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Abstract 

 
Colistin is still used in multidrug-resistant gram-negative bacteria 

(MDR-GNB) therapy but the nephrotoxicity and neurotoxicity still become a major 

setback for its clinical use. Sodium deoxycholate sulfate (SDCS) carrier is used in 

micelle formulation with colistin to mitigate the known toxicity of colistin. The surface 

property of colistin and SDCS were evaluated before formulation with the 

lyophilisation technique. Several physicochemical parameters were evaluated like 

particle size, zeta potential, morphology, encapsulation efficiency (EE) and release 

profile. The chemical interactions were analysed using FTIR, NMR and molecular 

docking. The cytotoxicity of formulations was tested with different kidney cell lines. 

The in vivo toxicity was carried out in male mice C57BL/6 with colistin and colistin 

formulation for 7 consecutive days. The physiological changes were observed and 

measured after treatment. The serum biomarkers were measured including blood urea 

nitrogen (BUN), creatinine (Cr), superoxide dismutase (SOD), and catalase (CAT). 

Histopathological alterations in mice organs were analysed. The hydrodynamic 

diameters of the formulation were in the range of 140 to 170 nm with a spherical shape 

and negative zeta potential between −35.3 and −22.8 mV. The EE of formulations were 

between 70 and 76.4% with slower release measured compared to colistin. Molecular 

interactions were determined from FTIR and NMR spectra. Molecular docking 

simulation showed that multiple hydrogen bonds were present between the hydrophilic 

ring of colistin and SDCS. The colistin:SDCS formulations improved the thermal 

sensitivity of the mice compared to the control group. The BUN and Cr results showed 

no significant kidney dysfunction; however, the oxidative stress biomarkers decreased 

in the colistin with a lesser decrease in colistin-SDCS treated mice. Several histological 
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alterations were observed in the kidney, liver, spleen, and sciatic nerve tissues following 

colistin treatment, whereas less evidence of toxicity with colistin-SDCS. The overall 

results indicated that micelle formulations with SDCS showed safer for kidney and 

nerve cells while maintaining the antibacterial activity of colistin. This study revealed 

the potential for colistin development with SDCS for safer clinical use against MDR-

GNB.  

Keywords: Colistin, Sodium deoxycholate sulfate, Micelles, Nephrotoxicity, 

Neurotoxicity,  Molecular docking, Histopathology. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1. Gram-negative bacteria 

 One of the most critical public health problems faced currently is the infection 

caused by gram-negative bacteria (GNB). In hospital settings, the clinical importance 

of GNB infections is significant especially the high risk of morbidity and mortality for 

the patient in the intensive care unit (ICU) [1]. The main difference between gram-

negative and gram-positive bacteria lies in their wall structure composition where the 

presence of an outer membrane in gram-negative strains gives extra protection against 

foreign substances. The outer membrane of GNB is responsible for its selective 

resistance due to the permeability barrier function of the outer membrane [2].  

Figure 1. The bacterial cell envelope illustration of gram-positive and gram-negative 

bacteria [3]. 
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 The GNB enclose themselves in a three-layer structure which are outer 

membrane (OM), peptidoglycan, and cytoplasmic membrane (inner membrane) (Figure 

1). The OM is a distinguished feature of GNB composed of a lipid bilayer which is not 

phospholipid like its inner membrane, instead consists of glycolipid and 

lipopolysaccharide (LPS). LPS has been known as the primary cause of septic shock in 

GNB infections [4]. LPS function as a barrier for OM which consists of a glucosamine 

disaccharide with six or seven acyl chains, a polysaccharide centre, and the O-antigen, 

an elongated polysaccharide chain [5]. Peptidoglycan are polysaccharides which are N-

acetylglucosamine and N-acetylmuramic acid linked by pentapeptide side chains where 

they function as exoskeletons that determine the cell's shape. The inner membrane has 

many functions such as transport system, structure, and biosynthetic. They consist of 

phospholipids and inner membrane proteins [4, 6]. 

 The infection caused by GNB could afflict most organs of infected organisms 

from topical and gastrointestinal to bloodstream and nervous systems. The GNB 

infections affected millions of people worldwide, especially with the lack of sanitation 

which is responsible for acquired infections both in the community and hospital 

environment. Treating nosocomial infections in the respiratory tract also become a huge 

problem for health professionals with the high resistance of GNB pathogens and the 

difficulty of drug penetration into the lung parenchyma [7]. Poor sanitation is also 

responsible for gastroenteritis caused by Enterobacteriaceae (Salmonella spp., E. coli, 

Shigella spp.) and is responsible for meningitis which can be fatal if not treated in time 

[8]. Urinary tract infections (UTI) are also prevalent, especially in young women and 

exacerbated by resistant bacteria. The bloodstream infections like bacteraemia are also 

important complications which can be acquired from certain wound infections or during 

iv-catheters [9]. 
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2. The multidrug-resistant GNB crisis  

  With a major shift in healthcare resource allocation due to coronavirus 

disease 2019 (COVID-19), the antibiotic resistance case continued to increase which is 

termed ”new pandemic” [10, 11]. Multidrug-resistant GNB (MDR-GNB) has been the 

topic of multiple international health and political summits. Several guidelines have 

been released by public health executives to increase awareness and contain the danger 

of antibiotic resistance. There has been no significant improvement in the epidemiology 

of antibacterial-resistant cases despite the extensive resource allocated [5]. The research 

toward new antimicrobials for GNB treatments in the past decades has slowed down 

which further exacerbates the current bacterial resistance. The long discovery process 

of new antibacterial drugs has kept the pipeline low despite much support from public 

health organizations and pharmaceutical companies [12]. 

 Asian countries were considered to be hot spots for antimicrobial resistance 

(AMR) bacteria [13]. The high prevalence of AMR cases for GNB that include 

extended-spectrum β-lactamases (ESBLs) and carbapenemases exacerbate the public 

health challenges due to inadequate response of the strain to antimicrobials [14]. 

Carbapenem resistance GNB has been reported to escalate in South and Southeast Asia. 

In Thailand itself, it is reported that the number of carbapenem resistance Acinetobacter 

spp. significantly increased from 44.5% in 2015 to 74.3% in 2021 [15]. In the hospital 

setting, gram-negative strains are the most common cause of nosocomial infection with 

various resistance mechanisms and increased chance of spreading, with most cases of 

urinary tract infections and up to 30% of the bloodstream and surgical site infections 

caused by GNB infections [16]. 

 The treatment option for MDR-GNB cases still provides many challenges for 

critically-ill patients where the AMR slows down the critical timing to unfavourable 

adverse events for fast response needed in emergency settings [17]. While the past 
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decade shows interest in newer antimicrobial drugs for GNB, most of the new 

compounds are not available for public treatment. Most of the treatment of MDR-GNB, 

especially for carbapenem-resistant Enterobacterales (CRE), carbapenem-resistant 

Pseudomonas aeruginosa (CRPA); carbapenem-resistant Acinetobacter baumannii 

(CRAB) still rely on its susceptibility toward aminoglycosides, glycylcycline, or 

polymyxins [18]. The importance of MDR-GNB management in critical settings 

requires expertise and reasoning for current antimicrobial administration, especially 

with the currently available drugs can produce adverse effects for the patients due to 

their known toxicity [14, 19] 

3. Colistin 

 Colistin (polymyxin E) have long been used as the last line therapy for resistant 

gram-negative bacilli infection and was derived from the Bacillus polymyxa variant 

colistinus [20]. Currently, only colistin and polymyxin B are available clinically [21]. 

First synthesized in 1949 by Japanese researcher Koyama and showed significant 

activity against GNB, notably Pseudomonas aeruginosa, it was begun to be used 

clinically in 1961 [22, 23]. With the rise of resistant Pseudomonas aeruginosa strains, 

colistin with colistin methanesulfonate (CMS) as its prodrug has been chosen for its 

good susceptibility [22, 24]. Around the 1970s with the new class of antibiotic 

discovered and the safety concern of colistin, the clinical use of colistin was mainly 

replaced by aminoglycosides [25] 

 Colistin is a cationic decapeptide antibiotic which belongs to the antimicrobial 

peptide (AMP) classification which consists of cyclic decapeptides with different 

lengths of fatty acid that present as analogue variation of colistin. Colistin A and B are 

the majority of analogues found in colistin with some minor analogues present that vary 

from batch to batch [26]. Colistin and polymyxin B (PMB) are derived from different 

variants of Bacillus polymyxa with structural differences at position 6 in the sequence 
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with D-Leu for colistin and D-Phe for PMB [22]. Colistin is a hydrophilic drug (logP 

=-2.4) [27] but with an amphipathic property due to the presence of both lipophilic and 

hydrophilic groups. Colistin contains five unmasked c-amino groups from its di-

aminobutyric acid (Dab), this resulted in the basic properties of colistin with pKa 

around 10. At physiological pH (7.4), colistin is poly-cationic and has a positive surface 

charge [26]. CMS contain five additional sulfomethyl groups in its Dab residues which 

increase its molecular weight and polyanionic properties at physiological pH (7.4). [28, 

29].  

 Polymyxin B is administered intravenously in its active form as sulfate salt, 

while intravenous usage of colistin is in CMS form which is considered to be safer than 

the active form of colistin (sulfate salt). As a prodrug, CMS undergoes hydrolysis to 

active colistin in vivo, and the degree of conversion can alter the dosage of administered 

colistin where the antibacterial activity can differ significantly [30, 31]. The concern 

also comes from the instability of CMS at low concentrations with the conversion of 

CMS to colistin reported to be faster when the concentration of CMS was below the 

CMC (60% over 48 h) than when it was above the CMC (1% over 48 h) also the 

temperature-dependent of hydrolysed CMS where active colistin can present in CMS 

dosage forms [32, 33]. 
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Figure 2. Chemical structure difference of (a) Colistin, (b) Colistin sulfate, and (c) 
Colistin methanesulfonate 

4. Mode of action and pharmacokinetic 

 The evidence suggested polymyxin's antimicrobial actions work by disrupting 

the membrane permeability of GNB by binding with LPS [30, 34]. The three regions 

form the LPS with different structures and functions. The first region is a different 

length of O-antigen consisting of oligosaccharide, the second region linked to lipid A 

is an inner core oligosaccharide, 2-keto-3-deoxyoctonoic acid (Kdo), and the third 

region is lipid A is glycerophospholipid structure with long fatty acid chains. LPS is 
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responsible for the membrane integrity of GNB which signifies the permeability barrier 

against antibacterial compounds and because of the length of its O-chains, it provides 

protection against complement-mediated lysis [35]. There is still an unclear process for 

polymyxin's mode of action in disrupting bacterial membranes. LPS is a primary target 

for colistin which showed in its affinity [36, 37]. The lipid A region of LPS bound with 

colistin via electrostatic interaction with the di-aminobutyric acid. Colistin 

competitively displaces the Mg2+ and Ca2+ cations from the outer membrane of GNB 

which destabilize the membrane, the charged peptide and fatty acid tail are responsible 

for the membrane disruption via a detergent-like effect. The weakened outer membrane 

allows further colistin uptake to the cytoplasmic membrane for membrane 

permeabilization required for bacterial lysis. Therefore, colistin binds to the lipid A 

component of LPS, causing OM dysfunction [20, 38]. 

Figure 3. Colistin mechanism of action on the cell wall structure of gram-negative 

bacteria [38] 
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 The neutralization of LPS by colistin resulted in an anti-endotoxic effect on 

GNB infections. The lipid A region of LPS is an endotoxin that can release the 

cytokines like tumour necrosis factor-alpha (TNF-α) and Interleukin 8 (IL-8) [23, 39]. 

This inflammatory response induces septic shock which should be inhibited by 

polymyxin which has been shown in in vivo models. The mechanism has not yet been 

studied in clinical studies and the unclear nature of the endotoxin suppression in the 

plasma where the endotoxin rapid binding to the LPS-binding protein which then bound 

to cell surface CD14 [40, 41]. 

 The emergence of colistin as the salvage therapy for MDR-GNB infection has 

increased the number of studies for colistin clinical pharmacodynamics and 

pharmacokinetics [42]. Most works analysed the CMS for the fact that CMS was mainly 

used intravenously for the therapy also the conversion of CMS to colistin made the 

exact dose adjustment complicated [31]. Colistin in vivo model demonstrated that the 

intravenous administration of colistin sulfate (1 mg/kg) resulted in the renal tubular 

reabsorption of colistin through a process mediated by carriers. This administration 

exhibited lower renal clearance (5.2 versus 0.01 mL/min.kg) compared to its total 

clearance, indicating that colistin is primarily eliminated through nonrenal pathway(s). 

CMS administration in vivo showed the renal clearance of CMS was calculated higher 

at 7.2 mL/min.kg for a total clearance of 11.7 mL/min.kg [42]. The CMS converted to 

colistin systemically at a low percentage (7%), with the most colistin recovery obtained 

likely from renal, the bladder or even the sampling container [28, 43]. Therefore, the 

sufficient amount of CMS dose needed to achieve the plasma concentration suitable for 

the antibacterial activity paired with the slow rate of conversion can result in resistance 

during the loading phase when the colistin plasma concentration was still low [34, 42]. 
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5. Toxicity of colistin 

 The emergence of the MDR-GNB epidemic saw the increased usage of 

polymyxins group and colistin (methanesulfonate) [30]. However, the toxicity of 

polymyxin drugs still poses a problem, especially for critically ill patients. The most 

notable adverse event in polymyxin therapy are nephrotoxicity and neurotoxicity where 

the toxicity is dose-dependent and in-case of nephrotoxicity it can lead to mortality for 

critically ill patients [44]. The instance of nephrotoxicity is different between trials, 

with the occurrence between 30 to 60% for patients treated with intravenous 

polymyxins. The nephrotoxicity occurrence for colistin in high-dose therapy demands 

strict dose regulation for colistin therapy [45, 46]. Kalin et al. compared the therapy for 

patients administered with low, normal, and high doses of colistin; the nephrotoxicity 

occurrence was measured from the creatinine clearance. The results showed that the 

high doses patients (2.5 mg/kg every 6 h) had a 40% rate, the normal doses (2.5 mg/kg 

every 12 h) with 35%, and low doses patients (adjusted from creatinine clearance) were 

20% [47]. 

 The extensive tubular reabsorption of colistin as mentioned in the previous 

section is responsible for its nephrotoxicity. Several imaging studies show increased 

accumulation of colistin in renal tubules preferentially in the renal cortex of studied 

animals, with a significant amount in the renal proximal tubular cells of the mice treated 

with colistin where the molecular mechanism of its tubular reabsorption is transporter-

mediated [48–50]. It has been shown that the significant accumulation of polymyxins 

in the proximal involves megalin, the endocytic receptor that is highly expressed in 

renal tubules [51, 52]. It was reported that colistin competitively inhibited the binding 

of cytochrome C as a megalin substrate. Furthermore, administering colistin on 

megalin-shed rats resulted in a substantial decrease in kidney accumulation and 
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increased urinary excretion which showed the dependency of megalin for colistin 

accumulation in the tubular reabsorption process [51]. 

 Colistin caused acute tubular necrosis in the proximal tubule epithelial cells, 

which resulted in decreased creatinine clearance and elevated serum urea and creatinine 

levels, as well as proteinuria, cylindruria, and oliguria. [53]. The mechanism of 

polymyxin-induced nephrotoxicity has shown multiple biochemical processes involved 

in renal tubular cells and the kinetics of this biochemical interplay have yet to be 

deciphered [44]. The amphipathic properties of colistin were responsible for its 

nephrotoxicity with the structural moiety of Dab and fatty acid colistin to the proximal 

tubule membrane. The colistin uptake into the proximal tubule alters the membrane 

permeability that caused cell leakage from ion and water influx which is similar to its 

antibacterial properties [54]. The biochemical pathway involved in colistin-induced 

apoptosis is shown in Figure 4 [55]. The uptake of colistin is mediated by three 

pathways; through its affinity on megalin-mediated endocytosis, peptide transporter 

(PEPT), and organic cation transporter 1 (OCTN) which the uptake can be observed 

from the change in malondialdehyde (MDA), superoxide dismutase (SOD), and 

catalase (CAT) enzyme. The change in enzyme can increase reactive oxidative stress 

(ROS) that can cause mitochondrial dysfunction which also can be triggered by the 

death receptor pathway from truncated p15 BID (tBid) activation that all lead to ROS-

mediated damage in renal tubular cells or through caspase activation [51, 55, 56]. 
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Figure 4. The biochemical pathway involved in colistin renal uptake and colistin-

induced apoptosis [55]. 

 The second notable adverse event is neurotoxicity which the incidence rate is 

substantially lower than that of nephrotoxicity [57]. The neurotoxicity of colistin can 

be manifested with several clinical indications including paraesthesia, myopathy, 

vertigo, muscle paralysis, nausea, and apnea. The event can be considered mild and 

reversible with the therapy discontinuation [58]. Colistin neurotoxicity as with its 

nephrotoxicity is caused by the direct exposure of the drug to neuron cells leading to 

mitochondrial dysfunction from oxidative stress. Autophagy is responsible for 

polymyxin-induced neurotoxicity which is shown in in vitro and in vivo results [59, 60]. 

 

 

 

 Mitochondrial dysfunction 
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6. State of the art in colistin delivery system 

 The development of new antimicrobial agents is a very long and complicated 

process, where the need for agents to combat multi-drug resistant bacteria is continue 

rising. Colistin development as an old antibacterial drug still shows high potency for 

MDR-GNB yet colistin has disadvantages in clinical therapy. Some studies have 

incorporated colistin in several different delivery systems with lipid carriers. The 

suitable nano-carrier can improve the properties of the drug and control the residence 

time when in systemic circulation. The increased bioavailability and high penetrating 

effect into the biofilm of bacteria can reduce the required dose, therefore, reducing the 

toxicity. 

 Nanoparticles based on solid lipids (SLN, NLC) have been used to deliver 

antibiotics due to their ability to interact with the biofilm of bacteria. The controlled 

release aspect of solid lipid delivery is a very attractive offering, especially direct lung 

delivery for cystic fibrosis cases. In the study from Sans-Serramitjana et al., the use of 

SLN and NLC for the delivery of colistin has shown similar antimicrobial activity (MIC 

and MBC) as a free drug with more efficient biofilm eradication measures which are 

crucial for cystic fibrosis patient [61]. Another lipid delivery used is liposome where 

the liposome-loaded colistin exhibited synergistic activity but the need to increase the 

electrostatic attraction of colistin toward the lipid bilayer of liposomes is necessary to 

increase the retention of colistin in liposomes due to amphipathic properties of colistin 

that can lead to colloidal instability [62, 63]. The other nanoparticle design of colistin 

involves hydrophobic ion-pairing complexation (HIP) nanoparticles. The formation of 

the HIP complex occurred through the electrostatic interaction between ionizable 

peptide groups and the hydrophobic counterion with opposite charge. As a result, the 

complex demonstrates increased hydrophobicity without any alterations to its chemical 

composition. During the process of encapsulation, the complex can easily distribute 
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itself within a polymer matrix.. Therefore, HIP complexation significantly increases the 

encapsulation efficiency of colistin in the matrix of the polymer. The advantage of HIP 

complex is the reversible nature of the polymer due to dissociation of oppositely 

charged ions [64]. 

7. Colistin incorporated into SDCS micelles 

 Deoxycholic compounds are bile salts and acids which consist of a steroid 

backbone, a five- or eight-carbon side-chain with a carboxylic chain, and several 

hydroxyl groups, the number and orientation of which varies depending on the kind of 

bile acid or salt. [65]. Bile salts are natural steroids with surface-active and detergent-

like properties capable of forming micellar aggregates and solubilizing many 

compounds in water [66], some of which are important from a biological and 

physiological point of view (for instance, bilirubin, cholesterol, fatty acids, 

phospholipids, and proteins). The structures of bile salt micellar aggregates are crucial 

for comprehending their physicochemical and biomedical properties. The ability of bile 

salts to solubilize other lipids is of crucial importance in intestinal absorption of the 

products of fat digestion such as fatty acids, monoglycerides, sterols and vitamins [65]. 

 

Figure 5. Sodium deoxycholate sulfate (SDCS) structure 

 Sodium deoxycholate sulfate  SDCS) or Sodium 3α,12α-dihydroxy-5β-cholan-

24-ol sulfate (Fig. 5) first biosynthesized by Burns et al., by involving sulfation with 
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the help of sulfur trioxide-pyridine complex at its primary hydroxyl groups after 

undergoing esterification and reduction to its corresponding alcohol [67, 68]. The first 

comparison to its micellar properties was by incorporating amphotericin B (AMB), an 

antifungal drug used for the treatment of pulmonary fungal infections. The commercial 

formulation of AMB, which is a lipid formulation that used sodium deoxycholate as its 

carrier (Fungizone®), proven to have a weak micelle and has poor stability after 

reconstitution [68]. The results showed that SDCS produced more stable micelle 

formation with less toxicity compared to pure drug and its commercial formulation [68, 

69]. Furthermore, the formulations of SDCS with PMB in the presence of LPS 

significantly reduced the surface tension compared to SDCS and commercial PMB 

alone [70, 71].  

 Colistin toxicity remains a major concern for the use of colistin in MDR-GNB 

therapy, and the need for a delivery system that can increase the activity or lower the 

exposure of colistin in renal tubular cells to reduce its uptake [72]. Currently, the lipid-

based formulation of colistin is incorporated to improve the properties of colistin. The 

dose regulation problem of colistin also needs to be addressed by using colistin sulfate 

in the therapy instead of CMS which has a slow conversion rate and needs loading dose 

in its administration. By incorporating colistin in SDCS micelles the toxicity of colistin 

should be attenuated as demonstrated in the previous study. 
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CHAPTER 2 

OBJECTIVES 

 

1. To prepare colistin with synthesized SDCS carriers by the lyophilization 

process as dry powder formulations for intravenous administration. 

2. To investigate the surface properties and CMC of the colistin and SDCS to 

optimize the formulation. 

3. To evaluate the entrapment and release of colistin sulfate in SDCS 

formulation. 

4. To examine the interaction of colistin-SDCS by FTIR, NMR, and docking 

simulation.  

5. To examine the in vitro toxicity of colistin-SDCS formulations in kidney cells. 

6. To investigate the nephrotoxicity and neurotoxicity of colistin-SDCS 

formulations in mice models. 

7. To measure the mice biomarker changes after colistin-SDCS administration. 
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CHAPTER 3 

SIGNIFICANT RESULTS AND DISCUSSION 

 

1. Surface properties of colistin and SDCS formulation 

 Colistin and SDCS formulations were prepared according to surface properties. 

Some parameters like surface and micellar properties of mixed micelles were 

commonly investigated by the surface tension of the solution. Surface tension at the air-

water interface will gradually decrease from the surfactant addition. The critical micelle 

concentration (CMC) is the concentration where the micelles form due to saturation of 

surfactant at air-water interface with visibly constant surface tension changes. Figure 

6 shows the CMC of colistin and SDCS plotted from the surface tension of the water-

air interface against concentration. Colistin as an amphipathic peptide has CMC at 

25mg/L, while SDCS as a stronger surfactant has CMC around 8 mg/L. The ability of 

colistin and SDCS to form micelles resulting from mixed micelles of both components 

was lower than the CMC of the one-component system.  

Figure 6. The surface tension versus concentration of the (A) colistin and (B) SDCS at 

25 °C.  

A. B. 
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 Colistin was associated with SDCS micelles via titration using the above CMC 

SDCS concentration. The results from titrated colistin against SDCS are shown the 

increase in particle size (766.87 nm) in the first addition (Figure 7). The system was 

stable around 367 nm with more colistin added during titration. The mixed micelles 

formed with colistin addition were stable after 5 minutes of titration. The ability of 

colistin to self-assemble aggregation showed a large particle size (766.87 and 411.03 

nm) on the initial titration (0.01 and 0.02 molar ratio) [33]. The zeta potential of the 

titrated colistin to SDCS starts at -35 mV, the colistin as a cationic drug increased the 

zeta potential of the system with each addition. The stable charge can be observed from 

a ratio of 0.13 to 0.2 of colistin to SDCS. 

 

 

 

 

 

  

Figure 7. (A) zeta potential and (B) size average of colistin association into SDCS 

micelle via titration at 25 °C (mean, n = 3). 

 

2. Hydrodynamical properties of the formulation 

 The lyophilized colistin-SDCS were stable and easily reconstituted in water. 

The dry powder produced was light and free-flowing with white colour. The 

hydrodynamical size and charge of colistin-SDCS measured from dynamic-light 

scattering are shown in Table 1. The mean particle sizes of the reconstituted colistin 

formulations were 141.9 ± 1.9 and 140.9 ± 1.2 nm for F1 and F2, respectively. The 

A. B.
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colistin exhibited a larger particle size at 162.6 ± 1.4 nm in comparison with F1 and F2, 

which could be due to the colistin associated with SDCS micelles. The zeta potentials 

colistin-SDCS F1 and F2 were −22.8 ±0.15 and −23.4 ±0.62 mV respectively, 

compared to 5.21 ±0.15 mV for colistin sulfate. The significant difference between the 

hydrodynamic charge of colistin and colistin-SDCS micelles increased the stability of 

the formulation due to the electrostatic repulsion between the particles. 

Table 1. Particle size and zeta potential of colistin micelle formulations, colistin, and 

SDCS from dynamic light scattering measurements (mean ± SD, n = 3). 

Formula 
Particle size 

(nm) 

Zeta potential 

(mV) 

Polydispersity 

index 

Colistin:SDCS (1:1) 141.9 ± 1.9  −22.79 ±0.15 0.178 ± 0.015 

Colistin:SDCS (1:2) 140.9 ± 1.2 −23.37 ±0.62 0.173 ± 0.017 

Colistin 162.6 ± 1.4 5.21 ±0.15 0.218 ±0.04 

SDCS 142.4 ±1.6  −33.77 ±3.91 0.156 ±0.02 

 

3. Chemical interaction of colistin and SDCS formulation 

 The Fourier transform infrared (FTIR) was employed to analyse the functional 

group shift from SDCS and colistin interaction and the spectra are shown in Figure 8. 

The spectrum of colistin shows high-intensity bands at 1095 cm−1 for C–O stretching, 

1660 cm−1 for C=O stretching, 2960 and 3060 cm−1 for O–H stretching, and 3282 cm−1 

for N–H stretching. As colistin are polypeptide molecule which consists of several 

amino acids like Di-aminobutyric acid (Dab) or D-leucine (D-Leu) the characteristics 

are shown from the well-defined bands. When compared to the spectra of SDCS and 

colistin SDCS formulation, the shift in C=O bands from 1644 to 1655 cm−1 which 
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displays the interaction of SDCS and colistin in the C=O function of colistin’s amino 

acid also the O–H stretching from the SDCS which also present from the micelle’s 

spectra interaction from hydroxyl part of SDCS forming hydrogen bond of amide 

function of amino acids.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. FTIR spectra of (A) colistin, (B) SDCS, and (C) colistin-SDCS micelle. 

 

 The chemical interaction of colistin and SDCS is also represented by the 13C 

and 1H NMR spectra shown in Figure 9. The NMR spectra from the formulation 

showed the characteristics of both colistin and SDCS. The shift from 8.4 ppm represents 

the hydroxyl characteristic of SDCS from Figure 9B which appears shifted at colistin-

SDCS formulation (Figure 9C & D). Table 2 lists the peak integration of 1H NMR 

spectra of the respective sample along with their chemical shift. The Colistin standard 

N-H / O-H C=O C-O 
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consists of multiple analogues depending on the length of fatty acid, the mixture of 

colistin analogues produced several overlapping multiplets in NMR spectra. Several 

changes in chemical shift displayed from the integration listed for example the methyl 

function shift at  2.17 to 2.14 and 2.13 ppm, and 3.04 to 3.01 and 3.0 ppm which 

suggested the interaction from the decapeptide backbone of colistin with SDCS. In 

another study, it has been suggested that SDCS is bound via hydrogen bonding through 

its hydroxyl and sulfate function [69, 71]. The chemical shift comparison on colistin 

and colistin-SDCS formulation showed several peaks shifted from ‒OH or ‒NH of the 

amino acid of colistin interacting with SDCS via hydrogen bond. The interaction can 

also be observed from the 13C NMR  spectra of colistin-SDCS formulations when 

compared to the spectra of colistin. The overlapping peaks were shown from the spectra 

of the colistin-SDCS formulation with the lower number of carbons from integrated 

peaks when compared to the colistin standard. 
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Figure 9. 1H NMR spectra of (A) colistin, (B) SDCS, (C) colistin-SDCS 1:1 ratio 

formulation, and (D) colistin-SDCS 1:2 ratio formulation. Also, 13C NMR spectra of 

(E) colistin, (F) colistin-SDCS 1:1 ratio formulation, and (G) colistin-SDCS 1:2 ratio 

formulation. 
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Table 2. 1H NMR chemical shifts of colistin, colistin:SDCS 1:1 (F1), and 

colistin:SDCS 1:2 (F2) multiplets. 

Name 

Chemical shift (ppm) 

Colistin F1 F2 

4CH3 (t) 0.76 0.75 0.75 

aliphatic CH3 (m) 0.79 0.78 0.79 

CH3(OH) (m) 0.85 0.85 0.86 

CH aliphatic (m) 1.05 1.05 1.05 

NH2 (dd) 1.15 1.14 1.15 

CH2 fatty acid (q) 1.22 1.22 1.23 

CH ring (s) 1.25 1.25 1.51 

OH (m) 1.52 1.51 1.61 

CH-(CH2)-CH (dt) 1.6 1.61 1.83 

-NH- (m) 1.81 1.83 2.01 

CH2-(CH2)-CH (dq) 2.17 2.14 2.13 

NH2-(CH2)-CH2 (t) 2.25 2.25 2,25 

(CH3)-CH (dddd) 3.04 3.01 3.0 

CH2-(CH2)-NH (s) 3.28 3.29 3.31 

CH3-(CH)-OH, beta -CH (m) 4.31 4.30 4.30 

R-NH-R aliphatic (ddd) 4.46 4.44 4.44 

t, triplet; m, multiplet; dd, doublet of doublets; q, quartet; s, singlet; dt, doublet of 

triplets; dq, doublet of quartet; dddd, doublet of doublet of doublet of doublets; ddd, 

doublet of doublet of doublets. 
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4. Molecular interaction via molecular docking 

 In-silico modelling or molecular docking can be used to investigate the 

interaction between drugs and surfactants. The interaction between colistin and SDCS 

was simulated in a vacuum using docking methods and the docking results with 1 and 

2 molecules of colistin as shown in Figure 10A. Several conformation and binding sites 

are shown from the docking results, the SDCS was found to be bound to the L-Dab of 

colistin in the heptapeptide ring. The side chain of amino acid colistin interacted with 

SDCS through hydrophobic interaction with its steroid nucleus. After docking the 

colistin with 10 molecules of SDCS by adding molecules one by one it shows colistin 

can bind to 5 molecules of SDCS with SDCS on each other intermolecularly after the 

5th molecule. The binding affinity of SDCS was higher at 1 and 2 molecules with 

binding scores of −7.5 and −7.65 kcal/mol, respectively. This interaction shows in the 

2D structure in Figure 10B with further addition of SDCS molecules supposedly 

occupying the remaining L-Dab before binding on each other intermolecularly.  The 

results also show that SDCS was able to bind to colistin via electrostatic interaction. 

The negatively charged SDCS molecules in water at the concentration above CMC will 

form micelles with positively charged colistin by binding with the peptide ring through 

hydrogen bonding and electrostatic interaction. 
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Figure 10. Molecular docking structure and plausible interaction of colistin and SDCS 

in (A) 3D structure that shows colistin as the green stick and SDCS as a cyan and red 

stick. Also, the illustration of interaction in (B) 2D structure where hydrogen bonding 

is shown as a red dashed line.  

 

5. Encapsulation efficiency and release studies 

 For the encapsulation efficiency (EE) and release studies of the colistin and 

SDCS dry-powder micelles, the HPLC was employed to measure the drug content. 

Colistin standard usually consists of minor analogues with different ratios of analogues 

per batch, and colistin A (Polymyxin E1) was chosen as a standard (66% on the colistin 

sulfate USP). The EE for the five ratios of the formulation are listed in Table 3 with 

the EE of 70.0 ± 3.2, 71.9 ± 2.4, 73.4 ± 3.3, 75.7 ± 1.6, and 76.4 ± 4.1 % for 

Dab 1 

Thr 2 

Dab 3 

Dab 4 

Dab 5 

D-Leu 6 

Leu 7 

Dab 8 

Dab 9 

Thr 10 

B. 

A. 
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colistin:SDCS molar ratio 1:1, 1:2, 1:3, 1:4, and 1:5, respectively. The results indicated 

that the higher ratio of SDCS resulted in higher EE from colistin associated with the 

SDCS micelles. Colistin nanoparticles entrapped by electrostatic interaction are readily 

released upon dilution [73]. 

Table 3. Percent encapsulation efficiency of colistin in different ratios of colistin to 

SDCS formulations (mean, ± SD n = 3). 

Formulation  
(molar ratio) 

Colistin concentration  
(µg/mL) 

% Encapsulation efficiency 

F1 (1:1) 122.7 70.0 ± 3.2 

F2 (1:2) 81.8 71.9 ± 2.4 

F3 (1:3) 65.4 73.4 ± 3.3 

F4 (1:4) 47.4 75.7 ± 1.6 

F5 (1:5) 41.6 76.4 ± 4.1 

 

 The dosing regulation in antibiotic treatments can dictate the therapeutic 

effectiveness while lessening the side effects that may occur [74]. When positive 

clinical outcomes are not achieved in patients with suspected or documented Gram-

negative infections, inadequate dosing should be considered as a primary cause [75]. 

Colistin sulfate has a more desirable conversion rate to colistin which makes the dose 

adjustment preferable to CMS where the vast majority is renally eliminated before 

conversion in patients with normal renal function [34, 45]. The colistin cumulative 

release in water was plotted against time in Figure 11A. Colistin standard showed rapid 

initial release in the medium at 0 min with 49.95 ± 4.19% with the concentration 

plateau reached at 5 min (93.8 ± 3.34). The slower release was observed from colistin-
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SDCS formulation with initial release at 0 min with 29.51 ± 1.81%, 28.78 ± 3.31%, 

27.17 ± 2.1%, 27.01 ± 3.15%, and 26.13 ± 0.77% for 1:1, 1:2, 1:3, 1:4, and 1:5, 

respectively. As for the colistin release in 5% dextrose (Figure 11B), the release profile 

showed similar to that in water but slightly lower release over time. The slower release 

was observed on the 1:2 formulation in comparison to that in water.  The results 

displayed that higher ratios of SDCS increase the retention of colistin inside the 

micelles leading to slower release. Colistin-SDCS ratio 1:5 showed the slowest release 

where the plateau phase was reached at the 20th min whereas 1:1, 1:2, 1:3, and 1:4 

reached maximum release at the 15th min.  

 

 

 

 

 

 

 

 

 

 

 

Figure 11. The colistin release profile from colistin standard and colistin-SDCS 

formulations at 37 °C in (A) water and (B) dextrose 5% (mean ± S.D., n = 3). The star(s) 

represent statistical differences compared to colistin (* = P < 0.05 and ** = P < 0.01) 

✱✱

✱
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6. Cytotoxicity on kidney cells of colistin-SDCS micelles 

 The cytotoxicity of colistin and colistin-SDCS micelles against human kidney 

cell line WT9-12, human kidney epithelial cell line 293T/17, and human primary renal 

proximal tubule epithelial cells PCS-400-010 was investigated in this study. SDCS is 

nontoxic on human kidney cells in-vitro and has also been shown to reduce the 

cytotoxicity of AMB on human kidney cells [68, 76]. Colistin potency is still hindered 

by its nephrotoxicity mainly the result of its increased permeability in tubular epithelial 

cells due to extensive tubular reabsorption [22, 48]. The percent viability of the human 

kidney cell lines examined using MTT assay are shown in Figure 12 when exposed to 

colistin-free drug and colistin-SDCS micelles. The colistin-SDCS ratio 1:1 and 1:2 

overall display a significant decrease in cytotoxicity at high concentrations when 

compared to a free drug of colistin (<60% cell viability of 293T/17 and <50% cell 

viability of WT9-12 and PCS-400-010 cells at 1000 µg/mL colistin equivalence). 

Colistin is shown to have moderate cytotoxicity on the two human kidney epithelial 

cells (WT9-12 and 293T/12) and the colistin-SDCS formulation displays a significant 

reduction in cell toxicity in both kidney cells when compared to the colistin standard. 
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Figure 12. Cell viability of (A) human kidney cell line WT9-12, (B) human kidney 

epithelial cell line 293T/17, and (C) human primary renal proximal tubule epithelial 

cells PCS-400-010 after 24-h incubation with colistin (■), colistin to SDCS formulation 

ratios of 1:1 (■) and 1:2 (■) at various concentrations determined by MTT assay. Errors 

bars represent a standard deviation (n = 3). The star(s) represent statistical differences 

from colistin (* = P < 0.05 and ** = P < 0.01) 

A. 

B. 

C. 
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 Colistin nephrotoxicity can be shown from its cytotoxicity toward human 

primary renal proximal tubule epithelial cells PCS-400-010 cells based on the dose and 

length of exposure during extensive tubular reabsorption [77]. Colistin standard showed 

52.3% cell viability at 250 µg/mL with a continual decrease in viability at the added 

concentration (Figure 12C). Significantly lower cytotoxicity was shown from both 

colistin-SDCS formulations for PCS-400-010 cells compared to the colistin standard 

which suggested that SDCS lower the colistin exposure immensely toward kidney 

proximal tubule cell lines. Previous studies have suggested that SDCS minimized the 

cytotoxicity of AmB and PMB toward kidney cell lines when compared with their free 

drug [71, 76, 78]. Colistin administered parenterally in micelles form will disassemble 

when the concentration is lowered by plasma below CMC levels which can result in 

micelle form that can lower the exposure or in the colistin form with SDCS molecules 

bound with a negative charge which can result in lower affinity toward megalin that 

contributed toward colistin nephrotoxicity during tubular reabsorption [51, 79]. 

 

8. Neurological behaviour and histopathology on mice models 

 Sensory neuropathy and histopathology were performed with the approved 

method from the animal ethics committee, Prince of Songkla University (MHESI 

68014/1895, Ref. 81/2021). The experimented mice (Mus musculus strain C57BL/6) 

were divided into four groups (n = 9) at random, and each group was weighed before 

and after treatment. The typical control group was given a saline solution, which served 

as the solvent. The colistin group received 15 mg/kg/day of colistin sulfate. 

Colistin:SDCS ratios of 1:1 and 1:2 were given to the Formulation 1 (F1) and 

Formulation 2 (F2) groups, respectively, at 15 mg/kg/day colistin equivalent. For seven 

days, injections were given intraperitoneally, and the dosage was divided into two doses 
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per day, once in the morning and once in the afternoon. A neurobehavioral evaluation 

was performed on the mice 12 hours after the last dose. The rodents were then 

euthanized with a lethal dose of intraperitoneal sodium pentobarbital (90 mg/kg). Blood 

samples were drawn via cardiac puncture, and serum was separated by centrifugation 

(3000 G for 15 minutes) and kept at -80 °C until analysis. For histopathological 

investigations, tissue samples from the kidney, liver, spleen, and sciatic nerve were 

collected, weighed, and sectioned. 

 After 7 days of colistin and colistin micelles treatments, there are no severe 

adverse effects observed from live mice. The initial and final body weight of 

experimented animals was listed in Table 4 which showed the normal body weight gain 

of juvenile rodents from the control group and lower weight was observed from the 

colistin and colistin micelle group. Significant reduction in percentage body weight 

gain was measured in the colistin and F2 group, while the F1 showed a lesser reduction. 

Table 4 also lists the values of the thermal pain threshold measured after 7 days of 

treatment where the sign of neurotoxicity can be observed by observing the exhibited 

sensory neuropathies. The thermal pain threshold of mice subjected to colistin in SDCS 

micelles show a significant decrease in thermal pain threshold time when compared to 

colistin. The control group measured 7.32 s for the thermal pain threshold value while 

F1 and F2 groups were slightly slower at 8.03 and 8.01 s, respectively, while the colistin 

group showed a significant increase (P < 0.01)in the thermal threshold at 10.42 s. The 

early sign of neurotoxicity is the numbness that can result in a slower reaction time in 

thermal exposure. The colistin-injected mice showed signs of slower reaction time 

while the SDCS-incorporated formulation manages to have a significantly faster 

reaction time compared to the control group. 
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Table 4 Effect of colistin-SDCS formulations on body weight gain and paw thermal 

threshold after seven days of treatment (mean ± SD, n = 9) 

 Control Colistin F1 F2 

Initial BW )g( 

Final BW )g( 

Weight gain )%( 

19.64 ± 1.11 

21.00 ± 1.25 

6.95 ± 1.4 

20.22 ± 1.15 

20.81 ± 0.84 

3.06 ± 2.9 ** 

20.46 ±1.26 

21.34 ± 1.11 

4.35 ± 2.09 

19.71 ±0.61 

20.35 ± 0.68 

3.11 ± 2.29 ** 

Thermal threshold )s( 7.35 ± 0.26 10.42 ± 0.98 ** 8.03 ± 0.79 8.01 ± 1.05 

F1 Formulation 1, F2 Formulation 2, BW body weight 

* = P < 0.05, ** = P < 0.01, compared with the control group 

9. Biomarker measurement on the experimented animals 

 The levels of biomarkers in the serum were measured from 7 days of treated 

mice and listed in Figure 13. No significant changes were observed in the blood urea 

nitrogen (BUN) levels from the colistin group (21 ± 2.6 mg/dL) and F1 group (21.4 ± 

3.4 mg/dL) (Figure 13A) with the F2 group showing a lower level of BUN (18.6 ± 1.1 

mg/dL) (P < 0.02) when compared to the control group (23.6 ± 2.1 mg/dL). The 

creatinine (Cr) measurement displays no significant changes in the values of colistin 

(0.23 ± 0.01 mg/dL), F1 (0.27 ± 0.11 mg/dL), and F2 (0.24 ± 0.05 mg/dL) groups 

compared to the control group (0.22 ± 0.02 mg/dL) (Figure 13B). Acute tubular 

necrosis can appear as a rise in serum Cr due to a decrease in Cr clearance the same as 

the urea nitrogen clearance that can indicate kidney disfunction [80]. The measured 

results indicate colistin and colistin-SDCS micelles showed no sign of severe damage 

related to kidney function. 
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Figure 13. Effect of colistin and colistin-SDCS formulations on mice serum 

biomarkers: A Blood urea nitrogen (BUN), B Creatinine (Cr), C Superoxide dismutase 

(SOD), and D Catalase (CAT) (mean ± SD, n = 6, * = P < 0.05 and ** = P < 0.01).   

 

 The oxidative stress marker of the 7 days treated mice was measured from the 

serum levels of Superoxide dismutase (SOD) and Catalase (CAT) biomarkers. Normal 

levels of serum SOD level were measured from the control group at 0.82 ± 0.06 U/mL, 

whereas a significantly lower level of SOD was measured from the colistin group (0.52 

± 0.05 U/mL) (Figure 13C). The serum SOD levels from F1 and F2 were shown to be 

0.72 ± 0.03 U/mL and 0.71 ± 0.06 U/mL, respectively. Similar trends were displayed 

from the serum CAT levels where the control group at 12.92 ± 0.24 nmol/min/mL while 

F1 and F2 groups have significantly lower levels at 12.12 ± 0.13 nmol/min/mL and 

11.99 ± 0.16 nmol/min/mL, respectively (Figure 13D). Colistin-treated mice showed a 

C D 

A B 
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much lower level of CAT (5.61 ± 0.52 nmol/min/mL) compared to the control. The 

oxidative stress marker has been shown to have a role in complications of colistin-

induced kidney damage with a deficiency that can exacerbate renal dysfunction and 

tubulointerstitial fibrosis in the kidney [80, 81]. SOD and CAT deficiency were also 

linked to reactive oxidative stress-induced damage to sciatic nerve tissue [82]. The 

results from the oxidative stress measurement suggested that SDCS incorporation into 

the colistin could significantly reduce the kidney damage marked by SOD and CAT. 

 

10. Histopathology of tissue samples from the mice models 

 Hematoxylin and eosin (H&E) stains were used to examine the tissue samples 

of 7 days treated animals. The kidney histopathological results are shown in Figure 

14A-D. Normal kidney tissue displayed in Figure 14A from the control group showed 

normal glomeruli (white circle). Colistin group kidney tissue showed some deformation 

of the glomeruli (yellow circle) and congestion of renal blood vessels (red circle) 

suggesting the kidney damage resulted from colistin treatment (Figure 14B). No 

evidence of renal glomerular injury was found in the F1 and F2 groups (Figure 14C & 

D, respectively) with mild alternation from the blood vessels. The tissue examination 

suggested that SDCS incorporation manages to lessen the nephrotoxicity of colistin. 

There was no severe injury observed from the histopathological alteration of the kidney 

tissues of colistin-treated animals with no sign of necrosis happened across all the 

tissues alteration as also pointed out by BUN and Cr results. 

 The liver histology of treated animals is displayed in Figure 14E-H, where the 

normal saline-treated group display the normal central vein surrounded by hepatic cords 

with no inflammatory infiltration (Figure 14E). The inflammation was evident in the 
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colistin-treated animals with infiltration of monocytes (yellow arrows) and loss of 

hepatocyte architecture around the blood vessels (Figure 14F). Mild inflammations 

were observed from colistin-SDCS formulation for groups F1 and F2 (Figure 14G & 

H, respectively) with few monocytes shown and no loss of structure observed.  

 In addition,  the spleen histological alterations in the treated animals were 

shown in Figure 14I-L. Spleen function as a blood filter will show normal white pulp 

composed of lymphatic tissues and red pulp which filters and degrades red blood cells 

with normal trabeculae surrounding blood vessels as shown from the spleen tissue of 

the control group (Figure 14I). The spleen can show direct or indirect signs of toxicity 

where the inflammation can be observed from tissue examination. Large numbers of 

multinucleated giant cells (yellow arrows) were present which indicates inflammation 

in the spleen tissue of the colistin-treated animals (Figure 14J). Fewer numbers of 

multinucleated giant cells were observed in the spleen of the F1 and F2 groups (Figure 

14K & L, respectively).  

 The neurotoxicity results from experimented animals were examined from the 

histopathology of the sciatic nerve tissue to observe peripheral nerve damage (Figure 

14M-P). The sciatic nerve histology of the control group shows individual nerve fibres 

in the section showing central axons and surrounding myelin which appeared dense, 

and uniform with an ordered lamellar structure with no axonal shrinkage nor swelling 

(Figure 14M). The evidence of neurotoxicity was displayed in the nerve tissue of the 

colistin-treated group where the myelin sheath of the nerve fibres was thin and loose 

(Figure 14N). The uptake of colistin into the nerve cells of mice is dose-dependent as 

shown from the SOD and CAT results, the oxidative stress enzyme can be indicative of 

nerve damage which can also be observed in the increase of withdrawal latency of mice 
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during hot plate test. The nerve tissues of the F1 and F2 groups (Figure 14O & P) 

display few swollen axons with the appearance of the myelin sheath closely resembling 

the control group. 

 

Figure 14. Histopathological alterations of: - Kidney tissue from (A) Control, (B) 

Colistin, (C) F1, (D) F2 groups. Visible glomeruli damage (yellow circle) with  renal 

blood vessels congestion (red line). - Liver tissue from (E) Control, (F) Colistin, (G) 

F1, (H) F2 groups. Yellow arrows indicate infiltration of monocytes in the tissue. - 

Spleen tissue from (A) Control, (B) Colistin, (C) F1, (D) F2 groups. The yellow arrow 

indicates multinucleated giant cells in the tissue. – Sciatic nerve tissue from (A) 

Control, (B) Colistin, (C) F1, (D) F2 groups. The yellow arrow shows thin and loose 

fibres.  
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CHAPTER 4 

CONCLUDING REMARKS 

 

 Colistin was formulated with synthesized SDCS as a lyophilized micelle. The 

surface properties of colistin were measured to optimize the ratio of colistin and SDCS. 

The different ratios of colistin were prepared and its hydrodynamic size and zeta 

potential show nanoparticulate size with negative zeta potential. The dry powder has 

high entrapment efficiency with slower release in the dissolution medium. The 

chemical interaction shows the colistin mainly binds SDCS through hydrogen bonding 

from its Dab residues as suggested from FTIR and NMR measurement and docking 

simulation. SDCS does not hinder the antibacterial activity of colistin against P. 

aeruginosa and the time-kill assay shows better bactericidal efficiency from the 

colistin-SDCS formulation. SDCS manages to lower the nephrotoxicity of colistin in 

vitro as observed in human kidney cell line WT9-12, human kidney epithelial cell line 

293T/17, and human primary renal proximal tubule epithelial cells PCS-400-010. The 

animal models show a better safety profile from better heat sensitivity and histological 

alteration with lower signs of nephrotoxicity and neurotoxicity observed. The 

significantly higher SOD and CAT enzyme was measured from colistin-SDCS treated 

animals indicative of lesser oxidative stress from the treated animals. The study shows 

the potential of colistin sulfate as a parenteral formulation to combat MDR-GNB with 

better properties and safety profiles. There are still many things to further investigate 

to better understand colistin and SDCS interaction as well as toxicity studies before the 

formulation can go into clinical trials. 
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