟิลม์ถูกประเมินลกัษณะดา้นความ
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แผ่นฟิลม์ท่ีเหมาะสมส าหรับการน าส่งยาทางเยื่อบุช่องปาก นอกจากน้ีเจลาตินผสมกบั 5 phg ของ
แป้งสาคูเจลาติไนซ์ และ 50 phg ของน ้ ายางโปรตีนต ่า (GSNR) ท าให้ได้แผ่นแปะท่ีเหมาะสม
ส าหรับการน าส่งทางผิวหนัง ลิโดเคนเบสและลิโดเคนไฮโดรคลอไรด์ถูกผสมลงในแผ่นฟิล์ม 
Gαgly และแผ่นแปะ GSNR ใช้ฟรานซ์ดิฟฟิวชนัเซลส์ดดัแปรส าหรับการศึกษาการปลดปล่อยยา
และการซึมผ่านของยาในหลอดทดลอง ใช้เยื่อหุ้มตวัอ่อนของไข่ไก่ (CAM) และหนังหมูแรกเกิด
เป็นโมเดลส าหรับการประเมินผลการซึมผ่านของยาลิโดเคนผ่านเยื่อบุในช่องปากและผิวหนัง
ตามล าดับ ทั้งยาลิโดเคนเบสและลิโดเคนไฮโดรคลอไรด์สามารถปลดปล่อยออกจากแผ่นฟิล์ม 
Gαgly และแผน่แปะ GSNR การปลดปล่อยยาของลิโดเคนไฮโดรคลอไรดสู์งกวา่ลิโดเคนเบสทั้งใน
แผน่ฟิลม์ Gαgly และแผน่แปะ GSNR นอกจากน้ีตวัยาเหล่าน้ียงัสามารถซึมผ่านเยื่อหุ้มตวัอ่อนของ
ไข่ไก่และหนงัหมูแรกเกิด ส าหรับแผ่นฟิลม์ Gαgly ลิโดเคนไฮโดรคลอไรด์สามารถซึมผา่นเยือ่หุม้
ตวัอ่อนของไข่ไก่ไดม้ากกว่าลิโดเคนเบส ส าหรับแผ่นแปะ GSNR ลิโดเคนไฮโดรคลอไรด์ซึมผ่าน
ผิวหนังหมูแรกเกิดต ่ากว่าลิโดเคนเบส แสดงให้เห็นว่าการปลดปล่อยหรือซึมผ่านของลิโดเคน
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ขึ้นอยูกับคุณสมบัติของยา แผ่นฟิล์มผสมยา Gαgly และแผ่นแปะผสมยา GSNR แสดงรูปแบบ
จลนศาสตร์ของการปลดปล่อยยาและการซึมผา่นของยาท่ีแตกต่างกนั จลนศาสตร์การปลดปล่อยยา
ของแผน่ฟิลม์ Gαgly ในระยะสั้นและ 8 ชัว่โมงเหมาะสมกบัจลนศาสตร์อนัดบัศูนยแ์ละจลนศาสตร์
อนัดบัหน่ึงตามล าดบั จลนศาสตร์การซึมผ่านของยาส่วนใหญ่เหมาะสมกบัจลนศาสตร์อนัดบัหน่ึง 
ส าหรับแผ่นแปะ GSNR จลนศาสตร์การปลดปล่อยยาเหมาะสมกับจลนศาสตร์อนัดับหน่ึงหรือ
จลนศาสตร์ของฮิกูชิ จลนศาสตร์การซึมผา่นของยาของแผน่แปะ LB-GSNR เป็นจลนศาสตร์อนัดบั
ศูนยห์รือจลนศาสตร์อนัดับหน่ึง ในขณะท่ีแผ่นแปะ LH-GSNR ไม่มีความแตกต่างทางสถิติของ
จลนศาสตร์ทั้ง 3 ชนิด ผลจากการศึกษาความคงตวัเป็นระยะเวลา 3 เดือน แสดงให้เห็นว่าแผน่ฟิลม์
หรือแผ่นแปะเหล่าน้ีควรแนะน าให้เก็บท่ีอุณหภูมิต ่า นอกจากน้ี การประเมินกระคายเคืองอยู่ใน
ระดบัต ่าของแผ่นฟิล์มผสมยา Gαgly โดยใชเ้ยื่อหุ้มตวัอ่อนของไข่ไก่ แสดงให้เห็นว่าฟิลม์มีความ
ปลอดภยัต่อเยื่อบุในช่องปาก โดยสรุปเจลาตินและแป้งสามารถผสมกบัพลาสติไซเซอร์และยาชา 
เช่น ลิโดเคนเบสและลิโดเคนไฮโดรคลอไรด์ แลว้ให้แผ่นฟิล์มท่ีเหมาะส าหรับเป็นฟิล์มน าส่งยา
ทางเยือ่บุช่องปากหรือแผน่แปะผิวหนงั 
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Author  Miss Suchipha Wannaphatchaiyong 

Major Program Pharmaceutical Sciences 

Academic Year 2018 

ABSTRACT 

This study aimed to prepare and evaluate the matrix type anesthetic 

films for using as oral transmucosal (OTD) or transdermal drug delivery systems 

(TDDS). Gelatin was chosen as the main polymer. Pregelatinized tapioca starch (alpha 

starch) or gelatinized sago starch was used as a blended polymer. Glycerin (GLY), 

propylene glycol (PG), polyethylene glycol 400 (PEG400), or deproteinized natural 

rubber latex (DNRL) was selected as a plasticizer. Either lidocaine base (LB) or its 

hydrochloride salt (LH) was used as a model drug. The films were obtained by mixing 

and casting methods before being dried in hot air oven. The amounts of starch and 

plasticizer affected the water uptake, erosion, and elasticity of films. The films were 

characterized for their compatibility by using texture analyzer, scanning electron 

microscopy (SEM), atomic force microscopy (AFM), fourier transform infrared 

spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray 

diffractometry (XRD). Gelatin blended with 5 part per hundred of gelatin (phg) alpha 

starch and 25 phg GLY (Gαgly) presented as the appropriate film for OTD. In addition, 

gelatin blended with 5 phg gelatinized sago starch and 50 phg DNRL (GSNR) gave the 

suitable patch for TDDS. LB or LH was incorporated into both Gαgly film and GSNR 

patch. The modified Franz diffusion cells were applied for in vitro drug release and 

permeation studies. Chick chorioallantoic membrane (CAM) and newborn pig skin 

were used to evaluate the permeation of lidocaine as buccal and skin models, 

respectively. Both LB and LH could release from Gαgly films and GSNR patches. The 

release of LH was higher than LB in both Gαgly films and GSNR patches. Moreover, 

the drugs could permeate through both CAM and newborn pig skin. For Gαgly films, 

LH could permeate through CAM higher than LB. For GSNR patches, LH could 

permeate through newborn pig skin lower than LB. This indicated that the lidocaine 

release or permeation from these films depended on drug property. Medicated Gαgly 
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films and GSNR patches exhibited different kinetics of drug release and permeation. 

Most drug release kinetics of Gαgly films in short time and 8 h drug release were fitted 

to zero order kinetic and first order kinetics, respectively. Most drug permeation 

kinetics were fitted to first order kinetics. For GSNR patches, most drug release kinetics 

were fitted to first order or Higuchi’s kinetic model. The permeation kinetics of LB-

GSNR patches were zero order kinetics or first order kinetics, while that of LH-GSNR 

patches was not statistically different for three types of kinetics. The results from the 

stability test for 3 months indicated that these films or patches were recommended to 

be stored at low temperature. Moreover, the low irritation with CAM test of medicated 

Gαgly films signified their safety for buccal delivery. In conclusion, gelatin and starch 

could be blended with plasticizer and anesthetic drug such as LB and LH to obtain the 

suitable film for use as oral transmucosal films or transdermal patches. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Rationale 

There are various routes of drug delivery systems to administer drugs for 

patients such as oral, rectal, parenteral, topical, etc., which must be examined, and 

guidelines provided for the recommended dosage for various ages, weights, and states 

of health to facilitate drug administration by the selected routes of the appropriate 

dosage forms. The patch or film is one of the dosage forms that can be developed for 

transdermal or oral drug delivery. 

A transdermal patch or film is a medicated patch applied to the surface 

of the skin to deliver a specific dose of drug through the skin into the bloodstream. 

Transdermal drug delivery system (TDDS) can improve patient compliance because it 

is non-invasive, painless, and simple to apply. It also avoids first pass metabolism 

through the liver, so this can increase its therapeutic efficacy and reduce any side effects 

of the drug (Delgado-Charro and Guy, 2001; Keleb, et al., 2010; Arunachalam, et al., 

2010). This delivery system can regulate the rate of drug release and permeation over a 

period of several hours. 

The oral route is also one attractive mode of drug administration for 

patch or film formulations. Oral transmucosal drug delivery (OTD) can bypass the 

hepatic first pass metabolism and avoid drug degradation in the gastrointestinal tract. It 

is useful for pediatric or dysphagia patients. Oral drug delivery is simple and non-

invasive when compared with parenteral administration because of the abundant blood 

flow and high permeability rate of the oral mucosa (Lam, et al., 2014). Therefore, this 

delivery system provides for a fast release and permeation of a drug. 

Polymers are important not only as TDDS that could control the drug 

release rate but also OTD that could dissolve and deliver the drug to the oral cavity 

(Nagaraju, et al., 2013). They should be both biocompatible and chemically compatible 

with the adding drug and other components of the systems (Mujoriya and Dhamande, 

2011). In this study, gelatin and starch have been chosen as polymers to formulate both 

the TDDS and OTD films. Gelatin and starch are natural polymers that are commonly 
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used in food, pharmaceutical, and medical applications because they are non-toxic, 

biocompatible, biodegradable, economical, and easily available (Tabata and Ikada, 

1998; Yadav, et al., 2013). 

Gelatin is a protein obtained from collagen found in skins, bones, and 

connective tissues of humans and animals. Gelatin can be divided into two types, 

depending on the source of materials and the preparation methods, type A and B. 

Gelatin is slightly soluble in water and is completely soluble above 40°C. It is 

translucent, colorless or yellowish, brittle, and tasteless (Yadav, et al., 2013). It is 

compatible with polyhydric alcohols such as sorbitol, propylene glycol, and glycerin 

which can modify the stiffness of gelatin films (Kim, 2004). It has good film-forming 

properties (Arvanitoyannis, 2002) and has been used in many formulations of 

pharmaceuticals such as pastes, suppositories, coating of tablets, capsules and films or 

patches. Nowadays, new gelatin types can be manufactured from the collagen of fish. 

The problems of fish gelatin from cold water species are its low gel modulus, low 

gelling and melting temperature (Leuenberger, 1991). This makes fish gelatin unsuited 

as mammalian gelatin replacements. Moreover, the use of fish gelatin in commercial 

products has a new problem in that collagen from fish has recently been declared a 

potential allergen (Sakaguchi, et al., 1999; Hamada, et al., 2001). In this study, the 160 

bloom gelatin B is chosen to use because the results of a preliminary study showed that 

this gelatin can make good films, and the charge of the gelatin can change by itself 

depending on the environmental pH. 

Starch is obtained from various fruits and vegetables such as corn, 

potato, rice, sago, banana, etc. It is a polysaccharide carbohydrate mainly made up of 

two types; amylose and amylopectin. Generally, starch has 20-25% amylose and 75-

80% amylopectin (Brown and Poon, 2005). Amylose is a linear polymer of α-1,4 

anhydroglucose that has good film-forming properties (Myllärinen, et al., 2002). 

Amylose is water soluble but this solution can be unstable and tend to precipitate 

spontaneously. Amylopectin is a highly branched polymer that consists of α-1,4 chains 

linked by α-1,6 glucosidic branching points in every 25-30 glucose units (Durrani and 

Donald, 1995). Amylose and amylopectin are structured by hydrogen bonding in starch 

granules and include crystalline and non-crystalline regions. The ratio of 

amylose/amylopectin depends on the type and age of the source of starch. Starch 
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granules are not soluble in cold water because of strong hydrogen bonds. Heating starch 

in water disrupts the crystalline structure, and the hydroxyl groups of amylose and 

amylopectin interact with water molecules, thus some parts of the starch can be 

solubilized (Hoover, 2001). Depending on the type of starch, at temperatures between 

approximately 65 and 100°C create an irreversible gelatinization process that results in 

changes of the starch granules, i.e. loss of crystallinity, an increase of the water 

absorption and swelling of granules (Zhong, et al., 2009) each requiring two steps 

hydration and diffusion of the solvent in the starch granules and the melting of the 

crystals of starch (Liu, et al., 1991; Jenkins and Donald, 1998). Starch is most 

commonly used in daily life as a food ingredient. Moreover, it is used as a 

pharmaceutical excipient for example as a suspending agent, a disintegrating agent, a 

binder, for microspheres and as a film forming agent because it is one of the safest 

excipients from GRAS (Generally Regarded as Safe) that is listed by the WHO (World 

Health Organization) (Satyam, et al., 2010). In this study, rice starch, glutinous starch 

and sago starch are used because they have different amounts of amylose. Rice starch 

has a low amount of amylose, sago starch has a medium amount of amylose, and 

glutinous starch has no amylose (Oates, 1996). Moreover, the commercially modified 

starches such as starch 1500® (pregelatinized corn starch) and alpha® starch 

(pregelatinized tapioca starch) have also been chosen for use in this study to compare 

with the native starches. 

The gelatin/starch films are stiff or hard and brittle. Thus, in this study, 

water soluble plasticizers i.e., glycerin (GLY), polyethylene glycol 400 (PEG400), 

propylene glycol (PG) are used for improving the properties of the oral transmucosal 

films to give flexibility and elongation (Gontard, et al., 1992) because they might be 

compatible with gelatin and starch, and produce more flexible films. These plasticizers 

are in the list 35 edition of the United States Pharmacopoeia (USP 35) which are 

appropriate to select and use in formulation (Snejdrova and Dittrich, 2012). 

Natural rubber latex (NRL) is produced from Hevea brasiliensis which 

is a white or yellowish milky liquid (Boonrasri, et al., 2018; Jayadevan and 

Unnikrishnan, 2018). It contains isoprene monomers which is the cis-1,4- polyisoprene 

polymer. It has good properties such as its ease to form films or patches, it is 

biocompatible and has high tensile strength and elasticity (Kawahara, et al., 2004; 
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Suksaeree, et al., 2014). NRL is suitable for use in TDDS but it contains some proteins 

which can cause allergic reactions (Perrella and Gaspari, 2002). The proteins content in 

NRL is a concerned for its use for medical treatments and the proteins should be first 

removed by several methods such as an alcalase enzyme and/or other chemicals 

treatments before using as materials in pharmaceutical and cosmetics (Suksaeree, et al., 

2012). In this study, thus, deproteinized NRL (DNRL) has also been chosen to mix in 

the gelatin/starch films as a new plasticizer because it has good properties which might 

improve the tensile strength and elasticity of the transdermal films. 

Lidocaine base (LB) and its hydrochloride salt (LH) are local anesthetics 

with amide groups and are antiarrhythmic drug which were used as model drugs in this 

study. LB known as lignocaine and LH, also known as xylocaine hydrochloride or 

lignocaine hydrochloride, are widely applied as topical and local anesthesia because of 

moderate action and fast onset. LH can be soluble in an aqueous solution. They are used 

topically to relieve pain by affecting nerves and muscles and act as a voltage-gate 

sodium channel blocker which can inhibit the passage of sodium into the nerve cells 

and not send painful impulses to the brain (Brayfield, 2014). LH is available as an oral 

topical solution in viscous and in solution for use as a local anesthetic (Malamed, 2013). 

Nowadays, the commercial products of lidocaine transdermal patch and lidocaine oral 

transmucosal film still are not available in Thailand, then, they are beneficial to develop 

lidocaine transdermal patch and lidocaine oral transmucosal film for many patients who 

would necessary to use them in Thailand. 

Therefore, the aims of this study are to formulate the transdermal patch 

and oral transmucosal film by using natural polymers blends; gelatin and starch, to 

study their physicochemical properties and in vitro drug release, and to evaluate the 

stability of the films or patches. Lidocaine and its hydrochloride salt form are used as 

the model drugs. Thus, the patches and films were expected to relieve pain. 
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1.2 The objectives of this study were as follows; 

1. To study the effects of plasticizers and polymer blending on the 

properties of gelatin/starch blended films. 

2. To formulate and evaluate the LB or LH gelatin/starch blended film for 

use as a transdermal patch. 

3. To formulate and evaluate the LB or LH gelatin/starch blended film for 

use as an oral transmucosal film. 

4. To evaluate the stability of LB and LH in both transdermal patch and 

oral transmucosal film. 
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CHAPTER 2 

LITERATURE REVIEWS 

2.1 Human skin 

There are many dosage forms to use in topical or transdermal treatment, 

which skin surface is the site to deliver the drug, such as ointments, creams, gels, pastes, 

solutions, powders and patches. These dosage forms can be designed for local or 

systemic effects. For local effects, the drug is directly applied on the specific site which 

drug is desired to affect (Medical dictionary, 2009). For Systemic effects, the drug can 

be transported to whole body or many organ systems by blood circulation (Wikipedia 

contributors, 2018). The skin is the largest organ of human body which is more than 

10-15% of body weight. The skin of an average adult body covers a surface area of 

approximately 2 m2 and receives about one third of the blood circulating chemical and 

biological agents. The functions of the skin are protection of the major or vital internal 

organs from external influences, temperature regulations, control of water output and 

sensation (Walters and Roberts, 2002; Kanitakis, 2002). The skin is important to 

deliver, penetrate, or retain the drug because it acts as barrier which is effective and 

selective to chemical permeation (Barry, 2001). Then, the conditions of skin are 

morphology, biophysical and physicochemical which should be considered delivering 

the drug (Patel and Kavitha, 2011). 

 2.1.1 Structure and physiology of the skin 

There are three major layers of the skin: epidermis, dermis and 

subcutaneous tissue (hypodermis) (Bohjanen, 2013; Gilaberte, et al., 2016) as presented 

in Figure 1. 

The epidermis is the outermost layer which has multiple functions. One 

of the important functions is controlling small molecules diffuse into systemic blood 

circulation. Its thickness is approximately 100-150 µm (Sheth and Mistry, 2011). The 

epidermis is a stratified squamous epithelium. Most of the cells in the epidermis are 

keratinocyte that originate from cells in the basal layer and change their shape, size, 

and physical properties when migrating to the skin surface. Cells move from the lower 
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layers up to the surface. It can be divided into five layers. The sort of epidermis layer 

from lower to upper is stratum basale, stratum spinosum, stratum granulosum, and 

stratum corneum for thin skin. The last layer is stratum lucidum which can be found 

only in thick skin, i.e., palm and sole of feet (Menon, 2002; Gaikwad, 2013), and it 

locates between stratum granulosum and stratum corneum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic of a skin cross section (Bohjanen, 2013) 

1) Stratum basale is a single layer of cells which is made of basal cells. 

A basal cell is cuboidal or columnar cell which is a precursor of the keratinocytes. All 

of keratinocytes are created from this single layer of cells as new keratinocytes and the 

existing cells is pushed towards the surface. 

2) Stratum spinosum is spiny in appearance. It is composed of 8-10 

layers of keratinocytes which result from cell division in stratum basale. The 

keratinocytes in this layer initiate the synthesis of keratin and release a water-repelling 

glycolipids which prevent water loss from body. 

3) Stratum granulosum is more flattened keratinocytes with the thicken 

cell membranes and has 3-5 layers deep. The cells create the protein keratin and 

keratohyalin. These proteins give the grainy appearance in this layer. 
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4) Stratum lucidum is a smooth and seems to be translucent layer. This 

thin layer of cells is found only in the thick skin. These cells are densely packed with 

eleidin which derived from keratohyalin. 

5) Stratum corneum is the most superficial layer of the epidermis. There 

are 15-30 layers of terminally differentiated keratinocytes (corneocytes) which are 

surrounded by long chain lipids. The tight packing of stratum corneum structure results 

in the obstacle of drug transportation. Therefore, this layer plays an important role in 

skin barrier function. 

The dermis consists of collagenous fiber and elastic connective tissue 

which produced by fibroblasts. It locates between the epidermis and the hypodermis. It 

contains blood and lymphatic vessels, nerve endings, and other structures such as sweat 

glands and hair follicles. The drug can be absorbed by blood vessels into the circulation 

or penetrated from the junctions between epidermis and dermis. This is the one of the 

important channel for drug delivery via the skin passes through the epidermis into the 

dermis (Barry, 1988; Gaikwad, 2013). 

The hypodermis or subcutaneous tissue is the layer that acts as the 

supporting for the epidermis and dermis. This layer is a network of fat cells which 

arranged in lobules and linked to the dermis by collagen and elastin fiber. Moreover, it 

binds the skin to underlying muscle. Its functions are energy storage region, provide 

nutrition support, regulate temperature and mechanic protection (Walters and Roberts, 

2002; Tortora and Grabowski, 2006). 

 2.1.2 Drug transport pathways across the skin 

The skin penetration pathways consist of an appendageal pathway and a 

transepidermal pathway as displayed in Figure 2 (Heisig, et al., 1996; Barry, 2001). 

Normally, there is no specific pathway for transportation drugs. Most of the drugs are 

penetrated by a combination of both pathways which depend on the physicochemical 

properties (Roberts, 1997). 

2.1.2.1 The appendageal pathway 

The skin appendages include hair follicles, sweat glands, and associated 

sebaceous glands. This pathway is also called as the shunt pathway (Boddé, et al., 1991; 

Heisig, et al., 1996). The major penetration is through the hair follicles. However, skin 
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appendages are only 0.1% of the total surface of the human skin (Saini and Bajaj, 2014). 

This pathway is important for charged molecules and large polar compounds which 

remain on the intact stratum corneum. They could be transported through this route 

(Barry, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Schematic diagram of drug penetration pathway: (1) through the sweat 

ducts; (2) directly across the stratum corneum; (3) via the hair follicles with 

their associated sebaceous glands (Mathur, et al., 2010) 

2.1.2.2 The transepidermal pathway 

The major route of skin penetration is through the intact epidermis 

which has two main pathways as shown in Figure 3. The stratum corneum structure has 

been described as “brick and mortar structure” (Benson, 2005). The bricks are referred 

to corneocytes, and the mortar is created by the intercellular lipids which arrange 

molecules surround corneocytes. The intercellular lipid composes of a mixture of 

ceramides, cholesterol, cholesterol ester, and fatty acids. The first pathway of this route 

is the transcellular route, the transportation of drugs starts with partition into the lipid 

bilayer after that across the lipid bilayer to the next keratinocytes. This route is suitable 

for lipophilic drugs. The other one is the intercellular route. The drugs stay in the lipid 

bilayer and move around the keratinocytes. The small-unchaged molecules and most of 

molecules are permeated by this pathway (Gandhi, et al., 2012; Gaikwad, 2013). 
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Figure 3 Schematic of stratum corneum and transepidermal routes of drug 

penetration (Barry, 2001) 

In this route, the drug molecules can pass through the skin in various 

pathways depending on the physiochemical properties of drug and biological properties 

of skin (Wolff, 2000; Gaikwad, 2013). 

2.2 Transdermal drug delivery 

Transdermal drug delivery systems (TDDS) is defined as a formulation 

which is applied to the skin and is designed to deliver the active drug through the skin 

into the systemic circulation (Barry, 2001; Allen, et al., 2011) and subsequently to 

receptor sites remote from the area of application (Walters, 1990). Films or patches is 

one of pharmaceutical dosage forms for using in TDDS. 

 2.2.1 Advantages and disadvantages of TDDs 

There are many advantages of TDDS over the conventional injection and 

oral routes including improved bioavailability, improved patient compliance, reduced 

side effects and the maintenance of a stable or constant and controlled drug release 

(Mujoriya and Dhamande, 2011; Patel, et al., 2012; Sharma, et al., 2013). However, it 

still has some limitations or disadvantages such as irritated skin (erythema, itching, and 

local edema), and cannot allow ionic drugs or large sized molecule (should be below 
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800-1000 Daltons) to be absorbed through the skin, The skin itself has a major barrier 

function for the body against unwelcome molecules that differs between different 

persons and at different ages (Patel, et al., 2012; Sharma, et al., 2013). 

 2.2.2 Types of transdermal patches 

Transdermal patches can be categorized by three basic design principles: 

(1) drugs in adhesive, (2) drugs in matrix, and (3) drugs in reservoir. Moreover, the 

reservoir type is later separated as peripheral adhesive type by a rate controlling 

membrane. There are many differences in design of patches as shown in Figure 4. 

1) Drug in adhesive layer: The adhesive layer is between a liner and 

backing. It contains the drug which can adhere to the various layers together and release 

the drug to the skin (Williams and Barry, 2004). This design can be very thin film 

because the drug can be dissolved or dispersed within the ingredients of formulation. 

2) Drug in matrix layer: This design contains the drug which be 

dispersed or dissolved in the hydrophilic or lipophilic polymer matrix. This polymeric 

matrix is fixed the surface area and thickness as a disk. Then, the polymeric disk is 

fixed onto an occlusive baseplate. The adhesive layer spreads along the patch and 

surrounds the disk (Saini and Bajaj, 2014). 

3) Drug in reservoir: The drug can be in the form of solution, gel or 

simple dispersed in a solid polymer matrix. The drug reservoir is between a backing 

layer and a rate controlling membrane. The rate controlling membrane can be non-

porous or microporous. Its external surface attaches an adhesive layer. The drug 

molecules can be delivered to skin by passing through the rate controlling membrane 

and adhesive layer (Ghosh, et al., 2004). 

The common components of patches are release liner, adhesive and 

backing layers. The release liner protects the patch during storage. It is removed before 

applying the patch on the skin. The adhesive layer adheres the patch to the skin. The 

backing layer protects the patch from external factors (Suksaeree, et al., 2014; Saini 

and Bajaj, 2014). Besides, the polymers play an important role in TDDS because they 

control drug release from patch. The polymer should be chemically non-toxic, 

compatible, stable with the ingredients in formulation. The drug selection should also 

be concerned. The important drug properties for TDDS which able to penetrate the skin 
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are low molecular weight (<500 Daltons), adequate solubility in oil and water (log P = 

1-3), low melting point (<150°C), and high potency (total daily dose<10 mg) (Barry, 

2001). Moreover, it should have short half-life and must not irritate or allergic to the 

skin. 

 

 

 

 

 

 

 

 

 

Figure 4 Typical transdermal drug delivery system designs (Walters and Roberts, 

2002) 

2.3 Oral cavity   

The oral cavity is composed of the lips, cheek, tongue, hard palate, soft 

palate, and floor of mouth as shown in Figure 5 (Squier and Kremer, 2001; Patel, et al., 

2011). The oral mucosa lines inside of the cheek. It is composed of an outermost layer 

of stratified squamous epithelium, a lamina propia, followed by the submucosa as the 

innermost layer as shown in Figure 6. This oral mucosa structure is quite similar to the 

skin structure. The oral mucosal thickness varies depending on the site in the oral cavity 

as shown in Table 1. The function of the oral epithelium is to protect the tissue against 

harmful agents in the oral environment and from fluid loss (Dowty, et al., 1992). There 

are three types of oral mucosa in the oral cavity: the lining mucosa is in the outer oral 

vestibule (the buccal mucosa) and the sublingual region (floor or the mouth), the 

specialized mucosa is in the hard palate (the upper surface of the mouth) and the 

gingiva, and the masticatory mucosa is located in the regions which have masticatory 

activity. The oral cavity presents physiological barriers for oral transmucosal drug 

delivery (OTD) including pH, fluid volumes, enzyme activity and the permeability of 

oral mucosa. The saliva is a weak buffer with a pH of around 5.5-7.0 and it provides a 



14 

water rich environment in the oral cavity that is appropriate for hydrophilic polymers 

to release the drug. The enzymes in buccal mucosa include aminopeptidases, 

carboxypeptidases, dehydrogenases, and esterases which are also barriers for delivery 

of drugs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Schematic of the lining of mucosa in the mouth (Squier and Kremer, 2001) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Structural of buccal mucosa (Smart, 2005)  
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Table 1 Characteristics of oral mucosa (Patel, et al., 2011) 

Tissue Structure 
Thickness 

(µm) 

Turn-over 

time (days) 

Surface 

area (cm2) 
Permeability 

Blood 

flow* 

Buccal NK 500-600 5-7 50.2 ± 2.9 Intermediate 20.3 

Sublingual NK 100-200 20 26.5 ± 4.2 Very good 12.2 

Gingival K 200 - - Poor 19.5 

Palatal K 250 24 20.1 ± 1.9 Poor 7.0 

Note: NK is nonkeratinized tissue, K is keratinized tissue and *In rhesus monkey 

(mL/min/100g tissue) 

 2.3.1 Drug transport routes across the oral mucosa 

The drugs transportation across oral mucosa is included with passive 

diffusion, carrier-medicated active transport or other specialized mechanisms. There 

are two main routes for drug transportation through epithelial barrier. The paracellular 

route or intercellular route is transportation the drugs between adjacent epithelial cells, 

and the transcellular is transportation the drugs across epithelial cells. These routes are 

similar to drug transportation across the skin as the transepidermal pathway. 

 2.3.1.1 Paracellular route or intercellular route 

The paracellular route is passive diffusion which is occurred by low 

molecular weight, hydrophilic molecules. The molecules move between the junctions 

of the epithelial cells. The tight junction in oral epithelia is rare. Then, epidermis of the 

skin occurs in this transportation more than oral epithelial. However, the intracellular 

space of oral epithelial cells is more lipophilic environment. Therefore, the lipophilic 

drugs may also be absorbed via the paracellular route. 

2.3.1.2 Transcellular route 

The transcellular route is a pathway for low molecular weight, lipophilic 

molecules. The molecules can be penetrated through several layers of cells until reach 

the blood capillaries.  

2.4 oral transmucosal drug delivery  

The oral route is the most common and preferred route for drug 

administration because of ease of administration and high level of patient compliance. 
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The drug delivery in the oral mucosal cavity is divided into two categories which are 

local delivery and systemic delivery via the buccal or sublingual mucosa. 

 2.4.1 Oral mucosal sites  

2.4.1.1 Local delivery: The drugs are applied on the sites which can be 

retained a delivery system for a desired treatment and length of time. 

2.4.1.2 Buccal delivery: The drugs are administrated on the lining of 

the cheek to the systemic circulation. 

2.4.1.3 Sublingual delivery: The drugs are administrated on the 

membrane of ventral surface of the tongue and the floor of the mouth to the systemic 

circulation. 

 2.4.2 Advantages and disadvantages of OTD 

OTD is similar to TDDS. It mainly delivers a drug through the 

oropharynx (Fukuda, 2015). However, the permeability of oral mucosa is about 4-4000 

times more than the permeation of the skin (Patel, et al., 2011). Therefore, there are 

several advantages and limitation on OTD. The advantages of OTD are the ease of 

administration, rich blood supply, can be used in unconscious or trauma patients, avoid 

first pass metabolism in the liver and increase bioavailability, etc. However, the OTD 

has limitations such as irritation of the mucosa or having an unpleasant taste, can use 

only a small drug dose, provides restriction with eating and drinking, etc. (Sravanthi, et 

al., 2014). 

2.5 Alternative tissue in scientific research 

The permeation study has been required to evaluate the effectiveness of 

drug delivery from drug formulations. The drug should be diffused or absorbed into the 

membrane in a sufficient amount of therapeutic level. To predict the permeation of 

drug, a membrane that is similar to human membrane in histology or permeation profile 

is considered to use. 

In TDDS, the human skin is replaced with the various animal skin 

models such as rat skin, pig skin, snake skin, rabbit skin or cadaver skin. The 

histological and biochemical properties in pig skin have been studied and shown the 

similarity in human skin. It provided enough area to determine percutaneous absorption 
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(Wester, et al., 1998; Alkilani, et al., 2015). Moreover, pig skin is easily to handle and 

can be received from slaughterhouse. Thus, the pig skin was considered to apply instead 

of human skin model in this study. 

In OTD, many oral mucosal of rats, hamsters, dogs, and monkeys have 

been studied (Nicolazzo and Finnin, 2008). However, the mucosa in these animals 

cannot simulate the function of human buccal membrane. Recently, there is a report of 

chorioallantoic membrane (CAM) from chick embryo which be studied as the buccal 

membrane (Tay, et al., 2011). The fertilization egg starts to fuse chorion and allantois 

together and become CAM about 4 days after the egg is laid. CAM plays an important 

role in embryo respiratory, ion exchange and controls the embryo temperature because 

a lot of blood vessels pass through this membrane. CAM composes of three layers as 

presented in Figure 7. First layer is the ectoderm. It includes with cuboidal cells and 

some capillaries. Second is the mesoderm, it consists of a matrix which composes of 

blood vessels and connective tissues. The last layer is the endoderm, it is made of 

squamous and cuboidal cells (Chutoprapat, et al., 2014). 

 

 

 

 

 

 

 

 

Figure 7 Schematic of chicken embryo (left) and the structure of CAM (right) 

(Source: https://schoolbag.info/biology/concepts/163.html and http://www. 

hindawi.com/journals/bmri/2010/940741/fig1/. Access May 5, 2019) 

As CAM properties and structure is quite similar to retina, buccal 

mucosa, lungs, placenta and blood brain barrier tissues in human tissues (Tay, et al., 

2011), thus, CAM is the alternative of human tissue models for study. In this study, 

CAM was chosen to determine the permeability of drug as the human buccal tissue. 

https://schoolbag.info/biology/concepts/163.html
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2.6 Polymers 

Polymers are important in TDDS and OTD because they can control the 

drug release. The polymer can be used alone or combine to get the desired films or 

patches. Moreover, the polymer used in transdermal or oral film preparations should be 

stable, non-toxic, non-irritant and inexpensive (Nagar, et al., 2011; Premjeet, et al., 

2011).  

Polymers are broadly classified into 2 groups which are natural and 

synthetic polymers. Both natural and synthetic polymers are used in film preparations 

such as fast dissolving oral films (Nagar, et al., 2011), buccal patches (Sravanthi, et al., 

2014) and transdermal patches (Premjeet, et al., 2011). 

 Natural polymers : Tragacanth, Sodium alginate, Guar gum, Xanthan 

gum, Starch, Gelatin, Chitosan, Natural rubber, Agarose, Pectin, Pullulan 

 Synthetic polymers : Cellulose derivatives (Methylcellulose, Ethyl 

cellulose, Hydroxy ethyl cellulose, etc.), Poly (Acrylic acid) polymers (Carbomers, 

Polycarbophil), Poly hydroxyl ethyl methylacrylate, Polyethylene oxide, Poly vinyl 

pyrrolidone, Poly vinyl alcohol, Polyurea, Epoxy 

In this study, gelatin, starches and natural rubber as natural polymers 

were chosen for oral film and transdermal patch preparations. 

 2.6.1 Gelatin  

Gelatin is widely used in photographic, cosmetics, biomedical, 

pharmaceutical and food industries (Kumar, et al., 2017). Its characteristics are 

translucent, colorless or yellowish, brittle and tasteless (Yadav, et al., 2013). The major 

sources of gelatin are from skin and bone of bovine and porcine. It is prepared by partial 

acid hydrolysis which is gelatin type A, or partial alkaline hydrolysis which is gelatin 

type B. Due to religious and culture, gelatin is also isolated from fish. Nowadays, 

insects are also an alternative source of gelatin (Mariod and Adam, 2013). Gelatin can 

be soluble in water at temperature above 40°C. Various types of gelatin present different 

components depending on the source of the collagen and preparation method. It is a 

high molecular weight polypeptide which is between 15,000-40,000 Daltons (Foox and 

Zilberman, 2015). It contains about 20 amino acids which are connected by peptide 

bonds. All the essential amino acids can be found in gelatin except tryptophan (Mariod 
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and Adam, 2013). The gelatin properties, i.e. gel strength, viscosity, setting behavior, 

and melting point, are depended on molecular weight and the amino composition. The 

chemical structure of gelatin is shown in Figure 8. Gel strength or bloom is a function 

of the molecular weight of gelatin. The bloom strength of gelatin is related to its 

viscosity. In commercial, gelatin has 50-300 bloom. The different applications require 

the gelatin with different gel strength. In food industry, gelatin can be used as gel 

former, whipping agent, binding agent, film former, thickener, emulsifier, stabilizer, 

and adhesive agent. In pharmaceutical industry, gelatin is used for hard and soft 

capsules, tablet coating, granulation, encapsulation, and microencapsulation. It is also 

used as excipient in pharmaceutical formulations and film formulations. In this study, 

gelatin 160 bloom was chosen as the main polymer for film preparations because of its 

biocompatibility, biodegradability and good film forming properties (Ktari, et al., 

2014). 

 

 

 

 

 

 

 

 

Figure 8 Chemical structure of gelatin (Kommareddy, et al., 2007) 

 2.6.2 Starch  

Starch is a polysaccharide (Hoseney, 1994). It is an energy storage 

material in plants. Starch granules are produced by photosynthesis and stored in 

chloroplasts in different parts such as tubers of potato plant, roots of tapioca plant, stem 

pith of sago tree, and seeds of corn and rice. The characteristics of pure starch powder 

are white, flavorless and odorless. Starch is composed of lots of glucose units and 

connected by glycosidic bonds which is polyglucans. The major polyglucans in starch 

are amylopectin and amylose which show different proportions in various sources 

(Tester, et al., 2004; Plackett and Vázquez, 2004). Amylose is a linear or slightly 
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branched polymer which is soluble in water. It contains numerous of glucose units and 

linked by α-(1,4) glycosidic linkage in the chain (Figure 9(a)) (Mua and Jackson, 1997). 

Amylopectin is a highly branched polymer which is insoluble in water. It is made of 

numerous of glucose units and linked by α-1,4 glycosidic linkage in the chain and 

interlinked the chain by α-1,6 glycosidic linkage at the branch point (Figure 9(b)) 

(Smith and Martin, 1993). 

In general, 20-25% of amylose and 75-80% of amylopectin are 

contained in starches (Brown and Poon, 2005). The proportion between amylose and 

amylopectin affects the properties of starch, i.e., viscosity, gel formation, gelatinization 

temperature, solubility and retrogradation properties (Herrero-Martínez, et al., 2004; 

Schirmer, et al., 2013). The native starches have limitation such as producing weak 

structures and breaking down when reheated or in acid environments. Then, starches 

can be modified by physical, chemical, enzymatical or genetical method to improve or 

change their properties. They are called modified starches. Physical modification is 

done to change the granular structure and makes native starch into cold water soluble 

such as annealing, retrogradation, and gelatinization. Chemical modification uses the 

reaction condition, substitution, and distribution of the substituents in the starch 

molecules. This modification includes etherification, esterification, cross linking, acid 

treatment, and oxidation. Genetic modification uses biotechnology to involve in starch 

biosynthesis such as amylose-free starch, high-amylose starch, and altered amylopectin 

structure. Starch and its derivatives are commonly used in daily life as a food ingredient. 

Furthermore, they have been used in many industries such as foods, plastics, cosmetics 

pharmaceutical, and biomedical applications (Neelam, et al., 2012). 

 

 

 

 

 

 

Figure 9 Structure of  (a) amylose and (b) amylopectin (Chhabra, 2014) 

α-1,4 glycosidic bond α-1,4 glycosidic bond 

α-1,6 glycosidic bond 

(a) (b) 
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 2.6.3 Natural rubber 

The rubber tree (Hevea brasiliensis) or para rubber tree has turned to the 

commercial source of natural rubber. Natural rubber is a native plant of Brazil. It is 

grown in tropical and subtropical environments (Onokpise, 2004). Nowadays, most of 

natural rubber is produced from Southeast Asia including Philippines, Indonesia, 

Malaysia, Thailand, and India. 

Natural rubber latex (NRL) is achieved from a fluid in latex vessels 

which is in the bark of the tree. NRL is a white or yellowish milky-like fluid with 

negatively charged which has pH in the range of 6.5-7.0 (Subramaniam, 1999). NRL is 

composed of rubber particles and water which contains lipids, proteins, carbohydrates, 

amines, and some inorganic substances (Cabrera, et al., 2013; Faita, et al., 2014). The 

major component of rubber particle in NRL is poly (cis-1,4-isoprene) (Nishiyama, et 

al., 1996; Roberts, 1988) which the structure is presented in Figure 10. After 

centrifugation, there are 4 main fractions which are rubber cream (white layer of rubber 

particles), Frey-Wyssling particles (orange or yellow layer), C-serum, and lutoids 

(bottom fraction) (Ferreira, et al., 2009). Rubber particles have a diameter range in 

0.05-3 µm and molecular weight approximately 50,000-3,000,000 Daltons. Two 

possible models of rubber particle have been presented arrangement of proteins and 

phospholipids on the rubber particle surface. First model is a double layer which an 

outer layer of rubber particle is covered with protein layer and phospholipid layer, 

respectively, as shown in Figure 11(a), and the other model is a monolayer which is 

mixed between protein and phospholipid as show in Figure 11(b) (Nawamawat, et al., 

2011).  

 

 

 

 

 

 

Figure 10 Molecular structure of cis-1,4-polyisoprene (Agostini, et al., 2008) 
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Figure 11 Models of the rubber particle (a) a double layer of proteins and 

phospholipids and (b) a mixed layer of proteins and phospholipids around 

the rubber particle (Nawamawat, et al., 2011) 

NRL is used in various applications such as tires, gloves, condoms, latex 

foams, etc. In addition, NRL is applied in medicals and pharmaceuticals as scaffolds, 

tablets, and transdermal patches (Herculano, et al., 2009; Pichayakorn, et al., 2012b; 

Panrat, et al., 2013) due to its good properties such as high elasticity and tensile 

strength, abrasion resistance, biocompatibility, film forming and impermeability to 

gases and liquids (Mooibroek and Cornish, 2000; Pichayakorn, et al., 2012a).  

On the other hand, NRL allergy has been reported as protein retained in 

latex products caused an IgE-mediated hypersensitivity reaction or other severe 

anaphylaxis (Kelly, et al., 1994). Allergens in NRL are proteins or chemical additives 

(Wakelin and White, 1999). At least 14 proteins of NRL are recognized by the 

International Union of Immunological Societies (IUIS) as allergenic. There are many 

Hevea latex allergens (Hev b1-14) (Raulf-Heimsoth, et al., 2007; von der Gathen, et 

al., 2017). Hev b1 and Hev b3 are the major allergenic proteins which located on surface 

of the large and small rubber particles, respectively (Yeang, et al., 2002). Thus, these 

proteins are necessary removed. Deproteinization natural rubber latex (DNRL) has 

been prepared successfully in our research group by enzymatic method which can 

remove protein for more than 90% (Suksaeree, et al., 2012; Pichayakorn, et al., 2012a). 

In-house DNRL has been used to prepare transdermal patches which delivered nicotine, 

meloxicam or lidocaine (Pichayakorn, et al., 2012a; 2012b; Waiprib, et al., 2017) as 

well as tablets coated with NRL which delivered propranolol (Panrat, et al., 2013).  

(a) (b) 
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2.7 Plasticizers 

A plasticizer is an additive which incorporated in another material to 

increase distensibility, workability, or pliability (Godwin, 2011). Normally, plasticizers 

are high boiling point liquids with low molecular weight. The criteria for plasticizer 

selection in medicine and pharmacy are low toxicity, biocompatibility, compatibility 

with polymer, and affect on the drug release and mechanical properties (Snejdrova and 

Dittrich, 2012). Using plasticizers in various polymeric dosage forms such as 

microparticles, matrices, membranes, and implants have been studied. For TDDS or 

OTD, plasticizers are added into polymer to improve film forming properties and the 

appearance of films, decrease the glass transition temperature (Tg), prevent film 

cracking, increase film flexibility and receive desirable films. 

Most of polymers used in pharmaceutical formulations are brittle and 

require the addition of plasticizer. Plasticizers act by penetrating between the polymer 

chains and interaction with the specific functional groups of polymer. It can reduce the 

interactions between polymer chain and form bonding with the polymer chains instead 

(Gal and Nussinovitch, 2009). The weaken interaction between polymer chains 

decreases tensile strength and Tg which increase the flexibility of films (Rahman and 

Brazel, 2004). The plasticizer is choosing by compatibility with the film forming 

polymer, solvent system, and ingredients in formulation. Thus, glycerin (GLY), 

propylene glycol (PG), and polyethylene glycol 400 (PEG400) have been used in this 

study as their structures are shown in Figure 12. These plasticizers are declared in USP 

35-NF 30 as suitable plasticizer for selection in dosage forms formulations (Snejdrova 

and Dittrich, 2012).  

 

 

 

 

 

 

 

Figure 12 Chemical structure of plasticizers 

GLY PG 

PEG400 
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GLY is also called glycerol or glycerin. It is colorless, odorless, sweet 

tasting and viscous liquid. GLY composes of three hydroxyl groups which is soluble in 

water and hygroscopic. It is widely used in pharmaceutical formulations. Moreover, it 

is orally taken for decrease eye pressure or suppository for laxative effect (Wikipedia 

contributors, 2004a). 

PG is a clear, colorless and viscous liquid. It is a biodiesel byproduct 

that has two hydroxyl groups in chemical structure. It can be produced from propylene 

oxide or converted from GLY (Wikipedia contributors, 2004b). It is low toxicity and 

non-irritating to the skin. 

PEGs are biocompatible polymer and soluble in water or organic 

solvents (Ivanova, et al., 2014). They are synthesized by polymerization of ethylene 

oxide. PEGs have a broad range of molecular weights. PEG400 has molecular weight 

400 Daltons which is colorless, clear and viscous liquid. 

These plasticizers are polyols which are hydrophilic polymers. All of 

them have been used as sweetener, humectant, lubricant, surfactant, or solvent in 

pharmaceutical formulations. They are low toxicity and considered to be safe 

ingredients (Vieira, et al., 2011; Snejdrova and Dittrich, 2012). Then, they are suitable 

to use film formulations as plasticizer. 

2.8 Lidocaine 

Lidocaine, also named as lignocaine or xylocaine, is an amide type local 

anesthetic and also used for treatment in the ventricular tachycardia (a cardiac 

arrhythmia) as an intravenous injection solution. In the European Pharmacopoeia, 

lidocaine has two forms as the free base and the hydrochloride salt. The structural 

formula of lidocaine base (LB) and lidocaine hydrochloride (LH) are 2-(diethylamino)-

N-(2,6-dimethylaphenyl) acetamide and 2-diethylamino-N-(2,6-dimethylphenyl)-

acetamide hydrochloride monohydrate as shown in Figure 13(a) and 13(b), 

respectively. 

 

 

 

Figure 13 Chemical structures of (a) lidocaine base and (b) its hydrochloride salt 

(a) (b) 
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For local anesthetic, both LB and LH act as a voltage-gated sodium 

channel blocker which inhibit nerves transmission for sending painful impulses to the 

brain. They are widely used as local anesthetics (Liu, et al., 2018). They are used in 

minor surgery and dental anesthetic by injection, topical applications to relief burning, 

itching and pain from skin (Dogrul, et al., 2004; Kadioglu, et al., 2013). Both LB and 

LH are white odorless substances. LB crystalline powder is fine needles, practically 

insoluble in water, very soluble in alcohol and methylene chloride, whereas LH is 

microcrystalline powder and very soluble in water, freely soluble in ethanol 

(Gröningsson, et al., 1985; British Pharmacopoeia Commission., 2018).  

A drug to be considered for TDDS must include good lipophilicity and 

water solubility at physiological pH, and high potency. The physicochemical properties 

of a selected drug are melting point (<150°C), high lipophilicity (log P = 1-3), good 

water solubility, and a small molecule (<500 Daltons). The physical properties of drugs 

include with melting point, log P and molecular weight are described. Those of LB 

properties are 68-69°C, 2.44, and 234.34 Daltons, respectively. While those of LH 

properties are 76-79°C, 2.84, and 288.82 Daltons, respectively. There are many dosage 

forms of LB and LH such as solutions, ointments, gels, buccal tablets, lozenges, and 

films or patches (Repka, et al., 2005; Abu-Huwaij, et al., 2007). In commercial, 

Lidoderm® and lignopad® are available as lidocaine transdermal patch to relief of 

neuropathic pain associated with herpes zoster and other pains. Besides, a drug for OTD 

selection criteria is small or moderate molecular weight, good solubility, and good 

stability in fast dissolving films (Mandeep, et al., 2013) and biological half life between 

2-8 h, passive absorption, and high therapeutic effect when given orally in buccal films 

(Raghavendra Roa, et al., 2013). LB and LH have been studied as active ingredients in 

both fast dissolving and buccal film formulations (Abu-Huwaij, et al., 2007; Xu, et al., 

2017). Then, both LB and LH are suitable for delivering in TDDS and OTD films. 

2.9 In vitro drug release and permeation studies 

In vitro studies also called test-tube experiments. These studies are 

employed by using biological molecules, cells, or microorganisms outside their normal 

biological context. The advantages of in vitro experiments are species-specific, easy 

controlling, convenience, and lower cost than in vivo experiments. The well-designed 
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in vitro release and permeation studies could predict the results as in vivo studies. 

However, in vitro experimental design must be carefully considered to avoid the 

erroneous results (Gummer, 1989; Smith and Haigh, 1992).   

In vitro drug release can be evaluated by using standard or modified 

dissolution apparatus for film formulations. The various dissolution apparatus (Figure 

14) have been used in transdermal patches such as (i) the paddle over disk/disk 

assembly method (USP apparatus 5/ Ph. Eur. 2.9.4.1) are made of paddle and vessel 

assembly from apparatus 2 with addition of disk assembly. The disk assembly  is design 

to reduce the dead volume between the disk assembly and the bottom of  the vessel 

which can hold the product, (ii) the rotating cylinder (USP apparatus 6/ Ph. Eur. 2.9.4.3) 

is modified from basket apparatus which the basket and shaft are replaced with hollow 

cylinder. The dosage unit is placed on the cylinder and immersed in medium fluid,  (iii) 

reciprocating disk (USP apparatus 7) has a specifically designed disk sample holder 

inside the solution container and it is used for controlled release formulation and applied 

to small dosages, (iv) horizontal diffusion cell i.e. side-by-side or using diffusion cell, 

and (v) vertical type such as Franz diffusion cell (Choudhary, 2008; Hoffmann, et al., 

2011; Nair, et al., 2013). In diffusion cells (iv and v), a donor and a receptor 

compartment are separated by a membrane. The conditions of in vitro studies such as 

solution or media, temperature, cell dimensions, and hydrodynamic conditions are 

controlled in these studies (Morales and McConville, 2011). 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Types of dissolution USP apparatus (Bhowmick, et al., 2014) 
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In vitro permeation studies can be evaluated by Franz-type diffusion 

cells which presented the quantitative assessment of rate and mechanism of drug 

permeation (Keshary and Chien, 1984). These Franz-type studies aim to improve the 

understanding of the processes, pathways and measure penetration of active ingredients 

through the membrane into a fluid reservoir (Godin and Touitou, 2007; Bhowmick, et 

al., 2014). The advantages of in vitro permeation study are cost efficient and short time 

preparations for many samples. One of the most important components in permeation 

study is the membrane which may come from synthetic or biological sources as 

described above. 

Franz-type diffusion cells are the most commonly used for in vitro 

release and permeation studies. The system has the donor and receptor chambers which 

are divided by the membrane. The membrane is contacted with the receptor fluid below. 

The receptor chamber is controlled temperature between 32-37°C to mimic the skin 

surface or body temperature by water jacket and kept homogenous in concentration and 

temperature of receptor fluid by a magnetic stirrer (Figure 15) (Bhowmick, et al., 2014). 

 

 

 

 

 

 

 

 

 

Figure 15 Modified Franz diffusion cell (PermeGear Incorporation, 2019) 

2.10 Kinetics of drug release and permeation profiles 

The in vitro drug release and permeation profiles are significant for their 

kinetic behavior which can analyze the kind of mechanism in drug release and 

permeation from formulation (Habib, et al., 2010). The mathematical equations are 

used to describe the dependence of release in function of time and these can predict the 

release and permeation kinetics (Costa and Lobo, 2001; Bruschi, 2015). Thus, the 
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simple kinetics models such as zero order, first order and Higuchi’s are useful to 

describe the release or permeation profile in this study. 

Zero-order kinetics: The rate of release or permeation of zero order 

kinetics does not vary with increasing or decreasing concentrations that is constant until 

the activity has been exhausted. In this kinetics, a plot between the drug release or 

permeation (concentration) and time shows a linear response with the rate constant that 

have the slope of graph equal to k0 (mg/h). The following relation expressed this model 

by Eq. 1. 

Qt =  Q0 +  k0t       (1) 

Where Qt was the amount of drug release or permeation in time (mg) 

 Q0 was the initial amount of drug in the formulation (mg) 

 First order kinetics: This is used to describe the absorption or 

elimination. The drug release rate is concentration dependent. Plotting the natural 

logarithm of the drug release or the permeation concentration versus time and observe 

whether the graph is linear. If the graph is linear with the rate constant (k1, 1/h) and has 

a negative slope, the reaction must be a first-order reaction. The following relation 

expressed this model by Eq. 2. 

lnQt =  lnQ0 +  k1t       (2) 

Higuchi’s model: This describes the release of drugs from matrix 

systems as a square root of time. The graph will be linear when the plot of the LH 

release or permeation versus time has a rate constant (kH, mg/√𝑡). The following 

relation expressed this model by Eq. 3. 

Qt

Q0
=  kH√t       (3) 

2.11 Irritation assessment 

There are several ways to examine irritation potential of substances in 

the Organisation for Economic Co-operation and Development (OECD) guidelines 

such as guinea pig test, Draize test, however, they are harmful for animal and also 

considerable ethical concerns. Then, the alternative methods have been develop for 

evaluate irritation potential (Gerner, et al., 2005; El Ghalbzouri, et al., 2008). The 
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reconstructed epidermis, bovine corneal opacity, cell toxicity assessment and 

permeability assay have been available and accepted by OECD regulations. However, 

the cost is very high for testing. CAM has been suggested as an alternative membrane 

to screen irritation potential (Luepke, 1985). The hen’s egg test-chorioallantoic 

membrane (HET-CAM) is employed the CAM at embryo age (EA) 10 because the 

blood vessels are extensively formed and make CAM sensitive to chemical and 

biological substances. A test substance is applied to the CAM surface. The changes in 

morphology of CAM are inspected and scored by naked eye. The scores are evaluated 

the irritation potential which hemorrhage, blood clotting or hyperemia is occurred in 

the time. This method requires only 5 minutes for testing and the reaction could be 

observed. Evaluation the irritancy property by CAM method has been used in 

ophthalmic microemulsions (Alany, et al., 2006), topical gels (Singh, et al., 2016), 

buccal microemulsions (Kaewbanjong, et al., 2017), and many substances (Vinardell 

and Mitjans, 2008). Even though it cannot replace the other models but it can reduce 

using animal. Thus, CAM is a model which is sensitive, inexpensive and capable of 

high throughput or handle the large number of samples associated with formulations. 
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CHAPTER 3 

This chapter presents the effect of plasticizers, which were glycerin, 

propylene glycol, and polyethylene glycol 400, improved the gelatin and gelatin/Alpha 

starch dissolving films. The physicochemical properties of films were evaluated. 

Lidocaine base and lidocaine hydrochloride were incorporated in these films and 

examined the physiochemical properties for using as edible films. This article has been 

published in the title of “Gelatin films and its pregelatinized starch blends: Effect of 

plasticizers” in Key Engineering Materials. 751: 230-235, 2017. 
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CHAPTER 4 

This chapter presents the preparation and characterization of 

biomembranes using deproteinized natural rubber latex (DNRL) as plasticizer. 

Lidocaine base and its hydrochloride salt were incorporated in these biomembrane and 

evaluated the physiochemical properties for using as transdermal patches. This article 

has been published in the title of “Gelatin/gelatinized sago starch biomembranes as a 

drug delivery system using rubber latex as plasticizer” in Journal of Polymers and the 

Environment., 2019. https://doi.org/10.1007/s10924-019-01510-2. 
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CHAPTER 5 

Lidocaine loaded gelatin/gelatinized tapioca starch films for buccal delivery and 

the irritancy evaluation using chick chorioallantoic membrane1 

Abstract 

The aim of this study was to confirm the feasibility of gelatin/gelatinized 

tapioca starch (α st) films for buccal delivery and their irritancy. Lidocaine (LB) or 

lidocaine hydrochloride (LH) was used as drug model and glycerin was used as 

plasticizer. The scanning electron microscopy, atomic force electron microscopy, X-

ray diffraction and thermogravimetric analysis results confirmed the compatibility of 

gelatin/alpha starch/glycerin (Gαgly) films. Drug releases of LB or LH Gαgly films 

were evaluated. The drug release profiles of medicated films presented the good 

patterns in both short time and 8 h drug release. Their permeation study was examined 

through chick chorioallantoic membrane (CAM) by using modified Franz diffusion 

cell. Moreover, the irritancy study for buccal films was also examined by hen’s egg test 

on CAM (HET-CAM) model. The results revealed that LB and LH could permeate 

through CAM, and these Gαgly films were no irritation on HET-CAM. These indicated 

that the LB and LH Gαgly films are possible to use as buccal films. 

Keywords: Gelatin, Gelatinized tapioca starch, Buccal film, Chick chorioallantoic 

membrane 

 

 

 

 

 

 

 

 
1 The content of this chapter has been submitted in Saudi Pharmaceutical Journal. 
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5.1 Introduction 

Buccal drug delivery is one of interesting route to deliver drugs because 

it has high total blood flow in buccal, can avoid degradation at gastrointestinal and first 

pass metabolism in the liver and intestine (Aungst, 2000; Harris and Robinson, 1992). 

In addition, it eases for administration and removal (Senel, et al., 2001). The buccal 

mucosa structure is similar to the skin and acts as an absorption barrier. The drugs can 

act either in that local area or absorb to systemic circulation. There are many dosage 

forms such as tablets, gels, ointments, patches and films which have been developed 

for buccal drug delivery (Peh and Wong, 1999; Kraisit, et al., 2018). 

Hydrophilic polymers are normally chosen to prepare the dissolving 

buccal films because the films can dissolve and deliver the drug after contact with liquid 

or saliva (Mahajan, et al., 2011; Irfan, et al., 2016). The polymers can be used alone or 

combine to gain a good film. There are many types of polymer to make films such as 

cellulose derivatives, pullulan, sodium alginate, methylmethacrylate copolymer, 

chitosan and gelatin (Nagar, et al., 2011; Kadajji and Betageri, 2011). In our previous 

study, biopolymers blended between gelatin and pregelatinized tapioca starch (alpha 

starch®; α st) was studied, and the effect of three water soluble plasticizers, i.e. 

polyethylene glycol 400 (PEG400), propylene glycol (PG) or glycerin to improve 

flexibility of film was observed. Glycerin at 25 part per hundred of gelatin (phg) was 

chosen to mix with gelatin/α st (Wannaphatchaiyong, et al., 2017). In this study, 

lidocaine base (LB) or its hydrochloride salts (LH) loaded gelatin/α st/glycerin (Gαgly) 

was further evaluated to use as anesthetic films. The atomic force microscope (AFM), 

scanning electron microscope (SEM), thermogravimetric analysis (TGA) and X-ray 

diffraction (XRD) were further determined for the physical characteristics, thermal 

stability and decomposition, and compatibility of Gαgly films. For application to buccal 

mucosa, the anesthetic films should be non-toxic and non-irritant to the buccal 

membrane (Karki, et al., 2016). Moreover, the films should release and permeate the 

drug to relief pain. For this reason, the in vitro drug release study, ex vivo permeation 

study and irritancy evaluation were studied. Normally, the drug permeability via buccal 

tissue can be observed in animal buccal tissue such as rabbit (Dowty, et al., 1992), 

hamster (Tsutsumi, et al., 1999), dog (Galey, et al., 1976), and pig (Artusi, et al., 2003; 

Marxen, et al., 2018). The porcine buccal mucosa is reported as the nearest to human 
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tissue, however, it is too small surface in cheek and easy to damage between ex vivo 

membrane preparation. Moreover, it is difficult to supply the fresh pig tissue from the 

farm at the right time for experiments. Then, chick chorioallantoic membrane (CAM) 

is alternative membrane of porcine buccal mucosa which is easy to collect and prepare 

for using (Tay, et al., 2011). In addition, CAM structure is quite same as human buccal 

membrane but have no mucous layer. CAM can be kept at -20°C up to 14 days for 

permeation study with no changes in permeation properties (Tay, et al., 2011). 

Furthermore, hen’s egg test-CAM (HET-CAM) can also be provided to evaluate the 

irritancy of buccal films (Tay, et al., 2012; Kaewbanjong, et al., 2017). 

Therefore, the aim of this study was to confirm the physicochemical 

properties, in vitro drug release and ex vivo permeation of Gαgly films for buccal 

delivery of both LB and LH, and the irritancy evaluation using HET-CAM. 

5.2 Materials and methods 

 5.2.1 Materials 

Gelatin (160 bloom) was bought from PB Gelatins (Tessenderlo, 

Belgium). The gelatinized tapioca starch (α st) was kindly gifted from Thaiwah 

(Bangkok, Thailand). Glycerin was from Sigma-Aldrich (Munich, German). LB and 

LH were gained from Sigma-Aldrich (Shanghai, China). Methanol, ethanol (RCI 

Labscan Asia, Bangkok, Thailand), sodium hydroxide (Loba Chemie, Mumbai, India), 

sodium dihydrogen phosphate, disodium hydrogen phosphate and sodium chloride 

(Merck, Darmstadt, Germany) were used as supplied. Distilled water was used 

throughout the experiments. All other solvents and chemicals used were pharmaceutical 

or analytical grade and used without further modification. The specific pathogen-free 

(SPF) chicken eggs of White Leghorn were collected from the Animal and Plant Health 

Center, Agri-Food and Veterinary Authority of Singapore for ex vivo permeation and 

irritancy study. 

 5.2.2 Preparation of blank and medicated LB or LH Gαgly films 

The gelatin solution was prepared by dissolving gelatin powder in 

distilled water and heating at 45°C until it was homogenous, cooling down at room 

temperature and adjusted to 15% w/w. For the gelatin/glycerin (Ggly) film, glycerin at 

25 phg was mixed in gelatin solution. For Gαgly film, the 5% w/w of α st solution was 
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produced by dispersing and stirring slowly in distilled water. Then, the starch solution 

was mixed with gelatin solution at the final concentration of 5 phg, after that 25 phg 

glycerin was added into gelatin/α st solution. Either the Ggly or Gαgly solution was 

poured into the petri dish with the aluminum foil supported and dried at 50°C for 24 h. 

The blank Ggly and Gαgly films were built. Both blank Ggly and Gαgly films were 

used to evaluate their properties compared with medicated films. 

For the medicated films, LB and LH were dissolved in (1:1) 

methanol:water mixture and distilled water to get 4% w/v of drug solution, respectively. 

LB or LH solution was slowly added into the Gαgly solution which prepared as 

previous described. After that, the mixtures were stirred to get the homogenous solution 

and poured into the petri dish with the aluminum foil supported and dried at 50°C for 

24 h. The amount of either LB or LH loading was calculated in advance that there was 

a final concentration of 5% drug in dry basis. 

All dried films were peeled off from the petri dish and stored in 

desiccators at room temperature before further evaluation. 

 5.2.3 Characterization of films 

In the previous study, the thickness, weight uniformity, swelling and 

erosion, ultimate tensile strength (UTS), elongation at break, Fourier transform infrared 

spectroscopy (FT-IR) and differential scanning calorimetry (DSC) of Gαgly films were 

reported (Wannaphatchaiyong, et al., 2017). In this study, the medicated Gαgly films 

were further evaluated for the morphology and thermal stability by using AFM, SEM 

and TGA. Moreover, the crystallinity of films was determined by XRD. These could 

confirm the compatibility of drug in Gαgly films. 

The morphology of films was observed by using AFM (model nanosurf 

easyscan2, Switzerland). The AFM cantilever used in this work was silicon probes 

(ACLA) with the resonance frequency of 160-225 KHz and a force constant of 36-90 

N/m (USA.) which the non-contact mode applied to static mode was used. The AFM 

results were calculated for the roughness of films by using easyscan2 control software 

and Gwyddion as free program (GNU General Public License). The top surface, the 

bottom surface and cross section of films were also investigated by using SEM (model 

FEI: SEM-Quanta 400, USA.). 
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The thermal stability of films was evaluated by TGA (TGA 7, Perkin 

Elmer, USA.). The condition of analyzing used nitrogen atmosphere with a flow rate 

of 20 ml/min. The mass of samples ranged from 8 to 16 mg and the temperature interval 

of 50-1000 °C at a heating rate of 10°C/min was studied. A function of temperature and 

weight loss was determined. 

The X-ray diffactometer (XRD; Empyrean, PANalytical, the 

Netherlands) was used to study the compounds in materials and films. The parameter 

of XRD was 40 kV, 35 mA, scan range (2θ) of 5-90º, step size (2θ) of 0.026º and 

time/step of 70.125 sec. 

 5.2.4 Extraction of medicated films 

In preliminary extraction, LH or LB was extracted from Gαgly films by 

using different solvents including with methanol, methanol:water (1:1), isotonic 

phosphate buffer solution (PBS) pH 7.4 and water. The 1 cm × 2 cm medicated film 

was cut into small pieces and the 10 ml of each solvent was filled. The films were 

sonicated for 15 min and rested for 24 h. Then, they were sonicated for 1 h before 

diluted with PBS. The suitable concentrations were analyzed by high performance 

liquid chromatography (HPLC) with Themo scientific BDS HYPERSIL C18 column. 

The HPLC conditions were as follows: the mobile phase was 50 mM ammonium acetate 

with 1% v/v acetic acid and methanol (60:40% v/v) and triethylamine was added as 

0.1% v/v of the total volume, the injection volume was 50 µl, the flow rate was 0.8 

ml/min, and UV detector wavelength was 254 nm. The drug content (% w/w) was 

calculated as Eq. 1 by using the ratio between drug extraction (Danalyze) and accurately 

weight of film (Waccurate), and the percentage of drug entrapment efficiency (% Drug 

EE) was calculated by comparing between the drug extraction (Danalyze) and the 

theoretical drug loading (Dtheory) as the Eq. 2. 

% Drug content = (Danalyze / Waccurate) x 100  (1) 

% Drug EE   = (Danalyze / Dtheory) x 100  (2) 

 5.2.5 Preparation of CAM 

All SPF chicken eggs were wiped with povidone iodine and disinfectant 

(70% v/v ethanol) before placing the blunt end upwards into the egg incubator with an 
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automatic rotator (Octagon® 20, North Somerset, UK) at 37°C and 60% humidity. After 

7 days, the embryo age (EA7) egg was punctured at blunt end. Then, the egg shell and 

the internal shell membranes were removed in a sterile environment by the cleansphere 

CA 100 (Safetech Limited, USA.) to reveal the CAM. The egg was covered with 

parafilm and returned to the incubator without rotation. On days 15, the EA15 CAM 

was collected by cutting along the length of egg and pouring out of content. The CAM 

was washed until it was clean with normal saline and stored at -20°C, and used within 

14 days. 

 5.2.6 In vitro drug release and ex vivo permeation studies 

In vitro drug release and ex vivo permeation studies of medicated Gαgly 

films were determined by using modified Franz diffusion cell (Hansen Research, 

Chatsworth, CA, USA.). The receptor compartment was filled with PBS pH 7.4, 

controlled the temperature at 37±0.5ºC and stirred with a magnetic stirrer of 200 rounds 

per min (rpm). In drug release, 2 patterns of study were observed, i.e. the short time 

release without barrier and the 8 h release with barrier. For short time drug release 

study, the films were place on the receptor compartment directly, and the aliquots of 1 

ml sample were kept at 1, 2, 3, 5, 7, 11 and 15 min. For 8 h drug release study, the films 

were put on the donor compartment which was divided from the receptor compartment 

by a dialysis membrane (MW cut-off 12000). For permeation study, the dialysis 

membrane was replaced with CAM, and the filter paper was also used to support the 

CAM on the hole between donor and receptor compartments. In both 8 h drug release 

and permeation study, aliquots of 1 ml in receptor fluid were collected at 5, 10, 15, 30, 

45 min and 1, 2, 3, 4 ,6 and 8 h. After that, the equivalent aliquoted volumes of PBS 

were replaced in the receptor fluid. Each sample was evaluated for the drug 

concentration by HPLC at 254 nm. In vitro short time and 8 h drug release were done 

in triplicate, and ex vivo permeation was studied in quadruplicate. All of resulted 

studies were further analyzed into zero order, first order and Higuchi’s kinetics (Habib, 

et al., 2010; Rana and Murthy, 2013) 

 5.2.7 Stability study of medicated Gαgly films 

The medicated Gαgly films were kept for 3 months at 4±1ºC, ambient 

temperature (≈28±4ºC), and 45±1ºC to determine their stability. They were examined 
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for changes in appearances, drug contents and drug release. For permeation of stored 

films, they were studied only after storage at room temperature. All the tests were done 

as previously described method. 

 5.2.8 Irritancy evaluation using HET-CAM 

The SPF chicken eggs were hatched and opened the shell at EA7 as 

previously described. HET-CAM was used on EA10 to study the irritation potential of 

the formulations. The medicated Gαgly film was applied on the CAM surface of opened 

egg. The positive control and negative control were 0.1 M sodium hydroxide solutions 

and 0.9% sodium chloride solutions, respectively. The films were cut into 1.5 cm × 1.5 

cm which the area of film could cover almost of the CAM surface in case of film test, 

or 3 ml of each solution was dropped onto the CAM when the liquid sample was tested. 

The irritation test started after placing the sample and irrigating 20 sec with warm water 

(37 ºC). After application, the blood vessels were evaluated and scored of irritant effects 

at 0.5, 2 and 5 min. The pictures of HET-CAM were taken by digital camera microscope 

(Olympus DP 71, Japan) and zoom stereo microscope (Olympus SZ 61, Japan). 

Hyperaemia, haemorrhage and clotting of blood vessels were observed and examined 

by using a score (Luepke, 1985; ICCVAM, 2010; Kaewbanjong, et al., 2017) in Table 

1. These scores were evaluated by five referees. The cumulative irritancy score was 

interpreted in terms of irritation potential as shown in Table 1. Irritancy testing was 

done in triplicate. 

Table 1 Score of irritancy testing and the interpretation as cumulative score for 

severity of irritation potential (Luepke, 1985; ICCVAM, 2010; 

Kaewbanjong, et al., 2017) 

Irritation effect 

Time and score  Interpretation 

≤ 0.5 

min 

0.5-2 

min 

2-5  

min 

 
Cumulative score 

Irritation 

potential 

 < 1.0 Negligible 

Hyperemia 5 3 1  1.0 - 4.9 Slight 

Hemorrhage 7 5 3  5.0 - 8.9 Moderate 

Clotting/coagulation 9 7 5  9.0 - 21.0 Strong 



62 

 

5.3 Results and discussion 

 5.3.1 Preparation of films 

Several plasticizers have been studied to blend in the films for 

improving the mechanical properties of glassy films. However, it might have limitation 

to mix the plasticizer into films because some plasticizers could absorb the humidity 

then became over-hydrating the film and decreased the adhesive strength of films 

(Kaur, et al., 2014). Therefore, the appropriated types and amounts of plasticizer should 

be firstly evaluated. The previous study reported the effect of plasticizers including with 

PEG400, PG and glycerin in gelatin/α st (Gα) films (Wannaphatchaiyong, et al., 2017). 

Among of them, the glycerin blended Gα films showed transparent and good properties. 

The 25 phg of glycerin was suitable to make the Gα films. It showed the lower ultimate 

tensile strength and higher elongation at break than PG and PEG400 plasticized Gα 

films. Moreover, the over-hydrated films were not found during storage. Therefore, the 

Gαgly films were further studied, and then, either LB or LH was interested to study and 

prepare as the medicated Gαgly buccal films because both drugs have different 

properties which might present the different properties of Gαgly buccal films. 

In the same as previous study, the blank Ggly and Gαgly films, and the 

medicated LB or LH loaded Gαgly films could be prepared with good visualization and 

high reproducibility. The transparent thin films were prepared with good physical and 

mechanical properties as described previously (Wannaphatchaiyong, et al., 2017). 

 5.3.2 Physiochemical properties of films 

The AFM images of blank Ggly and Gαgly films, and medicated Gαgly 

films are shown in Figure 1. The images revealed that both upper and lower surfaces of 

films were slightly rough. The AFM data were calculated for their surface roughness as 

shown in Figure 2. LH-Gαgly presented the lowest roughness both lower and upper 

sides of film. However, there were not significantly different when compared with Ggly 

film. The comparison between medicated films showed that the upper and lower 

surfaces of LH-Gαgly were significantly smoother than LB-Gαgly. This roughness of 

films might be as a result of the complete dissolving of starch or drug, the drying rate 

which effect on the upper side of films, and the peeling effect on the lower side of films. 

However, this roughness of films was too small that could not observe by naked 
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visualization. The SEM images of medicated Gαgly films are presented in Figure 3. 

The upper sides of LB and LH loaded Gαgly films were quite smooth. On the other 

hand, the lower sides of LB and LH loaded Gαgly films were found as some roughness. 

These might be due to peeling the films from the aluminium foil supporting after drying 

process. The cross-section images at 250X and 2000X presented that both of LB and 

LH loaded Gαgly films did not find any particles inside the films. This indicated the 

good blend of all components in the medicated Gαgly films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The lower (a, c, e, g) and upper (b, d, f, h) AFM images of (a, b) Ggly films, 

(c, d) Gαgly films, (e, f) LB-Gαgly films and (g, h) LH-Gαgly films  
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Figure 2 The roughness values of the films calculated from AFM 

 

 

Figure 3 SEM images of upper and lower medicated Gαgly films at 1000X and cross 

section at 250X and 2000X 

 

 

 

 

  

Samples 
Upper  Lower  Cross section 

(1000X) (1000X) (250X) (2000X) 

LB-Gαgly 

 
 

 
 

LH-Gαgly 
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The thermal stability of the films observed by TGA is shown in Figure 

4. Most of TGA thermograms of materials and medicated Gαgly films revealed two 

thermal events. The first decreasing of weight occurred immediately after the 

temperature increase and ends about 300°C. This event occurred from evaporation or 

dehydration of remained water or other low molecular weight compounds in the sample 

(Liu, et al., 2009). The initial peak of gelatin also presented around 100-300°C which 

was the degradation of gelatin chain, and the second peak at 300-600°C referred to the 

breaking of peptide bonds from amino acids which is more thermally stable structure 

(Hoque, et al., 2011; Mu, et al., 2012). For the medicated Gαgly films, they exhibited 

the curve between 50-250°C which might be the degradation of water, glycerin, starch, 

gelatin or drug. The second curve was 250-500°C which was attributed to the 

decomposition of polymers of films (Rodríguez-Castellanos, et al., 2015). The LB and 

LH showed the different decomposed temperatures, but they did not affect the TGA 

thermograms of their medicated Gαgly films. The TGA thermograms of medicated 

Gαgly films which were added with glycerin had shifted to lower temperature from the 

gelatin curve. Gelatin could increase the stability of glycerin. In addition, glycerin 

might prevent protein-protein interactions which affected the higher heat sensitivity of 

gelatin films (Hoque, et al., 2011). However, the trend of TGA curves was similar to 

the original gelatin curve. This could imply that gelatin was the main component in 

films without any significant change. Therefore, these TGA results could also confirm 

the compatibility of all components in the medicated Gαgly films. 

The XRD patterns of films are presented in Figure 5 which could support 

the FT-IR and DSC results in the previous study (Wannaphatchaiyong, et al., 2017). As 

the former study, Gαgly film and medicated Gαgly films showed absent of new peak in 

FT-IR and the amorphous form of drug in DSC. The XRD diffractograms revealed the 

crystallographic structure of materials and is used to study the complex of polymers. In 

the results of this study, the XRD diffractogram of blank Gαgly films exhibited the 2 

broad peaks. Normally, the granular structure of starch can appear as crystalline form 

which the amylose of starch is still in granules and can form the complex in structure 

(Nakorn, et al., 2009). In this study, however, the pregelatinized starch is a soluble 

component that was dissolved completely before film was formed. Therefore, the peak 

of α st in Gαgly film showed as a broad diffractogram indicated the non-crystalline 
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form of all components after dried film was formed. These 2 broad peaks were also 

found in the medicated LB-Gαgly and LH-Gαgly films in the same as blank Gαgly 

films. However, the crystalline patterns in medicated Gαgly films were observed, 

especially in LB-Gαgly films. LB is the low solubility in water, therefore, it might 

precipitate in the LB-Gαgly after drying and showed the 2 sharp crystalline characters 

in XRD diffractogram. While LH is good soluble in water and might completely blend 

with the other soluble components such as gelatin and α st, therefore, very slight 

crystalline form was observed in XRD diffractogram. However, these crystalline peaks 

of both drugs were changeable from the raw drugs. These indicated the different 

crystalline forms of drug after re-crystallization in the dried films. Moreover, this 

crystalline character of drug in Gαgly films was not observed by SEM technique as 

described previously, this indicated that the very small of crystalline drug remained in 

the medicated films. Although, there were some crystalline peaks in medicated films, 

they might not affect the drug release behavior which had been already reported (Preis, 

et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 TGA thermograms of materials and films 
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Figure 5 XRD diffractograms of blank film and medicated films 

 5.3.3 Drug extraction 

The 5% w/w of the theoretical drug was loaded in each film during 

preparation process. The results of drug extraction are presented in Table 2. The best 

solvent for LB and LH extractions from medicated Gαgly films was PBS pH 7.4 and 

water, respectively. For LB, PBS might be mixed with water and salts which the gelatin 

in film was swelled and dissolved, after that LB could be dissolved (Østergaard, et al., 

2011) and extracted from the film higher than methanol:water, methanol and water, 

respectively. For LH, water could extract the drug greater than PBS pH 7.4, methanol 

and methanol:water, respectively. The water could be absorbed into the film, and it also 

could dissolve LH from the film. The percentages of drug EE in different solvents of 

LB-Gαgly and LH-Gαgly were 80-95% and 89-98%, respectively. However, the 

extraction values lower than 100% might be due to the entrapment of partial drug 

molecules in the structure of either gelatin or starch that could not be completely 

extracted by the solvents. These implied that the medicated Gαgly films prepared by 

casting method could preserve drug in the film without any loss. After that, PBS pH 7.4 

and water were used as solvent for determination of the drug EE in LB and LH loaded 

Gαgly films in the stability test, respectively. 
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Table 2 The percentages of drug content and drug EE of medicated films extracted 

with different solvents (n=5) 

Solvent 

LB-Gαgly LH-Gαgly 

% Drug content 

(mean±S.D.) 

% Drug EE 

(mean±S.D.) 

% Drug content 

(mean±S.D.) 

% Drug EE 

(mean±S.D.) 

Methanol 4.039±0.390 80.789±7.795 4.606±0.541 92.125±10.824 

Methanol:Water (1:1) 4.209±0.175 84.183±3.504 4.455±0.730 89.109±14.594 

PBS pH 7.4 4.768±0.643 95.370±12.854 4.662±0.535 93.238±10.708 

Water 3.984±0.347 79.676±6.948 4.904±0.301 98.098±6.207 

 

 5.3.4 Stability study of medicated LB or LH Gαgly films 

The characteristic and color of medicated Gαgly films after stability 

study at 1 and 3 months were quite similar to the initial preparations. The percentages 

of drug content were calculated after stability study at different temperatures which 

were 4ºC, ambient temperature and 45ºC for 3 months (Figure 6). The percentages of 

drug content of LB in Gαgly films were above 90% when stored at 4ºC for 3 months, 

and at room temperature and 45ºC for 2 months. In LH-Gαgly films, the percentages 

LH content retained above 90% when stored at 4ºC and room temperature for 3 months, 

and at 45ºC for 2 months. The medicated Gαgly films were suitable to store in 4ºC 

because the decreasing of drug was the lowest which was the most stable of drug 

content in the films. The chemical instability of the drug was found after kept in room 

temperature and 45ºC. The degradation of LB and LH would be explained with drug 

release and permeation study. 

 

 

 

 

 

 

 

Figure 6 The percentages of drug EE of (a) LB-Gαgly and (b) LH-Gαgly films 

(n=5) 
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 5.3.5 Drug release and permeation study 

The drug release and permeation profiles of LB and LH loaded Gαgly 

films are presented in Figure 7. In the freshly prepared films, both short time and 8 h 

drug release profiles of LH film were slightly higher than those of LB film. This might 

be due to the better solubility of LH in aqueous medium than in LB (Gröningsson, et 

al., 1985); thus, LH could dissolve and release from the films easier than LB. LH 

blended in Gαgly films also increased the hydrophilicity of the film. Moreover, the drug 

permeation from LH-Gαgly film was also slightly higher than from LB-Gαgly film 

owing to the higher drug content and release from the Gαgly films, and the higher 

concentration gradient resulting in the higher drug permeation. In fact, both LH and LB 

drugs could change their forms to the same lidocaine form when being in PBS pH 7.4. 

Therefore, the permeability of both LB and LH in the same medium should be the same. 

The slight differences of permeation results should display from the different 

concentrations of drug release. After the films were stored at various temperatures, the 

drug release from films exposure to 45ºC decreased higher than that exposure to 4ºC 

and room temperature for both LB and LH Gαgly films. The release profiles of LB and 

LH Gαgly films, which were kept at 45ºC for 3 months, were lowest in each film. 

Moreover, drug loaded Gαgly films at 4ºC presented the least changing of drug release 

when compared to others. For drug permeation profiles of films storage at room 

temperature, the longer period of storage, the lower amount the drug was permeated. 

However, it was not significantly different permeation in LB-Gαgly film. Even LB and 

LH is resistant to temperature, acid or base in aqueous solutions, however, the films 

were dried in an oven at 50ºC for 24 h to reduce the moisture content which the 

hydrolysis could be occurred for LB (Repka, et al., 2005) and the slightly change of 

1H-NMR spectrum in LH was also observed in oxidation reaction study at room 

temperature (Kadioglu, et al., 2013). Thus, these reasons might affect the stability, drug 

release and permeation study. 
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Figure 7 The short time (n=3) (a, b, e, f) and 8 hrs drug release profiles (n=3) (c, d, 

g, h) of (a, c) LB-Gαgly 1 month, (b, d) LB-Gαgly 3 month, (e, g) LH-Gαgly 

1 month, (f, h) LH-Gαgly 3 month and the permeation profiles (n=4) (i-j) of 

(i) LB-Gαgly and (j) LH-Gαgly  
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 5.3.6 Kinetics 

The kinetics of drug release profiles (Table 3) in short time and 8 h drug 

release were different. For short time drug release, the drug release from most of films 

were fitted well to zero order kinetics. This could be demonstrated that drug release was 

independent with concentration in the first 15 min, or the drug dissolved, partitioned 

and diffused from film (Bruschi, 2015). In this short time drug release study, the 

medicated Gαgly film directly contacted to the receptor medium, and then, fast 

dissolving of whole films occurred. However, the drug release from LH-Gαgly films 

after 3 months storage was fitted with first order equation that because the condensed 

films might occur after storage and thereafter retarded the film dissolving. However, 

most of short time drug release kinetics in medicated Gαgly film was not statistically 

different (p>0.05). For 8 h drug release, most of LB and LH Gαgly films were fitted to 

first order kinetics; however, LH-Gαgly after 3 months storage was fitted to Higuchi’s 

for all storage conditions. Most of 8 h drug release kinetics was not statistically different 

in Higuchi’s and first order kinetics (p>0.05). Fitting well with the first order or 

Higuchi’s kinetics indicated that the drug release depended on concentration or 

diffusion taken place in matrix (Bansal, et al., 2013; Ramteke, et al., 2014), 

respectively. For 8 h drug release study, the medicated Gαgly film and the receptor 

medium was separated by a dialysis membrane (MW cut-off 12000), and then, the 

whole films could not dissolve into the lower compartment. The drug release should 

occur by diffusion and some dissolution of matrix films. Moreover, the condensed films 

occurred after storage could also retard the film dissolving, and the diffusion kinetics 

was dominant. For the permeation profiles (Table 4), most of drug permeation kinetics 

was not statistically different in three types of kinetics. Some films was appropriated 

with first order or Higuchi’s kinetic indicating that the drug permeation depended on 

concentration of drug or diffusion from matrix that referred to the drug release from the 

films. 
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Table 3 The kinetics of drug release (n=3) in LB-Gαgly and LH-Gαgly films 

Sample Month 
Temperature 

(°C) 

Kinetics of short time drug release; R2 (mean±S.D.) Kinetics of 8 hrs drug release; R2 (mean±S.D.) 

Zero order Higuchi’s First order Zero order Higuchi’s First order 

LB-Gαgly 

0 RT 0.9902±0.0010
a

 0.9262±0.0201
b

 0.9675±0.0146
a

 0.9620±0.0135 0.9782±0.0128 0.9822±0.0052 

1 

4 0.9783±0.0098 0.8979±0.0669 0.9515±0.0533 0.9263±0.0258
a

 0.9848±0.0077
b

 0.9929±0.0062
b

 

RT 0.9500±0.0339 0.9592±0.0570 0.9705±0.0260 0.9341±0.0189
a

 0.9818±0.0061
b

 0.9866±0.0104
b

 

45 0.9879±0.0100
a

 0.9245±0.0204
b

 0.9737±0.0223
a

 0.9692±0.0092 0.9805±0.0085 0.9682±0.0202 

3 

4 0.9609±0.0183 0.9413±0.0428 0.9698±0.0271 0.9678±0.0066 0.9710±0.0053 0.9720±0.0052 

RT 0.9301±0.0596 0.9447±0.0479 0.9626±0.0303 0.9676±0.0189 0.9775±0.0112 0.9753±0.0190 

45 0.9614±0.0285 0.9070±0.0889 0.9554±0.04821 0.9554±0.0333 0.9722±0.0330 0.9790±0.0172 

LH-Gαgly 

0 RT 0.9576±0.0241 0.8995±0.1120 0.9588±0.0630 0.9097±0.0191
a

 0.9907±0.0031
b

 0.9914±0.0070
b

 

1 

4 0.9721±0.0283 0.9105±0.0588 0.9735±0.0118 0.9382±0.0126
a

 0.9784±0.0134
b

 0.9880±0.0003
b

 

RT 0.9705±0.0288 0.9400±0.0572 0.9774±0.0166 0.9133±0.0299
a

 0.9803±0.0063
b

 0.9718±0.0111
b

 

45 0.9788±0.0171
a

 0.9396±0.0191
a, b

 0.9852±0.0121
b

 0.9173±0.0090
a

 0.9866±0.0092
b

 0.9882±0.0048
b

 

3 

4 0.9869±0.0057
a

 0.9392±0.0169
b

 0.9900±0.0057
a

 0.9358±0.0339 0.9870±0.0068 0.9597±0.0410 

RT 0.9788±0.0242 0.9143±0.0655 0.9605±0.0314 0.9325±0.0141
a

 0.9926±0.0004
b

 0.9801±0.0103
b

 

45 0.9841±0.0110
a

 0.9537±0.0168
b

 0.9894±0.0060
a

 0.9356±0.0182
a

 0.9831±0.0074
b

 0.9413±0.0208
a

 

Each datum represents the mean±S.D. 

a and b in the same row meant the symbol of significant statistics. The different symbols meant the significant difference (p<0.05).
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Table 4 The kinetics of drug permeation (n=4) in LB-Gαgly and LH-Gαgly films 

Sample Month 
Temperature 

(°C) 

Kinetics of short time drug release; R2 (mean±S.D.) 

Zero order Higuchi’s First order 

LB-Gαgly 

0 RT 0.9262±0.0332 0.9528±0.0217 0.9763±0.0245 

1 

4 N.D. N.D. N.D. 

RT 0.9683±0.0234 0.9549±0.0322 0.9697±0.0290 

45 N.D. N.D. N.D. 

3 

4 N.D. N.D. N.D. 

RT 0.9700±0.0272 0.9500±0.0382 0.9828±0.0172 

45 N.D. N.D. N.D. 

LH-Gαgly 

0 RT 0.9517±0.0134
a

 0.9830±0.0110
b

 0.9926±0.0039
b

 

1 

4 N.D. N.D. N.D. 

RT 0.9233±0.0402
a

 0.9834±0.0043
b

 0.9825±0.0081
a, b

 

45 N.D. N.D. N.D. 

3 

4 N.D. N.D. N.D. 

RT 0.9582±0.0180 0.9702±0.0130 0.9861±0.0079 

45 N.D. N.D. N.D. 

Abbreviation: N.D. = not determined. Each datum represents the mean±S.D. 

a and b in the same row meant the symbol of significant statistics. The different symbols meant the significant difference (p<0.05). 
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 5.3.7 Irritancy evaluation using HET-CAM 

The irritancy test is shown in Figure 8. The irritation potential of 

medicated Gαgly films was negligible. However, LB-Gαgly film found hyperemia in 

one sample. This might be due to the formulation was mixed with glycerin which it was 

slightly irritant on HET-CAM and there was reported as moderate irritant chemical 

(Sindhu, et al., 2014). Moreover, the CAM is very sensitive, and glycerin is also 

hygroscopic property. The glycerin blended film was tightly attached with CAM in 

some experiments, and the peeling off the film from CAM might affect or damage 

CAM. However, no observation of hemorrhage and clotting was found in LB and LH 

loaded Gαgly films. This demonstrated LB and LH loaded Gαgly films are safe to use. 

This could be used as buccal delivery systems. 

 

 

 

 

 

Figure 8 HET-CAM model (a) positive control with hyperemia, hemorrhage and 

clotting and (b) negative control (Al-Kinani, et al., 2018) 

 

 

 

 

 

 

 

 

Figure 9 The blood vessels of HET-CAM at EA10 (a-e) before applying the 

formulation or chemical and after applying (f) 0.1 M sodium hydroxide 

solution at 0.5 min as positive control, (g) 0.9% sodium chloride solution at 

5 min as negative control, (h) LB-Gαgly at 5 min, (i) LH-Gαgly at 5 min, 

(j) glycerin at 2 min 

(a) (b) 
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5.4 Conclusion 

LB and LH loaded Gαgly films gave the good properties for buccal drug 

delivery. The AFM results showed that the surface of medicated Gαgly films was 

slightly rough on upper and lower side. However, the SEM images in upper side and 

cross section of both LB and LH Gαgly films presented smooth surface. The TGA 

thermograms of medicated Gαgly films revealed the same trend as the original gelatin 

curve. This confirmed the compatibility of all components in the medicated Gαgly 

films, same as the FT-IR patterns and DSC thermograms as reported previously. 

However, very slight crystalline form of drugs was observed in XRD diffractograms, 

especially in LB loaded Gαgly films. LB and LH could release from Gαgly films and 

permeate through CAM which can be the buccal model. The stability test implied that 

medicated Gαgly films recommended to store at low temperature. Moreover, the 

irritation test in HET-CAM indicated that the medicated Gαgly films were safe and 

could use as buccal delivery. In conclusion, gelatin and pregelatinized tapioca starch 

could be prepared as the transparent thin film using glycerin as plasticizer, and LB and 

LH could be loaded into Gαgly with good properties to use as buccal films. 
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CHAPTER 6 

CONCLUSIONS 

Gelatin has been used as a material in food and pharmaceutical 

industries. It presents many good properties such as biocompatibility, biodegradability, 

and film forming property. Moreover, it is safe and edible. In this study, then, gelatin 

was selected as the main polymer. Starch is widely used in daily life which is a food 

ingredient. It exhibits good film forming behavior. Then, the film formulation was 

prepared by blending gelatin with several starches to develop as films or patches. In 

this study, gelatin and starch was not only used in TDDS, but it was also applied in 

OTD. However, gelatin/starch films were very brittle. Therefore, plasticizer was 

necessary to improve the mechanical properties of gelatin/starch films. 

Glycerin (GLY), propylene glycol (PG), or polyethylene glycol 400 

(PEG400) was used as a plasticizer in gelatin films. The different amounts (5-30 phg) 

of plasticizer were evaluated. The 30 phg GLY in gelatin gave too softy film and could 

not be peeled off from Petri dish. Then, the 25 phg GLY was the maximum amount of 

plasticizer to add into gelatin film. Increasing the amount of plasticizer resulted in 

increasing water uptake and elongation at break of gelatin films, while their UTS values 

decreased. To improve the brittleness of gelatin films, therefore, 25 phg of all types of 

plasticizer was better than the other amounts of plasticizer. 

The native starches (rice starch, glutinous starch, and sago starch) and 

modified starches (pregelatinized maize starch (starch 1500®) and pregelatinized 

tapioca starch (alpha starch®, α st)) were selected to blend in gelatin films. The native 

starches were prepared by simple mixing and gelatinized mixing method. While the 

modified starches were prepared only by simple mixing method. The gelatinized native 

starches and modified starches blends gave good appearance films, but some of them 

showed the precipitation of starch granules in the bottom side of films. From these 

starch blended films, various amounts of α st in gelatin blended films presented the 

homogenous films when using GLY, PG, PEG400 as a plasticizer. Moreover, 

gelatinized sago starch could also blend with gelatin/DNRL (GNR) in various amounts 
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of starch and gave homogenous film. Then, α st and gelatinized sago starch were chosen 

for further study. 

The α st was selected to mix with gelatin. It could disperse and form gel 

in cold water. The amounts of α st at 5-30 phg could be mixed into gelatin solution. 

GLY, PG, or PEG400 at 25 phg was added into gelatin/α st solution as plasticizer. The 

types of plasticizer related to appearance of films. Which GLY and PG blends gave the 

transparent films and PEG400 blends presented opaque films. Among these 

plasticizers, 25 phg of GLY was the best plasticizer to improve the elasticity of gelatin/α 

st films. Moreover, the addition of lidocaine base (LB) or lidocaine hydrochloride (LH) 

in gelatin/α st/GLY (Gαgly) films could be mixed in the films and gave the good 

properties in flexibility and erosion of films. The amounts of α st related to the 

mechanical properties of medicated and non-medicated films. Increasing the amount of 

α st could increase water uptake and UTS, but it decreased erosion and elongation at 

break in both medicated and non-medicated films. The 5 phg α st in medicated Gαgly 

films provided better properties in UTS and elongation at break than non-medicated 

films and the 10-30 phg of α st in medicated films. Thus, 5 phg α st was used to prepare 

the medicated films for evaluation of the physiochemical properties. The compatibility 

of each ingredient in the films was confirmed by physical appearances, FT-IR spectra, 

DSC thermograms, AFM images, SEM images, TGA thermograms, and XRD 

diffractograms. Even LB-Gαgly exhibited slightly crystalline pattern in XRD 

diffractograms, however, LB could release from Gαgly films and permeate through 

chick chorioallantoic membrane (CAM) which could be the buccal model as same as 

those of LH products. The drug release both in short time (15 min) and 8 h and 

permeation profiles of LH-Gαgly films were slightly higher than those of LB-Gαgly 

films. In short time and 8 h, the drug release profiles presented the different kinetics of 

drug release. Most of films fitted to zero order kinetics at short time drug release and 

first order kinetics at 8 h drug release. After stability study, only the kinetics at 3 months 

of LH-Gαgly drug release changed to first order kinetics and Higuchi’s kinetics in short 

time and 8 h drug release, respectively. This might be due to the condensed films after 

storage. The kinetics of both LB-Gαgly and LH-Gαgly permeations fitted to first order 

equatuion. After the stability study, the medicated Gαgly films were suitable to keep at 

low temperature (4°C). When medicated film was stored at higher temperature, the 
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amount of drug loss was higher. Both LB-Gαgly and LH-Gαgly presented the good 

stability with drug amount greater than 90% for 3 months at 4°C and room temperature. 

Moreover, the irritation of medicated Gαgly films using hen's egg-chorioallantoic 

membrane test (HET-CAM) indicated the safety to apply on buccal membrane. These 

could be summarized that gelatin comprising 5 phg α st plasticized with glycerin could 

be used as ingredients to prepare the transparent films. In addition, LB and LH could 

be loaded into Gαgly films with the good properties to be used as buccal film for OTD. 

DNRL has many good properties such as a high tensile strength and 

elasticity, biocompatibility, and easy to prepare films. Then, DNRL was chosen to 

improve the flexibility in gelatin and gelatin/pregelatinized sago starch films. The 

various amounts of DNRL at 10-50 phg were used in GNR films. All GNR films were 

opaque. Increasing the amount of DNRL resulted in the decrease of erosion and UTS. 

The erosion of gelatin/50 phg DNRL (G50NR) was lowest among the others amount 

DNRL in GNR films. Moreover, G50NR showed the lowest UTS. This indicated that 

DNRL could improve the flexibility of gelatin films. The different amounts of 

gelatinized sago starch at 5-30 phg could be blended in gelatin film and 50 phg DNRL 

was added as plasticizer. All gelatin/pregelatinized sago starch/DNRL (GSNR) patches 

were opaque. Increasing the amount of sago starch resulted in increasing the drying 

time of patches and appeared a slight roughness. In addition, it could increase the water 

uptake and decrease the erosion of patches. Therefore, drug-loaded 5 phg gelatinized 

sago starch/gelatin film was evaluated for the physicochemical properties because it 

could be prepared with short drying time and it showed the smoother surface of patch. 

The AFM, SEM, FT-IR, DSC, and XRD were examined to confirm the compatibility 

of the ingredients in the films. FT-IR spectra and DSC thermograms indicated the 

compatibility of the ingredients in patches. However, the SEM cross-section image of 

LH-GSNR appeared the small particles. Moreover, LB-GSNR showed the small peak 

indicating crystalline pattern which was similar to LB-Gαgly. The drug release from 

LH-GSNR was higher than that from LB-GSNR because of the higher water solubility 

of LH. On the other hand, LB could permeate through newborn pig skin higher than 

LH. Both LB and LH release were well fitted to first order or Higuchi’s kinetics. The 

kinetics of permeation profiles of LB-GSNR could be fitted in both zero order and first 

order kinetics. However, LH-GSNR presented no different of kinetics permeation. For 
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the stability study, medicated GSNR patches were recommended to store at low 

temperature. The drug content of only LB-GSNR at 4°C and room temperature was 

above 90% for 3 months. These could be concluded that gelatin and gelatinized sago 

starch could be prepared into the films by using DNRL as plasticizer. LB and LH could 

release and permeate through pig skin. Thus, LB-GSNR posed as a potential 

transdermal patch in TDDS because it provided the higher drug permeation through the 

skin. 

From this research, either GLY or DNRL could be used as plasticizer in 

gelatin film. Starch could be blended with gelatin and plasticizer to provide the pleasant 

films. LB and LH could be incorporated into Gαgly films and GSNR films. Moreover, 

the drugs could release and permeate through the buccal or skin model. The medicated 

Gαgly films and LB-GSNR patches were stable after storage at low temperature and 

suitable for OTD and TDDS, respectively. 

Suggestion for further study:  

1. These developed biomembranes could not adhere on the skin by themselves. Then, 

the adhesive liner should be included for improving the adhesive property. 

2. The anesthetic property of lidocaine patches should be further evaluated in in vivo 

study, ex. by Tail-flick test or hot plate test in rat model (Langerman, et al., 1995).  
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