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Abstract

An ordered semiring is a system (S,+, ·,≤) consisting of a nonempty set
S such that (S,+, ·) is a semiring, (S,≤) is a partially ordered set and for all
a, b, c ∈ S, if a ≤ b, then a+ c ≤ b+ c, c+ a ≤ c+ b and ac ≤ bc, ca ≤ cb.

In this research, we introduce the concepts of almost ordered subsemirings,
almost ordered ideals, almost ordered quasi-ideals, almost ordered bi-ideals, almost
ordered interior-ideals of ordered semirings and investigate their properties. More-
over, we define fuzzy almost ordered subsemirings, fuzzy almost ordered ideals,
fuzzy almost ordered quasi-ideals, fuzzy almost ordered bi-ideals and fuzzy almost
ordered interior-ideals of ordered semirings and provide some relationships.

Finally, we define tri-quasi ideals and fuzzy tri-quasi ideals of ordered
semirings and investigate some properties and relationships between them. In
addition, we introduce the notion of almost ordered tri-quasi ideals and fuzzy
almost ordered tri-quasi ideals of ordered semirings and give some relationship
between them.
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Chapter 1

Introduction

Ideal theory play an important role in semigroups and many types of
algebraic structures. The notion of bi-ideals in semigroups was first introduced
by Good and Hughes [1] in 1952. Steinfeld [2] introduced the concepts of quasi-
ideals in semigroups in 1956. The definition of interior ideals of semigroups has
been introduced by Lajos in [3]. In 1958, Iséki [4] studied quasi-ideals of semirings
without zero. The concept of bi-ideals in associative rings was introduced in 1970
[5]. Rao [8] studied tri-quasi-ideals in Γ-semirings. This ideal generalizes ideals,
left ideals, right ideals, bi-ideals, quasi-ideals and interior ideals.

Fuzzy set theory was developed by Zadeh [15] as an extension of the classical
notion of set. In 1971, Rosenfeld [16] introduced the fuzzification of algebraic
structures as well as fuzzy subgroups. The concept of fuzzy ideals, fuzzy bi-ideals
and fuzzy quasi-ideals of semigroups were studied in [9, 10]. In 1995, Hong, Jun
and Meng [11] considered the fuzzifications of interior ideals of semigroups.

Almost ideals of semigroups were first introduced by Grosek and Satko
[13] in 1980. The concept of almost ideals was used to study almost ideals in
many algebraic structures. The definition of almost subsemigroups and fuzzy
almost subsemigroups of semigroups was introduced in [14]. The notion of almost
subsemiring and fuzzy almost subsemiring of semirings were defined in [17]. In
1981, Bogdanovic [18] introduced the notion of almost bi-ideals in semigroups.
Wattanatripop, Chinram and Changphas defined almost quasi-ideals and fuzzy
almost bi-ideals of semigroups in [19, 20], respectively. Murugadas, Kalpana and
Vetrivel [21] defined fuzzy almost quasi-ideals in semigroups. Recently, almost
bi-ideals, almost quasi-ideals, fuzzy almost bi-ideals and fuzzy almost quasi-ideals
in ordered semigroups were defined in [22]. Kaopusek, Kaewnoi and Chinram [23]
introduced the concepts of almost interior-ideals of semigroups. Furthermore, W.
Krailoet, A. Simuen, R. Chinram and P. Petchkaew [24] defined the notions of
fuzzy almost interior ideals in semigroups.

An ordered semiring is an interesting generalization of semirings. In 2011,
Gan and Jiang [6] defined ordered ideals in ordered semirings. The notion of
ordered quasi-ideals and ordered bi-ideals of ordered semirings were defined in
[7]. The notions of fuzzy ideals and fuzzy interior-ideals of ordered semirings
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was introduced in [12]. In this thesis, we define almost ordered subsemirings,
almost ordered quasi-ideals, almost ordered bi-ideals, almost ordered interior-
ideals, fuzzy almost ordered subsemirings, fuzzy almost ordered quasi-ideals, fuzzy
almost ordered bi-ideals and fuzzy almost ordered interior-ideals in ordered semir-
ings and study the relationship between them. Moreover, we define tri-quasi ideals
and fuzzy tri-quasi ideals of ordered semirings and investigate some properties and
relationships between them. In addition, we introduce the notion of almost ordered
tri-quasi ideals and fuzzy almost ordered tri-quasi ideals of ordered semirings and
give some relationship between them.



Chapter 2

Preliminaries

In this chapter, we collect the definitions and theorems which will be used
later in the study of this thesis.

2.1 Ordered semirings
Definition 2.1.1. A semiring (R,+, ·) is a nonempty set R together with two
binary operations + and · satisfying the following axioms :

1. (R,+) is a semigroup,

2. (R, ·) is a semigroup, and

3. the distributive laws hold in R.

Definition 2.1.2. An ordered semiring is a system (S,+, ·,≤) consisting of a
nonempty set S such that

1. (S,+, ·) is a semiring,

2. (S,≤) is a partially ordered set, and

3. for all a, b, c ∈ S, if a ≤ b, then a + c ≤ b + c, c + a ≤ c + b and ac ≤ bc,
ca ≤ cb.

Throughout this thesis, let S be an ordered semiring.

Definition 2.1.3. Let A and B be nonempty subsets of S. Define

A+B = {a+ b | a ∈ A and b ∈ B},

AB = {ab | a ∈ A and b ∈ B}.

For x ∈ S and ∅ ̸= A ⊆ S, let Ax = A{x} and xA = {x}A. For n ∈ N, let
An = A · · ·A︸ ︷︷ ︸

n copies

.
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Theorem 2.1.4. Let A,B,C and D be nonempty subsets of S. Then the following
statements hold.

(1) A+ (B + C) = (A+B) + C and A(BC) = (AB)C.

(2) If A ⊆ B and C ⊆ D, then A+ C ⊆ B +D and AC ⊆ BD.

Definition 2.1.5. Let A be a nonempty subset of S. Define

(A ] = {x ∈ S | x ≤ a for some a ∈ A }.

Theorem 2.1.6. Let A,B,C and D be nonempty subsets of S. Then the following
statements hold.

(1) A ⊆ (A ] and
(
(A ]

]
= (A ].

(2) If A ⊆ B, then (A ] ⊆ (B ].

(3) (A ] + (B ] ⊆ (A+B ] and (A ](B ] ⊆ (AB ].

(4) If A ⊆ B and C ⊆ D, then (A+ C ] ⊆ (B +D ] and (AC ] ⊆ (BD ].

Definition 2.1.7. Let A be a nonempty subset of S.

1. A is called a subsemiring of S if A+ A ⊆ A and A2 ⊆ A.

2. A is called a left ideal (resp. right ideal) of S if A+ A ⊆ A, SA ⊆ A

(resp. AS ⊆ A) and (A ] = A.

3. A is called an ideal of S if A is both a left ideal and a right ideal of S.

4. A is called a quasi-ideal of S if A+ A ⊆ A, SA ∩ AS ⊆ A and (A ] = A.

5. A is called a bi-ideal of S if A is a subsemiring of S, ASA ⊆ A and (A ] = A.

6. A is called an interior-ideal of S if A is a subsemiring of S, SAS ⊆ A and
(A ] = A.

Definition 2.1.8. An element a ∈ S is said to be idempotent if a = a2. S is
called an idempotent ordered semiring if every element of S is idempotent.
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2.2 Fuzzy ideals of ordered semirings
Definition 2.2.1. A fuzzy subset of a set X is a function f : X → [0, 1]. For each
x ∈ X, the value of f(x) is called the degree of membership of x.

Definition 2.2.2. Let f and g be fuzzy subsets of a set X, we say that f ⊆ g if
f(x) ≤ g(x) for all x ∈ X.

Definition 2.2.3. Let {fi}i∈I be a collection of fuzzy subsets of a set X. Define
fuzzy subsets

⋂
i∈I

fi and
⋃
i∈I

fi of X by

(⋂
i∈I

fi

)
(x) = inf

i∈I
{fi(x)} and

(⋃
i∈I

fi

)
(x) = sup

i∈I
{fi(x)} for all x ∈ X.

Definition 2.2.4. Let X be a nonempty set. The characteristic function of a
subset A of X is a fuzzy subset CA of X defined by

CA(x) =

1 if x ∈ A,

0 otherwise.

Definition 2.2.5. Let X be a nonempty set. For s ∈ X and α ∈ (0, 1], a fuzzy
point sα of a set X is a fuzzy subset of X defined by

sα(x) =

α if x = s,

0 otherwise.

Definition 2.2.6. Let f be a fuzzy subset of X. The support of f is defined by

supp(f) = {x ∈ X | f(x) ̸= 0 }.

Definition 2.2.7. Let f be a fuzzy subset of X and t ∈ [0, 1]. The set

ft = {x ∈ X | f(x) ≥ t}

is called the level subset of f .
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Definition 2.2.8. Let f and g be two fuzzy subsets of S and x ∈ S. The
multiplication of f and g, denoted by f ◦ g, is defined by

(f ◦ g)(x) =

sup
x=ab

min{f(a), g(b)} if x = ab for some a, b ∈ S,

0 otherwise,

and the addition of f and g, denoted by f + g, is defined by

(f + g)(x) =


sup

x=a+b
min{f(a), g(b)} if x = a+ b for some a, b ∈ S,

0 otherwise.

For n ∈ N, let fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n copies

.

Theorem 2.2.9. Let f, g, h and k be fuzzy subsets of S. Then the following
properties hold.

(1) (f ◦ g) ◦ h = f ◦ (g ◦ h) and (f + g) + h = f + (g + h).

(2) If f ⊆ g and h ⊆ k, then f + h ⊆ g + k and f ◦ h ⊆ g ◦ k.

Definition 2.2.10. Let f be a fuzzy subset of S. Define the fuzzy subset (f ] of
S by

(f ](x) = sup
x≤y

f(y) for all x ∈ S.

Theorem 2.2.11. Let f, g, h and k be fuzzy subsets of S. Then the following
statements hold.

(1) f ⊆ (f ].

(2) If f ⊆ g, then (f ] ⊆ (g ].

(3) If f ⊆ g and h ⊆ k, then (f + h ] ⊆ (g + k ] and (f ◦ h ] ⊆ (g ◦ k ].
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Definition 2.2.12. Let f be a fuzzy subset of S.

1. f is called a fuzzy subsemiring of S if f + f ⊆ f and f ◦ f ⊆ f .

2. f is called a fuzzy left ideal (resp. fuzzy right ideal) of S if f + f ⊆ f ,
CS ◦ f ⊆ f (resp. f ◦ CS ⊆ f) and (f ] = f .

3. f is called a fuzzy ideal of S if f is both a fuzzy left ideal and a fuzzy right
ideal of S.

4. f is called a fuzzy quasi-ideal of S if f + f ⊆ f , (CS ◦ f)∩ (f ◦CS) ⊆ f and
(f ] = f .

5. f is called a fuzzy bi-ideal of S if f is a fuzzy subsemiring of S, f ◦CS ◦f ⊆ f

and (f ] = f .

6. f is called a fuzzy interior-ideal of S if f is a fuzzy subsemiring of S,
CS ◦ f ◦ CS ⊆ f and (f ] = f .

Theorem 2.2.13. Let A and B be two nonempty subsets of S. Then the following
statements hold.

(1) A ⊆ B if and only if CA ⊆ CB.

(2) CA + CB = CA+B and CA ◦ CB = CAB.

(3) (CA ] = C(A ].

Theorem 2.2.14. Let f and g be fuzzy subsets of S. Then the following state-
ments hold.

(1) f ̸= 0 if and only if supp(f) ̸= ∅.

(2) If f ⊆ g, then supp(f) ⊆ supp(g).

(3) supp(f ∪ g) = supp(f) ∪ supp(g) and supp(f ∩ g) = supp(f) ∩ supp(g).

(4) If f ̸= 0 and g ̸= 0, then

supp(f + g) = supp(f) + supp(g) and supp(f ◦ g) = supp(f)supp(g).

(5) If f ̸= 0, then supp(f ] =
(
supp(f)

]
.
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Proof. (1) For any x ∈ S, we have f(x) ̸= 0 if and only if x ∈ supp(f). This
implies that f ̸= 0 if and only if supp(f) ̸= ∅.

(2) Assume that f ⊆ g. Let x ∈ supp(f). Then g(x) ≥ f(x) ̸= 0. It follows
that x ∈ supp(g). Hence, supp(f) ⊆ supp(g).

(3) Let x ∈ S. Then

x ∈ supp(f ∪ g) ⇐⇒ (f ∪ g)(x) ̸= 0

⇐⇒ f(x) ̸= 0 or g(x) ̸= 0

⇐⇒ x ∈ supp(f) ∪ supp(g).

Then supp(f ∪ g) = supp(f) ∪ supp(g). Similarly, we can show that

supp(f ∩ g) = supp(f) ∩ supp(g).

(4) Assume that f ̸= 0 and g ̸= 0. Let x ∈ S. Then

x ∈ supp(f + g) ⇐⇒ (f + g)(x) ̸= 0

⇐⇒ x = a+ b for some a ∈ supp(f), b ∈ supp(g)

⇐⇒ x ∈ supp(f) + supp(g).

Then supp(f + g) = supp(f) + supp(g). Similarly, we can show that

supp(f ◦ g) = supp(f)supp(g).

(5) Assume that f ̸= 0. Let x ∈ S. Then

x ∈ supp(f ] ⇐⇒ (f ](x) ̸= 0

⇐⇒ x ≤ y for some y ∈ supp(f)

⇐⇒ x ∈
(
supp(f)].

Hence, supp(f ] =
(
supp(f)

]
.
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Theorem 2.2.15. Let f1, f2, ..., fn be nonzero fuzzy subsets of S and g be a fuzzy
subset of S. Then

(1) (f1 ◦ f2 ◦ · · · ◦ fn ] ∩ g ̸= 0 if and only if
(
supp(f1)supp(f2) · · · supp(fn)

]
∩

supp(g) ̸= ∅.

(2) (f1+f2+· · ·+fn ]∩g ̸= 0 if and only if
(
supp(f1)+supp(f2)+· · ·+supp(fn)

]
∩

supp(g) ̸= ∅.

Proof. We only prove (1). The proof of (2) is similar to (1).
(1) By Theorem 2.2.14, we have

(f1 ◦ f2 ◦ · · · ◦ fn ] ∩ g ̸= 0 ⇐⇒ supp
(
(f1 ◦ f2 ◦ · · · ◦ fn ] ∩ g

)
̸= ∅

⇐⇒ supp(f1 ◦ f2 ◦ · · · ◦ fn ] ∩ supp(g) ̸= ∅

⇐⇒
(
supp(f1 ◦ f2 ◦ · · · ◦ fn)

]
∩ supp(g) ̸= ∅

⇐⇒
(
supp(f1)supp(f2) · · · supp(fn)

]
∩ supp(g) ̸= ∅.

This completes the proof.

Theorem 2.2.16. Let f be a nonzero fuzzy subset of S. Then the following
statements hold.

(1) If f is a fuzzy subsemiring of S, then supp(f) is a subsemiring of S.

(2) If f is a fuzzy ideal of S, then supp(f) is an ideal of S.

(3) If f is a fuzzy quasi-ideal of S, then supp(f) is a quasi-ideal of S.

(4) If f is a fuzzy bi-ideal of S, then supp(f) is a bi-ideal of S.

(5) If f is a fuzzy interior-ideal of S, then supp(f) is an interior-ideal of S.

Proof. We only prove (2) and (3). The proof of (1), (4) and (5) are similar to (2).
(2) Assume that f is a fuzzy ideal of S. Since f + f ⊆ f , by Theorem

2.2.14, supp(f) + supp(f) = supp(f + f) ⊆ supp(f). Since CS ◦ f ⊆ f , we get
S
(
supp(f)

)
= supp(CS)supp(f) = supp(CS ◦ f) ⊆ supp(f). Similarly, we can

show that
(
supp(f)

)
S ⊆ supp(f). Since (f ] = f , by Theorem 2.2.14, we get(

supp(f)
]
= supp(f ] = supp(f). Hence, supp(f) is an ideal of S.
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(3) Assume that f is a fuzzy quasi-ideal of S. Since f+f ⊆ f , by Theorem
2.2.14, we have supp(f) + supp(f) ⊆ supp(f). Since (f ◦ CS) ∩ (CS ◦ f) ⊆ f , by
Theorem 2.2.14, we have

(
supp(f)

)
S ∩ S

(
supp(f)

)
=

(
supp(f)supp(CS)

)
∩
(
supp(CS)supp(f)

)
= supp(f ◦ CS) ∩ supp(CS ◦ f)

= supp
(
(f ◦ CS) ∩ (CS ◦ f)

)
⊆ supp(f).

Since (f ] = f , by Theorem 2.2.14, we get
(
supp(f)

]
= supp(f ] = supp(f). Hence,

supp(f) is a quasi-ideal of S.



Chapter 3

Almost ordered subsemirings and
their fuzzifications

In this chapter, we introduce the concepts of almost ordered subsemirings
and fuzzy almost ordered subsemirings in ordered semirings. Some relationships
between almost ordered subsemirings and fuzzy almost ordered subsemirings in
ordered semirings are provided.

3.1 Almost ordered subsemirings of ordered semirings
Definition 3.1.1. Let A be a nonempty subset of S. A is called an almost ordered
subsemiring of S if (A+ A] ∩ A ̸= ∅ and (A2 ] ∩ A ̸= ∅.

Theorem 3.1.2. Every subsemiring of S is an almost ordered subsemiring of S.

Proof. Let A be a subsemiring of S. Then A+ A ⊆ A and A2 ⊆ A. This implies
that A + A = (A + A) ∩ A ⊆ (A + A ] ∩ A and A2 = A2 ∩ A ⊆ (A2 ] ∩ A. Thus
(A+A ]∩A ̸= ∅ and (A2 ]∩A ̸= ∅. Hence, A is an almost ordered subsemiring of
S.

The converse of Theorem 3.1.2 is not generally true as shown in the following
example.

Example 3.1.3. Let S1 = {a, b, c, d}. Define binary operations + and · on S1

given by the following tables

+ a b c d · a b c d

a a b c d a a a a a

b b b b b b a b b b

c c b c d c a c c c

d d b d d d a b b b

.

Define a relation ≤ on S1 by

≤= { (a, a), (b, b), (c, c), (d, d), (b, d) }.
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Then (S1,+, ·,≤) is an ordered semiring. Let A = {a, d}. We have a ≤ a + a,
a ≤ a2 and a ∈ A, so a ∈ (A+A ] ∩A and a ∈ (A2 ] ∩A, that is (A+A ] ∩A ̸= ∅
and (A2 ]∩A ̸= ∅. Thus A is an almost ordered subsemiring but not a subsemiring
of S1 because A2 = {a, b} ̸⊆ A.

Proposition 3.1.4. Let a be any element of S. Then A = {a, a + a, a2} is an
almost ordered subsemiring of S.

Proof. Since a+ a ∈ (A+A)∩A ⊆ (A+A ]∩A, we have (A+A ]∩A ̸= ∅. Since
a2 ∈ A2 ∩ A ⊆ (A2 ] ∩ A, we get (A2 ] ∩ A ̸= ∅. Hence, A is an almost ordered
subsemiring of S.

Theorem 3.1.5. Let A and B be any two nonempty subsets of S. If A ⊆ B

and A is an almost ordered subsemiring of S, then B is also an almost ordered
subsemiring of S.

Proof. Assume that A is an almost subsemiring of S such that A ⊆ B. Then
(A+A ]∩A ̸= ∅ and (A2 ]∩A ̸= ∅. Since A ⊆ B, we have (A+A ]∩A ⊆ (B+B ]∩B
and (A2 ] ∩A ⊆ (B2 ] ∩B. This implies that (B +B ] ∩B ̸= ∅ and (B2 ] ∩B ̸= ∅.
Hence, B is an almost ordered subsemiring of S.

Corollary 3.1.6. The union of almost subsemirings of S is also an almost ordered
subsemiring of S.

3.2 Fuzzy almost ordered subsemirings of ordered
semirings

Definition 3.2.1. Let f be a fuzzy subset of S. We call f a fuzzy almost ordered
subsemiring of S if (f + f ] ∩ f ̸= 0 and (f ◦ f ] ∩ f ̸= 0.

Theorem 3.2.2. Let f be a fuzzy subset of S. Then f is a fuzzy almost ordered
subsemiring of S if and only if supp(f) is an almost ordered subsemiring of S.

Proof. By Theorem 2.2.15, we have

(f ◦ f ] ∩ f ̸= 0 if and only if
(
supp(f)2

]
∩ supp(f) ̸= ∅ and

(f + f ] ∩ f ̸= 0 if and only if
(
supp(f) + supp(f)

]
∩ supp(f) ̸= ∅.

This completes the proof.
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Corollary 3.2.3. Let A be a nonempty subset of S. Then CA is a fuzzy almost
ordered subsemiring of S if and only if A is an almost ordered subsemiring of S.

Proof. Since A = supp(CA), the results follow from Theorem 3.2.2.

Theorem 3.2.4. Every nonzero fuzzy subsemiring of S is a fuzzy almost ordered
subsemiring of S.

Proof. Let f be a nonzero fuzzy subsemiring of S. By Theorem 2.2.16 (1), supp(f)
is a subsemiring of S. By Theorem 3.1.2, supp(f) is an almost ordered subsemiring
of S and by Theorem 3.2.2, f is a fuzzy almost ordered subsemiring of S.

The converse of Theorem 3.2.4 does not hold in general. We consider the
following example.

Example 3.2.5. From Example 3.1.3, we have A = {a, d} is an almost ordered
subsemiring of S1 but is not a subsemiring of S1. Define a fuzzy subset f of S1 by

f(x) =

0.5 if x ∈ A,

0 otherwise.

We have supp(f) = A. By Theorem 3.2.2, f is a fuzzy almost ordered subsemiring
of S1. Since supp(f) is not a subsemiring of S1, by Theorem 2.2.14 (1), f is not a
fuzzy subsemiring of S1.

Theorem 3.2.6. Let f be a fuzzy almost ordered subsemiring of S and g be
a fuzzy subset of S such that f ⊆ g. Then g is also a fuzzy almost ordered
subsemiring of S.

Proof. By Theorem 3.2.2, supp(f) is an almost ordered subsemiring of S. Since
f ⊆ g, it follows that supp(f) ⊆ supp(g). By Theorem 3.1.5, supp(g) is an almost
ordered subsemiring of S. Again by Theorem 3.2.2, g is a fuzzy almost ordered
subsemiring of S.

Corollary 3.2.7. The union of fuzzy almost ordered subsemirings of S is also a
fuzzy almost ordered subsemiring of S.



Chapter 4

Almost ordered ideals and their fuzzi-
fications

In this chapter, we define almost ordered ideals and fuzzy almost ordered
ideals in ordered semirings and we give the relationship between them.

4.1 Almost ordered ideals of ordered semirings
Definition 4.1.1. A nonempty subset I of S is called an almost ordered ideal of
S if (I + I] ∩ I ̸= ∅, (sI] ∩ I ̸= ∅ and (Is] ∩ I ̸= ∅ for all s ∈ S.

Theorem 4.1.2. Every ideal of S is an almost ordered ideal of S.

Proof. Let I be an ideal of S. Since I + I ⊆ (I + I ] and I + I ⊆ I, we have
(I + I ] ∩ I ̸= ∅. Let s ∈ S. We have sI ⊆ (sI ] and sI ⊆ SI ⊆ I, so (sI ] ∩ I ̸= ∅.
Similarly, we have (Is ] ∩ I ̸= ∅. Hence, I is an almost ordered ideal of S.

The converse of Theorem 4.1.2 does not hold in general. We consider the
following example

Example 4.1.3. Let S2 = {a, b, c, d, e}. Define the binary operations + and · on
S2 show in the table

+ a b c d e · a b c d e

a a a a a a a a a a d d

b b b b b b b a b b d e

c c c c c c c a c c d e

d d d d d d d d d d a a

e e e e e e e d d d a a

.

Define a relation ≤ on S2 by

≤= { (a, a), (b, b), (c, c), (d, d), (e, e), (b, c) }.
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Then (S2,+, ·,≤) is an ordered semiring. Let I = {c, d, e}. Since c ≤ c + c and
c ∈ I, we get c ∈ (I + I ] ∩ I. Thus (I + I ] ∩ I ̸= ∅. We see that

(Ia ] ∩ I = {a, d} ∩ {c, d, e} ̸= ∅, (aI ] ∩ I = {a, d} ∩ {c, d, e} ̸= ∅,

(Ib ] ∩ I = {b, c, d} ∩ {c, d, e} ̸= ∅, (bI ] ∩ I = {b, d, e} ∩ {c, d, e} ̸= ∅,

(Ic ] ∩ I = {b, c, d} ∩ {c, d, e} ̸= ∅, (cI ] ∩ I = {b, c, d, e} ∩ {c, d, e} ̸= ∅,

(Id ] ∩ I = {a, d} ∩ {c, d, e} ̸= ∅, (dI ] ∩ I = {a, d} ∩ {c, d, e} ̸= ∅,

(Ie ] ∩ I = {a, e} ∩ {c, d, e} ̸= ∅, (eI ] ∩ I = {a, d} ∩ {c, d, e} ̸= ∅.

Then I is an almost ordered ideal of S2. We have a = ca ∈ IS2 but a ̸∈ I, so
IS ̸⊆ I. Therefore, I is not an ideal of S2.

Theorem 4.1.4. Every almost ordered ideal of an ordered semiring S is an almost
ordered subsemiring of S.

Proof. Let I be an almost ordered ideal of S. Then (sI ]∩ I ̸= ∅ for all s ∈ S. Let
a ∈ I. Then ∅ ̸= (aI ] ∩ I ⊆ (I2 ] ∩ I. This implies that (I2 ] ∩ I ̸= ∅. Hence, I is
an almost ordered subsemiring of S.

Theorem 4.1.5. Let A be an almost ordered ideal of S. If B is a subset of S
containing A, then B is also an almost ordered ideal of S.

Proof. Let B be a subset of S containing A. Then ∅ ̸= (A+A ]∩A ⊆ (B+B ]∩B,
∅ ̸= (sA ] ∩ A ⊆ (sB ] ∩ B and ∅ ̸= (As ] ∩ A ⊆ (Bs ] ∩ B for all s ∈ S. Hence, B
is an almost ordered ideal of S.

The following corollary is a direct consequence of Theorem 4.1.5.

Corollary 4.1.6. The union of almost ordered ideals of an ordered semiring S is
also an almost ordered ideal of S.

4.2 Fuzzy almost ordered ideals of ordered semirings
Definition 4.2.1. A fuzzy subset f of S is called a fuzzy almost ordered ideal of
S if (f + f ] ∩ f ̸= 0, (sα ◦ f ] ∩ f ̸= 0 and (f ◦ sα ] ∩ f ̸= 0 for all s ∈ S and
α ∈ (0, 1].
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Theorem 4.2.2. Let f be a fuzzy subset of S. Then f is a fuzzy almost ordered
ideal of S if and only if supp(f) is an almost ordered ideal of S.

Proof. By Theorem 2.2.15 we have

(f + f ] ∩ f ̸= 0 if and only if
(
supp(f) + supp(f)

]
∩ supp(f) ̸= ∅,

(sα ◦ f ] ∩ f ̸= 0 if and only if
(
s
(
supp(f)

)]
∩ supp(f) ̸= ∅, and

(f ◦ sα ] ∩ f ̸= 0 if and only if
((

supp(f)
)
s
]
∩ supp(f) ̸= ∅.

This completes the proof.

Corollary 4.2.3. Let A be a nonempty subset of S. Then CA is a fuzzy almost
ordered ideal of S if and only if A is an almost ordered ideal of S.

Theorem 4.2.4. Let f be a nonzero fuzzy ideal of S. Then f is a fuzzy almost
ordered ideal of S.

Proof. Since f ̸= 0, by Theorem 2.2.16 (2), supp(f) is an ideal of S. By Theorem
4.1.2, supp(f) is an almost ordered ideal of S. By Theorem 4.2.2, f is a fuzzy
almost ordered ideal of S.

The converse of Theorem 4.2.4 is not generally true as shown in the follow-
ing example.

Example 4.2.5. From Example 4.1.3, we have I = {c, d, e} is an almost ordered
ideal of S2 but is not an ideal of S2. Define a fuzzy subset f of S2 by

f(x) =

0.5 if x ∈ I,

0 otherwise.

We have supp(f) = I. By Theorem 4.2.2, f is a fuzzy almost ordered ideal of S2.
Since supp(f) is not an ideal of S2, by Theorem 2.2.16 (2), f is not a fuzzy ideal
of S2.

Theorem 4.2.6. Every fuzzy almost ordered ideal of S is a fuzzy almost ordered
subsemiring of S.

Proof. Let f be a fuzzy almost ordered ideal of S. By Theorem 4.2.2, supp(f)
is an almost ordered ideal of S. By Theorem 4.1.4, supp(f) is an almost ordered
subsemiring of S, so f is a fuzzy almost ordered subsemiring of S by Theorem
3.2.2.
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Theorem 4.2.7. Let f and g be fuzzy subsets of S such that f ⊆ g. If f is a
fuzzy almost ordered ideal of S, then g is also a fuzzy almost ordered ideal of S.

Proof. Assume that f is a fuzzy almost ordered ideal of S such that f ⊆ g. Then
supp(f) is an almost ordered ideal of S. Since f ⊆ g, we have supp(f) ⊆ supp(g).
By Theorem 4.1.5, supp(g) is an almost ordered ideal of S. Hence, g is a fuzzy
almost ordered ideal of S.

Corollary 4.2.8. The union of fuzzy almost ordered ideals of S is also a fuzzy
almost ordered ideal of S.

Definition 4.2.9. A fuzzy almost ordered ideal f of S is called minimal if for all
fuzzy almost ordered ideal g of S such that g ⊆ f , we have supp(g) = supp(f).

Theorem 4.2.10. Let f be a fuzzy subset of S. Then f is a minimal fuzzy almost
ordered ideal of S if and only if supp(f) is a minimal almost ordered ideal of S.

Proof. Suppose that f is a minimal fuzzy almost ordered ideal of S. Then supp(f)

is an almost ordered ideal of S. Let I be an almost ordered ideal of S such that
I ⊆ supp(f). Define a fuzzy subset g of S by

g(x) =


f(x)

2
if x ∈ I,

0 otherwise.

Since I ⊆ supp(f), we have f(x) ̸= 0 for all x ∈ I, so g(x) ̸= 0 for all x ∈ I. This
implies that supp(g) = I. Then g is a fuzzy almost ordered ideal of S and g ⊆ f .
Since f is minimal, we have I = supp(g) = supp(f). So supp(f) is minimal.

Conversely, suppose that supp(f) is a minimal almost ordered ideal of S.
Then f is a fuzzy almost ordered ideal of S. Let g be a fuzzy almost ordered ideal
of S with g ⊆ f , so supp(g) ⊆ supp(f). We have supp(g) is an almost ordered
ideal of S. Since supp(f) is minimal, supp(g) = supp(f). Hence, f is minimal.

Corollary 4.2.11. Let ∅ ̸= A ⊆ S. Then CA is a minimal fuzzy almost ordered
ideal of S if and only if A is a minimal almost ordered ideal of S.



Chapter 5

Almost ordered quasi-ideals and their
fuzzifications

In this chapter, we define almost ordered quasi-ideals and fuzzy almost
ordered quasi-ideals in ordered semirings. Moreover, we give some relationships
between almost ordered quasi-ideals and their fuzzification.

5.1 Almost ordered quasi-ideals of ordered semirings
Definition 5.1.1. A nonempty subset Q of S is called an almost ordered quasi-
ideal of S if (Q+Q ] ∩Q ̸= ∅ and (sQ ] ∩ (Qs ] ∩Q ̸= ∅. for all s ∈ S.

Theorem 5.1.2. Let Q be a quasi-ideal of S such that sQ∩Qs ̸= ∅ for all s ∈ S.
Then Q is an almost ordered quasi-ideal of S.

Proof. Since Q + Q ⊆ (Q + Q ] and Q + Q ⊆ Q, we have (Q + Q ] ∩ Q ̸= ∅. Let
s ∈ S. We have sQ ∩Qs ⊆ SQ ∩QS ⊆ Q. Thus

∅ ̸= sQ ∩Qs = sQ ∩Qs ∩Q ⊆ (sQ ] ∩ (Qs ] ∩Q.

Hence, Q is an almost ordered quasi-ideal of S.

The converse of Theorem 5.1.2 is not generally true as shown in the follow-
ing example

Example 5.1.3. Let S3 = {0, a, b, c}. Define binary operations + and · on S3 as
follows:

+ 0 a b c · 0 a b c

0 0 a b c 0 0 0 0 0

a a a b c a 0 a a a

b b b b c b 0 a b b

c c c c c c 0 a b c

.

Define a relation ≤ on S3 by

≤=
{
(a, a), (b, b), (c, c), (0, 0), (0, a), (0, b), (0, c), (a, b), (a, c), (b, c)

}
.
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Then (S3,+, ·,≤) is an ordered semiring. Let Q = {0, a, c}. Then (Q +Q ] = S3,
so (Q+Q ] ∩Q = S3 ∩Q = Q ̸= ∅. We have 0 ≤ 0s and 0 ≤ s0 for all s ∈ S3, so
0 ∈ (sQ ]∩ (Qs ]∩Q for all s ∈ S3. Thus Q is an almost ordered quasi-ideal of S3.
We see that b = bc = cb ∈ S3Q ∩ QS3 but b /∈ Q. Thus S3Q ∩ QS3 ̸⊆ Q. Hence,
Q is not a quasi-ideal of S3.

Theorem 5.1.4. Every almost ordered quasi-ideal of S is an almost ordered ideal
of S.

Proof. Let Q be an almost ordered quasi-ideal of S. Let s ∈ S. Then

∅ ̸= (sQ ] ∩ (Qs ] ∩Q ⊆ (sQ ] ∩Q and ∅ ̸= (sQ ] ∩ (Qs ] ∩Q ⊆ (Qs ] ∩Q.

Therefore, Q is an almost ordered ideal of S.

The following result is a direct consequence of Theorem 5.1.4 and Theorem
4.1.4.

Corollary 5.1.5. Every almost ordered quasi-ideal of S is an almost ordered
subsemiring of S.

The converse of Theorem 5.1.4 is not generally true as shown in the following
example.

Example 5.1.6. Consider the ordered semiring S2 in Example 4.1.3. We have
I = {c, d, e} is an almost ordered ideal of S2. We see that (Ie ] ∩ (eI ] ∩ I = ∅.
Then I is not an almost ordered quasi-ideal of S2.

Theorem 5.1.7. Let A and B be any two nonempty subsets of S. If A ⊆ B

and A is an almost ordered quasi-ideal of S, then B is also an almost ordered
quasi-ideal of S.

Proof. Assume that A is an almost ordered quasi-ideal of S with A ⊆ B. Then
∅ ̸= (A+A ] ∩A ⊆ (B +B ] ∩B and ∅ ̸= (sA ] ∩ (As ] ∩A ⊆ (sB ] ∩ (Bs ] ∩B for
all s ∈ S. Hence, B is an almost ordered quasi-ideal of S.

The following corollary is a direct consequence of Theorem 5.1.7.

Corollary 5.1.8. The union of almost ordered quasi-ideals of S is also an almost
ordered quasi-ideal of S.
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5.2 Fuzzy almost ordered quasi-ideals of ordered
semirings

Definition 5.2.1. A fuzzy subset f of S is called a fuzzy almost ordered quasi-ideal
of S if (f + f ]∩ f ̸= 0 and (sα ◦ f ]∩ (f ◦ sα ]∩ f ̸= 0 for all s ∈ S, and α ∈ (0, 1].

Theorem 5.2.2. Let f be a fuzzy subset of an ordered semiring S. Then f is a
fuzzy almost ordered quasi-ideal of S if and only if supp(f) is an almost ordered
quasi-ideal of S.

Proof. By Theorem 2.2.15, we have

(f + f ] ∩ f ̸= 0 if and only if
(
supp(f) + supp(f)

]
∩ supp(f) ̸= ∅.

Let s ∈ S and α ∈ (0, 1]. By Theorem 2.2.14, we get

(sα ◦ f ] ∩ (f ◦ sα ] ∩ f ̸= 0 ⇐⇒ supp
(
(sα ◦ f ] ∩ (f ◦ sα ] ∩ f

)
̸= ∅

⇐⇒ supp(sα ◦ f ] ∩ supp(f ◦ sα ] ∩ supp(f) ̸= ∅

⇐⇒
(
s
(
supp(f)

)]
∩
((

supp(f)
)
s
]
∩ supp(f) ̸= ∅,

which completes the proof of the theorem.

Corollary 5.2.3. Let A be a nonempty subset of S. Then CA is a fuzzy almost
ordered quasi-ideal of S if and only if A is an almost ordered quasi-ideal of S.

Theorem 5.2.4. Let f ̸= 0 be a fuzzy quasi-ideal of S such that for all s ∈ S,
s
(
supp(f)

)
∩
(
supp(f)

)
s ̸= ∅. Then f is a fuzzy almost ordered quasi-ideal of S.

Proof. Since f ̸= 0, by Theorem 2.2.16, supp(f) is a quasi-ideal of S. Since
s
(
supp(f)

)
∩
(
supp(f)

)
s ̸= ∅, by Theorem 5.1.2, supp(f) is an almost ordered

quasi-ideal of S.

Corollary 5.2.5. If S has a zero element 0, then every nonzero fuzzy quasi-ideal
of S is a fuzzy almost ordered quasi-ideal of S.

Proof. Assume that S has a zero element 0. Let f ̸= 0 be a fuzzy quasi-ideal of
S. Then supp(f) is a quasi-ideal of S. Let a ∈ supp(f). Since 0 = 0a = a0, we
have 0 ∈ S

(
supp(f)

)
∩
(
supp(f)

)
S ⊆ supp(f). Since 0 = s0 = 0s for all s ∈ S, we

get 0 ∈ s
(
supp(f)

)
∩
(
supp(f)

)
s for all s ∈ S. Hence, f is a fuzzy almost ordered

quasi-ideal of S by Theorem 5.2.4.
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The converse of Theorem 5.2.4 is not always true as shown in the following
example.

Example 5.2.6. From Example 5.1.3, we have Q = {0, a, c} is an almost quasi-
ideal of S3 but is not a quasi-ideal of S3 . Define fuzzy subset f of S3 by

f(x) =

0.5 if x ∈ Q,

0 otherwise.

We have supp(f) = Q. By Theorem 5.2.2, f is a fuzzy almost ordered quasi-ideal
of S3. Since supp(f) is not a quasi-ideal of S3, by Theorem 2.2.16 (3), f is not a
fuzzy quasi-ideal of S3.

Theorem 5.2.7. Every fuzzy almost ordered quasi-ideal of S is a fuzzy almost
ordered ideal of S.

Proof. Let f be a fuzzy almost ordered quasi-ideal of S. Then supp(f) is an
almost ordered quasi-ideal of S. By Theorem 5.1.4, supp(f) is an almost ordered
ideal of S. Therefore, f is a fuzzy almost ordered ideal of S.

From Theorem 5.2.7 and Theorem 4.2.6, we have the following corollary.

Corollary 5.2.8. Every fuzzy almost ordered quasi-ideal of S is a fuzzy almost
ordered subsemiring of S.

The converse of Theorem 5.2.7 is not always true as shown in the following
example.

Example 5.2.9. Frorm Example 5.1.6, we have I = {c, d, e} is an almost ordered
ideal of S2 but it is not an almost ordered quasi-ideal of S2. By Corollary 4.2.3 CI

is a fuzzy almost ordered ideal of S2. Since I is not an almost ordered quasi-ideal
of S2, by Corollary 5.2.3, CI is not a fuzzy almost ordered quasi-ideal of S2.

Theorem 5.2.10. Let f and g be fuzzy subsets of S such that f ⊆ g. If f is
a fuzzy almost ordered quasi-ideal of S, then g is also a fuzzy almost ordered
quasi-ideal of S.

Proof. Assume that f is a fuzzy almost orderd quasi-ideal of S. Then supp(f)

is an almost ordered quasi-ideal of S with supp(f) ⊆ supp(g), so supp(g) is an
almost ordered quasi-ideal of S. Hence, g is a fuzzy almost ordered quasi-ideal
of S.
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Corollary 5.2.11. The union of fuzzy almost ordered quasi-ideals of S is also a
fuzzy almost ordered quasi-ideal of S.

Definition 5.2.12. A fuzzy almost ordered quasi-ideal f of S is called minimal if
for all fuzzy almost ordered quasi-ideal g of S such that g ⊆ f , we have supp(g) =

supp(f).

Theorem 5.2.13. Let f be a fuzzy subset of S. Then f is a minimal fuzzy
almost ordered quasi-ideal of S if and only if supp(f) is a minimal almost ordered
quasi-ideal of S.

Proof. The proof is similar to Theorem 4.2.10.

Corollary 5.2.14. Let A be a nonempty subset of S. Then CA is a minimal
fuzzy almost ordered quasi-ideal of S if and only if A is a minimal almost ordered
quasi-ideal of S.



Chapter 6

Almost ordered bi-ideals and their
fuzzifications

In this chapter, we define almost ordered bi-ideals and fuzzy almost ordered
bi-ideals in ordered semirings. Some relationships between almost ordered bi-ideals
and fuzzy almost ordered bi-ideals of ordered semirings are provided.

6.1 Almost ordered bi-ideals of ordered semirings
Definition 6.1.1. A nonempty subset B of S is called an almost ordered bi-ideal
of S if B is an almost ordered subsemiring of S and (BsB ] ∩B ̸= ∅ for all s ∈ S.

Theorem 6.1.2. Every bi-ideal of S is an almost ordered bi-ideal of S.

Proof. Let B be a bi-ideal of S. Since B is a subsemiring of S, by Theorem 3.1.2,
B is an almost ordered subsemiring of S. Let s ∈ S. Then

(BsB ] ⊆ (BSB ] ⊆ (B ] = B.

It follows that ∅ ̸= (BsB ] = (BsB ] ∩ B. Hence, B is an almost ordered bi-ideal
of S.

The converse of Theorem 6.1.2 is not generally true as shown in the follow-
ing example.

Example 6.1.3. Let S4 = {a, b, c, d}. Define binary operations + and · on S4

given by the following tables:

+ a b c d · a b c d

a a a a a a a a a a

b b b b b b b b b b

c c c c c c c c c c

d d d d d d d d d d

.

Define a relation ≤ on S4 by

≤= { (a, a), (b, b), (c, c), (d, d), (c, a) }.
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Then (S4,+, ·,≤) is an ordered semiring. Let B = {a, b}. Then a ∈ (B + B ] ∩ B

and a ∈ (B2 ] ∩ B, so B is an almost ordered subsemiring of S4. For all x ∈ S4,
we have

(BxB ] ∩ B = {a, b, c} ∩ {a, b} ̸= ∅.

Hence, B is an almost ordered bi-ideal of S4. We see that (B ] = {a, b, c} ̸= B.
Then B is not a bi-ideal of S4.

Theorem 6.1.4. Every almost ordered ideal of S is an almost ordered bi-ideal of
S.

Proof. Let I be an almost ordered ideal of S. Let s ∈ S and a ∈ I. Then
∅ ̸= (asI ] ∩ I ⊆ (IsI ] ∩ I. Hence, I is an almost ordered bi-ideal of S.

The following corollary is a direct consequence of Theorem 5.1.4 and Theorem
6.1.4.

Corollary 6.1.5. Every almost ordered quasi-ideal of S is an almost ordered
bi-ideal of S.

The converse of Theorem 6.1.4 is not generally true as shown in the following
example.

Example 6.1.6. Consider the ordered semiring S4 in Example 6.1.3, we have
B = {a, b} is an almost ordered bi-ideal of S4. We see that

(dB ] ∩ B =
(
{d}

]
∩ {a, b} = {d} ∩ {a, b} = ∅.

Hence, B is not an almost ordered ideal of S4.

Theorem 6.1.7. Let A be an almost ordered bi-ideal of S. If B is a subset of S
such that A ⊆ B, then B is also an almost ordered bi-ideal of S.

Proof. Let B be a subset of S such that A ⊆ B. Since A is an almost ordered
subsemiring of S, it follows from Theorem 3.1.5 that B is also an almost ordered
subsemiring of S. For all s ∈ S, we have ∅ ̸= (AsA ]∩A ⊆ (BsB ]∩B. Therefore,
B is an almost ordered bi-ideal of S.

Corollary 6.1.8. The union of almost ordered bi-ideals of S is also an almost
ordered bi-ideal of S.



25

6.2 Fuzzy almost ordered bi-ideals of ordered semirings
Definition 6.2.1. A fuzzy subset f of S is called a fuzzy almost ordered bi-ideal
of S if f is a fuzzy almost ordered subsemiring of S and (f ◦ sα ◦ f ] ∩ f ̸= 0 for
all s ∈ S and α ∈ (0, 1].

Theorem 6.2.2. Let f be a fuzzy subset of S. Then f is a fuzzy almost ordered
bi-ideal of S if and only if supp(f) is an almost ordered bi-ideal of S.

Proof. By Theorem 3.2.2, we have f is a fuzzy almost ordered subsemiring of S
if and only if supp(f) is an almost ordered subsemiring of S. Let s ∈ S and
α ∈ (0, 1]. By Theorem 2.2.15, we have

(f ◦ sα ◦ f ] ∩ f ̸= 0 if and only if
((

supp(f)
)
s
(
supp(f)

)]
∩ supp(f) ≠ ∅.

This completes the proof.

Corollary 6.2.3. Let A be a nonempty subset of S. Then CA is a fuzzy almost
ordered bi-ideal of S if and only if A is an almost ordered bi-ideal of S.

Theorem 6.2.4. If f is a nonzero fuzzy bi-ideal of S, then f is a fuzzy almost
ordered bi-ideal of S.

Proof. Assume that f is a nonzero fuzzy bi-ideal of S. Then supp(f) is a fuzzy
bi-ideal of S, so supp(f) is an almost ordered bi-ideal of S. Hence, f is a fuzzy
almost ordered bi-ideal of S.

The converse of Theorem 6.2.4 is not generally true as shown in the follow-
ing example.

Example 6.2.5. From Example 6.1.3, we have B = {a, b} is an almost bi-ideal
but it is not a bi-ideal of S4. By Corollary 6.2.3, CB is a fuzzy almost ordered
bi-ideal of S4. Since B is not a bi-ideal of S4, by Theorem 2.2.14 (4), CB is not a
fuzzy bi-ideal of S4.

Theorem 6.2.6. Every fuzzy almost ordered ideal of S is a fuzzy almost ordered
bi-ideal of S.

Proof. Let f be a fuzzy almost ordered ideal of S. Then supp(f) is an almost
ordered ideal of S, by Theorem 6.1.4, supp(f) is an almost ordered bi-ideal of S.
Hence, f is a fuzzy almost ordered bi-ideal of S.
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The following corollary is a direct consequence of Theorem 5.2.7 and The-
orem 6.2.6.

Corollary 6.2.7. Every fuzzy almost ordered quasi-ideal of S is a fuzzy almost
ordered bi-ideal of S.

The converse of Theorem 6.2.6 is not generally true as shown in the follow-
ing example.

Example 6.2.8. Consider the ordered semiring S4 in Example 6.1.6, we have B is
an almost ordered bi-ideal of S4 but it is not an almost ordered ideal of S4. Then
CB is a fuzzy almost ordered bi-ideal of S4 but it is not a fuzzy almost ordered
ideal of S4.

Theorem 6.2.9. Let f and g be fuzzy subsets of S such that f ⊆ g. If f is a
fuzzy almost ordered bi-ideal of S, then g is also a fuzzy almost ordered bi-ideal
of S.

Proof. Suppose that f is a fuzzy almost ordered bi-ideal of S with f ⊆ g. Then
supp(f) is an almost ordered bi-ideal of S such that supp(f) ⊆ supp(g). It follows
that supp(g) is an almost ordered bi-ideal of S. Then g is a fuzzy almost ordered
bi-ideal of S.

Corollary 6.2.10. The union of fuzzy almost ordered bi-ideals of S is also a fuzzy
almost ordered bi-ideal of S.

Definition 6.2.11. A fuzzy almost ordered bi-ideal f of S is called minimal if for
all fuzzy almost ordered bi-ideal g of S with g ⊆ f , we have supp(g) = supp(f).

Theorem 6.2.12. Let f be a fuzzy subset of S. Then f is a minimal fuzzy almost
ordered bi-ideal of S if and only if supp(f) is a minimal almost ordered bi-ideal
of S.

Proof. The proof is similar to Theorem 4.2.10.

Corollary 6.2.13. Let A be a nonempty subset of S. Then CA is a minimal fuzzy
almost ordered bi-ideal of S if and only if A is a minimal almost ordered bi-ideal
of S.



Chapter 7

Almost ordered interior-ideals and
their fuzzifications

In this chapter, we define almost ordered interior-ideals and fuzzy almost
ordered interior-ideals in ordered semirings and we give some relationships between
them.

7.1 Almost ordered interior-ideals of ordered semirings
Definition 7.1.1. A nonempty subset I of S is called an almost ordered interior-
ideal of S if I is an almost ordered subsemiring of S and (sIt ] ∩ I ̸= ∅ for all
s, t ∈ S.

Theorem 7.1.2. Every interior-ideal of S is an almost ordered interior-ideal of S.

Proof. Let I be an interior-ideal of S. Since I is a subsemiring of S, by Theorem
3.1.2, I is an almost ordered subsemiring of S. Let s, t ∈ S. Then

(sIt ] ⊆ (SIS ] ⊆ (I ] = I.

It follows that ∅ ̸= (sIt ] = (sIt ] ∩ I. Therefore, I is an almost ordered interior-
ideal of S.

The converse of Theorem 7.1.2 is not always true as shown in the following
example.

Example 7.1.3. Let S5 = {a, b, c, d, e}. Define binary operations + and · on S5

as shown in the following table:

+ a b c d e · a b c d e

a a b c d e a a a a a a

b b b d d d b a a a a a

c c d d d d c a a b b b

d d d d d d d a a b b b

e e d d d e e a a b b b

.
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Define a relation ≤ on S5 by

≤=
{
(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, d), (a, e), (b, d), (c, d), (e, d)

}
.

Then (S5,+, ·,≤) is an ordered semiring. Let I = {a, d}. We have a ≤ a + a,
a ≤ a2 and a ∈ I. Then a ∈ (I + I ] ∩ I and a ∈ (I2 ] ∩ I, so I is an almost
ordered subsemiring of S5. Since a = sat for all s, t ∈ S5 and a ∈ I, it follows that
a ∈ (sIt ]∩ I for all s, t ∈ S5. Then I is an almost ordered interior-ideal of S5 but
is not an interior-ideal of S5 because b = dd ∈ I2 but b /∈ I, that is, I2 ̸⊆ I.

Theorem 7.1.4. Let A be an almost ordered interior-ideal of S. If B is a subset
of S containing A, then B is also an almost ordered interior-ideal of S.

Proof. Let B be a subset of S containing A. By Theorem 3.1.5, B is an almost
ordered subsemiring of S. We also have ∅ ̸= (sAt ]∩A ⊆ (sBt ]∩B for all s, t ∈ S.
Hence, B is an almost ordered interior-ideal of S.

Corollary 7.1.5. The union of almost ordered interior-ideals of S is also an almost
ordered interior-ideal of S.

7.2 Fuzzy almost ordered interior-ideals of ordered
semirings

Definition 7.2.1. A fuzzy subset f of S is called a fuzzy almost ordered interior-
ideal of S if f is a fuzzy almost ordered subsemiring of S and (sα ◦ f ◦ tβ ]∩ f ̸= 0

for all s, t ∈ S and α, β ∈ (0, 1].

Theorem 7.2.2. Let f be a fuzzy subset of S. Then f is a fuzzy almost ordered
interior-ideal of S if and only if supp(f) is an almost ordered interior-ideal of S.

Proof. By Theorem 3.2.2, f is a fuzzy almost ordered subsemiring of S if and only
if supp(f) is an almost ordered subsemiring of S. Let s, t ∈ S and α, β ∈ (0, 1].
By Theorem 2.2.15, we have

(sα ◦ f ◦ tβ ] ∩ f ̸= 0 if and only if
(
s
(
supp(f)

)
t
]
∩ supp(f) ̸= ∅,

which completes the proof of the theorem.

Corollary 7.2.3. Let A be a nonempty subset of S. Then CA is a fuzzy almost
ordered interior-ideal of S if and only if A is an almost ordered interior-ideal of S.
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Theorem 7.2.4. If f is a nonzero fuzzy interior-ideal of S, then f is a fuzzy
almost ordered interior-ideal of S.

Proof. Assume that f is a nonzero fuzzy interior-ideal of S. By Theorem 2.2.16
(5), supp(f) is an interior-ideal of S, so supp(f) is an almost ordered interior-ideal
of S. Hence, f is a fuzzy almost ordered interior-ideal of S.

The converse of Theorem 7.2.4 is not generally true as shown in the follow-
ing example.

Example 7.2.5. From Example 7.1.3, we have I = {a, d} is an almost ordered
interior-ideal of S5 but it is not an interior-ideal of S5. Therefore, CI is a fuzzy
almost ordered inteior-ideal of S5 but it is not a fuzzy inteior-ideal of S5.

Theorem 7.2.6. Let f be a fuzzy almost ordered interior-ideal of S and g be
a fuzzy subsets of S such that f ⊆ g. Then g is also a fuzzy almost ordered
interior-ideal of S.

Proof. Since f is a fuzzy almost ordered interior-ideal of S, we get supp(f) is an
almost ordered interior-ideal of S. Since supp(f) ⊆ supp(g), we have supp(g) is an
almost ordered interior-ideal of S. Hence, g is a fuzzy almost ordered interior-ideal
of S.

Corollary 7.2.7. The union of fuzzy almost ordered interior-ideals of S is also a
fuzzy almost ordered interior-ideal of S.

Definition 7.2.8. A fuzzy almost ordered interior-ideal f of S is called minimal
if for all fuzzy almost ordered interior-ideal g of S such that g ⊆ f , we have
supp(g) = supp(f).

Theorem 7.2.9. Let f be a fuzzy subset of S. Then f is a minimal fuzzy almost
ordered interior-ideal of S if and only if supp(f) is a minimal almost ordered
interior-ideal of S.

Proof. The proof is similar to Theorem 4.2.10.

Corollary 7.2.10. Let A be a nonempty subset of S. Then CA is a minimal fuzzy
almost ordered interior-ideal of S if and only if A is a minimal almost ordered
interior-ideal of S.



Chapter 8

Tri-quasi ideals of ordered semirings

In this chapter, we introduce the notion of tri-quasi ideals and fuzzy tri-
quasi ideals of ordered semirings. Moreover, we define almost ordered tri-quasi
ideals and fuzzy almost ordered tri-quasi ideals of ordered semirings and we give
some relationships between them.

8.1 Tri-quasi ideals of ordered semirings
Definition 8.1.1. A nonempty subset Q of S is said to be a tri-quasi ideal of S
if Q is a subsemiring of S, Q2SQ2 ⊆ Q and (Q ] = Q.

Example 8.1.2. Consider the ordered semiring S1 in Example 3.1.3, and let
Q = {a, b}. Then we have

Q+Q = {a, b}+ {a, b} = {a, b} ⊆ Q and Q2 = {a, b}2 = {a, b} ⊆ Q.

Then Q is a subsemiring of S1. We see that

Q2S1Q
2 = {a, b}2S1{a, b}2 = {a, b} ⊆ Q and (Q ] =

(
{a, b}

]
= {a, b} = Q.

Hence, Q is a tri-quasi ideal of S1.

The following theorem shows some relationships between tri-quasi-ideals
and other ideals of ordered semirings.

Theorem 8.1.3. Let S be an ordered semiring. Then

(1) Every left (right) ideal of S is a tri-quasi ideal of S.

(2) Every ideal of S is a tri-quasi ideal of S.

(3) Every quasi-ideal of S is a tri-quasi ideal of S.

(4) Every bi-ideal of S is a tri-quasi ideal of S.

(5) Every interior-ideal of S is a tri-quasi ideal of S.

30
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Proof. We will prove (4) and (5). Part (1), (2) and (3) follows directly from (4).
(4) Let B be a bi-ideal of S. Then B2SB2 = B(BSB)B ⊆ BSB ⊆ B.

Hence, B is a tri-quasi ideal of S.
(5) Let I be an interior-ideal of S. Then

I2SI2 = (IIS)I2 ⊆ (SIS)I2 ⊆ I3 ⊆ SIS ⊆ I.

Therefore, I is a tri-quasi ideal of S.

Definition 8.1.4. For nonempty subsets A of S, define the subset ΣA of S by

ΣA =
{ n∑

i=1

ai | ai ∈ A and n ∈ N
}
.

Theorem 8.1.5. Let A and B be nonempty subsets of S. Then the following
properties hold.

(1) A ⊆ ΣA and ΣA = A if and only if A+ A ⊆ A.

(2) ΣA+ ΣA ⊆ ΣA.

(3) Σ(ΣA) = ΣA.

(4) (ΣA)B ⊆ ΣAB and B(ΣA) ⊆ ΣBA.

(5) (ΣA)(ΣB) ⊆ ΣAB.

(6) Σ(A ] ⊆ (ΣA ].

Theorem 8.1.6. Let S be an ordered semiring. Then

(1) The intersection of a right ideal and a left ideal of S is a tri-quasi ideal of S.

(2) The intersection of an interior ideal and a bi-ideal of S is a tri-quasi ideal of S.

(3) If B is a bi-ideal of S and A is a nonempty subset of S, then (ΣAB ] and
(ΣBA ] are tri-quasi ideals of S.

Proof. (1) Let R be a right ideal and L be a left ideal of S. Since RL ⊆ R ∩ L,
we have R ∩ L ̸= ∅. Since R and L are subsemirings of S, we get R ∩ L is a
subsemiring of S. Since

(R ∩ L)2S(R ∩ L)2 ⊆ R(R ∩ L)S(R ∩ L)2 ⊆ RS ⊆ R and
(R ∩ L)2S(R ∩ L)2 ⊆ (R ∩ L)2S(R ∩ L)L ⊆ SL ⊆ L,
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it follows that (R∩L)2S(R∩L)2 ⊆ R∩L. We also have (R∩L ] ⊆ (R ]∩(L ] = R∩L.
Hence, R ∩ L is a tri-quasi ideal of S.

(2) Let B be a bi-ideal of S and I be an interior ideal of S. Since
BIB ⊆ B ∩ I, we have B ∩ I ̸= ∅. Since B and I are subsemirings of S, we
get B ∩ I is a subsemiring of S. Since

(B ∩ I)2S(B ∩ I)2 ⊆ BBSBB ⊆ BBB ⊆ BSB ⊆ B and
(B ∩ I)2S(B ∩ I)2 ⊆ IISII ⊆ SISIS ⊆ SIS ⊆ I,

it follows that (B∩I)2S(B∩I)2 ⊆ B∩I. We also have (B∩I ] ⊆ (B ]∩(I ] = B∩I.
Hence, B ∩ I is a tri-quasi ideal of S.

(3) Let A be a nonempty subset of S and B be a bi-ideal of S. Then
(ΣAB ] + (ΣAB ] ⊆ (ΣAB + ΣAB ] ⊆ (ΣAB ] and we have

(ΣAB ](ΣAB ] ⊆
(
(ΣAB)(ΣAB)

]
⊆ (ΣABAB ] ⊆ (ΣABSB ] ⊆ (ΣAB ].

Thus (ΣAB ] is a subsemiring of S. We have

(ΣAB ]2S(ΣAB ]2 ⊆
(
(ΣAB)2S(ΣAB)2

]
⊆

(
(ΣABAB)S(ΣABAB)

]
⊆

(
(ΣABABS)(ΣABAB)

]
⊆ (ΣABABSABAB ]

⊆ (ΣABSB ]

⊆ (ΣAB ].

Since
(
(ΣAB ]

]
= (ΣAB ], we get (ΣAB ] is a tri-quasi ideal of S. Similarly, we

can show that (ΣBA ] is a tri-quasi ideal of S.

Theorem 8.1.7. Let A be a nonempty subset of S. Then (ΣA2SA2 ] is a tri-quasi
ideal of S.

Proof. Since

(ΣA2SA2 ] + (ΣA2SA2 ] ⊆ (ΣA2SA2 + ΣA2SA2 ] ⊆ (ΣA2SA2 ] and
(ΣA2SA2 ]2 ⊆

(
(ΣA2SA2)2

]
⊆ (ΣA2SA2A2SA2 ] ⊆ (ΣA2SA2 ],
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we have (ΣA2SA2 ] is a subsemiring of S. We also have

(ΣA2SA2 ]2S(ΣA2SA2 ]2 ⊆
(
(ΣA2SA2)2S(ΣA2SA2)2

]
⊆

(
(ΣA2SA2A2SA2)S(ΣA2SA2A2SA2)

]
⊆

(
(ΣA2SA2A2SA2S)(ΣA2SA2A2SA2)

]
⊆

(
(ΣA2SA2A2SA2SA2SA2A2SA2)

]
⊆ (ΣA2SA2 ].

Since
(
(ΣA2SA2 ]

]
= (ΣA2SA2 ], we get (ΣA2SA2 ] is a tri-quasi ideal of S.

Theorem 8.1.8. Let {Qi}i∈I be a collection of tri-quasi ideals of S. If
⋂
i∈I

Qi ̸= ∅,

then
⋂
i∈I

Qi is a tri-quasi ideal of S.

Proof. Assume that
⋂
i∈I

Qi ̸= ∅. Then
⋂
i∈I

Qi is a subsemiring of S. We have

( ⋂
i∈I

Qi

)2

S
( ⋂

i∈I

Qi

)2

⊆ Q2
iSQ

2
i ⊆ Qi for all i ∈ I and( ⋂

i∈I

Qi

]
⊆

⋂
i∈I

(Qi ] =
⋂
i∈I

Qi.

It follows that
( ⋂

i∈I

Qi

)2

S
( ⋂

i∈I

Qi

)2

⊆
⋂
i∈I

Qi. Hence,
⋂
i∈I

Qi is a tri-quasi ideal

of S.

Theorem 8.1.9. Let Q be a nonempty subset of S and Q = (Q2]. Then the
following statements are equivalent :

(1) Q is a tri-quasi ideal of S.

(2) There exist a right ideal R and a left ideal L of S such that RL ⊆ Q ⊆ R∩L.

(3) Q is a left ideal of some right ideal of S.

(4) Q is a right ideal of some left ideal of S.

Proof. (1) ⇒ (2) : Assume that Q is a tri-quasi ideal of S. Let R = (ΣQS ] and
L = (ΣSQ ]. It is easy to see that R and L are a right ideal and a left ideal of S,
respectively. Then we have

RL ⊆ (ΣQSSQ ] =
(
Σ(Q2 ]SS(Q2 ]

]
⊆

(
Σ(Q2SQ2 ]

]
⊆ (ΣQ2SQ2 ] ⊆ (ΣQ ] = Q and
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Q = (Q2 ] ⊆ (QS ] ∩ (SQ ] ⊆ (ΣQS ] ∩ (ΣSQ ] = R ∩ L.

(2) ⇒ (3) : Assume that there exist a right ideal R and a left ideal L of S such that
RL ⊆ Q ⊆ R ∩ L. We have (ΣQS ] is a right ideal of S and Q = (Q2 ] ⊆ (ΣQS ].
We see that

(ΣQS ]Q ⊆
(
Σ(R ∩ L)S

]
(R ∩ L) ⊆ (ΣRS ]L ⊆ (R ]L = RL ⊆ Q.

Since (Q ] =
(
(Q2 ]

]
= (Q2 ] = Q, we obtain that Q is a left ideal of a right ideal

(ΣQS ] of S.
(3) ⇒ (4) : Assume that Q is a left ideal of some right ideal R of S. Then RQ ⊆ Q

and RS ⊆ R. Thus

Q = (Q2 ] ⊆ (ΣSQ ] and Q(ΣSQ ] ⊆ R(ΣSQ ] ⊆ (ΣRSQ ] ⊆ (ΣRQ ] ⊆ (Q ] = Q.

Therefore, Q is a right ideal of a left ideal (ΣSQ ] of S.
(4) ⇒ (1) : Assume that Q is a right ideal of some left ideal L of S. Then QL ⊆ Q

and SL ⊆ L. Thus Q2SQ2 ⊆ Q2SQL ⊆ QSL ⊆ QL ⊆ Q. Hence, Q is a tri-quasi
ideal of S.

Definition 8.1.10. An ordered semiring with multiplicative identity is called a
division ordered semiring if for each non-zero element has multiplicative inverse.

Theorem 8.1.11. If S is a division ordered semiring, then the only tri-quasi ideals
of S are {0} and S.

Proof. Assume that S is a division ordered semiring. Let Q be a tri-quasi ideal of
S such that Q ̸= {0}. Let a ∈ Q with a ̸= 0. Then there exists b ∈ S such that
ab = 1 = ba. Let x ∈ S. Then x = xba ∈ SQ and x = abx ∈ QS. This implies
that QS = S = SQ. Thus

S = SQ = QSQ = Q(SQ)Q = Q(QS)QQ ⊆ Q.

Therefore, S = Q.

Definition 8.1.12. An element a ∈ S is said to be regular if a ≤ axa for some
x ∈ S, and S is called a regular ordered semiring if every element of S is regular.
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Theorem 8.1.13. If S has a multiplicative identity, then S is regular if and only
if Q ∩ I ∩ L ⊆ (QIL ] for any tri-quasi ideal Q, ideal I and left ideal L of S.

Proof. Assume that S is regular. Let Q, I and L be a tri-quasi ideal, an ideal and
a left ideal of S, respectively. Let a ∈ Q∩ I ∩L. Since S is regular, a ∈ (aSa ], so
a ∈ (aSa ] ⊆

(
(aSa ]S(aSa ]

]
⊆ (aSaSaSa ] ⊆ (QIL ]. Hence, Q∩ I ∩L ⊆ (QIL ].

Conversely, suppose that Q∩I ∩L ⊆ (QIL ] for any tri-quasi ideal Q, ideal
I and left ideal L of S. Let a ∈ S. Then

a ∈ (aS ] ∩ S ∩ (Sa ] ⊆
(
(aS ]S(Sa ]

]
⊆

(
(aSSSa ]

]
⊆ (aSa ].

Hence, S is regular.

Theorem 8.1.14. If S is regular and commutative, then the following statements
hold:

(1) Q = (Q2SQ2 ] for all tri-quasi ideal Q of S.

(2) Every tri-quasi ideal of S is an ideal of S.

Proof. (1) Let Q be a tri-quasi ideal of S. Then (Q2SQ2 ] ⊆ (Q ] = Q. Let a ∈ Q.
Since S is regular, we have a ≤ axa for some x ∈ S. Then

a ≤ axa ≤ (axa)x(axa) = aa(xxx)aa ∈ Q2SQ2.

So a ∈ (Q2SQ2 ]. This shows that Q ⊆ (Q2SQ2 ]. It follows that Q = (Q2SQ2 ].
(2) Let Q be a tri-quasi ideal of S. By (1), Q = (Q2SQ2 ]. Thus

QS = (Q2SQ2 ]S ⊆ (Q2SSQ2 ] ⊆ (Q2SQ2 ] ⊆ (Q ] = Q.

Since S is commutative, SQ = QS ⊆ Q. Therefore, Q is an ideal of S.

Theorem 8.1.15. If S has a multiplicative identity and S is commutative, then
S is regular if and only if Q = (Q2SQ2 ] for every tri-quasi ideal Q of S.

Proof. Assume that S is regular. Let Q be a tri-quasi ideal of S. By Theorem
8.1.14(1), Q = (Q2SQ2 ].

Conversely, suppose that Q = (Q2SQ2 ] for all tri-quasi ideal Q of S. Let
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a ∈ S. By Theorem 8.1.3(1), we get (aS ] ∩ (Sa ] is a tri-quasi ideal of S. Thus

a ∈ (aS ] ∩ (Sa ] =
((

(aS ] ∩ (Sa ]
)2
S
(
(aS ] ∩ (Sa ]

)2]
⊆

(
(aS ]2S(Sa ]2

]
⊆

((
(aS)2S(Sa)2

]]
⊆ (aSa ].

Hence, S is regular.

Theorem 8.1.16. Let T be a nonempty subset of S. If S is idempotent, then T

is a tri-quasi ideal of S if and only if there exist a right ideal R and a left ideal L
of S such that T = (ΣRL ].

Proof. Suppose that T is a tri-quasi ideal of S. Let R = (ΣTS ], L = (ΣST ]. Then

(ΣRL ] =
(
Σ(ΣTS ](ΣST ]

]
⊆

(
Σ(ΣTSST ]

]
⊆

(
(ΣTSST ]

]
⊆ (ΣT 2ST 2 ] ⊆ T

and T ⊆ TTTT ⊆ TSST ⊆ (ΣTS ](ΣST ] ⊆
(
Σ(ΣTS ](ΣST ]

]
= (ΣRL ]. Hence,

T = (ΣRL ]. Conversely, assume that T = (ΣRL ] where R is a right ideal and L

is a left ideal of S. Since R is a bi-ideal of S, by Theorem 8.1.3(3), we get T is a
tri-quasi ideal of S.

Definition 8.1.17. S is called a tri-quasi-simple ordered semiring if S has no
tri-quasi ideals other than S itself.

Theorem 8.1.18. If S is a left and a right simple, then S is a tri-quasi simple
ordered semiring.

Proof. Let Q be a tri-quasi ideal of S. Then (ΣSQ ] is a left ideal of S and (ΣQS ]

is a right ideal of S. So S = (ΣSQ ] and S = (ΣQS ]. Thus

S = (ΣSQ ] =
(
Σ(ΣQS ]Q

]
⊆

(
Σ(ΣQSQ]

]
⊆ (ΣQSQ] ⊆ (ΣQ2SQ] ⊆ (ΣQ2SQ2] ⊆ Q.

Hence, S is tri-quasi simple.
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Theorem 8.1.19. Let S be an ordered semiring. Then the following statements
are equivalent:

(1) S is tri-quasi simple.

(2) Q(a) = S for all a ∈ S, where Q(a) is the smallest tri-quasi ideal of S generated
by a.

(3) (a2Sa2 ] = S for all a ∈ S.

Proof. (1) ⇒ (2): Assume that S is tri-quasi simple. Then S = Q(a) for all a ∈ S.
(2) ⇒ (1): Assume that S = Q(a) for all a ∈ S. Let A be a tri-quasi ideal of S
and a ∈ A. Thus S = Q(a) ⊆ A, so S = A. Hence, S is tri-quasi simple.
(1) ⇒ (3): Suppose that S is tri-quasi simple. Let a ∈ S. By Theorem 8.1.7,
(a2Sa2 ] is a tri-quasi ideal of S. Then (a2Sa2 ] = S.
(3) ⇒ (1): Suppose that (a2Sa2 ] = S for all a ∈ S. Let Q be a tri-quasi ideal of
S and q ∈ Q. Thus S = (q2Sq2 ] ⊆ (Q2SQ2 ] ⊆ (Q ] = Q. Hence, S is a tri-quasi
simple ordered semiring.

Definition 8.1.20. A tri-quasi ideal Q of S is said to be a minimal tri-quasi ideal
of S if Q does not contain any other tri-quasi ideal of S.

Theorem 8.1.21. Let Q be a tri-quasi ideal of S. If Q is a tri-quasi simple
subsemiring of S, then Q is a minimal tri-quasi ideal of S.

Proof. Assume that Q is a tri-quasi simple subsemiring of S. Let C be a tri-quasi
ideal of S with C ⊆ Q. Then C is a subsemiring of Q, C2QC2 ⊆ C2SC2 ⊆ C

and (C ] = C. Thus C is a tri-quasi ideal of Q. Since Q is tri-quasi simple, we get
C = Q. Hence Q is a minimal tri-quasi ideal of S.

Theorem 8.1.22. Let R and L be nonempty subsets of S. If R is a minimal right
ideal of S and L is a minimal left ideal of S, then (ΣRL ] is a minimal tri-quasi
ideal of S.

Proof. Let R be a minimal right ideal of S and L be a minimal left ideal of S.
Since R is a bi-ideal of S, by Theorem 8.1.3 (3), we get (ΣRL ] is a tri-quasi ideal
of S. Let A be a tri-quasi ideal of S with A ⊆ (ΣRL ]. Let a ∈ A. Then

(Sa2 ] ⊆
(
S(ΣRL ]2

]
⊆

(
S(ΣRLRL ]

]
⊆

(
(ΣSRLRL ]

]
⊆

(
(ΣL ]

]
⊆

(
(L ]

]
⊆ L and

(a2S ] ⊆
(
(ΣRL ]2S

]
⊆

(
(ΣRLRL ]S

]
⊆

(
(ΣRLRLS ]

]
⊆

(
(ΣR ]

]
⊆

(
(R ]

]
⊆ R.
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By the minimality of L and R, we get L = (Sa2 ] and R = (a2S ]. Thus

(ΣRL ] =
(
Σ(a2S ](Sa2 ]

]
⊆

(
Σ(a2Sa2 ]

]
⊆

(
Σ(A2SA2 ]

]
⊆

(
Σ(A ]

]
⊆

(
(ΣA ]

]
⊆ A.

Hence, (ΣRL ] = A. Therefore, (ΣRL ] is a minimal tri-quasi ideal of S.

For any a ∈ S, let L(a) be the smallest left ideal of S generated by a and
R(a) be the smallest right ideal of S generated by a.

Theorem 8.1.23. Let Q be a tri-quasi ideal of S. If S is regular and commutative,
then the following statements are equivalent:

(1) Q is a minimal tri-quasi ideal of S.

(2) R(x) = R(y) for all x, y ∈ Q.

(3) L(x) = L(y) for all x, y ∈ Q.

Proof. (1) ⇒ (2): Assume that Q is a minimal tri-quasi ideal of S. Let x, y ∈ Q.
By Theorem 8.1.3(1) and Theorem 8.1.8, R(x)∩Q is a tri-quasi ideal of S. Since
R(x)∩Q ⊆ Q, by the minimality of Q, we get R(x)∩Q = Q, so Q ⊆ R(x). Then
y ∈ R(x). Thus R(y) ⊆ R(x). Similarly, we can show that R(x) ⊆ R(y). Hence,
R(x) = R(y).
(2) ⇒ (3): Let x, y ∈ Q. Since S is commutative, L(x) = R(x) = R(y) = L(y).
(3) ⇒ (1): Suppose that L(x) = L(y) for all x, y ∈ Q. Let A be a tri-quasi ideal
of S with A ⊆ Q. Let x ∈ Q and a ∈ A. By Theorem 8.1.14(2), A is a left ideal
of S. Thus x ∈ L(x) = L(a) ⊆ A. Hence, Q is minimal.

8.2 Fuzzy tri-quasi ideals of ordered semirings
Definition 8.2.1. A fuzzy subset f of an ordered semiring S is called a fuzzy
tri-quasi-ideal of S if f is a fuzzy subsemiring of S, f 2 ◦CS ◦ f 2 ⊆ f and (f ] = f .

Example 8.2.2. Consider the ordered semiring S3 in Example 5.1.3. Define a
fuzzy subset f of S3 by

f(0) = 1, f(a) = 0.8, f(b) = 0.6 and f(c) = 0.3.

Then f is a fuzzy tri-quasi ideal of S3.
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Theorem 8.2.3. Let f be a fuzzy subset of S. Then f is a fuzzy tri-quasi ideal
of S if and only if f satisfies the following conditions.

(1) f(x+ y) ≥ min{f(x), f(y)} and f(xy) ≥ min{f(x), f(y)} for all x, y ∈ S.

(2) f(abscd) ≥ min{f(a), f(b), f(c), f(d)} for all a, b, s, c, d ∈ S.

(3) For all x, y ∈ S, if x ≤ y, then f(x) ≥ f(y).

Proof. Assume that f is a fuzzy tri-quasi ideal of S. For the first condition, let
x, y ∈ S. We have f(x + y) ≥ (f + f)(x + y) ≥ min{f(x), f(y)}. Similarly, we
get f(xy) ≥ (f ◦ f)(xy) ≥ min{f(x), g(y)}. To prove the second condition, let
a, b, s, c, d ∈ S. Then f(abscd) ≥ (f 2◦CS◦f 2)(abscd) ≥ min{f(a), f(b), f(c), f(d)}.
Finally, let x, y ∈ S such that x ≤ y. Then f(x) = (f ](x) = sup

x≤y
f(y) ≥ f(y).

Conversely, suppose that the three conditions hold. Let x ∈ S. If x ̸∈ S+S,
then (f + f)(x) = 0 ≤ f(x). Suppose that x ∈ S + S. Then

(f + f)(x) = sup
x=a+b

min{f(a), f(b)} ≤ sup
x=a+b

f(a+ b) = f(x).

This shows that f + f ⊆ f . Similarly, we can show that f ◦ f ⊆ f . Then f is a
fuzzy subsemiring of S. Next, we will show that f 2 ◦ CS ◦ f 2 ⊆ f . Let x ∈ S. If
x ̸∈ S5, then (f 2 ◦ CS ◦ f 2)(x) = 0 ≤ f(x). Assume that x ∈ S5. Then

(f 2 ◦ CS ◦ f 2)(x) = sup
x=abscd

min{f(a), f(b), CS(s), f(c), f(d)}

= sup
x=abscd

min{f(a), f(b), f(c), f(d)}

≤ sup
x=abscd

f(abscd)

= f(x).

Thus f 2 ◦ CS ◦ f 2 ⊆ f . Finally we will show that (f ] = f . Let x ∈ S. Then
f(x) ≥ f(y) for all y ∈ S with x ≤ y. We have (f ](x) = sup

x≤y
f(y) ≤ f(x), so

(f ] = f . Hence, f is a fuzzy tri-quasi ideal of S.
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Theorem 8.2.4. The following statements hold.

(1) Every fuzzy left (right) ideal of S is a fuzzy tri-quasi ideal of S.

(2) Every fuzzy ideal of S is a fuzzy tri-quasi ideal of S.

(3) Every fuzzy quasi-ideal of S is a fuzzy tri-quasi ideal of S.

(4) Every fuzzy bi-ideal of S is a fuzzy tri-quasi ideal of S.

(5) Every fuzzy interior ideal of S is a fuzzy tri-quasi ideal of S.

Proof. We will prove (4) and (5). Part (1), (2) and (3) follows directly from (4).
(4) Let f be a fuzzy bi-ideal of S. Then f 2 ◦ CS ◦ f 2 ⊆ f ◦ CS ◦ f ⊆ f .

Hence, f is a fuzzy tri-quasi ideal of S.
(5) Let f be a fuzzy interior ideal of S. Then f 2◦CS ◦f 2 ⊆ CS ◦f ◦CS ⊆ f .

Hence, f is a fuzzy tri-quasi ideal of S.

Theorem 8.2.5. Let Q be a nonempty subset of S. Then Q is a tri-quasi ideal
of S if and only if CQ is a fuzzy tri-quasi ideal of S.

Proof. Assume that Q is a tri-quasi ideal of S. Then CQ + CQ = CQ+Q ⊆ CQ,
CQ ◦ CQ = CQ2 ⊆ CQ, C2

Q ◦ CS ◦ C2
Q = CQ2SQ2 ⊆ CQ and (CQ ] = C(Q ] = CQ.

Hence, CQ is a fuzzy tri-quasi ideal of S.
Conversely, assume that CQ is a fuzzy tri-quasi ideal of S. Since CQ+Q =

CQ + CQ ⊆ CQ, we have Q+Q ⊆ Q. Similarly, we can show that Q2 ⊆ Q. Since
CQ2SQ2 = C2

Q ◦ CS ◦ C2
Q ⊆ CQ, we have Q2SQ2 ⊆ Q. Since C(Q ] = (CQ ] = CQ, it

follows that (Q ] = Q. Therefore, Q is a tri-quasi ideal of S.

Theorem 8.2.6. Let f be a fuzzy subset of S. Then f is a fuzzy tri-quasi ideal
of S if and only if for any t ∈ [0, 1], if ft ̸= ∅, then ft is a tri-quasi ideal of S.

Proof. Assume that f is a fuzzy tri-quasi ideal of S and t ∈ [0, 1] such that ft ̸= ∅.
Let x, y ∈ ft. Then we have

f(x+ y) ≥ min{f(x), f(y)} ≥ min{t, t} = t and
f(xy) ≥ min{f(x), f(y)} ≥ min{t, t} = t,

so x+ y, xy ∈ ft. Thus ft is a subsemiring of S. Let x ∈ ft
2Sft

2. Then x = abscd,
where a, b, c, d ∈ ft and s ∈ S. Thus f(abscd) ≥ min{f(a), f(b), f(c), f(d)} ≥ t.
Thus x ∈ ft. This shows that ft

2Sft
2 ⊆ ft. Let x ∈ S such that x ≤ y for some

y ∈ ft. Thus f(x) ≥ f(y) ≥ t, so x ∈ ft. Hence, ft is a tri-quasi ideal of S.
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Conversely, assume that ft is a tri-quasi ideal of S for all t ∈ [0, 1] with
ft ̸= ∅. Let x, y ∈ S and t = min{f(x), f(y)}. Then t ∈ [0, 1] and x, y ∈ ft. By
assumption, ft is a tri-quasi ideal of S. Then x+ y ∈ ft and xy ∈ ft. Thus

f(x+ y) ≥ t = min{f(x), f(y)} and f(xy) ≥ t = min{f(x), f(y)}.

Let a, b, s, c, d ∈ S and t = min{f(a), f(b), f(c), f(d)}. Then a, b, d, c ∈ ft, so
abscd ∈ ft. It follows that f(abscd) ≥ t = min{f(a), f(b), f(c), f(d)}. Let x ∈ S

such that x ≤ y. Let t = f(y). Then y ∈ ft, so x ∈ (ft ] = ft. Thus f(x) ≥ f(y).
Therefore, f is a fuzzy tri-quasi ideal of S.

Theorem 8.2.7. Let {fi}i∈I be a collection of fuzzy tri-quasi ideals of S. Then⋂
i∈I

fi is a fuzzy tri-quasi ideal of S.

Proof. We have( ⋂
i∈I

fi

)
+
( ⋂

i∈I

fi

)
⊆ fi + fi ⊆ fi and

( ⋂
i∈I

fi

)2

⊆ f 2
i for all i ∈ I.

It follows that
( ⋂

i∈I

fi

)
+

( ⋂
i∈I

fi

)
⊆

⋂
i∈I

fi and
( ⋂

i∈I

fi

)2

⊆
⋂
i∈I

fi. Then⋂
i∈I

fi is a fuzzy subsemiring of S. We see that

( ⋂
i∈I

fi

)2

◦ CS ◦
( ⋂

i∈I

fi

)2

⊆ f 2
i ◦ CS ◦ f 2

i ⊆ fi for all i ∈ I.

Then
( ⋂

i∈I

fi

)2

◦ CS ◦
( ⋂

i∈I

fi

)2

⊆
⋂
i∈I

fi. We have
( ⋂

i∈I

fi

]
⊆ (fi ] = fi for all

i ∈ I, so
( ⋂

i∈I

fi

]
⊆

⋂
i∈I

fi. Hence,
⋂
i∈I

fi is a fuzzy tri-quasi ideal of S.

Theorem 8.2.8. If S is regular and commutative, then every fuzzy tri-quasi ideal
of S is a fuzzy ideal of S.

Proof. Let f be a fuzzy tri-quasi ideal of S and a, b ∈ S. Then a ≤ axa for some
x ∈ S and b ≤ byb for some y ∈ S. Thus

ba ≤ baxa ≤ b(axa)x(axa) = aabxxxaa and ba ≤ byba ≤ (byb)y(byb)a = bbyyyabb.
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Then we have

f(ba) ≥ f(aabxxxaa) ≥ min{f(a), f(a), f(a), f(a)} = f(a) and
f(ba) ≥ f(bbyyyabb) ≥ min{f(b), f(b), f(b), f(b)} = f(b).

Hence, f is a fuzzy ideal of S.

Definition 8.2.9. S is called fuzzy tri-quasi simple if every fuzzy tri-quasi ideal
of S is a constant function.

Theorem 8.2.10. S is tri-quasi simple if and only if S is fuzzy tri-quasi simple.

Proof. Assume that S is a tri-quasi simple ordered semiring. Let f be a fuzzy
tri-quasi ideal of S and x, y ∈ S. By Theorem 8.1.19, x ≤ y2s1y

2 and y ≤ x2s2x
2

for some s1, s2 ∈ S. Then

f(x) ≥ f(y2s1y
2)

≥ min{f(y), f(y), f(y), f(y)}
= f(y) ≥ f(x2s2x

2)

≥ min{f(x), f(x), f(x), f(x)}
= f(x).

Thus f is a constant function. Hence, S is fuzzy tri-quasi simple.
Conversely, suppose that S is fuzzy tri-quasi simple. Let Q be a tri-quasi

ideal of S. By Theorem 8.2.5, CQ is a fuzzy tri-quasi ideal of S. Let x ∈ S and
q ∈ Q. Since CQ is a constant function, we get CQ(x) = CQ(q) = 1, so x ∈ Q.
Thus S = Q. Hence, S is tri-quasi simple.

Theorem 8.2.11. If S is a fuzzy tri-quasi simple ordered semiring, then S is a
simple ordered semiring.

Proof. Assume that S is a fuzzy tri-quasi simple ordered semiring. By Theorem
8.2.10, S is tri-quasi simple. Let I be an ideal of S. By Theorem 8.1.3(2), I is a
tri-quasi ideal of S. Thus I = S. Hence, S is simple.

Definition 8.2.12. A fuzzy tri-quasi ideal f is called minimal if for each nonzero
fuzzy tri-quasi ideal g of S such that g ⊆ f , we have supp(g) = supp(f).
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Theorem 8.2.13. If f is a nonzero fuzzy tri-quasi ideal of S, then supp(f) is a
tri-quasi ideal of S.

Proof. Assume that f is a nonzero fuzzy tri-quasi ideal of S. By Theorem 2.2.16,
supp(f) is a subsemiring of S. Since f 2 ◦ CS ◦ f 2 ⊆ f , we get

(
supp(f)

)2
S
(
supp(f)

)2
= supp(f 2 ◦ CS ◦ f 2) ⊆ supp(f).

Since (f ] = f , we have
(
supp(f)

]
= supp(f ] = supp(f). Hence, supp(f) is a

tri-quasi ideal of S.

The converse of Theorem 8.2.13 is not generally true as shown in the
following example.

Example 8.2.14. Let X = {a, b}. Then
(
P (X),∪,∩,⊆

)
is an ordered semiring.

Define a fuzzy subset f of P (X) by

f(∅) = 1, f
(
{a}

)
= 0.8, f

(
{b}

)
= 0.3 and f(X) = 0.6.

Then supp(f) = P (X) is a tri-quasi ideal of P (X). We see that

f
(
X ∩X ∩ {b} ∩X ∩X

)
= f

(
{b}

)
= 0.3 < 0.6 = min

{
f(X), f(X), f(X), f(X)

}
.

Hence, f is not a fuzzy tri-quasi ideal of S.

Theorem 8.2.15. Let Q be a tri-quasi ideal of S. Then Q is a minimal tri-quasi
ideal of S if and only if CQ is a minimal fuzzy tri-quasi ideal of S.

Proof. Assume that Q is a minimal tri-quasi ideal of S. By Theorem 8.2.5, CQ

is a fuzzy tri-quasi ideal of S. Let g be a nonzero fuzzy tri-quasi ideal of S such
that g ⊆ CQ. Then supp(g) ⊆ supp(CQ) = Q. By Theorem 8.2.13, supp(g) is a
tri-quasi ideal of S. By the minimality of Q, we have supp(g) = Q = supp(CQ).
Hence, CQ is a minimal fuzzy tri-quasi ideal of S.

Conversely, suppose that CQ is a minimal fuzzy tri-quasi ideal of S. Let A
be a tri-quasi ideal of S such that A ⊆ Q. Then CA is a fuzzy tri-quasi ideal of
S such that CA ⊆ CQ. Since CQ is minimal, we get supp(CA) = supp(CQ). Thus
A = supp(CA) = supp(CQ) = Q. Hence, Q is minimal.
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8.3 Almost ordered tri-quasi ideals of ordered
semirings

Definition 8.3.1. A nonempty subset Q of S is called an almost ordered tri-quasi
ideal of S if Q is an almost ordered subsemiring of S and (Q2sQ2] ∩Q ̸= ∅ for all
s ∈ S.

Theorem 8.3.2. Every tri-quasi ideal of S is an almost ordered tri-quasi ideal
of S.

Proof. Let Q be a tri-quasi ideal of S. Since Q is a subsemiring of S, by Theorem
3.1.2, Q is an almost ordered subsemiring of S. Let s ∈ S. We have

(Q2sQ2 ] ⊆ (Q2SQ2 ] ⊆ (Q ] = Q.

Then ∅ ̸= (Q2sQ2 ] = (Q2sQ2 ] ∩Q. Hence, Q is an almost ordered tri-quasi ideal
of S.

The converse of Theorem 8.3.2 does not hold in general. We consider the
following example.

Example 8.3.3. Let S6 = {a, b, c, d, e}. Define the binary operations + and · on
S shown in the table

+ a b c d e · a b c d e

a a a a a a a a b c d e

b b b b b b b b c d e a

c c c c c c c c d e a b

d d d d d d d d e a b c

e e e e e e e e a b c d

.

Define a relation ≤ on S6 by

≤= { (a, a), (b, b), (c, c), (d, d), (e, e) }.

Then (S6,+, ·,≤) is an ordered semiring. Let Q = {a, b}. We have a ≤ a + a,
a ≤ a2 and a ∈ Q. Then a ∈ (Q + Q ] ∩ Q and a ∈ (Q2 ] ∩ Q, so Q is an
almost ordered subsemiring of S6. We see that (Q2sQ2 ] ∩ Q = S6 ∩ Q = Q ̸= ∅
for all s ∈ S6. Then Q is an almost ordered tri-quasi ideal of S6. We see that
e = b2ab2 ∈ Q2S6Q

2 but e ̸∈ Q, so Q2S6Q
2 ̸⊆ Q. Therefore, Q is not a tri-quasi

ideal of S6.
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Theorem 8.3.4. Let S be an ordered semiring. Then

(1) Every almost ordered ideal of S is an almost ordered tri-quasi ideal of S.

(2) Every almost ordered quasi-ideal of S is an almost ordered tri-quasi ideal of S.

(3) Every almost ordered bi-ideal of S is an almost ordered tri-quasi ideal of S.

(4) Every almost ordered interior-ideal of S is an almost ordered tri-quasi ideal of S.

Proof. We will prove (3) and (4). Part (1) and (2) follows directly from (3).
(3) Let B be an almost ordered bi-ideal of S and b ∈ B. Let s ∈ S. Then

∅ ̸= (BbsbB ] ∩ B ⊆ (B2sB2 ] ∩ B. Hence, B is an almost ordered tri-quasi ideal
of S.

(4) Let I be an almost ordered interior-ideal of S and a ∈ I. Let s ∈ S

Then ∅ ̸= (aIsa2 ] ∩ I ⊆ (I2sI2 ] ∩ I. Therefore, I is an almost ordered tri-quasi
ideal of S.

The converse of Theorem 8.3.4 does not hold in general. We consider the
following example.

Example 8.3.5. Consider the ordered semiring S6 in Example 8.3.3, we have
Q = {a, b} is an almost ordered tri-quasi ideal of S6. We see that (QcQ ]∩Q = ∅.
Then Q is not an almost ordered bi-ideal of S6. We also have (cQa ] ∩ Q = ∅.
Thus Q is not an almost ordered interior-ideal of S6.

Theorem 8.3.6. Let A and B be any two nonempty subsets of S. If A ⊆ B

and A is an almost ordered tri-quasi-ideal of S, then B is also an almost ordered
tri-quasi-ideal of S.

Proof. Suppose that A is an almost ordered tri-quasi ideal of S with A ⊆ B. By
Theorem 3.1.5, B is an almost ordered subsemiring of S. Let s ∈ S. We have
(A2sA2 ] ∩ A ⊆ (B2sB2 ] ∩ B. This implies that (B2sB2 ] ∩ B ̸= ∅. Therefore, B
is an almost ordered tri-quasi ideal of S.

Corollary 8.3.7. The union of almost ordered tri-quasi ideals of S is also an
almost ordered tri-quasi ideal of S.
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8.4 Fuzzy almost ordered tri-quasi ideals of ordered
semirings

Definition 8.4.1. A fuzzy subset f of S is called a fuzzy almost ordered tri-quasi
ideal of S if f is a fuzzy almost ordered subsemiring of S and (f 2 ◦sα ◦f 2 ]∩f ̸= 0

for all s ∈ S and α ∈ (0, 1].

Theorem 8.4.2. Let f be a fuzzy subset of S. Then f is a fuzzy almost ordered
tri-quasi ideal of S if and only if supp(f) is an almost ordered tri-quasi ideal of S.

Proof. By Theorem 3.2.2, we have f is fuzzy almost ordered subsemiring of S

if and only if supp(f) is an almost ordered subsemiring of S. Let s ∈ S and
α ∈ (0, 1]. By Theorem 2.2.15, we have

(f 2 ◦ sα ◦ f 2 ] ∩ f ̸= 0 if and only if
((

supp(f)
)2
s
(
supp(f)

)2] ∩ supp(f) ̸= ∅.

This completes the proof.

Corollary 8.4.3. Let ∅ ̸= A ⊆ S. Then CA is a fuzzy almost ordered tri-quasi
ideal of S if and only if A is an almost ordered tri-quasi ideal of S.

Theorem 8.4.4. Every nonzero fuzzy tri-quasi ideal of S is a fuzzy almost ordered
tri-quasi ideal of S.

Proof. Let f be a nonzero fuzzy tri-quasi ideal of S. Then supp(f) is a tri-quasi
ideal of S, so supp(f) is an almost ordered tri-quasi ideal of S. Hence, f is a fuzzy
almost ordered tri-quasi ideal of S.

The converse of Theorem 8.4.4 is not generally true as shown in the following
example.

Example 8.4.5. From Example 8.3.3, we have Q = {a, b} is an almost ordered
tri-quasi ideal of S6 but it is not a tri-quasi ideal of S6. Then CQ is a fuzzy almost
ordered tri-quasi ideal of S6 but it is not a fuzzy tri-quasi ideal of S6.
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Theorem 8.4.6. Let S be an ordered semiring. Then

(1) Every fuzzy almost ordered ideal of S is a fuzzy almost ordered tri-quasi ideal
of S.

(2) Every fuzzy almost ordered quasi-ideal of S is a fuzzy almost ordered tri-quasi
ideal of S.

(3) Every fuzzy almost ordered bi-ideal of S is a fuzzy almost ordered tri-quasi
ideal of S.

(4) Every fuzzy almost ordered interior-ideal of S is a fuzzy almost ordered tri-
quasi ideal of S.

Proof. We will prove (3) and (4). Part (1) and (2) follows directly from (3).
(3) Let f be a fuzzy almost ordered bi-ideal of S. Then supp(f) is an

almost ordered bi-ideal of S. By Theorem 8.3.4 (3), supp(f) is an almost ordered
tri-quasi ideal of S. Thus f is a fuzzy almost ordered tri-quasi ideal of S.

(4) Let f be a fuzzy almost ordered interior-ideal of S. Then supp(f) is
an almost ordered interior-ideal of S. By Theorem 8.3.4 (4), we have supp(f) is
an almost ordered tri-quasi ideal of S. It follows that f is a fuzzy almost ordered
tri-quasi ideal of S.

The converse of Theorem 8.4.6 does not hold in general. We consider the
following example.

Example 8.4.7. From Example 8.3.5, we have Q = {a, b} is an almost tri-quasi
ideal of S6 but it is not an almost ordered bi-ideal (resp. interior-ideal) of S6.
Hence, CQ is a fuzzy almost ordered tri-quasi ideal of S6 but it is not a fuzzy
almost ordered bi-ideal (resp. interior-ideal) of S6.

Theorem 8.4.8. Let f and g be fuzzy subsets of S such that f ⊆ g. If f is a
fuzzy almost ordered tri-quasi ideal of S, then g is also a fuzzy almost ordered
tri-quasi ideal of S.

Proof. Suppose that f is a fuzzy almost ordered tri-quasi ideal of S with f ⊆ g.
Then supp(f) is an almost ordered tri-quasi ideal of S with supp(f) ⊆ supp(g),
so supp(g) is an almost ordered tri-quasi ideal of S. Hence, g is a fuzzy almost
ordered tri-quasi ideal of S.

Corollary 8.4.9. The union of fuzzy almost ordered tri-quasi ideals of S is also
a fuzzy almost ordered tri-quasi ideal of S.
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Definition 8.4.10. A fuzzy almost ordered tri-quasi ideal f of an ordered semiring
S is called minimal if for all fuzzy almost ordered tri-quasi ideal g of S such that
g ⊆ f , we have supp(g) = supp(f).

Theorem 8.4.11. Let f be a fuzzy subset of S. Then f is a minimal fuzzy
almost ordered tri-quasi ideal of S if and only if supp(f) is a minimal almost
ordered tri-quasi ideal of S.

Proof. The proof is similar to Theorem 4.2.10.

Corollary 8.4.12. Let A be a nonempty subset of S. Then CA is a minimal fuzzy
almost ordered tri-quasi ideal of S if and only if A is a minimal almost ordered
tri-quasi ideal of S.
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Conclusion

An ordered semiring is an interesting algebraic structure. It is a semiring
under partial order, two most simple algebraic structures on the same set. Many
authors investigated interesting results in this algebraic system. Also, the concept
of fuzzy subsets is interesting to play with it.

In Chapter 3, we define almost ordered subsemirings and fuzzy almost
ordered subsemirings in ordered semirings. The union of two almost ordered sub-
semirings [fuzzy almost ordered subsemirings] is also an almost ordered subsemir-
ing [fuzzy almost ordered subsemiring]. Moreover, we investigate some relation-
ships between almost ordered subsemirings and fuzzy almost ordered subsemirings
of ordered semirings.

In Chapter 4, we define almost ordered ideals and fuzzy almost ordered
ideals in ordered semirings. Every almost ordered ideal [fuzzy almost ordered
ideal] is an almost ordered subsemiring [fuzzy almost ordered subsemiring] but
the converse is not true in general. The union of two almost ordered ideals [fuzzy
almost ordered ideals] is also an almost ordered ideal [fuzzy almost ordered ideal].
Moreover, some relationships between almost ordered ideals and fuzzy almost or-
dered ideals of ordered semirings are provided.

In Chapter 5, we define almost ordered quasi-ideals and fuzzy almost or-
dered quasi-ideals in ordered semirings. Every almost ordered quasi-ideal [fuzzy
almost ordered quasi-ideal] is an almost ordered ideal [fuzzy almost ordered ideal]
but the converse is not true in general. The union of two almost ordered quasi-
ideals [fuzzy almost ordered quasi-ideals] is also an almost ordered quasi-ideal
[fuzzy almost ordered quasi-ideal]. We also give some relationships between almost
ordered quasi-ideals and fuzzy almost ordered quasi-ideals of ordered semirings.

In Chapter 6, we introduce the notion of almost ordered bi-ideals and fuzzy
almost ordered bi-ideals of ordered semirings. Every almost ordered quasi-ideal
[fuzzy almost ordered quasi-ideal] is an almost ordered bi-ideal [fuzzy almost or-
dered bi-ideal] but the converse is not true in general. The union of two almost
ordered bi-ideals [fuzzy almost ordered bi-ideals] is also an almost ordered bi-ideal
[fuzzy almost ordered bi-ideal]. We also give some relationships between almost
ordered bi-ideals and fuzzy almost ordered bi-ideals of ordered semirings.
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In Chapter 7, we define almost ordered interior-ideals and fuzzy almost
ordered interior-ideals of ordered semirings. The union of two almost ordered
interior-ideals [fuzzy almost ordered interior-ideals] is also an almost ordered interior-
ideal [fuzzy almost ordered interior-ideal]. Moreover, we investigate some relation-
ships between almost ordered interior-ideals and fuzzy almost ordered interior-
ideals of ordered semirings.

In Chapter 8, we introduce the notion of tri-quasi ideals of ordered semir-
ings. This generalizes the concepts of ideals, quasi-ideals, bi-ideals and interior-
ideals. We also give the characterization of regular ordered semirings by the prop-
erties of their tri-quasi ideals. Moreover, we define fuzzy tri-quasi ideals of ordered
semirings and give some relationships between tri-quasi ideals and fuzzy tri-quasi
ideals of ordered semirings. In addition, we define almost ordered tri-quasi ideals
and fuzzy almost ordered tri-quasi ideals of ordered semirings. The union of two
almost ordered tri-quasi ideals [fuzzy almost ordered tri-quasi ideals] is also an
almost tri-quasi ideal [fuzzy almost ordered tri-quasi ideal]. Finally, we give some
relationships between almost ordered tri-quasi-ideals and fuzzy almost ordered
tri-quasi ideals of ordered semirings.
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