
i

HyBiX: Hybrid Encoding Bitmap Index for
Efficient Space and Query Processing Time

Naphat Keawpibal

A Thesis Submitted in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy in Computer Science

(International Program)
Prince of Songkla University

2018
Copyright of Prince of Songkla University

ii

Thesis Title HyBiX: Hybrid Encoding Bitmap Index for Efficient Space and
Query Processing Time

Author Mr. Naphat Keawpibal
Major Program Computer Science (International Program)

Major Advisor Examining Committee:

.. ... Chairperson
(Asst. Prof. Dr. Sirirut Vanichayobon) (Assoc. Prof. Dr. Ohm Sornil)

... Committee
Co-advisor (Asst. Prof. Dr. Sirirut Vanichayobon)

.. ... Committee
(Asst. Prof. Dr. Ladda Preechaveerakul) (Asst. Prof. Dr. Ladda Preechaveerakul)

... Committee
(Asst. Prof. Dr. Wiphada Wettayaprasit)

The Graduate School, Prince of Songkla University, has approved this thesis as
partial fulfillment of the requirements for the Doctor of Philosophy Degree in Computer
Science (International Program).

...
(Prof. Dr. Damrongsak Faroongsarng)

Dean of Graduate School

iii

This is to certify that the work here submitted is the result of the candidate’s own
investigations. Due acknowledgement has been made of any assistance received.

...Signature
(Asst. Prof. Dr. Sirirut Vanichayobon)
Major Advisor

...Signature
(Asst. Prof. Dr. Ladda Preechaveerakul)
Co-advisor

...Signature
(Mr. Naphat Keawpibal)
Candidate

iv

I hereby certify that this work has not been accepted in substance for any degree, and is
not being currently submitted in candidature for any degree.

...Signature
(Mr. Naphat Keawpibal)
Candidate

ชื่อวิทยานพินธ ์ HyBiX: การลงรหัสดัชนีบิตแมปแบบไฮบริด สาํหรับประสทิธภิาพด้าน

พ้ืนที่และเวลาการประมวลผลสอบถาม

ผูเ้ขียน นายณภัทร แก้วภิบาล

สาขาวิชา วิทยาการคอมพิวเตอร์ (นานาชาติ)

ปีการศึกษา 2561

บทคดัย่อ

การพัฒนาของเทคโนโลยีในปัจจุบันได้สร้างข้อมูลจาํนวนมหาศาลขึ้นมา ซึ่งได้ก่อให้เกิด

ปัญหาในการจัดเกบ็และเข้าถึงข้อมูลจาํนวนมหาศาลดังกล่าว ดังนั้นเทคนิคในการจัดเกบ็ข้อมูลและการเข้าถึง

ข้อมูลจึงได้รับความสนใจและศึกษาเพ่ือให้มีการจัดเกบ็และเข้าถงึข้อมูลอย่างมีประสทิธภาพ ดัชนีบติแมปเป็น

วิธีการจัดทาํดัชนีที่มีประสิทธิภาพและประสิทธผิลในการเรียกดูข้อมูลบนระบบที่มีสภาวะแวดล้อมแบบอ่าน

อย่างเดียว เนื่องจากสามารถดาํเนินการการค้นหาได้รวดเร็วโดยใช้ตัวดาํเนินการบูลีนต้นทุนตํ่าบนดัชนีได้

โดยตรงก่อนเข้าถึงข้อมูลจริง อย่างไรกต็ามข้อเสยีของดชันีบิตแมปคอืขนาดของดชันีที่มีขนาดใหญ่ขึ้นเมื่อสร้าง

บนแอตทริบิวต์ที่มีคาร์ดินอลิตี้ สงู วิทยานิพนธน์ี้ เสนอดัชนีบิตแมปที่มกีารลงรหัสรูปแบบใหม่ซึ่งเรียกว่า ดัชนี

บิตแมปแบบไฮบริด (ดัชนีบิตแมป HyBiX) แนวคิดพ้ืนฐานของการสร้างดัชนีบิตแมปแบบไฮบริดคือการจัด

กลุ่มค่าของแอตทริบิวต์ และการใช้แนวคิดพ้ืนฐานการลงรหัสของดัชนีบิตแมปรูปแบบอื่นๆ ที่มีอยู่ เพ่ือ

ปรับปรงุประสทิธภิาพทั้งด้านเนื้อที่และเวลาที่ใช้ในการประมวลผลสาํหรับการสบืค้นข้อมูลในลักษณะต่างๆ การ

จัดกลุ่มค่าข้อมูลของแอตทริบิวต์ช่วยอาํนวยความสะดวกในการตอบแบบสอบถามที่มีการค้นหาช่วงของค่า

ข้อมูลที่ต่อเนื่องกัน จากผลการวิเคราะห์และทดลองเปรียบเทียบระหว่างดัชนีบิตแมปแบบไฮบริดกับดัชนี

บิตแมปอื่นๆ แสดงให้เห็นว่า เวลาที่ใช้ในการตอบแบบสอบถามแบบค่าเท่ากันเรว็ขึ้ น 79% และการตอบ

แบบสอบถามแบบช่วงเร็วขึ้ น 82% นอกจากนี้ ประสิทธิภาพของดัชนีบิตแมปแบบไฮบริดในแง่ของการ

แลกเปล่ียนระหว่างประสิทธิภาพของพ้ืนที่กับเวลา (Space vs. time trade-off) อยู่ในลําดับที่สามที่ดีที่สุด

สาํหรับการสอบถามแบบค่าเท่ากัน และลาํดับแรกที่ดีที่สดุสาํหรับการสอบถามแบบช่วง เมื่อเปรียบเทยีบกับ

ดชันีบติแมปแบบอื่นๆ

v

vi

Thesis Title HyBiX: Hybrid Encoding Bitmap Index for Efficient Space and

Query Processing Time

Author Mr. Naphat Keawpibal

Major Program Computer Science (International Program)

Academic Year 2018

ABSTRACT

With an increasing availability of technology, an enormous amount of data has been

generated. The problems in the storage and access have emerged. The consequent

need for efficient techniques to store and access the information has been a strong

resurgence of interest in the area of information retrieval. A bitmap-based index is an

effective and efficient indexing method for operating information retrieval in a read-only

environment. It offers improved query execution time by applying low-cost Boolean

operators on the index directly, before accessing raw data. However, a drawback of the

bitmap index is that the index size increases with the cardinality of indexed attributes.

This dissertation then proposes a new encoding bitmap index, called HyBiX bitmap

index. The basic concept of HyBiX bitmap index is the use of grouping idea with

attribute values and the encoding design of existing encoding bitmap indexes in order

to improve both storage demanded and execution time consumed with various queries.

Particularly, the grouping of attribute values facilitates in answering a continuous range

of query values. The experiment show that the HyBiX bitmap index takes 79% and 82%

faster execution times than the Encoded bitmap index, for equality and range queries,

respectively. Furthermore, the performance of HyBiX bitmap index in terms of space

and time trade-off achieves the third-best and first-best as compare to existing encoding

bitmap index, for equality and range queries, respectively.

vii

ACKNOWLEDGMENTS

First of all, I would like to express my deep gratitude to my advisor, Assistant Prof.

Dr. Sirirut Vanichayobon, for her support and guidance in the discussion on different

opinions, for her patient and generously spent hours in correcting both my stylistic and

scientific mistakes, and for a completed final research. She has helped me become better

in conducting scientific research and scientific writing.

I would like to express my sincere thanks to my co-advisor, Assistant Prof. Dr. Ladda

Preechaveerakul. The door to Assistant Prof. Dr. Ladda Preechaveerakul office always

opens whenever I ran into a trouble spot or had a question about my study.

Besides my advisor, I would like to thank the rest of my dissertation committee: Asso-

ciate Prof. Dr. Ohm Sornil and Assistant Prof. Dr. Wiphada Wettayaprasit, for their

insightful comments and encouragement to accomplish my study.

My thanks go to PSU Ph.D scholarship financially supported by the Graduate School,

Prince of Songkla University (PSU). I also gratefully acknowledge the PSU.GS. Financial

Support for Thesis, Fiscal Year 2017 from Graduate School, PSU.

I also thank all lecturers and officers at the Department of Computer Science, Faculty of

Science, PSU, who gave access to the Ph.D. office and research facilities. Without their

precious supports, it would not be possible to conduct this research.

I would like to thank my friends studying in Master and Ph.D. degree at Department

of Computer Science, Faculty of Science, PSU, who helped and encouraged me to

overcome difficulties during my study.

Last but not least, my deepest thanks are going to my parents who always encourage

me, believe in me, and give me the willpower to keep walking, and to my brother who

always cheers me up and stands by me.

Naphat Keawpibal

viii

TABLE OF CONTENTS

Page

ABSTRACT (Thai) v

ABSTRACT (English) vi

ACKNOWLEDGEMENTS vii

TABLE OF CONTENTS viii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ALGORITHMS xiii

CHAPTER

1 INTRODUCTION 1

1.1 Background and rationale . 1

1.2 Research objectives . 4

1.3 Research contributions . 4

1.4 Dissertation organization . 5

2 BITMAP INDEX STRATEGIES 6

2.1 Basic bitmap index . 6

2.2 Compression . 8

2.3 Binning . 16

2.4 Encoding . 16

2.5 Multi-level & Multi-component . 17

3 EXISTING ENCODING BITMAP INDEXES 19

3.1 Range bitmap index . 19

3.2 Interval bitmap index . 21

3.3 Encoded bitmap index . 23

ix

TABLE OF CONTENTS (Continued)

Page

3.4 Scatter bitmap index . 25

3.5 Dual bitmap index . 28

4 HYBIX: HYBRID ENCODING BITMAP INDEX 35

4.1 The design concept of HyBiX bitmap index 35

4.2 Bitmap index creation for HyBiX bitmap index 42

4.3 Query processing for HyBiX bitmap index 44

5 PERFORMANCE STUDY 52

5.1 Theoretical analysis . 52

5.2 Experimental results . 53

5.2.1 Data set used and experimental setting 53

5.2.2 The space-efficiency of seven encoding bitmap indexes . . . 55

5.2.3 The time-efficiency of seven encoding bitmap indexes 56

5.2.4 The trade-off between space and time of four encoding bitmap

indexes . 60

6 CONCLUSION AND FUTURE WORK 65

6.1 Summary . 65

6.2 Future work . 67

BIBLIOGRAPHY 68

APPENDICES 76

APPENDIX A Detailed TPC-H Benchmark Dataset 77

VITAE. 83

x

LIST OF TABLES

Table Page

2.1 A summarization of compression algorithms to the Basic bitmap index . . . 10

3.1 A summarization of the number of bitmap vectors used for six encoding

bitmap indexes . 30

3.2 A summarization of encoding bitmap index algorithms 32

4.1 Notation used in creation algorithm for HyBiX bitmap index 42

5.1 A comparative study of seven encoding bitmap index algorithms 54

xi

LIST OF FIGURES

Figure Page

2.1 An example of the Basic bitmap index: encoding of attribute A with cardi-

nality 15. 7

2.2 Bitmap index strategies. 8

3.1 An example of the Range bitmap index: encoding of attribute A with C = 15. 20

3.2 An example of the Interval bitmap index: encoding of attribute A with C = 15. 21

3.3 An example of the Encoded bitmap index: encoding of attribute A with

C = 15. 24

3.4 An example of the Scatter bitmap index: encoding of attribute A with C = 15. 26

3.5 An example of the Dual bitmap index: encoding of attribute A with C = 15. 29

3.6 Six encoding schemes with C = 15, (• represents bit 1). 30

4.1 A basic concept of HyBiX bitmap index with cardinality 15. 38

4.2 HyBiX scheme for attribute A with cardinality 15. 38

4.3 HyBiX assistant table, and an example of the HyBiX bitmap index for

attribute A with C = 15. 44

4.4 The result of the equality query A = 3. 45

4.5 The result of the equality query A = 8. 46

4.6 The result of the range query 1 ≤ A ≤ 4. 47

4.7 The result of the range query 6 ≤ A ≤ 8. 48

4.8 The result of the range query 3 ≤ A ≤ 13. 49

4.9 The result of the range query 6 ≤ A ≤ 10. 50

5.1 The space requirement of seven alternative encoding bitmap indexes. 55

5.2 The query execution time of seven encoding bitmap indexes for equality

queries: A query value falls in any group of HyBiX bitmap index. 56

5.3 The query execution time of seven encoding bitmap indexes for equality

queries: Query values fall in group 0 of HyBiX bitmap index. 57

xii

LIST OF FIGURES (Continued)

Figure Page

5.4 The query execution time of seven encoding bitmap indexes for range

queries: A query value falls in any groups of HyBiX bitmap index. 58

5.5 The query execution time of seven encoding bitmap indexes for range

queries: Query values fall in group 0 of HyBiX bitmap index. 59

5.6 The space vs. time trade-off of four encoding bitmap indexes for equality

queries in scale factor 100: A query value falls in any group of HyBiX

bitmap index. 60

5.7 The space vs. time trade-off of four encoding bitmap indexes for equality

queries in scale factor 100: A query value falls in group 0 of HyBiX bitmap

index. 61

5.8 The space vs. time trade-off of four encoding bitmap indexes for range

queries in scale factor 100: Query values fall in any groups of HyBiX bitmap

index. 62

5.9 The space vs. time trade-off of four encoding bitmap indexes for range

queries in scale factor 100: Query values fall in group 0 of HyBiX bitmap

index. 63

6.1 Performances of seven encoding bitmap indexes for small and large datasets. 66

A.1 Table Schema of TPC-H Benchmark . 77

A.2 Website window for downloading TPC-H benchmark dataset. 79

A.3 Tpch projects by Visual Studio 2015. 80

A.4 The directory containing dbgen.exe. 80

A.5 The command line for dbgen help. 81

A.6 The command line for generating the data from table LINEITEM with scale

factor 1. 82

A.7 The generated data containing in table LINEITEM. 82

xiii

LIST OF ALGORITHMS

Algorithm Page

3.1 The creation of Scatter bitmap index . 26

4.1 The creation of HyBiX bitmap index . 43

4.2 The query processing of HyBiX bitmap index 50

1

CHAPTER 1

INTRODUCTION

1.1 Background and rationale

Advances in technology have enabled massive volumes of data with

various types of data formats generated by various sources, such as online transactions,

social networks, sensor networks, and so on [1–4]. Over the decades, many organizations

have been acknowledging the importance of the increasing data and its critical role in

providing a useful and valuable information. Such data is potentially employed to support

forecasting, and decision-making applications in many areas, for example, education,

healthcare, violent reduction, and other areas [2, 3, 5, 6]. Most large-scale data is

deployed in a read-only environment, which the data is not updated later but the insertion

of new data is frequent. The main goal is to provide the ability to access the data

efficiently and to facilitate the discovery of patterns and useful information from the data

[1, 4, 6–8]. Actually, storage limits and unsatisfactory time of the query processing have

been accounted a key issue in traditional data management systems with tremendous

volumes of data. These have posed challenges and opportunities in efficiently storing

and retrieving such volumes of data. In order to retrieve the data, various forms of the

queries are submitted, for example, an equality query, and a range query. Those queries

can take up to days to execute and return the results depending upon the complexity of

queries because the entire data needs to be scanned and verified the query conditions

[7, 9]. The efficiency of retrieval by query processing is a crucial issue when executing

complex queries on large data by the traditional approaches [1, 7].

The query performance has been extensively studied, especially in a data

warehouse environment, scientific applications, and many application domains with

respect to query execution time. Several approaches have been introduced and demon-

strated to achieve faster query processing, such as a parallel processing, materialized

views, and indexing [7, 10]. Parallel processing plays a significant role in the processing

of massive data [11–15]. This approach partitions the data into smaller pieces, and as-

2

signs each piece to different machines or processors for processing data simultaneously,

to speed up the execution. However, a disadvantage of parallel processing is that it

requires additional hardware resources. For example, parallel processing can utilize all

the cores of a CPU rather than just one. Furthermore, in some cases, parallel processing

is not worthwhile due to interdependences that prevent splitting data to independently

processing. Therefore, the design and implementation of parallel processing should be

carefully considered. A materialized view contains aggregated and summarized results

of the predicated queries [7, 10, 16], and helps optimize the performance of query pro-

cessing when the predicated queries are known. However, the drawbacks of materialized

views include the need to access and retrieve the actual data when unpredicted queries

are submitted, and the need to update when data source is changed. Furthermore, it is

quite difficult to build materialized views for all possible queries, and choosing which

ones to build is an important problem.

Indexing is an effective technique and data structure to speed up the

searches from storage, without requiring additional hardware resources [7, 9, 10, 17].

This approach can be categorized into three groups, namely hash-based indexes, tree-

based indexes, and bitmap-based indexes [10, 16, 18–24]. The performance of query

based on these three types of indexes differs for different forms of queries and for

different data characteristics, for example, cardinality of indexed attributes (the number

of unique values of that attribute). Typically, hash-based indexes [19, 20] provide a

good query performance for equality queries, but it is not efficient for range queries

due to the number of computation used by hash function considerably increases with

the range of query values. Tree-based indexes provide a good query performance when

formed on attributes with high cardinality and when used for optimizing queries that

retrieve small numbers of rows [9, 15, 19, 25]. However, a lot of memory overhead

exists on the tree-based indexes and the indexes cannot support logical operations on

the index before accessing the actual data, resulting in high I/O operations required.

Bitmap-based indexes take the advantage of supporting low-cost Boolean operations

(AND, OR, NOT, and XOR) on the index [9, 10, 16]. The bitmap-based indexes are

easy to represent the data in binary format, with 0’s and 1’s. Therefore, they offer a good

3

query performance when formed on attributes with low cardinality and for queries that

retrieve large numbers of rows. From this fact, bitmap-based indexes are commonly used

for optimizing queries in read-only environments due to the majority of complex queries

usually require logical operations to obtain the result [22, 26, 27].

Basic bitmap index is efficient and effective for attributes with low car-

dinality [16]. Unfortunately, the size of the Basic bitmap index significantly increases

with the cardinality of the indexed attribute, causing problems with space requirement

[28, 29]. There are four strategies to improve the performance of the Basic bitmap

index, including compression, binning, encoding, and multi-level and multi-component

approach [9, 21, 25, 30–32]. Among these four, encoding plays an important role in

improving the space requirements of the Basic bitmap index without sacrificing query

execution time. The encoding bitmap indexes allow bitwise operators on the index

directly, without decompression or additional processing. Furthermore, more studying of

the encoding is more likely to be important and lead to better performance of the bitmap

index, in terms of space and time trade-off with various types of queries.

Various encoding bitmap indexes have been studied in the past ten years,

such as the Range bitmap index [33], Interval bitmap index [34], Encoded bitmap index

[28], Scatter bitmap index [35], and Dual bitmap index [36]. When the cardinality

of indexed attributes is high, some bitmap indexes suffer from impractical storage

requirements. Other encoding bitmap indexes can solve this problem, but they still suffer

from slow query processing for some types of queries, especially range queries. In

the analytics applications, submitted types of queries are unpredictable, sometimes be

equality or range queries [1, 21–23, 25, 26, 37]. Obviously, the existing encoding bitmap

indexes have not fully solved problems with for example equality and range queries, in

terms of space and time trade-off (i.e., trade-off between resources and efficiency).

To achieve good performance with various queries in terms of space and

time trade-off, we introduce a new encoding bitmap index, namely HyBiX for Hybrid

Encoding Bitmap Index, and its query processing with unpredictable queries. The results

of an experiment in which space-efficiency, time-efficiency, and trade-off between space

and time for existing encoding bitmap index on the benchmark dataset were compared.

4

The query execution time of HyBiX bitmap index for both equality and range queries

is satisfactory, and the performance of HyBiX bitmap index in terms of space and time

trade-off is good.

1.2 Research objectives

1.2.1 To study and analyze bitmap index strategies, including compressing, binning,

encoding, and multi-level and multi-component, in order to reduce the bitmap

index size as well as to improve query execution time.

1.2.2 To design and develop a new encoding scheme of the bitmap Index for efficient

both index size and query processing.

1.2.3 To evaluate the efficiency of a new encoding bitmap index and the other

existing encoding bitmap index by comparing:

• Space

• Query execution time

• Trade-off between space and time

under TPC-H, which is a decision support benchmark.

1.3 Research contributions

The proposed bitmap index is based on encoding bitmap index, called

HyBiX for Hybrid Encoding Bitmap Index. The preliminary concept of the HyBiX

bitmap index combines the grouping of attribute values and the concept of existing

encoding bitmap indexes to enable efficiently answering both equality and range queries.

The proposed bitmap index offers less storage requirements and facilitates a good

performance in regard to query execution times when predicted queries are unknown.

The performance of all encoding bitmap indexes, including the Basic, Range, Interval,

Encoded, Scatter, Dual, and HyBiX bitmap indexes, was evaluated experimentally. The

HyBiX bitmap index achieves a good performance for both equality and range queries, in

points of view space-efficiency, time-efficiency, and space and time trade-off, especially

when the query values fall in the first group of HyBiX bitmap index.

5

1.4 Dissertation organization

The rest of the dissertation is organized as follows. The next chapter

describes the fundamental of the Basic bitmap index, and the strategies for the reduc-

tion of bitmap index size. In Chapter 3, algorithms to encoding bitmap indexes are

investigated. Chapter 4 presents the proposed encoding bitmap index, named HyBiX

for Hybrid Encoding Bitmap Index. In Chapter 5, the performance of the encoding

bitmap indexes is experimentally evaluated, for both equality and range queries, in terms

of space-efficiency, time-efficiency, and space and time trade-off. Finally, the major

findings and the directions of further research are summarized in Chapter 6.

6

CHAPTER 2

BITMAP INDEX STRATEGIES

This chapter describes the fundamental of the Basic bitmap index and

bitmap index strategies for reducing size of bitmap index.

2.1 Basic bitmap index

A bitmap index is a well-known data structure for improving the speed

of query processing in a data storage [9, 38]. Typically, the bitmap index contains a

sequence of bits, one bitmap vector for a set of arbitrary attribute values, with each row

representing an item. Each bitmap vector has an identifier related to the specified set of

arbitrary values. These bitmap vectors are primarily used in logical bitwise operations to

answer queries. In the simplest scheme, each bitmap vector corresponds to one precise

value of an indexed attribute. This scheme is known as the Basic bitmap index, applying

an equality encoding. Let C be the attribute cardinality, which is the number of distinct

values of that indexed attribute. Then, the Basic bitmap index consists of C bitmap

vectors. To represent value v, the ith bit in bitmap vector for representing value v is set to

1 if the ith row of indexed attribute contains value v. Otherwise, the bit is set to 0. The

encoding function of the Basic bitmap index can be written in Eq. (2.1) .

Bj =




1 j = v

0 Otherwise.
(2.1)

Assume that a domain of attribute A given by table T is {0, 1, 2, . . . ,

14}, as shown in Figure 2.1a. Then, the Basic bitmap index uses 15 bitmap vectors since

the cardinality of the attribute A is 15, say {B0, B1, B2, . . . , B14}, corresponding to the

columns in Figure 2.1b. As seen in Figure 2.1b, bitmap vector B3 represents attribute

value ‘3’, and the 1st and 6th bits in B3 are set to 1. When answering equality queries,

only one bitmap vector associated with that query value is scanned. For example, in

order to evaluate the equality query ‘A = 3’, only bitmap vector B3 is scanned. Then,

7

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

(a) Table T

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
.
.
.
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

(b) Basic bitmap index

Figure 2.1: An example of the Basic bitmap index: encoding of attribute A with
cardinality 15.

the 1st and 6th rows are returned as the final result due to the 1st and 6th bits in B3 are

set to 1. For answering range queries, the bitmap vectors associated with each query

value are scanned, and then bitwise-OR operators are used among those bitmap vectors

to obtain the final result. For example, in order to evaluate the range query ‘1 ≤ A ≤ 4’,

the bitmap vector B1, B2, B3, and B4 are scanned and performed bitwise-OR operators

among those bitmap vectors (i.e., B1 ∨B2 ∨B3 ∨B4). Table T in Figure 2.1a is used

as an example in what follows.

Advantage

The Basic bitmap index is efficient in index size and query execution

time with low cardinality attributes which is recommended.

Limitations

With increasing cardinality of attribute, the Basic bitmap index generates

a massive number of bitmap vectors, which impacts on index size. Therefore, the Basic

bitmap index is inappropriate with high cardinality in point of view space requirement.

Clearly, the Basic bitmap index consumes storage proportional to the

cardinality of the indexed attribute. Approaches to reduce excessive storage requirements

can be classified into four types of strategies, including 1) Compression, 2) Binning, 3)

Encoding, and 4) Multi-level & Multi-component, shown in Figure 2.2.

8

Bitmap Index Strategies

1© Compression

BBC

WAH

CONCISE

PLWAH

COMPAX

SPLWAH

SECOMPAX

COMBAT

etc.
RLH

2© Binning 3© Encoding

Basic bitmap index

Range bitmap index

Interval bitmap index

Encoded bitmap index

EBI-Apriori

EncodedBitmapFIM

E-EBI
Scatter bitmap index SBIOC

Dual bitmap index

4© Multi-level &
Multi-component

Figure 2.2: Bitmap index strategies.

2.2 Compression

Obviously, the Basic bitmap index generates a massive numbers of bitmap

vector with high cardinality attributes. The long sequences of homogeneous bits (only

bit 0s or only 1s) commonly exist in the bitmap vectors of the Basic bitmap index.

Furthermore, each bitmap vector of the Basic bitmap index may be used separately

from others. Then, bitmap compression is typically applied on each individual bitmap

vector presented by long homogeneous segments. The notable bitmap compression

algorithms used include Byte-aligned Bitmap Compression (BBC) [39], Word-aligned

Hybrid (WAH) [17, 26, 40], Run-length Huffman Encoding (RLH) [31], which encodes

the continuous sequences of bits as their value and count. Especially, the RLH combines

run-length encoding and Huffman encoding to achieve higher compression ratio. Due

to Huffman encoding constructs the Huffman tree for both encoding and decoding, the

RLH requires some proportional of execution time to retrieve the Huffman tree and

decode it into original sequences of bits. Therefore, the RLH is quite slow in execution

time on both compression and decompression.

The BBC and WAH algorithms are a well-known compression algorithm

in both space demanded and time consumed. The unit of compression used by BBC is 8

bits while that of compression used by WAH is 31 bits. The bitmap vectors compressed

with BBC are slightly smaller in size than those compressed with WAH. However, the

9

WAH supports faster both building and query processing than BBC and RLH algorithms.

A key concept of WAH is to allow compressed bitmap vectors to be stored in words

which is the operational units of modern computer hardware.

Due to a literal word contains both bit value 0 and 1, there are few bits

which are different from each other, called dirty bits, which degrades the compression

ratios. From this fact, WAH algorithm cannot compress these literal words. Hereby,

several algorithms based on WAH have been developed to improve compression ratios

and deal with the dirty bits existing in the literal words, such as CONCISE [41], PLWAH

[42], EWAH [43], COMPAX [44] and so on. In [42], Position List WAH (PLWAH)

adapts the concept of Nearly identical (NI) in order to merge the Fill and Literal words

into a single word by identifying one dirty bit in literal word. However, more than

one dirty bit exists in the literal words, which the PLWAH confronts this problem

in compression. Therefore, the COMPressed Adaptive indeX (COMPAX) [44] was

introduced in order to consider a dirty byte, rather than a dirty bit. Both PLWAH and

COMPAX are able to specify one dirty bit and dirty byte, respectively. They cannot

compress the literal words, which contain more than one dirty bit or more than one

dirty byte. To deal with this scenario, the Scope-Extended COMPressed Adaptive

indeX (SECOMPAX) [45] was introduced in order to improve the compression ratios

of COMPAX by dealing with more than one byte in the literal word, but not more than

four bytes. This ability of SECOMPAX provides better compression ratios when many

dirty bits spread in several bytes of the literal word. Furthermore, Switch Position List

WAH (SPLWAH) [46] extended from PLWAH attempts to deal more than one dirty bit

existing the literal words, but not more than four dirty bits. The compression ratios given

by SPLWAH are definitely better than that used by PLWAH. Although these algorithms

accomplish small index size, query processing time on the compressed bitmap vectors

is considerably increasing due to decompression and logical operations dominate some

proportional execution times, especially range queries. Table 2.1 shows a summarization

of existing compression algorithms to the Basic bitmap index.

10

Table 2.1: A summarization of compression algorithms to the Basic bitmap index

Algorithm Year Method Pros. Cons.

BBC [39] 1995

- Compress Bitmap in length of 8 bits

- Use header to identify fill bytes and

literal bytes

- Easy to store in CPU memory

- Easy to implement

- Index size is compact

- Spend many times to load com-

pressed Bitmap to CPU

- Query processing is very slow

WAH [40] 2002

- Compress bitmap in 31- bits length

- The first bit is used to identify the fill

and the literal word

- Faster than BBC

- Perform logical operation over

compressed Bitmap Index with-

out fully decompressing

- Index size is larger than BBC

- Doesn’t deal with nearly identi-

cal

RLH [31] 2007

- Based on Huffman encoding

- Count the distance between bits of 1

- Compute the frequency of distances

- Build a Huffman tree

- Replace distance with their Huffman

code

- Huffman tree is stored in CPU

memory

- Index size is smaller than WAH

- Huffman tree is used for both

compressing and decompressing

- A new Huffman tree must be cre-

ated when updating the index

Continued on next page

11

Algorithm Year Method Pros. Cons.

CONCISE

[41]
2010

- Use the concept of mixed fill word

- Introduce the concept of flipped bit

- Use piggyback concept

- Compress Literal-Fill together

- Be able to identify the position

of one dirty bit within a literal

word and compress it

- Index size is smaller than WAH

- Cannot compress when more

than 1 dirty bit appear in a lit-

eral word

- Query processing time is slower

than WAH

PLWAH [42] 2010

- Introduce Nearly Identical concept

- Apply the concept of codebook

- Compress Fill-Literal word together

- Identify 1 dirty bit in a literal

word

- Index size is smaller than WAH

and CONCISE

- Cannot compress when more

than 1 dirty bit appear in a lit-

eral word

- Query processing time is slower

than WAH

EWAH [43] 2010

- Divide bit sequence into 32-bit word

- 3 parts of header

- 1 bit for type of fill word

- 16 bits for number of fill word

- 15 bits for dirty word

- Followed by dirty words

- Access dirty word at most once

- Faster query processing time

than WAH

- Cannot deal with the nearly iden-

tical

- Needs to access header 3 times

Continued on next page

12

Algorithm Year Method Pros. Cons.

COMPAX

[44]
2010

- Apply Nearly Identical concept

- Apply the concept of codebook

- Compress when the case of

0Fill-Literal-0Fill, and Literal-0Fill-

Literal occur

- Identify 1 dirty byte in a literal

word, i.e., more than 1 bit

- Index size is smaller than WAH

and CONCISE

- Need to check types of code-

book

- Omit the consideration of con-

secutive bit 1s

- Cannot compress when more

than 1 dirty bit appear in a lit-

eral word

- Query processing time is slower

than WAH

GPU-WAH

[47]
2010

- Based on WAH

- Utilize GPU to accelerate compres-

sion time and query processing time

- Faster compression and query

processing time than the tradi-

tional WAH

- Few overheads of execution oc-

cur when transferring data be-

tween CPU memory and GPU

memory

GPU-

PLWAH

[15]

2011

- Based on PLWAH

- Utilize GPU to accelerate compres-

sion time and query processing time

- Faster compression and query

processing time than the tradi-

tional PLWAH

- Few overheads of execution oc-

cur when transferring data be-

tween CPU memory and GPU

memory

Continued on next page

13

Algorithm Year Method Pros. Cons.

PWAH [48] 2011

- Divide into to partitions

- Use header to specify fill or literal

word

- Use extended fill concept

- More flexible to save space

- Index size is smaller than WAH

- The optimal number of parti-

tions is an important issue

PLWAH+

[49]
2014

- Extension of PLWAH

- Use Nearly Identical concept

- Consider Literal-Fill and Fill-Literal

- Can compress when more than 1

bit appears in a literal word but

less 4 bits

- Slower than WAH

- Cannot compress when more

than 4 bits appear in a literal

word

VAL-WAH

[50]
2014

- Variable block size

- Dividing a word into block with spe-

cific length

- Add header to identify fill and literal

word

- Apply WAH to compress

- More flexible

- The optimal block size gives

smaller index size than WAH

- Difficult to find the optimal

block size

- Query processing time is slower

than WAH

Continued on next page

14

Algorithm Year Method Pros. Cons.

SECOMPAX

[45]
2014

- Use Nearly Identical and codebook

concept

- Identify dirty byte within a literal

word and compress

- Be able to perform compression

if more than 1 bit occur within a

literal word

- Consider both the nearly identi-

cal of 0-fill and 1-fill

- Interpret types of codeword

- Cannot identify more than 1

byte within a literal word

- Query processing time is slower

than WAH

SPLWAH

[46]
2015

- Use Nearly Identical and codebook

concept

- Identify dirty bits within a literal

word and then compress

- Be able to identify and compress

2-tuple and 3-tuple codebook

- Index size is smaller than WAH

- Be able to identify more than 1

dirty bit within a literal word

- Interpret types of codeword

- Cannot identify more than 4 bits

within a literal word

- Query processing time is slower

than WAH

SBH [32] 2016

- Combine concepts of BBC and WAH

- Divide a sequence of bits into super

buckets, containing 8 bits each

- Apply WAH to compress

- Use extended fill concept

- Index size is smaller than BBC

and WAH

- Slightly faster query processing

time than WAH

- Difficult to find the optimal

length of bit in super buckets

- Don’t achieve a good perfor-

mance when the cardinality is

less than 50
Continued on next page

15

Algorithm Year Method Pros. Cons.

COMBAT

[51]
2016

- Similar to CONCISE and COMPAX

- Compress two or three contiguous

words into a single word

- Introduce NI2-L for a literal word

- Be able to compress 2 dirty

bytes in a literal word

- Index size is smaller than CON-

CISE and COMPAX

- Faster than CONCISE and

COMPAX

- The codeword is more complex,

which is an impact on high com-

pression time

16

2.3 Binning

The Basic bitmap index works well for low cardinality attributes. How-

ever, for high cardinality attributes, the Basic bitmap index is impractical due to large

storage requirement and computation time, particularly range query processing. Another

strategy for reducing space requirements and improving query execution time of the

Basic bitmap index is binning [9, 24, 25, 52]. This strategy partitions attribute values

into smaller ranges, called bins. The bitmap vectors then represent the bins, rather than

the distinct values. It is clear that this strategy enables to predefine the arbitrary number

of bins, which impact the index size. Furthermore, some range queries can be accurately

answered when they match the binning. For other queries, parts of original data have

to be read from a storage and checked against the specified conditions. This additional

process is called candidate check [9, 53]. The candidate check dominates the query

processing time for equality and some of range queries, when the query does not match

the binning. Furthermore, it is difficult to determine the optimal number of bins that

balances the space requirements and the query time complexity.

2.4 Encoding

In the third strategy, the attribute values are encoded by a specific pattern

of the bit 0s and 1s in bitmap vectors. The common encoding bitmap indexes have

been implemented as Range bitmap index [33], Interval bitmap index [34], Encoded

bitmap index [28], Scatter bitmap index [35], and Dual bitmap index [36], respectively.

These encoding bitmap indexes minimize the number of bitmap vectors as well as

improve query processing time by computing a retrieval function or retrieving encoding

patterns from the mapping table. Furthermore, the encoding bitmap indexes allow us

to use Boolean operations on the specified bitmap vectors without decompression or

additional processes. For this reason, the encoding bitmap indexes are likely to improve

the performance of the Basic bitmap index, in terms of space and time trade-off for

various types of queries. The details of the encoding bitmap indexes will be described in

Chapter 3.

17

2.5 Multi-level & Multi-component

More sophisticated strategies can combine the preceding three strategies.

A method called multi-level bitmap index partitions the attribute values into multiple

levels and encode each level separately. For example, the multi-level bitmap index can

be built by using binning at the first level and using encoding at the next level, which

removes the need of candidate check produced by binning strategy. Another method

called multi-component bitmap index breaks the attribute values into several components

and represent the components with encoding separately, which each component can

generally have a different size. The simple example for multi-component bitmap index

applies the converting between the decimal number and the number in any base. The

attribute values are decomposed into digits according to the chosen base.

Using more levels and more components can significantly reduce the

number of bitmap vectors and therefore reduce the total index size. However, the number

of bitmap vectors accessed is considerably increasing when using more levels and more

components, which is an impact on the increasing of query execution time. Furthermore,

it is difficult to choose the optimal numbers of level or numbers of components for

improving index size with maintaining query execution time.

In this chapter, several strategies have been discussed with improving

space requirements of the Basic bitmap index. The compression strategy focuses on

the reduction of space requirements on each bitmap vector. This strategy faces the

problems of execution times over the compressed bitmap vectors. The ability of binning

strategy offers the arbitrary of bitmap index size. However, this strategy requires the

access and validation some parts of original data for some queries if they do not meet

the binning. The encoding strategy is designed to tackle space requirements as well

as query execution times by generating the small number of bitmap vectors. The good

encoding design affects an efficiency in both space requirements and execution times.

The multi-level and multi-component utilizes the combination of above three strategies

to reduce space requirements. The strategy increases the complexity of designing bitmap

index and query processing.

18

Obviously, the bitmap index with encoding significantly enables the

efficient space requirements and query execution time, which is likely an impact on the

performance in space requirement and execution time trade-off as well. Therefore, the

next chapter gives the characteristics of existing encoding bitmap indexes.

19

CHAPTER 3

EXISTING ENCODING BITMAP INDEXES

The encoding strategy is regarded as being one of the preferable strategies

for improving bitmap index if the small numbers of bitmap vectors are generated and

these bitmap vectors are primarily used in the bitwise operations to precisely answer

queries without any decompression and additional processing. This chapter describes

the existing encoding bitmap indexes, including Range bitmap index, Interval bitmap

index, Encoded bitmap index, Scatter bitmap index, and Dual bitmap index.

3.1 Range bitmap index

Let C be the attribute cardinality, which is the number of distinct values

of that indexed attribute. The Range bitmap index formed on the range encoding scheme

[33] produces a set of C−1 bitmap vectors, says R = {R0, R1, . . . , RC−2}. The attribute

values represented by bitmap vector Rj are ranging from 0 to j. The encoding function

for this bitmap index, for attribute value v, is given in Eq. (3.1)

Rj =




1 v ≤ j ≤ C − 2

0 Otherwise.
(3.1)

Assume a domain of attribute A given by table T is {0, 1, 2, . . . , 14}, as

shown in Figure 3.1a. The Range bitmap index therefore consists of 14 bitmap vectors

since the cardinality of attribute A is 15, says {R0, R1, R2, . . . , R13}. Using Eq. (3.1)

to represent attribute value ‘3’, all bits from R3 to R13 are set to bit value 1; otherwise,

the bits remained are set to bit value 0, and these are highlighted in Figure 3.1b.

Querying both equality and range on the Range bitmap index uses the

retrieval function in Eq. (3.2). Clearly, the equality queries deploy the first three

conditions in Eq. (3.2), and the range queries therefore deploy the remaining conditions.

20

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

(a) Table T

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1
.
.
.
0 0 1 1 1 1 1 1 1 1 1 1 1 1

(b) Range bitmap index

Figure 3.1: An example of the Range bitmap index: encoding of attribute A with
C = 15.

For 0 ≤ v1 < v2 ≤ C − 1,

v1 ≤ A ≤ v2 =





R0 v1 = v2 = 0,

Rv1 ⊕Rv1−1 0 < v1 = v2 < C − 1

RC−2 v1 = v2 = C − 1

Rv1−1 0 < v1 < C − 1, v2 = C − 1

Rv2 v1 = 0, 0 ≤ v2 ≤ C − 1

Rv2 ⊕Rv1−1 Otherwise.

(3.2)

For example, to evaluate the equality query in the form of A = 3, using

Eq. (3.2), the bitmap vector R2 and R3 were scanned, and then the bitwise-XOR operator

is performed on them to answer this equality query, yields R2 ⊕R3. This query results

the 1st and 6th rows.

To evaluate range query 1 ≤ A ≤ 4, using Eq. (3.2), the bitmap vector

R0 and R4 were scanned, and then the bitwise-XOR operator is performed on them to

answer this range query, yields R4 ⊕R0.

Advantage

21

The Range bitmap index offers a good query performance for equality

and range queries with low cardinality. Sometimes, the Range bitmap index scans only

one bitmap vector to answer equality queries if the query value is equal to 0 or C − 1.

Limitations

The Range bitmap index decreases one bitmap vector from the Basic

bitmap index, which still suffered storage problem with high cardinality attributes. The

query performance of Range bitmap index is degraded with high cardinality attributes

for both equality and range queries in point of views space and time trade-off.

3.2 Interval bitmap index

The Interval bitmap index based on the interval encoding scheme [34]

reduces the number of bitmap vectors by half to {I0, I1, . . . , IdC2 e−1}. Each bitmap

vector Ij represents the range of values between j and j +m, where m = bC
2
c − 1. The

encoding function for the Interval bitmap index can be written as in Eq. (3.3). Figure

3.2 shows as an example of the Interval bitmap index for the data in Figure 3.2a, with

the 8 bitmap vectors, {I0, I1, . . . , I7}. On encoding attribute value ‘3’, all bits between

I0 and I3 are set to 1 and the remaining bits are set to 0.

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

(a) Table T

I0 I1 I2 I3 I4 I5 I6 I7

1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 0
.
.
.
1 1 1 0 0 0 0 0

(b) Interval bitmap index

Figure 3.2: An example of the Interval bitmap index: encoding of attribute A with
C = 15.

22

Ij =




1 v ≤ j ≤ j +m

0 Otherwise.
(3.3)

The retrieval functions in Eq. (3.4) – (3.6) checks for equality, one-side

range, and two-side range queries, respectively.

For example, to evaluate the equality query in the form of A = 3, then

the retrieval function of this query is I3 ∧ I4. To evaluate range query in the form of

1 ≤ A ≤ 4, the bitmap vector I1 and I5 were scanned, and then the bitwise-OR operator

is performed on them, yields I1 ∧ I5.

A = v =





I0 v = 0,m = 0

I0 v = 1, C = 2

I1 v = 1, C = 3

Iv ∧ Iv+1 v < m

I1 ∧ I0 v = m,m > 0

Iv−m ∧ Iv−m−1 m < v < C − 1,m > 0

IdC2 e−1 ∨ I0 v = C − 1.

(3.4)

For 0 < v < C − 1,

A ≤ v =





I0 ∧ Iv+1 v < m

I0 v = m

I0 ∨ Iv−m m < v < C − 1.

(3.5)

23

For 0 < v1 < v2 < C − 1,

v1 ≤ A ≤ v2 =





Iv1 ∧ Iv2 + 1 v2 < m

Iv1 ∧ I0 v2 = m

Iv1 ∧ Iv2−m v2 < v1 +m, v1 < n

Iv1 v2 = v1 +m, v1 < n

Iv1 ∨ Iv2−m v2 > v1 +m, v1 < m

Iv1 ∨ Iv1+1 v2 = v1 +m+ 1, v1 = m

Iv2−m ∧ Iv1−m−1 v1 ≥ n.

(3.6)

Advantage

The index size used by the Interval bitmap index is much smaller than

that used by the Basic and Range bitmap index. In addition, the Interval bitmap index

offers improved query performance against the Range bitmap index for both equality

and range queries with low cardinality.

Limitations

The Interval bitmap index still produces many bitmap vectors with high

cardinality, which is an impact on storage requirement. The performance of Interval

bitmap index is degraded with high cardinality attributes for both equality and range

queries in point of views space and time trade-off.

3.3 Encoded bitmap index

To our knowledge, the Encoded bitmap index [28] produces the smallest

number of bitmap vectors, which consists of dlog2Ce bitmap vectors, say {E0, E1, . . . ,

Edlog2 Ce−1}, and a mapping table which stores the binary patterns of all distinct attribute

values. The attribute values are encoded with dlog2Ce bits in corresponding position of

the bitmap vectors. Figure 3.3 shows an example of the Encoded bitmap index for the

attribute with cardinality 15, which consists of 4 bitmap vectors, E0, E1, E2, and E3.

Let us consider encoding the attribute value ‘3’. The binary pattern for attribute value ‘3’

24

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

(a) Table T

E0 E1 E2 E3

0 0 1 1
1 0 0 1
1 1 1 0
1 0 0 0
1 0 1 0
0 0 1 1
0 1 0 0
0 0 0 0
1 1 0 0
0 1 0 1
. . . .
. . . .
. . . .
0 0 1 0

Mapping Table

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110

(b) Encoded bitmap index with a mapping table

Figure 3.3: An example of the Encoded bitmap index: encoding of attribute A with
C = 15.

in the mapping table is ‘0011’. Therefore, the bitmap vectors are set, for this item, as

E0 = 0, E1 = 0, E2 = 1, and E3 = 1, respectively.

To evaluate equality queries, the binary pattern of the query value is

retrieved from the mapping table, and then the dlog2Ce bitmap vectors are jointly

checked for this pattern in each row. Rows matching the target pattern across the

dlog2Ce bits are returned as the answer to the query. Unfortunately, the traditional

equality query processing used by the Encoded bitmap index takes a long time to answer

the query because of the comparison of all dlog2Ce bitmap vectors. Accordingly, the

E-EBI [54] is introduced to improve the traditional equality query processing in the

Encoded bitmap index without comparison all bitmap vectors. In this algorithm, the

bitmap vector can be performed bitwise-AND operation directly if the corresponding bit

is set to 1. Otherwise, the negation of the bitmap vector is required before performing

bitwise-AND operation. For example, to evaluate the equality query A = 3, the binary

pattern for attribute value ‘3’ is ‘0011’, given by the mapping table in Figure 3.3b.

Therefore, the negation of bitmap vector E0 and E1 is required before performing

bitwise-AND operation. As a result, the retrieval function of this query is simply created

as E0E1E2E3.

For evaluating range queries, the retrieval function for the query is formed

25

of Boolean expressions that apply bitwise-OR operators on the expressions to get the

final result. For example, to evaluate range query 1 ≤ A ≤ 4, the binary patterns

for each item are retrieved from the mapping table, and transformed to Boolean ex-

pressions, yields E0E1E2E3 for value 1, E0E1E2E3 for value 2, E0E1E2E3 for

value 3, E0E1E2E3 for value 4. Then, the bitwise-OR operators are used on them,

yields (E0E1E2E3)∨ (E0E1E2E3)∨ (E0E1E2E3)∨ (E0E1E2E3). Furthermore, the

generated retrieval function can be further reduced to optimize range query perfor-

mance by utilizing Boolean minimization method, such as Quine-McCluskey algorithm

[55, 56]. The reduced retrieval function by Quine-McCluskey algorithm is generated as

(E0E1E3) ∨ (E0E1E2E3) ∨ (E0E1E2E3). Additionally, the improved algorithms for

Encoded bitmap index were introduced for querying equality and range queries by using

data mining techniques and parallel processing over large dataset [54, 57–59]. However,

both equality and range queries on the Encoded bitmap index take long execution times,

even though this bitmap index is effective from the space requirement point of view.

Advantage

The Encoded bitmap index requires the smallest number of bitmap

vectors for all cardinalities, which is an efficiency in space requirement.

Limitations

The query execution time taken by Encoded bitmap index is undesirable

for both equality and range queries. Even though the Encoded bitmap index uses the

Boolean minimization method in range queries to reduce the complexity of the retrieval

function, it considerably takes long processing times with range queries.

3.4 Scatter bitmap index

For Scatter bitmap index [35], the bitmap vectors are split into two groups,

namely Z-group and L-group. The Scatter bitmap index uses d2
√
Ce bitmap vectors.

The Z-group contains d C
m−1e+ 1 bitmap vectors, says {Z0, Z1, . . . , Zd

C
m−1

e}, while the

L-group contains m−2 bitmap vectors, say {L1, L2, . . . , Lm−2}, where m = d
√
Ce+1.

The algorithm for creation Scatter bitmap index is shown in Algorithm

3.1. If the value ‘v’ at ith row relates to Zj−1 and Zj (or Lk and Zj), the bits in Zj−1 and

26

Algorithm 3.1 The creation of Scatter bitmap index
INPUT: The cardinality and values of of the indexed attribute
OUTPUT: The scatter bitmap index

1: m← d
√
Ce+ 1

2: for a value ′v′ in each row do
3: Initial all bits in the bitmap vectors of Z- and L-group to be 0
4: j ← b v

m−1c+ 1
5: k ← v mod m− 1
6: if k = 0 then
7: Set bit of Zj−1 and Zj to be 1
8: else
9: Set bit of Lk and Zj to be 1

10: end if
11: end for

Zj (or Lk and Zj) at ith row are set to 1. Otherwise, they are set to 0. Figure 3.4 depicts

an example of Scatter bitmap index for an attribute of cardinality 15, which consists

of 8 bitmap vectors, say {Z0, Z1, Z2, Z3, Z4, L1, L2, L3}, and m = 5. On encoding

attribute value ‘3’, the bits in Z1 and L3 are set to 1 and the remaining bits are set to 0,

due to the values of j and k are 1 and 3, respective, corresponding to the 2nd and 11th

steps in Algorithm 3.1. Then, the bits in Z1 and L3 are set to 1 and the remaining bits

are set to 0.

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

(a) Table T

Z0 Z1 Z2 Z3 Z4 L1 L2 L3

0 1 0 0 0 0 0 1
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 1
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
.
.
.
0 1 0 0 0 0 1 0

(b) Scatter bitmap index

Figure 3.4: An example of the Scatter bitmap index: encoding of attribute A with
C = 15.

Equality queries with Scatter bitmap index use the retrieval function in

27

Eq. (3.7). For example, to answer the equality query A = 3. Using Eq. (3.7), the

retrieval function of this query is Z1 ∧ L3.

A = v =




Zj−1 ∧ Zj k = 0

Zj ∧ Lk Otherwise.
(3.7)

where: m =
⌈√

C
⌉
+ 1

j =
⌊

v
m−1

⌋
+ 1

k = v mod (m− 1)

For evaluating range queries, two bitmap vectors associated with each

query value can be dynamically created by using Eq. (3.7), and the retrieval is performed

with bitwise-OR operations. For example, to answer the range query 1 ≤ A ≤ 4,

by using Eq. (3.7), the retrieval functions for representing each item are dynamically

generated as Z1 ∧ L1 for value 1, Z1 ∧ L2 for value 2, Z1 ∧ L1 for value 3, Z1 ∧ Z2 for

value 4. Then, the bitwise-OR operators are used on them, yields (Z1∧L1)∨(Z1∧L2)∨
(Z1 ∧ L2) ∨ (Z1 ∧ Z2). Furthermore, the retrieval function can be further minimized,

which impacts the numbers of bitmap vectors accessed and the numbers of Boolean

operations used. The basis idea of Dual-simRQ [60] is modified and applied to improve

query processing, especially range queries. Therefore, the final reduced retrieval function

is generated as (Z1 ∧ (L1 ∨ L2 ∨ L3)) ∨ (Z1 ∧ Z2). Additionally, the data clustering

technique was employed to optimize the query processing on the Scatter bitmap index

by grouping the attribute values which is frequently queried [61], to improve query

execution time used by Scatter bitmap index.

Advantage

The Scatter bitmap index requires the less space than the Basic, Range,

and Interval bitmap indexes, except the Encoded bitmap index. The Scatter bitmap index

is suitable for equality queries because of scanning two bitmap vectors.

Limitations

The query execution time used by Scatter bitmap index is slower than

the Basic bitmap index for equality queries. For range queries, the query execution

28

time used by Scatter bitmap index is undesirable. Therefore, the performance of Scatter

bitmap index with range queries is poor in space vs. time trade-off point of view.

3.5 Dual bitmap index

In the Scatter bitmap index, one bitmap vector (i.e., Z0) is used to rep-

resent one value, which wastes space. Improving the Scatter bitmap index, the Dual

bitmap index [36] efficiently represents attribute values while using two bitmap vectors.

The Dual bitmap index consists of d
√
2C + 0.25 + 0.5e bitmap vectors, say {D0, D1,

. . . , Dd
√
2C+0.25+0.5e−1}. The dual encoding function is given in Eq. (3.8).

Dj =




1 j = r and j = s

0 Otherwise.
(3.8)

where: hiC = n(n−1)
2

r =
⌈√

2(hiC − v) + 0.25 + 0.5
⌉

s =
⌈
r − 1−

[(
v − (n−r)(n−r−1)

2

)
mod r

]⌉

Figure 3.5 depicts an example of the Dual bitmap index for an attribute

with cardinality 15, with 6 bitmap vectors, say {D0, D1, D2, D3, D4, D5}. Using

Eq. (3.8), to represent attribute value ‘3’, the bits in D1 and D5 are set to 1, while the

remaining bits are set to 0.

Evaluation of equality queries with the Dual bitmap index uses the re-

trieval function in Eq. (3.9). For example, to answer the equality query A = 3. Using

Eq. (3.9), the retrieval function of this query is D5 ∧D1.

A = v = Dr ∧Ds (3.9)

To answer range queries, the retrieval function can be dynamically created

and performed bitwise-OR operators, similar to the case with Scatter bitmap index. For

example, to answer the range query 1 ≤ A ≤ 4, by using Eq. (3.9), the retrieval

functions for representing each item are dynamically generated as D5 ∧D3 for value 1,

29

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

(a) Table T

D0 D1 D2 D3 D4 D5

0 1 0 0 0 1
0 0 1 1 0 0
1 1 0 0 0 0
1 0 0 0 1 0
0 1 0 1 0 0
0 1 0 0 0 1
1 0 0 0 0 1
0 0 0 0 1 1
0 1 1 0 0 0
0 0 0 1 1 0
.
.
.
0 0 1 0 0 1

(b) Dual bitmap index

Figure 3.5: An example of the Dual bitmap index: encoding of attribute A with C = 15.

D5 ∧D2 for value 2, D5 ∧D1 for value 3, D5 ∧D0 for value 4. Then, the bitwise-OR

operators are used on them, yields (D5 ∧D3) ∨ (D5 ∧D2) ∨ (D5 ∧D1) ∨ (D5 ∧D0).

In addition, the retrieval function can be minimized to reduce the scanning of bitmap

vectors as well as the number of Boolean operations, which impacts the query execution

time taken. Therefore, Dual-simRQ [60] was proposed to improve the query execution

time with range queries. The reduced retrieval function generated by Dual-simRQ is

D5 ∧ (D3 ∨D2 ∨D1 ∨D0).

Advantage

The Dual bitmap index requires the less space than the Basic, Range,

Interval, and Scatter bitmap indexes, except the Encoded bitmap index. The performance

of Dual bitmap index is better than the existing bitmap indexes in terms of space and

time trade-off for equality queries.

Limitations

The query execution time used by Dual bitmap index is slower than the

Basic bitmap index for equality queries. Furthermore, the query execution time with

range queries used by Dual bitmap index is undesirable. Therefore, the performance of

Dual bitmap index is degraded in space vs. time trade-off for range queries.

The numbers of bitmap vectors used for encoding bitmap indexes are

30

summarized in Table 3.1. The Basic bitmap index uses C bitmap vectors while the

Range and Interval bitmap indexes decrease the number of bitmap vectors by one

and half, respectively. The Encoded bitmap index uses dlog2Ce bitmap vectors. The

Scatter and Dual bitmap indexes utilize d2
√
Ce and d

√
2C + 0.25+0.5e bitmap vectors,

respectively.

Table 3.1: A summarization of the number of bitmap vectors used for six encoding
bitmap indexes

Bitmap index The number of bitmap vectors used

Basic C
Range C − 1
Interval

⌈
C
2

⌉

Encoded dlog2Ce
Scatter d2

√
Ce

Dual d
√
2C + 0.25 + 0.5e

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

V
a
lu
e
s
o
f
a
n

in
d
e
x
e
d

a
tt
ri
b
u
te

(a) Basic scheme
R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

V
a
lu
e
s
o
f
a
n

in
d
e
x
e
d

a
tt
ri
b
u
te

(b) Range scheme

I0 I1 I2 I3 I4 I5 I6 I7

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

V
a
lu
e
s
o
f
a
n

in
d
e
x
e
d

a
tt
ri
b
u
te

(c) Interval scheme
E0 E1 E2 E3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

V
a
lu
e
s
o
f
a
n

in
d
e
x
e
d

a
tt
ri
b
u
te

(d) Encoded scheme
Z0 Z1 Z2 Z3 Z4 L1 L2 L3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

V
a
lu
e
s
o
f
a
n

in
d
e
x
e
d

a
tt
ri
b
u
te

(e) Scatter scheme
D0 D1 D2 D3 D4 D5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

V
a
lu
e
s
o
f
a
n

in
d
e
x
e
d

a
tt
ri
b
u
te

(f) Dual scheme

Figure 3.6: Six encoding schemes with C = 15, (• represents bit 1).

31

Figure 3.6 illustrates the six encoding schemes with C = 15. Note that

the black dots denote bit value 1. The Basic bitmap index uses 15 bitmap vectors, shown

in Figure 3.6a. The Range bitmap index uses 14 bitmap vectors while the Interval bitmap

index uses 8 bitmap vectors to represent the attribute values, shown in Figure 3.6b and

3.6c, respectively. The Encoded bitmap index uses 4 bitmap vectors, shown in Figure

3.6d. Figures 3.6e and 3.6f show the encoding schemes for the Scatter and Dual bitmap

indexes, which use 8 and 6 bitmap vectors, respectively.

This chapter described the characteristics of five encoding bitmap indexes,

including Range, Interval, Encoded, Scatter, and Dual bitmap indexes. The Range and

Interval bitmap indexes are efficient for equality and range queries by setting bit value 1

in the consecutive bitmap vectors to represent attribute values. However, those bitmap

indexes suffer from high storage requirements, due to the large numbers of bitmap

vectors. While the Encoded bitmap index uses the smallest number of bitmap vectors,

it is inefficient with equality and range queries. The Scatter and Dual bitmap indexes

can improve the performance for equality query processing, in terms of space and time

trade-off, by accessing two bitmap vectors. Unfortunately, the range query processing

is unsatisfactory. Table 3.2 summarizes the advantages and limitations of six encoding

bitmap index algorithms.

As aforementioned, the existing encoding bitmap indexes are not be able

to fully solve the problems of both space requirements and execution times with a variety

of submitted queries. Therefore, the proposed encoding bitmap index, called HyBiX for

Hybrid Encoding Bitmap Index, will be explained in the next chapter, to deal with those

problems.

32

Table 3.2: A summarization of encoding bitmap index algorithms

Algorithm Year Method Pros. Cons.

Basic

bitmap

index [16]

1997

- Formed on equality encoding

- Use one bitmap vector for repre-

senting one attribute value

- Easy to represent the data

- Suited for equality queries

- Suited for attribute with low cardi-

nality

- Require a massive storage when

build on attribute with high cardi-

nality

- Consume long times for answer-

ing range queries

Range

bitmap

index [33]

1998

- Formed on range encoding

- Each attribute value is represented

by the specific consecutive bitmap

vectors

- Access 2 bitmap vectors to answer

the queries

- Suited for equality and one-side

range queries

- Suited for attribute with low cardi-

nality

- Index size is dramatically in-

creased when cardinality of in-

dexed attribute is high

Continued on next page

33

Algorithm Year Method Pros. Cons.

Interval

bitmap

index [34]

1999

- Formed on interval encoding

- Each attribute value is represented

by the specific consecutive bitmap

vectors

- Access 2 bitmap vectors to answer

the queries

- Index size is smaller than Basic

and Range bitmap indexes

- Suited for equality queries, one-

side, and two-side range queries

- Suited for attribute with low cardi-

nality

- Index size is dramatically in-

creased when cardinality of in-

dexed attribute is high

Encoded

bitmap

index [28]

1998
- Formed on binary encoding

- Use a mapping table

- Index size is the smallest compar-

ing with existing other encoding

bitmap indexes

- Suited for attribute with high car-

dinality

- Take a long query execution time

with both equality and range

queries

- Need to look up at a mapping table

and access all bitmap vectors

Scatter

bitmap

index [35]

2006

- Divide bitmap vectors into 2

groups

- Each indexed value is calculated

and place into the group

- Use 2 bitmap vectors to represent

each attribute value

- Index size is the smaller than the

Basic, Range, and Interval bitmap

indexes

- Suited for equality queries

- Use 2 bitmap vectors to answer

equality queries

- Waste one bitmap vector to repre-

sent one value (i.e., Z0)

- Take long times to answer range

queries

Continued on next page

34

Algorithm Year Method Pros. Cons.

Dual

bitmap

index [35]

2006

- Improve space requirement of

Scatter bitmap index

- Use 2 bitmap vectors to represent

each attribute value

- Index size is smaller than the Ba-

sic, Range, Interval and Scatter

bitmap index

- Suited for equality queries

- Use 2 bitmap vectors to answer

equality queries

- Take long times to answer range

queries

35

CHAPTER 4

HYBIX: HYBRID ENCODING BITMAP INDEX

In previous chapter, the characteristics of various encoding bitmap in-

dexes was described. Most of researches on encoding bitmap indexes are interested

in reducing storage requirements with maintaining query execution times for various

queries. The Basic bitmap index provides an efficient space requirement with low car-

dinality attributes and it offers the fastest query execution times with equality queries.

Unfortunately, the query execution times used by the Basic bitmap index is unsatisfactory.

The Range and Interval bitmap indexes offer a better efficiency of query execution times

with both equality and range queries. However, they suffer the storage requirement prob-

lem against the high cardinality attributes. Although the Encoded bitmap index gives the

smallest index size for all cardinalities of attributes, it consumes a long query execution

times with both equality and range queries. The Scatter and Dual bitmap indexes are

improved space requirement with high cardinality attributes and also improved query

execution times with equality queries. Nevertheless, the query execution time with range

queries used by the Scatter and Dual bitmap indexes is unsatisfactory. In the real world

applications, the submitted queries could be both equality and range queries. Clearly, the

existing encoding bitmap index cannot deal with execution times with various submitted

queries efficiently, with using a small space requirement. Consequently, this dissertation

proposes a new encoding bitmap index, namely HyBiX bitmap index for Hybrid Encod-

ing bitmap index, which uses the small space requirement and provides a good query

execution time with equality and range queries.

This chapter describes the design concept of the HyBiX bitmap index,

the bitmap index creation, and query processing for HyBiX bitmap index.

4.1 The design concept of HyBiX bitmap index

The HyBiX bitmap index takes the strengths of grouping the indexed

attribute values and the design concepts in existing encoding bitmap indexes (i.e., Range

36

and Dual bitmap indexes) to reduce the storage requirements as well as to improve query

processing times, with big data and with high attribute cardinality. Due to grouping

the attribute values, the numbers of attribute values contained in each group must be

carefully considered. If the numbers of attribute values in each group are equal, the

encoding scheme of some attribute values will be duplicated. This is difficult to precisely

answer the query values over the bitmap index, which requires the access to the raw data

and examines the predicted query values. Therefore, the basic concept of HyBiX bitmap

index is to divide the distinct attribute values into several groups under the condition that

the amount of values in each group must be unequal. Therefore, the amount of values

in each group decreases by 1 in order to efficiently represent attribute values as many

as possible. Next, the number of groups and the numbers of values in each group is

calculated, as described below.

From the above ideas, let n denotes a possible number of groups and

a total number of bitmap vectors. Generally, regarding the amounts of values in each

group, the group i has n− i values, where 0 ≤ i ≤ n− 1. Therefore, the first group of

HyBiX bitmap index (group 0) has n values, the next group (group 1) has n− 1 values,

and so on until the last group (group n− 1) has 1 value. Then, the total number of values

in every group must be greater than or equal to the cardinality of indexed attribute, as

seen in Eq. (4.1).

n+ (n− 1) + (n− 2) + · · ·+ 1 ≥ C (4.1)

The above equation can be solved as following:

n∑

i=1

i ≥ C

n(n+ 1)

2
≥ C

n2 + n ≥ 2C

n2 +
2n

2
+

(
1

2

)2

≥ 2C +

(
1

2

)2

(
n+

1

2

)2

≥ 2C +
1

4

37

n+
1

2
≤ −

√
2C +

1

4
or n+

1

2
≥
√

2C +
1

4

n ≤ −
√

2C +
1

4
− 1

2
or n ≥

√
2C +

1

4
− 1

2

Since the number of groups and the total number of bitmap vectors must

be the smallest positive integer, it gives

n =
⌈√

2C + 0.25− 0.5
⌉

(4.2)

where C is the cardinality of the indexed attribute.

Additionally, the maximum values of C that can be represented by n

bitmap vectors is then n+ (n− 1) + (n− 2) + · · ·+ 1. Therefore,

Cmax = n+ (n− 1) + (n− 2) + · · ·+ 1

=
n∑

i=1

i

=
n(n+ 1)

2

Assume that the cardinality of attribute A is 15 (C = 15), then, the total

number of bitmap vectors used for HyBiX bitmap index can be calculated as followed.

n =
⌈√

2(15) + 0.25− 0.5
⌉

n =
⌈√

30.25− 0.5
⌉

n = d5.5− 0.5e = 5

Therefore, the HyBiX bitmap index built on the attribute with C = 15

uses 5 bitmap vectors, which can indicate 15 values as the maximum. Furthermore, it is

implied that the total number of groups is also 5 as well.

Let H denotes a set of bitmap vectors for HyBiX bitmap index and

H = {H0, H1, . . ., Hn−1}. To represent attribute values, the bitmap vector H i represents

for all values in group i and for some values in groups i− 1, i− 2, . . . , 0. For example,

38

as seen in Figure 4.1, the bitmap vector H2 represents all values of group 2 (i.e., values

9, 10, and 11) and also represent some values of group 0 and group 1 (i.e., values 2, 3, 4

for group 0 and values 6, 7, 8 for group 1). Figure 4.2 illustrates the encoding scheme

used by HyBiX bitmap index for the attribute with C = 15, where • represents bit value

1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

gr
ou
p
0

gr
ou
p
1

gr
ou
p
2

gr
ou
p
3

gr
ou
p
4

H0

H1

H2

H3

H4

Figure 4.1: A basic concept of HyBiX bitmap index with cardinality 15.

H0 H1 H2 H3 H4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

V
a
lu
e
s
o
f
a
n
in
d
e
x
e
d
a
tt
ri
b
u
te

Figure 4.2: HyBiX scheme for attribute A with cardinality 15.

As shown in Figures 4.1 and 4.2, there are four elements characterizing

the attribute values in order to facilitate the encoding of attribute values for the HyBiX

bitmap index, consisting of group containing the value (gv), starting value in the group

(sv), ending value in the group (ev), and level of the value in the group (lv). Each element

is individually clarified as follows.

Definitely, the attribute values are continuously increasing by starting

from 0. The first group (i.e., group 0) contain n values. The amount of attribute values in

39

the next group is decreased by 1 from the previous group. Therefore, the group 0 has the

values between 0 and n− 1, the group 1 has the values between n and n+ (n− 1)− 1,

and so on, as described below.

Group Values

0 0 ≤ v ≤ n− 1

1 n ≤ v ≤ n+ (n− 1)− 1

2 n+ (n− 1) ≤ v ≤ n+ (n− 1) + (n− 2)− 1

3 n+ (n− 1) + (n− 2) ≤ v ≤ n+ (n− 1) + (n− 2) + (n− 3)− 1

where v ∈ [0, C − 1].

From the above, we consider the range of values contained in the specific

groups, as shown in Eq. (4.3).

for any group (gv):
n∑

i=1

i−
n−gv∑

i=1

i ≤ v ≤
(

n∑

i=1

i−
n−gv−1∑

i=1

i

)
− 1 (4.3)

Consider the left side:
∑n

i=1 i−
∑n−gv

i=1 i ≤ v, where Cmax =
∑n

i=1 i.

Cmax −
(n− gv)(n− gv + 1)

2
≤ v

(n− gv)(n− gv + 1) ≥ 2(Cmax − v)

(n− gv)
2 + (n− gv) ≥ 2(Cmax − v)

(n− gv)
2 +

2(n− gv)

2
+

(
1

2

)2

≥ 2(Cmax − v) +

(
1

2

)2

(
n− gv +

1

2

)2

≥ 2(Cmax − v) +

(
1

4

)

n− gv +
1

2
≥ +

√
2(Cmax − v) +

1

4
or n− gv +

1

2
≤ −

√
2(Cmax − v) +

1

4

The value of group must be a positive number. So, we get

n− gv ≥
√

2(Cmax − v) +
1

4
− 1

2

Consider the right side: v ≤
(∑n

i=1 i−
∑n−gv−1

i=1 i
)
− 1.

40

v ≤
(
Cmax −

(n− gv − 1)(n− gv)

2

)
− 1

(n− gv − 1)(n− gv) ≤ 2(Cmax − v − 1)

(n− gv)
2 − (n− gv) ≤ 2(Cmax − v − 1)

(n− gv)
2 − 2(n− gv)

2
+

(
1

2

)2

≤ 2(Cmax − v − 1) +

(
1

2

)2

(
n− gv −

1

2

)2

≤ 2(Cmax − v − 1) +

(
1

4

)

n− gv −
1

2
≤ +

√
2(Cmax − v − 1) +

1

4
or n− gv −

1

2
≥ −

√
2(Cmax − v − 1) +

1

4

The value of group must be a positive number. So, we get

n− gv ≤
√

2(Cmax − v − 1) +
1

4
+

1

2

To satisfy Eq. (4.3), we check
√
2X + 1

4
− 1

2
≤
√

2(X − 1) + 1
4
+ 1

2
for

the value of n− gv, where X = Cmax − v, as follows.

0 ≤ X − 1

0 ≤ 2(X − 1)

1

4
≤ 2(X − 1) +

1

4

1

2
≤
√

2(X − 1) +
1

4

1 ≤ 2

√
2(X − 1) +

1

4(√
2(X − 1) +

1

4

)2

+ 1 + 1 ≤
(√

2(X − 1) +
1

4

)2

+ 2

√
2(X − 1) +

1

4
+ 1

2(X − 1) +
1

4
+ 2 ≤

(√
2(X − 1) +

1

4
+ 1

)2

2X +
1

4
≤
(√

2(X − 1) +
1

4
+ 1

)2

√
2X +

1

4
≤
√

2(X − 1) +
1

4
+ 1

√
2X +

1

4
− 1

2
≤
√

2(X − 1) +
1

4
+

1

2

41

Evidently, the value n − gv is between
√

2(Cmax − v) + 1
4
− 1

2
and

√
2(Cmax − v − 1) + 1

4
+ 1

2
. Indeed, an integer number of value gv is expected, so we

get

gv = n−
⌈√

2(Cmax − v) +
1

4
− 1

2

⌉
= n−

⌊√
2(Cmax − v − 1) +

1

4
+

1

2

⌋

Consequently, the equation for calculating the group containing the pre-

dicted attribute values is gv = n−
⌈√

2(Cmax − v) + 0.25− 0.5
⌉

. �

Secondly, the starting value (sv) of the group containing the attribute

value is derived, related to the given gv of the attribute value.

sv =

gv−1∑

i=0

(n− i)

sv =

gv−1∑

i=0

n−
gv−1∑

i=0

i

sv = n

gv−1∑

i=0

1−
gv−1∑

i=0

i

sv = ngv −
gv(gv − 1)

2

sv =
2ngv − gv(gv − 1)

2

sv =
gv
2
(2n− gv + 1)

The starting value in the group containing the attribute value can then be

calculated by sv =
gv
2
(2n− gv + 1). �

In the third element, the ending value (ev) of the group containing the

attribute value is accounted, related the the given gv of the attribute value, as shown

below.

ev =

(
gv∑

i=0

(n− i)

)
− 1

ev =

(
gv∑

i=0

n−
gv∑

i=0

i

)
− 1

42

ev =

(
n

gv∑

i=0

1−
gv∑

i=0

i

)
− 1

ev =

(
n(gv + 1)− gv(gv + 1)

2

)
− 1

ev =

(
2n(gv + 1)− gv(gv + 1)

2

)
− 1

ev =

[(
gv + 1

2

)
(2n− gv)

]
− 1

Obviously, the ending value in the group containing the attribute value

can be calculated by ev =
[(

gv+1
2

)
(2n− gv)

]
− 1. �

Lastly, the sequence of the attribute value (i.e., the level of the attribute

value) indicates the distance between the attribute value (v) and the starting value sv in

the group containing the attribute value (gv). Therefore, the sequence of the attribute

value can be calculated by lv = gv + (v − sv) �

4.2 Bitmap index creation for HyBiX bitmap index

Table 4.1 describes the notation used in bitmap index creation algorithm

for the HyBiX bitmap index.

Table 4.1: Notation used in creation algorithm for HyBiX bitmap index

Symbol Description

n The total number of bitmap vectors used (i.e., the total number of groups)
C The number of distinct values of the indexed attribute (i.e., cardinality)

Cmax The maximum value of C that can be represented by n bitmap vectors,
Cmax = n(n+1)

2

H i The bitmap vectors created for HyBiX, where i = 0, 1, . . ., n− 1
v A distinct value of indexed attribute

gv A group containing the value v, gv = n−
⌈√

2(Cmax − v) + 0.25− 0.5
⌉

sv Starting value in the group that contains the value v,sv =[
(gv
2
)(2n− gv + 1)

]

ev Ending value in the group that contains the value v, ev =[
(gv+1

2
)(2n− gv)

]
− 1

lv The sequence of value v inside the group (level), lv = gv + (v − sv)

Algorithm 4.1 shows the creation algorithm of HyBiX bitmap index in 6

steps. Each value of the indexed attribute A is assigned by a number in an increasing se-

43

Algorithm 4.1 The creation of HyBiX bitmap index
INPUT: The cardinality and the values of the indexed attribute
OUTPUT: The HyBiX bitmap index

1: Assign an increasing sequence of numbers to each of distinct values of the indexed
attribute (i.e., 0, 1, 2, . . . , C − 1) and calculate n =

⌈√
2C + 0.25− 0.5

⌉

2: Create the HyBiX assistant table
3: for a value ‘v’ in each row do
4: Get the group (gv) and the level (lv) corresponding to the value ‘v’ from HyBiX

assistant table
5: Set bitmap vectors according to the following equation

H i =

{
1 gv ≤ i ≤ lv

0 otherwise.

6: end for

quence (i.e., 0, 1, . . . , C−1). In the 2nd step, a HyBiX assistant table is created once and

stored in the main memory, to provide preliminary information on each distinct attribute

value. The benefits of the HyBiX assistant table are to eliminate redundant computation,

to facilitate creating index for HyBiX bitmap index, and to assist in the queries. The

HyBiX assistant table contains five elements: v, gv, sv, ev, and lv, characterizing the

attribute values. However, the HyBiX assistant table is option to create because each

element can be calculated by its individual equation. Consequently, from the utilities of

the HyBiX assistant table, this algorithm creates the HyBiX assistant table to provide an

efficiency of computation times in both processes of index creation and query processing.

Next, the values of attribute A are then encoded in the 3rd - 6th steps. For each attribute

value ‘v’, the associated values of gv and lv are retrieved from the HyBiX assistant table

in the 4th step. Then, in the 5th step, the bits in H i are set to 1 if i is between gv and lv;

otherwise, the bits remain set to 0. Therefore, the encoding function of HyBiX bitmap

index can be written in Eq. (4.4).

H i =




1 gv ≤ i ≤ lv

0 Otherwise.
(4.4)

Suppose we want to create the HyBiX bitmap index for attribute A with C

= 15. The HyBiX bitmap index has 5 bitmap vectors (n), {H0, H1, H2, H3, H4}, which

44

is enough to represent all 15 distinct values. Figure 4.3b illustrates the accomplishment

of the HyBiX bitmap index for attribute A with the given HyBiX assistant table in Figure

4.3a. For example, to encode attribute value ‘3’, the values of g and l for value ‘3’ are 0

and 3, respectively. Then, the bits in H0 to H3 are set to 1, while the bit in H4 is set to 0,

and these are highlighted in Figure 4.3b.

v gv sv ev lv
0 0 0 4 0
1 0 0 4 1
2 0 0 4 2
3 0 0 4 3
4 0 0 4 4

5 1 5 8 1
6 1 5 8 2
7 1 5 8 3
8 1 5 8 4

9 2 9 11 2
10 2 9 11 3
11 2 9 11 4

12 3 12 13 3
13 3 12 13 4

14 4 14 14 4

(a) HyBiX assistant table

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

H0 H1 H2 H3 H4

1 1 1 1 0
0 0 1 0 0
0 0 0 0 1
0 1 1 1 1
0 0 1 1 0
1 1 1 1 0
1 1 1 1 1
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
.
.
.
1 1 1 0 0

(b) Table T and HyBiX bitmap index

Figure 4.3: HyBiX assistant table, and an example of the HyBiX bitmap index for
attribute A with C = 15.

4.3 Query processing for HyBiX bitmap index

Normally, a query of the form v1 ≤ A ≤ v2 is able to contribute both

classes of equality and range queries. The query is an equality query if v1 = v2; and it is

a range query if 0 ≤ v1 < v2 ≤ C− 1. For HyBiX bitmap index, the query is an equality

query when gv1 = gv2 and the query is a range query when either gv1 = gv2 or gv1 < gv2 .

Equality query processing: Normally, the form of an equality query is

‘A = v’ where v = v1 = v2. The concept for answering the equality query is that the

bitmap vector related to the group containing v1 (or v2) and the bitmap vector related to

the level of v1 (or v2) are identified. To evaluate an equality query, the retrieval function

for an equality query is created by Eq. (4.5).

A = v = P ∧Q (4.5)

45

where

P =




Hgv1 gv1 = 0

Hgv1−1 ∧Hgv1 Otherwise

Q =





H lv2+1 v1 = sv1 , v2 6= ev2

H lv1 v1 6= sv1 , v2 = ev2

H lv1 ⊕H lv2+1 v1 6= sv1 , v2 6= ev2

1 Otherwise

For an equality query, the function P is responsible for identifying the

relevant bitmap vector belonging the group containing value v. The bitmap vector Hgv is

accessed if gv = 0; otherwise the negation of bitmap vector Hgv−1 is needed to perform

the bitwise-AND operation with the bitmap vector Hgv if gv 6= 0. Moreover, the function

Q is responsible for identifying the relevant bitmap vector belonging the level of value v.

Example 1 To evaluate the equality query A = 3, the information of

‘3’ consists of g3 = 0, s3 = 0, e3 = 4, and l3 = 3 given by the HyBiX assistant table.

Using Eq. (4.5), the retrieval function of this query is H0 ∧ (H3 ⊕ H4). Figure 4.4

shows the result of this equality query for the attribute A in Table T .

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

H0 H3 H4 H0∧(H3⊕H4)

1

∧




1

⊕

0 


=

1
0 0 0 0
0 0 1 0
0 1 1 0
0 1 0 0
1 1 0 1
1 1 1 0
1 0 0 0
0 1 0 0
0 0 0 0
. . . .
. . . .
. . . .
1 0 0 0

Figure 4.4: The result of the equality query A = 3.

Example 2 To evaluate the equality query A = 8, the information of ‘8’

consists of g8 = 1, s8 = 5, e8 = 8, and l8 = 4 given by the HyBiX assistant table, which

the value of g8 is not equal to 0. Using Eq. (4.5), the retrieval function of this query is

46

H0 ∧H1 ∧H4. Figure 4.5 shows the result of this equality query for the attribute A in

Table T .

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

H0 H1 H4 H0∧H1∧H4

0

∧

1

∧

0

=

0
1 0 0 0
1 0 1 0
1 1 1 1
1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 0
1 0 0 0
1 1 0 0
. . . .
. . . .
. . . .
0 0 0 0

Figure 4.5: The result of the equality query A = 8.

Range query processing: A range query can be divided into two cases:

either gv1 = gv2 or gv1 < gv2 , as aforementioned. Clearly, the value of gv1 is equal to

the value of gv2 if v1 and v2 are placed in the same group. Otherwise, the value of gv1

is less than the value of gv2 if v1 and v2 are place in the different group. In the first

case, the bitmap vectors related to group containing value v1 are identified, and then the

bitmap vectors related to level of value v1 (and v2, if necessary) are identified. In order

to evaluate a range query when gv1 = gv2 , the retrieval function can be created by Eq.

(4.6).

For gv1 = gv2 ,

v1 ≤ A ≤ v2 =




P v1 = sv1 , v2 = ev2

P ∧Q Otherwise
(4.6)

Similarly, the function P is used for identifying the bitmap vectors be-

longing the group containing value v1 while the function Q is used for identifying the

bitmap vectors belonging the level of v1 and v2. When all values in the group are queried,

only function P is executed. Otherwise, the bitwise-AND operator is used over the result

of P with the result of Q when some values are queried.

Example 3 To evaluate the range query in the form of 1 ≤ A ≤ 4, the

47

information of ‘1’ consists of g1 = 0, s1 = 0, e1 = 4, and l1 = 1 while the information

of ‘4’ consists of g4 = 0, s4 = 0, e4 = 4, and l4 = 4. As the information obtained, the

value of v1 is not equal to sv1 and the value of v2 is equal to ev2 . Using Eq. (4.6), the

retrieval function of this query is H0 ∧H1, which only one bitmap vector accessed is

required. Figure 4.6 shows the result of this range query for the attribute A in Table T .

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

H0 H0 H0 ∧H1

1

∧

1

=

1
0 1 0
0 0 0
0 1 0
0 1 0
1 1 1
1 1 1
1 0 0
0 0 0
0 0 0
. . .
. . .
. . .
1 1 1

Figure 4.6: The result of the range query 1 ≤ A ≤ 4.

Example 4 To evaluate the range query in the form of 6 ≤ A ≤ 8, the

information of ‘6’ consists of g6 = 1, s6 = 5, e6 = 8, and l6 = 2 while the information

of ‘8’ consists of g8 = 1, s8 = 5, e8 = 8, and l8 = 4 given by the HyBiX assistant table.

Both values are placed in the same group and the value of their group is not equal to 0

(i.e., gv1 6= 0). Moreover, the value of v1 is not equal to sv1 but the value of v2 is equal

to ev2 (i.e., v1 6= sv1 , v2 = ev2). Using Eq. (4.6), the retrieval function of this query is

H0 ∧ H1 ∧ H2. Figure 4.7 shows the result of this range query for the attribute A in

Table T .

Next, the query values cover in many groups of HyBiX bitmap index if

gv1 < gv2 . It is guaranteed that gv2 > 0. There are three parts separately considered. The

bitmap vectors related to the group containing values v1 and v2 are identified, respectively.

Next, the bitmap vectors related to the groups containing relevant query values, except

for groups containing v1 and v2, are identified. Then, the bitwise-OR operations are used

among those three parts to find the final result. In order to answer a range query when

48

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

H0 H1 H2 H0∧H1∧H2

0

∧

1

∧

0

=

0
1 0 1 0
1 0 0 0
1 1 1 1
1 0 1 0
0 1 1 0
0 1 1 0
0 0 0 0
1 0 0 0
1 1 0 0
. . . .
. . . .
. . . .
0 0 1 0

Figure 4.7: The result of the range query 6 ≤ A ≤ 8.

gv1 < gv2 , the retrieval function is given in Eq. (4.7).

For gv1 < gv2 ,

v1 ≤ A ≤ v2 = T ∨




RV 1 gv1 = 0

Hgv1−1 ∧RV 1 Otherwise
(4.7)

where

T = Hgv1 ∧





∨gv2−1
i=gv1+1 H

i ∨RV 2 gv2 − gv1 ≥ 2

RV 2 Otherwise

RV 1 =




Hgv1 v1 = sv1

Hgv1 ∧H lv1 v1 6= sv1

RV 2 =




Hgv2 v2 = ev2

Hgv2 ∧H lv2+1 v2 6= ev2

The query values in the group between gv1 and gv2 are retrieved by the

function T . The function RV 1 is used for specifying the relevant query values which are

the same group as v1 while RV 2 is also used for specifying the relevant values which

are in the same group as v2.

Example 5 To evaluate the range query in the form of 3 ≤ A ≤ 13, the

49

information of ‘3’ consists of g3 = 0, s3 = 0, e3 = 4, and l3 = 3 while the information

of ‘13’ consists of g13 = 3, s13 = 12, e13 = 13, and l13 = 4 given by the HyBiX

assistant table. The value of v1 is not equal to sv1 but the value of v2 is equal to ev2 (i.e.,

v1 6= sv1 , v2 = ev2). Moreover, the different of g3 and g13 is 3 (i.e., gv2 − gv1 ≥ 2). Using

Eq. (4.7), the retrieval function of this query is
(
H0 ∧ (H1 ∨H2 ∨H3)

)
∨ (H0 ∧H3).

Figure 4.8 shows the result of this range query for the attribute A in Table T .

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

H0∧(H1∨H2∨H3) H0∧H3
(
H0 ∧ (H1 ∨H2 ∨H3)

)
∨(H0∧H3)

0

∨

1

=

1
1 0 1
0 0 0
1 0 1
1 0 1
0 1 1
0 1 1
0 0 0
1 0 1
1 0 1
. . .
. . .
. . .
0 0 0

Figure 4.8: The result of the range query 3 ≤ A ≤ 13.

Example 6 To evaluate the range query in the form of 6 ≤ A ≤ 10,

the information of ‘6’ consists of g6 = 1, s6 = 5, e6 = 8, and l6 = 2 while the

information of ‘10’ consists of g10 = 2, s10 = 0, e10 = 11, and l10 = 3 given by the

HyBiX assistant table. In this example, the value of v1 and v2 is not equal to sv1 and

ev2 , respectively, (i.e., v1 6= sv1 , v2 6= ev2). Using Eq. (4.7), the retrieval function of

this query is
(
H1 ∧H2 ∧H4

)
∨
(
H0 ∧H1 ∧H2

)
. Figure 4.9 shows the result of this

range query for the attribute A in Table T .

The query processing algorithm for HyBiX bitmap index is described

in Algorithm 4.2. The algorithm consists of 19 steps which facilitate answering both

equality and range queries. It is better if the types of the query submitted can be identified

whether it is an equality query or a range query by comparing the value of v1 and v2.

An equality query is executed at the 1st - 3rd step. In the 2nd step, all information of v1

is retrieved from the HyBiX assistant table. Next, the complete retrieval function for

the query is created by using the bitwise-AND operation between the results of P and

50

1

2

3

4

5

6

7

8

9

10

.

.

.

100,000

A

3
9
14
8
10
3
4
0
12
5
.
.
.
2

H1∧H2∧H4 H0∧H1∧H2 (H1∧H2∧H4)∨(H0∧H1∧H2)

0

∨

0

=

0
1 0 1
0 0 0
0 1 1
1 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
. . .
. . .
. . .
0 0 0

Figure 4.9: The result of the range query 6 ≤ A ≤ 10.

Q in the 3rd step. A range query is executed in the 4th - 19th step. In the 5th step, all

information of v1 and v2 is retrieved from the HyBiX assistant table. The query values

which are in the same group (i.e., gv1 = gv2) are executed in the 6th - 11th step. Otherwise,

the 12th - 18th step is executed if the query values fall in many groups.

Algorithm 4.2 The query processing of HyBiX bitmap index
INPUT: Query values: v1 and v2
OUTPUT: A retrieval function (RF)

1: if v1 = v2 then . Answer equality query
2: Get information of v1 from HyBiX assistant table
3: return P ∧Q
4: else . Answer range query
5: Get information of v1 and v2 from HyBiX assistant table
6: if gv1 = gv2 then . Cover one group
7: if v1 = sv1 and v2 = ev2 then
8: return P
9: else

10: return P ∧Q
11: end if
12: else . Cover more than one group
13: if gv1 = 0 then
14: return T ∨RV 1
15: else
16: return T ∨ (Hgv1−1 ∧RV 1)
17: end if
18: end if
19: end if

51

This chapter described the basic concept of HyBiX bitmap index, which

utilizes the idea of grouping attribute values and the encoding designs of existing bitmap

indexes. Moreover, the bitmap creation algorithm for HyBiX bitmap index and its query

processing for equality and range queries are also given.

The next chapter shows the experimental analysis of seven encoding

bitmap indexes in point of views space requirement, execution time with equality and

range queries, and space and time trade-off.

52

CHAPTER 5

PERFORMANCE STUDY

This chapter presents a theoretical analysis and experimental results on

which space-efficiency, time-efficiency, and the trade-off between space and execution

time for equality and range queries, are compared for seven encoding bitmap indexes.

5.1 Theoretical analysis

Table 5.1 shows a theoretical analysis of seven bitmap indexes comparing

space requirements, numbers of bitmap vectors to be scanned and numbers of Boolean

operations for equality and range queries. The Basic bitmap index is the worst in space

usage (uses C bitmap vectors) while the Encoded bitmap index is the best space usage

(uses dlog2Ce bitmap vectors). The Range bitmap index uses C − 1 bitmap vectors,

while the Interval bitmap index decreases this by about half to dC
2
e bitmap vectors. The

Scatter and Dual bitmap indexes use d2
√
Ce, and d

√
2C + 0.25 + 0.5e bitmap vectors,

respectively. The HyBiX bitmap index uses d
√
2C + 0.25− 0.5e bitmap vectors.

In order to answer equality queries, the Basic bitmap index scans 1 bitmap

vector without any Boolean operation. The scans of the Range bitmap index range from

1 to 2 bitmap vectors with 0 to 1 Boolean operations. The Interval bitmap index scans

2 bitmap vectors with 1 to 2 Boolean operations. The Encoded bitmap index scans

dlog2Ce bitmap vectors with 2dlog2Ce Boolean operations. Both the Scatter, and Dual

bitmap indexes scan 2 bitmap vectors with 1 Boolean operation. The scans of the HyBiX

bitmap index range from 2 to 4 bitmap vectors with 1 to 4 Boolean operations.

In order to answer range queries, the Basic bitmap index scans the most

related bitmap vectors and performs the most Boolean operations. The scans of the Range

bitmap index range from 1 to 2 bitmap vectors with 0 or 1 Boolean operations. The

Interval bitmap index scans 2 bitmap vectors and performs 2 Boolean operations. The

Encoded, Scatter, and Dual bitmap indexes utilize the Boolean simplification to reduce

the complexity of retrieval functions. Therefore, the number of bitmap vectors scanned

53

for Encoded bitmap index ranges from 1 to (v2−v1+1)×(dlog2Ce) bitmap vectors and

the number of Boolean operations ranges from 0 to (v2−v1+1)×(dlog2Ce+1). Both the

Scatter and Dual bitmap indexes scan from 3 to 2(v2−v1+1) bitmap vectors and perform

from 2 to 2(v2−v1+1) Boolean operations. The number of scanned bitmap vectors with

HyBiX bitmap index ranges from 1 to gv2−gv1+4 and the number of Boolean operations

used ranges from 0 to gv2 − gv1 + 5, where 0 ≤ gv1 ≤ gv2 ≤
⌈√

2C + 0.25− 0.5
⌉
− 1.

5.2 Experimental results

5.2.1 Data set used and experimental setting

The experiment was conducted on 64-bit Windows 10 and 3.20 GHz

Intel R© CoreTM i5-4570 with 4.00 GB main memory. We used the TPC(H) benchmark

data set, which is retrieved from [62]. This benchmark is composed of eight separate

tables. The benchmark data are generated along with a scale factor (SF), which specifies

the size of data. We experimented on table LINEITEM with four different scale factors:

25, 50, 75, and 100, which contains over 150, 300, 450, and 600 million rows, respec-

tively. We selected two representative attributes having different cardinalities: a small

data set (Quantity attribute with cardinality 50) and a large data set (Shipdate attribute

with cardinality 2,526).

The space-efficiency of an encoding bitmap index is measured in terms of

space requirements for storing all its bitmap vectors. The time-efficiency of an encoding

bitmap index is measured in terms of average query execution time over all 10 queries in

each query set for equality and range queries. The query execution time includes a disk

I/O time for reading relevant bitmap vectors as well as a CPU time for Boolean operations

on them (including Boolean simplifications with range queries used by Encoded, Scatter,

and Dual bitmap indexes). The Boolean simplification requires some execution times,

but does not significantly impact the overall query execution time. The space and time

trade-off of an encoding bitmap index is measured in terms of the overall performance

calculated by the rectangular area under the coordinates of space demanded and time

consumed.

54

Table 5.1: A comparative study of seven encoding bitmap index algorithms

Bitmap

index

Space requirement Execution time for equality queries Execution time for range queries

Number of bitmap Number of bitmap Number of Boolean Number of bitmap Number of Boolean

vectors created vectors scanned operations used vectors scanned operations used

Basic C 1 0 v2 − v1 + 1 v2 − v1

Range C − 1 1 to 2 0 to 1 1 to 2 0 to 1

Interval
⌈
C
2

⌉
2 1 to 2 2 2

Encoded dlog2Ce dlog2Ce 2 dlog2Ce 1 to (v2−v1+1)(dlog2Ce) 0 to (v2−v1+1)(dlog2Ce+1)

Scatter
⌈
2
√
C
⌉

2 1 3 to 2(v2 − v1 + 1) 2 to 2(v2 − v1 + 1)

Dual
⌈√

2C + 0.25 + 0.5
⌉

2 1 3 to 2(v2 − v1 + 1) 2 to 2(v2 − v1 + 1)

HyBiX
⌈√

2C + 0.25− 0.5
⌉

2 to 4 1 to 4 1 to (gv2 − gv1 + 4) 0 to (gv2 − gv1 + 5)

C is cardinality of the indexed attribute.

gv1 is the group in HyBiX bitmap index containing value v1.

gv2 is the group in HyBiX bitmap index containing value v2.

55

5.2.2 The space-efficiency of seven encoding bitmap indexes

Figure 5.1 affirms the above theoretical analysis of space requirements

for the seven encoding bitmap indexes, for the two selected attributes. The Basic bitmap

index requires the most space while the Encoded bitmap index requires the least, for

both Quantity and Shipdate attributes. The HyBiX requires less space than the other

remaining bitmap indexes for both attributes. As the cardinality increases, the size

of Basic, Range, and Interval bitmap indexes exceed the size of raw data. This is an

undesirable characteristic of indexing; the index size should be smaller than the raw data

size to gain a benefit from the encoding.

25 50 75 100
0

500

1,000

1,500

2,000

2,500

3,000

3,500

1 2

3

4
5 6 7

1 2

3

4

5
6 7

1 2

3

4

5
6 7

1 2

3

4

5

6 7

Scale Factor

S
p
ac
e
R
eq
u
ir
em

en
t
(M

B
)

1 Basic 2 Range 3 Interval 4 Encoded

5 Scatter 6 Dual 7 HyBiX

(a) Quantity attribute

25 50 75 100
0

20

40

60

80

100

120

140

160

180

1 2

3

4 5 6 7

1 2

3

4 5 6 7

1 2

3

4 5 6 7

1 2

3

4
5 6 7

Scale Factor

S
p
ac
e
R
eq
u
ir
em

en
t
(G

B
)

1 Basic 2 Range 3 Interval 4 Encoded

5 Scatter 6 Dual 7 HyBiX

(b) Shipdate attribute

Figure 5.1: The space requirement of seven alternative encoding bitmap indexes.

56

5.2.3 The time-efficiency of seven encoding bitmap indexes

Equality queries

Figure 5.2 illustrates the query execution times of the seven encoding

bitmap indexes with equality queries on Quantity and Shipdate attributes. To answer

equality queries, the Basic bitmap index uses 1 bitmap vectors with no Boolean opera-

tions. The Range, Interval, Scatter, and Dual bitmap indexes use 2 bitmap vectors and

1 Boolean operation for the Range, Scatter, and Dual bitmap indexes, and 2 Boolean

25 50 75 100
0

10

20

30

40

50

60

70

80

90

Scale Factor

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Basic Range
Interval Encoded
Scatter Dual
HyBiX

Query execution time

Bitmap
index

Scale factor

25 50 75 100

Basic 1.52350 2.97570 4.38406 5.89897
Range 3.31602 6.65942 9.75298 13.28298
Interval 3.70201 7.39024 11.02924 14.53051
Encoded 17.26202 34.40758 51.63899 90.08717
Scatter 3.51548 6.96173 10.38928 13.93256
Dual 3.51088 6.91374 10.23746 13.97350
HyBiX 5.37558 10.63795 15.93171 21.54041

(a) Quantity attribute

25 50 75 100
0

50

100

150

200

250

Scale Factor

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Basic Range
Interval Encoded
Scatter Dual
HyBiX

Query execution time

Bitmap
index

Scale factor

25 50 75 100

Basic 1.49902 2.95526 4.34581 5.73083
Range 3.40169 6.59404 9.63845 13.02037
Interval 3.65312 7.21872 10.77571 14.27777
Encoded 34.21895 71.69528 135.59237 257.33834
Scatter 3.49090 6.83654 10.40266 13.68498
Dual 3.53580 6.85803 10.18445 13.88376
HyBiX 5.30256 10.69024 15.73132 21.13676

(b) Shipdate attribute

Figure 5.2: The query execution time of seven encoding bitmap indexes for equality
queries: A query value falls in any group of HyBiX bitmap index.

57

operations for the Interval bitmap index. The Encoded bitmap index uses dlog2Ce
bitmap vectors and 2dlog2Ce Boolean operations. The HyBiX bitmap index uses 4

bitmap vectors and at most 4 Boolean operations. Furthermore, the query execution

time with Encoded bitmap index significantly increases with cardinality of the indexed

attribute. On the other hand, the cardinality does not affect the overall query execution

time with the other encoding bitmap indexes, for equality queries.

Furthermore, the HyBiX bitmap index scans at most 3 bitmap vectors and

uses at most 2 Boolean operations when the query value falls in group 0 of the HyBiX

25 50 75 100
0

10

20

30

40

50

60

70

80

90

100

Scale Factor

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Basic Range
Interval Encoded
Scatter Dual
HyBiX

Query execution time

Bitmap
index

Scale factor

25 50 75 100

Basic 1.53019 2.98000 4.39870 5.93306
Range 3.13163 6.28674 9.23499 12.51907
Interval 3.64989 7.28978 10.92295 14.40356
Encoded 17.31165 34.39093 51.82539 93.62092
Scatter 3.51284 6.94743 10.41126 13.96687
Dual 3.52583 6.94786 10.28392 14.08316
HyBiX 4.60724 9.14358 13.64289 18.58051

(a) Quantity attribute

25 50 75 100
0

50

100

150

200

250

Scale Factor

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Basic Range
Interval Encoded
Scatter Dual
HyBiX

Query execution time

Bitmap
index

Scale factor

25 50 75 100

Basic 1.51019 2.99994 4.35410 5.75393
Range 3.17464 6.23674 8.98826 12.10525
Interval 3.67009 7.23935 10.77528 14.29833
Encoded 34.59703 73.45627 136.66326 253.51565
Scatter 3.49733 6.88701 10.35326 13.67484
Dual 3.58912 6.93893 10.17872 13.88270
HyBiX 4.58966 9.28651 13.51708 18.09189

(b) Shipdate attribute

Figure 5.3: The query execution time of seven encoding bitmap indexes for equality
queries: Query values fall in group 0 of HyBiX bitmap index.

58

bitmap index. Consequently, the query execution time with equality queries used by

the HyBiX bitmap index is faster for both Quantity and Shipdate attributes, as shown in

Figure 5.3.

Range queries

Figure 5.4 shows a comparison of the query execution times with seven

encoding bitmap indexes for range queries on Quantity and Shipdate attributes. The

Basic bitmap index had the slowest query execution time. The Range and Interval

bitmap indexes use 2 bitmap vectors and 2 Boolean operations to answer range queries.

25 50 75 100
0

50

100

150

200

250

300

Scale Factor

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Basic Range
Interval Encoded
Scatter Dual
HyBiX

Query execution time

Bitmap
index

Scale factor

25 50 75 100

Basic 37.15093 118.85027 194.66048 278.94760
Range 2.83513 5.67528 8.29288 11.30590
Interval 3.53298 6.97236 10.60351 13.95199
Encoded 34.75150 71.36784 106.18017 199.94313
Scatter 31.64861 65.25394 164.77096 308.52223
Dual 27.34000 55.51722 164.65944 286.76945
HyBiX 7.18307 14.27602 21.42800 29.97768

(a) Quantity attribute

25 50 75 100
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Scale Factor

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Basic Range
Interval Encoded
Scatter Dual
HyBiX

Query execution time

Bitmap
index

Scale factor

25 50 75 100

Basic 450.99062 859.16574 1423.62817 1877.31356
Range 2.85536 5.55180 8.22076 11.13717
Interval 3.61514 7.09763 10.70304 14.21356
Encoded 147.40354 292.13895 467.57429 621.80406
Scatter 218.15120 429.82490 700.52176 913.66721
Dual 267.00535 555.46259 893.73769 1133.03459
HyBiX 7.21929 14.62329 21.71678 29.69490

(b) Shipdate attribute

Figure 5.4: The query execution time of seven encoding bitmap indexes for range
queries: A query value falls in any groups of HyBiX bitmap index.

59

The execution time with the Encoded, Scatter and Dual bitmap indexes is undesirable

because of the high complexity of their retrieval functions. With increased cardinality,

the range of query values is broadened. Then, the query execution times of the Basic,

Encoded, Scatter, and Dual bitmap indexes increased exponentially. In addition, the

query execution time of HyBiX bitmap index is extremely fast but slightly slower than

with Range and Interval bitmap indexes.

Furthermore, the HyBiX bitmap index uses at most 3 bitmap vectors

scanned and at most 2 Boolean operations, when the query values fall in group 0 of the

25 50 75 100
0

20

40

60

80

100

120

140

160

180

200

Scale Factor

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Basic Range
Interval Encoded
Scatter Dual
HyBiX

Query execution time

Bitmap
index

Scale factor

25 50 75 100

Basic 14.39272 28.60017 43.33009 77.23544
Range 2.65342 5.30979 7.76708 10.56740
Interval 3.57124 7.06484 10.73904 14.04948
Encoded 32.44833 68.09462 99.17240 191.41579
Scatter 20.06376 40.02940 75.65696 168.98251
Dual 16.89297 33.92998 77.95817 159.14699
HyBiX 3.77014 7.49748 11.18407 14.92868

(a) Quantity attribute

25 50 75 100
0

100

200

300

400

500

600

700

800

Scale Factor

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Basic Range
Interval Encoded
Scatter Dual
HyBiX

Query execution time

Bitmap
index

Scale factor

25 50 75 100

Basic 113.06728 236.60501 403.63629 526.77949
Range 2.64677 5.13098 7.60756 10.30360
Interval 3.57492 7.01377 10.57472 14.03874
Encoded 131.11841 259.80727 430.72772 579.23984
Scatter 163.51328 329.09298 567.56730 725.79919
Dual 183.00531 382.76829 627.80206 778.47931
HyBiX 3.68813 7.46313 11.04335 14.80563

(b) Shipdate attribute

Figure 5.5: The query execution time of seven encoding bitmap indexes for range
queries: Query values fall in group 0 of HyBiX bitmap index.

60

HyBiX bitmap index. Therefore, the query execution time used by the HyBiX index is

improved for both Quantity and Shipdate attributes, as shown in Figure 5.5.

5.2.4 The trade-off between space and time of four encoding bitmap indexes

Equality query

Since the space requirements used by the Basic, Range and Interval

bitmap indexes are undesirable, which are exactly an impact on the overall performance

in terms of space and time trade-off. Therefore, we present the result only scale factor

0 100 200 300 400 500 600 700 800 9001,0001,100
0

10

20

30

40

50

60

70

80

90

100

Encoded

Scatter

Dual

HyBiX

Space Requirement (MB)

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Encoded
Scatter
Dual
HyBiX

(a) Quantity attribute

0 1 2 3 4 5 6 7
0

50

100

150

200

250 Encoded

Scatter
Dual

HyBiX

Space Requirement (GB)

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Encoded
Scatter
Dual
HyBiX

(b) Shipdate attribute

Figure 5.6: The space vs. time trade-off of four encoding bitmap indexes for equality
queries in scale factor 100: A query value falls in any group of HyBiX bitmap index.

61

100 as the result for any scale factors. Figure 5.6 depicts the trade-off between space

and time for the four alternative encoding bitmap indexes (Encoded, Scatter, Dual, and

HyBiX) for equality queries on Quantity and Shipdate attributes, respectively, with the

query value in any group of HyBiX bitmap index. The Dual bitmap index achieves the

best performance in terms of the trade-off for equality queries. The performance of

HyBiX bitmap index is better than those of four alternative encoding bitmap indexes

(Basic, Range, Interval, and Encoded bitmap indexes), but slightly poorer than with

Scatter bitmap index.

However, when a query value falls in group 0 of HyBiX bitmap index,

0 200 400 600 800 1,000 1,200
0

10

20

30

40

50

60

70

80

90

100

Encoded

Scatter

Dual

HyBiX

Space Requirement (MB)

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Encoded
Scatter
Dual
HyBiX

(a) Quantity attribute

0 1 2 3 4 5 6 7
0

50

100

150

200

250 Encoded

Scatter
HyBiX

Dual

Space Requirement (GB)

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Encoded
Scatter
Dual
HyBiX

(b) Shipdate attribute

Figure 5.7: The space vs. time trade-off of four encoding bitmap indexes for equality
queries in scale factor 100: A query value falls in group 0 of HyBiX bitmap index.

62

the scan of 3 bitmap vectors and 2 Boolean operations are needed to answer the query.

Then, the performance of HyBiX bitmap index is better than that of the Scatter bitmap

index for both attributes, shown in Figure 5.7.

Range query

Figure 5.8 shows space and time trade-off with the four encoding bitmap

indexes for range queries on Quantity and Shipdate attributes, when the query values fall

in any groups of HyBiX bitmap index. The number of bitmap vectors scanned used by

the HyBiX bitmap index is less than that used by other bitmap indexes, which directly

impacts the execution time consumed. This results the query performance with the

0 100 200 300 400 500 600 700 800 9001,0001,100
0

50

100

150

200

250

300

350

400

450

Encoded

Scatter

Dual

HyBiX

Space Requirement (MB)

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Encoded
Scatter
Dual
HyBiX

(a) Quantity attribute

0 1 2 3 4 5 6 7
0

200

400

600

800

1,000

1,200

Encoded

Scatter

Dual

HyBiX

Space Requirement (GB)

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Encoded
Scatter
Dual
HyBiX

(b) Shipdate attribute

Figure 5.8: The space vs. time trade-off of four encoding bitmap indexes for range
queries in scale factor 100: Query values fall in any groups of HyBiX bitmap index.

63

HyBiX bitmap index outperforms the other bitmap indexes, for both attributes.

Due to the execution time used by the HyBiX bitmap index is improved

when the query values fall in group 0 of HyBiX biitmap index, the performance with

HyBiX bitmap index is then improved in terms of space and time trade-off, as shown

in Figure 5.9. Consequently, the HyBiX bitmap index outperforms the other encoding

bitmap indexes for range queries regarding the space and time trade-off, with both

attributes.

Clearly, the execution time used by the HyBiX bitmap index is improved

when the query values fall in group 0, for both equality and range queries, which is an

0 200 400 600 800 1,000 1,200
0

50

100

150

200

250

Encoded

Scatter

Dual

HyBiX

Space Requirement (MB)

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Encoded
Scatter
Dual
HyBiX

(a) Quantity attribute

0 1 2 3 4 5 6 7
0

200

400

600

800

1,000

Encoded

Scatter

Dual

HyBiX

Space Requirement (GB)

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
on

d
s)

Encoded
Scatter
Dual
HyBiX

(b) Shipdate attribute

Figure 5.9: The space vs. time trade-off of four encoding bitmap indexes for range
queries in scale factor 100: Query values fall in group 0 of HyBiX bitmap index.

64

impact on the improved performance with the HyBiX bitmap index in terms of space

and time trade-off for both equality and range queries.

Advantage

The HyBiX bitmap index requires the less space than the Basic, Range,

Interval, Scatter and Dual bitmap indexes, except the Encoded bitmap index. The query

execution time with equality queries is considerably faster then the Encoded bitmap

index. When the query value falls at group 0 of the HyBiX bitmap index, the query

execution time with equality and range queries used by the HyBiX bitmap index is

significantly improved, especially range queries. Therefore, the HyBiX bitmap index

provides a good time-efficiency with both equality and range queries when the majority

of submitted queries cannot be specified.

Limitations

The query execution time with equality queries used by the HyBiX

bitmap index is slightly slower than that used by the Basic, Range, Interval, Scatter, and

Dual bitmap index. Moreover, the HyBiX bitmap index requires many bitmap vectors

accessed to answer range queries, when the query values cover many groups of the

HyBiX bitmap index.

65

CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation introduced a new encoding bitmap index for providing

an efficient space requirement and query execution time with equality and range queries

over the attribute with high cardinalities. The encoding design of bitmap indexes plays an

important role in effectively and efficiently both space requirements and query execution

times. The HyBiX bitmap index utilize the idea of grouping attribute values and the

encoding design of existing bitmap indexes.

6.1 Summary

Figures 6.1a and 6.1b show a comparison of performances for seven

encoding bitmap indexes in terms of space-efficiency, time-efficiency, and space-time

trade-off, for small and large datasets, respectively. Among the seven bitmap indexes,

the Encoded bitmap index requires the least space, regardless of attribute cardinality.

In addition, the performance of Encoded bitmap index in terms of space-time trade-off

decreases for low cardinality attributes. Clearly, the Encoded bitmap index emphasizes

space-efficiency rather than execution time with both equality and range queries. The

Dual bitmap index requires small space and gives good execution times with equality

queries, outperforming other bitmap indexes in space and time trade-off. However, the

Dual bitmap index spends long query execution times with range queries. Therefore, the

Dual bitmap index is most suitable with only equality queries. However, both equality

and range queries are possibly submitted. The HyBiX bitmap index is able to reduce

the space usage as well as answer both equality and range queries with good execution

times for unpredictable queries. Furthermore, the HyBiX bitmap index is improved

execution time with both equality and range queries when the query value falls in group

0 of HyBiX bitmap index for both a small and large data set. Therefore, the performance

of HyBiX bitmap index is satisfactory in terms of space and time trade-off, especially

with range queries.

66

Best Worst

E
x
ec

u
ti

on
ti

m
e

S
p
ac

e
v
s.

ti
m

e
tr

ad
e-

off

Encoded

HyBiX

Dual

Scatter

Interval

Range

Basic
Space requirement

Basic

Range

Scatter
Dual

Interval

HyBiX Encoded Equality queries (a
query value falls at
any group of HyBiX)

Basic

Range

Scatter
Dual

Interval

HyBiX Encoded Equality queries (a
query value falls at
group 0 of HyBiX)

Range

Interval

HyBiX Dual

Scatter

Encoded Basic Range queries (the
query values fall at
any group of HyBiX)

Range

Interval

HyBiX Basic

Dual

Scatter Encoded Range queries (the
query values fall at
group 0 of HyBiX)

Dual

Scatter

HyBiX Basic

Interval

Encoded Range Equality queries (a
query value falls at
any group of HyBiX)

Dual

HyBiX

Scatter Basic

Interval

Encoded Range Equality queries (a
query value falls at
group 0 of HyBiX)

HyBiX

Interval

Range

Encoded

Dual

Scatter

Basic Range queries (the
query values fall at
any group of HyBiX)

HyBiX

Interval

Range

Encoded

Dual

Scatter

Basic Range queries (the
query values fall at
group 0 of HyBiX)

(a) A small dataset

Best Worst

E
x
ec

u
ti

on
ti

m
e

S
p
ac

e
v
s.

ti
m

e
tr

ad
e-

off

Encoded

HyBiX

Dual

Scatter

Interval

Range

Basic

Space requirement

Basic

Range

Scatter
Dual

Interval

HyBiX Encoded Equality queries (a
query value falls at
any group of HyBiX)

Basic

Range

Scatter
Dual

Interval

HyBiX Encoded Equality queries (a
query value falls at
group 0 of HyBiX)

Range

Interval

HyBiX Encoded

Scatter

Dual Basic Range queries (the
query values fall at
any group of HyBiX)

Range

Interval

HyBiX Basic

Encoded

Scatter Dual Range queries (the
query values fall at
group 0 of HyBiX)

Dual

Scatter

HyBiX

Encoded

Basic

Interval

Range Equality queries (a
query value falls at
any group of HyBiX)

Dual

HyBiX

Scatter

Encoded

Basic

Interval

Range Equality queries (a
query value falls at
group 0 of HyBiX)

HyBiX

Encoded

Interval

Range

Dual

Scatter

Basic Range queries (the
query values fall at
any group of HyBiX)

HyBiX

Encoded

Interval

Range

Dual

Scatter

Basic Range queries (the
query values fall at
group 0 of HyBiX)

(b) A large dataset

Figure 6.1: Performances of seven encoding bitmap indexes for small and large datasets.

67

The explosion of data has emerged in recent years. The current era of big

data poses challenges in managing those data and obtaining the benefits from querying

it. Various encoding bitmap indexes have been introduced in order to reduce index size

and efficiently speed up query processing. When various types of query submitted, the

performance of existing encoding bitmap indexes is degraded, both in terms of space

required and time to process queries, and these are critical issues with encoding bitmap

indexes. In this dissertation, a new encoding bitmap index was presented, called the

HyBiX bitmap index. The comparative study shows that HyBiX bitmap index can

reduce the space requirements with high cardinality of indexed attributes. Although

the performance of HyBiX bitmap index is worse than that of the Dual bitmap index

for equality queries, in terms of space and time trade-off, the query execution time

with equality queries is still satisfactory. The HyBiX bitmap index outperforms the

existing encoding bitmap indexes in terms of space and time trade-off with range queries.

Furthermore, when the query values fall in group 0, the HyBiX bitmap index has

improved query execution time and space and time trade-off, both with equality and

range queries. To deal with big data, the Apache Hadoop is a well-known open source

software framework based on Java language. The Apache Hadoop provides a distributed

storage and a parallel processing on multiple computers with commodity hardware.

Therefore, it is an opportunity for creating the HyBiX bitmap index in a distributed

environment underlying the Apache Hadoop. Additionally, the advantage of parallel

processing on the Apache Hadoop definitely allows the fast query execution time used

by the HyBiX bitmap index over a big data.

6.2 Future work

In future work, the HyBiX bitmap index will be implemented in a dis-

tributed and parallel environment (e.g., Apache Hadoop). The performance of HyBiX

bitmap index can be improved by applying data mining techniques to select frequent

query values submitted, and placing the respective values in group 0 of HyBiX bitmap

index. In addition, the combination of HyBiX and other existing encoding bitmap

indexes is necessary to be comprehensively studied.

68

BIBLIOGRAPHY

[1] S. Chaudhuri, “What Next? A Half-Dozen Data Management Research Goals for

Big Data and the Cloud,” in Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI

symposium on Principles of Database Systems (PODS ’12), Arizona, USA, 2012,

pp. 1–4.

[2] S. Sagiroglu and D. Sinanc, “Big Data: A Review,” in 2013 International Confer-

ence on Collaboration Technologies and Systems (CTS), California, USA, 2013,

pp. 42–47.

[3] A. Katal, M. Wazid, and R. H. Goudar, “Big Data: Issues, Challenges, Tools

and Good Practices,” in Proceedings of 2013 6th International Conference on

Contemporary Computing (IC3), Noida, India, 2013, pp. 404–409.

[4] K. Kambatla, G. Kollias, V. Kumar, and A. Grama, “Trends in Big Data Analytics,”

Journal of Parallel and Distributed Computing, vol. 74, no. 7, pp. 2561–2573, Feb.

2014.

[5] J. Archenaa and E. A. Anita, “A Survey of Big Data Analytics in Healthcare and

Government,” Procedia Computer Science, vol. 50, pp. 408–413, May 2015.

[6] A. Ali, J. Qadir, R. ur Rasool, A. Sathiaseelan, and A. Zwitter, “Big Data For

Development: Applications and Techniques,” Big Data Analytics, vol. 1, pp. 1–24,

Jul. 2016.

[7] S. Chaudhuri and U. Dayal, “An Overview of Data Warehousing and OLAP

Technology,” ACM SIGMOD Record, vol. 26, no. 1, pp. 65–74, Mar. 1997.

[8] X. Wu, X. Zhu, G. Q. Wu, and W. Ding, “Data Mining with Big Data,” IEEE

Transactions on Knowledge and Data Engineering, vol. 26, no. 1, pp. 97–107, Jan.

2014.

[9] K. Stockinger and K. Wu, “Bitmap Indices for Data Warehouses,” in Data Ware-

houses and OLAP Concepts Architectures and Solutions. IRM Press, 2007, ch. 7,

pp. 157–178.

69

[10] C. Y. Chan and Y. E. Ioannidis, “Bitmap Index Design and Evaluation,” ACM

SIGMOD Record, vol. 27, no. 2, pp. 355–366, Jun. 1998.

[11] W. Stallings, “Parallel Processing,” in Computer Organization and Architecture

Designing for Performance, 9th ed. Pearson Education, Inc., 2013, ch. 17, pp.

611–663.

[12] S. H. Chung, S. C. Oh, K. R. Ryu, and S. H. Park, “Parallel Information Retrieval on

A Distributed Memory Multiprocessor System,” in Proceedings of 3rd International

Conference on Algorithms and Architectures for Parallel Processing, Victoria,

Australia, 1997, pp. 163–176.

[13] J. Xiong, J. Wang, and J. Xu, “Research of Distributed Parallel Information Re-

trieval based on JPPF,” in Proceedings of 2010 International Conference of Infor-

mation Science and Management Engineering (ISME 2010), Xi’an, China, 2010,

pp. 109–111.

[14] L. Jiamin and F. Jun, “A Survey of MapReduce based Parallel Processing Tech-

nologies,” China Communications, vol. 11, no. 14, pp. 146–155, 2014.

[15] W. Andrzejewski and R. Wrembel, “GPU-PLWAH: GPU-based Implementation

of the PLWAH Algorithm for Compressing Bitmaps,” Control and Cybernetics,

vol. 40, no. 3, pp. 627–650, Jan. 2011.

[16] P. O’Neil and D. Quass, “Improved Query Performance with Variant Indexes,”

ACM SIGMOD Record, vol. 26, no. 2, pp. 38–49, Jun. 1997.

[17] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing Bitmap Indices with Efficient

Compression,” ACM Transactions on Database Systems (TODS), vol. 31, no. 1, pp.

1–38, Mar. 2006.

[18] T. J. Lehman and M. J. Carey, “A Study of Index Structures for Main Memory

Database Management Systems,” in Proceedings of the 12th International Confer-

ence on Very Large Data Bases (VLDB ’86), California, USA, 1986, pp. 294–303.

70

[19] A. Silberschatz, H. F. Korth, and S. Sudarshan, “Indexing and Hashing,” in

Database System Concepts, 6th ed. New York: MaGraw-Hill, 2011, ch. 11,

pp. 475–536.

[20] L. J. Gosink, K. Wu, E. W. Bethel, J. D. Owens, and K. I. Joy, “Bin-Hash Index-

ing: A Parallel Method for Fast Query Processing,” Laurence Berkeley National

Laboratories, California, Tech. Rep., 2008.

[21] Z. Q. Abdulhadi, Z. Zuping, and H. I. Housien, “Bitmap Index as Effective In-

dexing for Low Cardinality Column in Data Warehouse,” International Journal of

Computer Applications, vol. 68, no. 24, pp. 38–42, Apr. 2013.

[22] Y. Mei, K. Ji, and F. Wang, “A Survey on Bitmap Index Technologies for Large-

scale Data Retrieval,” in Proceedings of 2013 6th International Conference on

Intelligent Networks and Intelligent Systems (ICINIS), Shenyang, Chaina, 2013, pp.

316–319.

[23] Z. Chen, Y. Wen, J. Cao, W. Zheng, J. Chang, Y. Wu, G. Ma, M. Hakmaoui,

and G. Peng, “A Survey of Bitmap Index Compression Algorithms for Big Data,”

Tsinghua Science and Technology, vol. 20, no. 1, pp. 100–115, Feb. 2015.

[24] J. Wook and K. Assistant, “Binning Strategy for Hierarchical Bitmap Indices with

Large Scale Domain Hierarchy,” International Journal of Applied Engineering

Research, vol. 11, no. 18, pp. 9289–9296, 2016.

[25] X. Qin, “Performance Comparison of Index Schemes for Range Query of Big Data,”

in Proceedings of 2016 12th International Conference on Natural Computation,

Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 2016,

pp. 1469–1473.

[26] K. Stockinger, K. Wu, and A. Shoshani, “Strategies for Processing ad hoc Queries

on Large Data Warehouses,” in Proceedings of the 5th ACM international workshop

on Data Warehousing and OLAP (DOLAP ’02), Virginia, USA, 2002, pp. 72–79.

71

[27] R. R. Sinha and M. Winslett, “Multi-resolution Bitmap Indexes for Scientific Data,”

ACM Transactions on Database Systems (TODS), vol. 32, no. 3, pp. 1–38, Aug.

2007.

[28] M.-C. Wu and A. P. Buchmann, “Encoded Bitmap Indexing for Data Warehouses,”

in Proceedings of 14th International Conference on Data Engineering, Florida,

USA, 1998, pp. 220–230.

[29] K. Wu, E. Otoo, and A. Shoshani, “On The Performance of Bitmap Indices for High

Cardinality Attributes,” in Proceedings of the Thirtieth International Conference

on Very Large Data Bases - Volume 30 (VLDB ’04), Toronto, Canada, 2004, pp.

24–35.

[30] K. Wu, A. Shoshani, and K. Stockinger, “Analyses of Multi-level and Multi-

component Compressed Bitmap Indexes,” ACM Transactions on Database Systems

(TODS), vol. 35, no. 1, pp. 1–52, Feb. 2010.

[31] M. Stabno and R. Wrembel, “RLH: Bitmap Compression Technique based on

Run-length and Huffman Encoding,” Information Systems, vol. 34, no. 4-5, pp.

400–414, Jul. 2009.

[32] S. Kim, J. Lee, S. R. Satti, and B. Moon, “SBH: Super Byte-aligned Hybrid Bitmap

Compression,” Information Systems, vol. 62, pp. 155–168, Dec. 2016.

[33] K.-L. Wu and P. S. Yu, “Range-based Bitmap Indexing for High Cardinality

Attributes with Skew,” in Proceedings of The Twenty-Second Annual International

Computer Software and Applications Conference (COMPSAC ’98), Vienna, Austria,

1998, pp. 61–66.

[34] C.-Y. Chan and Y. E. Ioannidis, “An Efficient Bitmap Encoding Scheme for Selec-

tion Queries,” ACM SIGMOD Record, vol. 28, no. 2, pp. 215–226, Jun. 1999.

[35] S. Vanichayobon, J. Manfuekphan, and L. Gruenwald, “Scatter Bitmap: Space-

Time Efficient Bitmap Indexing for Equality and Membership Queries,” in Proceed-

ings of 2006 IEEE Conference on Cybernetics and Intelligent Systems, Bangkok,

Thailand, 2006, pp. 6–11.

72

[36] N. Wattanakitrungroj and S. Vanichayobon, “Dual Bitmap Index: Space-time

Efficient Bitmap Index for Equality and Membership Queries,” in Proceedings of

2006 International Symposium on Communications and Information Technologies

(ISCIT), Bangkok, Thailand, 2006, pp. 568–573.

[37] A. Hamadou and K. Yang, “An Efficient Bitmap Indexing Strategy based on Word-

aligned Hybrid for Data Warehouses,” in Proceedings of International Conference

on Computer Science and Software Engineering (CSSE 2008), Hubei, China, 2008,

pp. 486–491.

[38] N. Goyal, S. K. Zaveri, and Y. Sharma, “Improved Bitmap Indexing Strategy

for Data Warehouses,” in Proceedings of the 9th International Conference on

Information Technology (ICIT ’06), Bhubaneswar, India, 2006, pp. 213–216.

[39] G. Antoshenkov, “Byte-aligned Bitmap Compression,” in Proceedings of Data

Compression Conference, 1995 (DCC ’95), Utah, USA, 1995, p. 476.

[40] K. Wu, E. J. Otoo, and A. Shoshani, “Compressing Bitmap Indexes for Faster

Search Operations,” in Proceedings of the 14th International Conference on Scien-

tific and Statistical Database Management (SSDBM ’02), Scotland, UK, 2002, pp.

99–108.

[41] A. Colantonio and R. Di Pietro, “Concise: Compressed ’n’ Composable Integer

Set,” Information Processing Letters, vol. 110, no. 16, pp. 644–650, Jul. 2010.

[42] F. Deliège and T. B. Pedersen, “Position List Word Aligned Hybrid: Optimizing

Space and Performance for Compressed Bitmaps,” in Proceedings of the 13th In-

ternational Conference on Extending Database Technology (EDBT ’10), Lausanne,

Switzerland, 2010, pp. 228–239.

[43] D. Lemire, O. Kaser, and K. Aouiche, “Sorting Improves Word-aligned Bitmap

Indexes,” Data and Knowledge Engineering, vol. 69, no. 1, pp. 3–28, Jan. 2010.

[44] F. Fusco, M. Stoecklin, and M. Vlachos, “NET-FLi: On-the-fly Compression,

Archiving and Indexing of Streaming Network Traffic,” Proceedings of the VLDB

Endowment, vol. 3, no. 1-2, pp. 1382–1393, Sep. 2010.

73

[45] Y. Wen, Z. Chen, G. Ma, J. Cao, W. Zheng, G. Peng, S. Li, and W. L. Huang, “SE-

COMPAX: A Bitmap Index Compression Algorithm,” in Proceedings of 2014 23rd

International Conference on Computer Communications and Networks (ICCCN),

Shanghai, China, 2014, pp. 1–7.

[46] J. Chang, Z. Chen, W. Zheng, J. Cao, Y. Wen, G. Peng, and W. L. Huang,

“SPLWAH: A Bitmap Index Compression Scheme for Searching in Archival Inter-

net Traffic,” in Proceedings of IEEE International Conference on Communications,

London, UK, 2015, pp. 7089–7094.

[47] W. Andrzejewski and R. Wrembel, “GPU-WAH: Applying GPUs to Compressing

Bitmap Indexes with Word Aligned Hybrid,” in Proceedings of the 21st Interna-

tional Conference on Database and Expert Systems Applications (DEXA 2010),

Bilbao, Spain, 2010, pp. 315–329.

[48] S. J. V. Schaik and O. D. Moor, “A Memory Efficient Reachability Data Structure

Through Bit Vector Compression,” in Proceedings of 2011 ACM SIGMOD Interna-

tional Conference on Management of data (SIGMOD ’11), Athens, Greece, 2011,

pp. 913–924.

[49] J. Chang, Z. Chen, W. Zheng, Y. Wen, J. Cao, and W.-L. Huang, “PLWAH+:

A Bitmap Index Compressing Scheme based on PLWAH,” in Proceedings of

2014 ACM/IEEE Symposium on Architectures for Networking and Communication

Systems, (ANCS), California, USA, 2014, pp. 257–258.

[50] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin, “A Tunable Compression Frame-

work for Bitmap Indices,” in Proceedings of 2014 IEEE 30th International Confer-

ence on Data Engineering (ICDE), Illinois, USA, 2014, pp. 484–495.

[51] Y. Wu, Z. Chen, Y. Wen, W. Zheng, and J. Cao, “COMBAT : A New Bitmap Index

Coding Algorithm for Big Data,” TSINGHUA SCIENCE AND TECHNOLOGY,

vol. 21, no. 2, pp. 136–145, Apr. 2016.

[52] N. Goyal and Y. Sharma, “New Binning Strategy for Bitmap Indices on High

74

Cardinality Attributes,” in Proceedings of the 2nd Bangalore Annual Compute

Conference (COMPUTE ’09), Bangalore, India, 2009, pp. 1–5.

[53] D. Rotem, K. Stockinger, and K. Wu, “Optimizing Candidate Check Costs for

Bitmap Indices,” in Proceedings of the 14th ACM international conference on

Information and knowledge management, (CIKM ’05), Bremen, Germany, 2005, p.

648.

[54] A. Keawpibal, N. Wattanakitrungroj, and S. Vanichayobon, “Enhanced Encoded

Bitmap Index for Equality Query,” in Proceedings of 2012 8th International Con-

ference on Computing Technology and Information Management (ICCM), Seoul,

South Korea, 2012, pp. 293–298.

[55] W. V. O. Quine, “The Problem of Simplifying Truth Functions,” The American

Mathematical Monthly, vol. 59, no. 8, pp. 521–531, 1952.

[56] E. J. McCluskey, “Minimization of Boolean Functions,” Bell Labs Technical Jour-

nal, vol. 35, no. 6, pp. 1417–1444, 1956.

[57] G. R. Alam, M. Y. Arafat, M. Kamal, and U. Iftekhar, “A New Approach of Dy-

namic Encoded Bitmap Indexing Technique based on Query History,” in Proceed-

ings of the 5th International Conference on Electrical and Computer Engineering

(ICECE ’08), Dhaka, Bangladesh, 2008, pp. 20–22.

[58] J. Sainui, S. Vanichayobon, and N. Wattanakitrungroj, “Optimizing Encoded

Bitmap Index Using Frequent Itemsets Mining,” in Proceeding of 2008 Interna-

tional Conference on Computer and Electrical Engineering (ICCEE ’08), Phuket,

Thailand, 2008, pp. 511–515.

[59] N. Keawpibal, J. Duangsuwan, W. Wettayaprasit, L. Preechaveerakul, and

S. Vanichayobon, “DistEQ: Distributed Equality Query Processing on Encoded

Bitmap Index,” in Proceedings of the 2015 12th International Joint Conference on

Computer Science and Software Engineering, (JCSSE), Songkhla, Thailand, 2015,

pp. 309–314.

75

[60] N. Keawpibal, L. Preechaveerakul, and S. Vanichayobon, “Optimizing Range Query

Processing for Dual Bitmap Index,” Walailak Journal of Science and Technology

(WJST), vol. 16, no. 2, pp. 133–142, Feb. 2019.

[61] W. Weahama, S. Vanichayobon, and J. Manfuekphan, “Using Data Clustering

to Optimize Scatter Bitmap Index for Membership Queries,” in Proceedings of

2009 International Conference on Computer and Automation Engineering (ICCAE

2009), Bangkok, Thailand, 2009, pp. 174–178.

[62] “TPC-H: a decision support benchmark,” (Accessed on 2017, Dec. 15). [Online].

Available: http://www.tpc.org/tpch/

http://www.tpc.org/tpch/

76

APPENDICES

77

APPENDIX A

DETAILED TPC-H BENCHMARK DATASET

A.1 An Overview of TPC-H Benchmark dataset

The experimental dataset used in this dissertation is based on a standard

set of TPC-H data, which is available to [62]. The data is commonly used in evaluating

the performance of ad-hoc and complex queries, and is considered as a standard decision

support system. The TPC-H benchmark consists of eight separate and individual tables.

Figure A.1 illustrates TPC-H schema, which is the relationships between columns of

these tables.

TPC BenchmarkTM H Standard Specification Revision 2.17.1 Page 13

1.2 Database Entities, Relationships, and Characteristics

The components of the TPC-H database are defined to consist of eight separate and individual tables (the Base

Tables). The relationships between columns of these tables are illustrated in Figure 2: The TPC-H Schema.

Figure 2: The TPC-H Schema

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

COMMENT

RETAILPRICE

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-

PRIORITY

SHIP-

PRIORITY

CLERK

COMMENT

CUSTKEY

NAME

ADDRESS

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

PART (P_)

SF*200,000

PARTSUPP (PS_)

SF*800,000

LINEITEM (L_)

SF*6,000,000

ORDERS (O_)

SF*1,500,000

CUSTOMER (C_)

SF*150,000

SUPPLIER (S_)

SF*10,000

ORDERKEY

NATIONKEY

EXTENDEDPRICE

DISCOUNT

TAX

QUANTITY

NATIONKEY

NAME

REGIONKEY

NATION (N_)

25

COMMENT

REGIONKEY

NAME

COMMENT

REGION (R_)

5

Legend:

 The parentheses following each table name contain the prefix of the column names for that table;

 The arrows point in the direction of the one-to-many relationships between tables;

 The number/formula below each table name represents the cardinality (number of rows) of the table. Some

are factored by SF, the Scale Factor, to obtain the chosen database size. The cardinality for the LINEITEM

table is approximate (see Clause 4.2.5).

Figure A.1: Table Schema of TPC-H Benchmark

78

A.2 Table Layout of Data Used

As aforementioned, TPC-H benchmark consists of eight different tables.

Each table stores a specific data, which is used for decision making. The following list

defines the required structure of table LINEITEM.

LINEITEM Table Layout

Column Name Datatype Requirements Comment

L ORDERKEY identifier Foreign Key to O ORDERKEY

L PARTKEY identifier Foreign key to P PARTKEY, first

part of the compound Foreign Key

to (PS PARTKEY, PS SUPPKEY)

with L SUPPKEY

L SUPPKEY identifier Foreign key to S SUPPKEY, sec-

ond part of the compound Foreign

Key to (PS PARTKEY, PS SUPP-

KEY) with L PARTKEY

L LINENUMBER integer

L QUANTITY decimal

L EXTENDEDPRICE decimal

L DISCOUNT decimal

L TAX decimal

L RETURNFLAG fixed text, size 1

L LINESTATUS fixed text, size 1

L SHIPDATE date

L COMMITDATE date

L RECEIPTDATE date

L SHIPINSTRUCT fixed text, size 25

L SHIPMODE fixed text, size 10

L COMMENT variable text size 44

Primary Key: L ORDERKEY, L LINENUMBER

79

A.3 Table and Attributes Used in Experimental Study

The data used in the experimental study consists of two attributes with

different cardinalities, from Table LINEITEM. The two attributes include Quantity with

cardinality 50 and Shipdate with cardinality 2,256. The data is generated along with

a scale factor (SF), which indicates a size of data. The values in parenthesis indicate

the numbers of rows corresponding to scale factors. Four different scale factors are

selected: 25 (149,996,355 rows), 50 (300,005,811 rows), 75 (450,019,701 rows), and

100 (600,037,902 rows).

A.4 Generating the Experiment Data

This section shows step by step to generate TPC-H benchmark dataset

with a specific table with preferring data volumes, which is large enough to be able to

demonstrate query performance. The steps are shown as follows:

A.4.1 Download TPC-H tools from http://www.tpc.org/tpc documents current versions/

current specifications.asp, as seen in Figure A.2, and extract it. In this case, I

extracted the compressed file to D:\Dataset\tpch_2.17.3.

Figure A.2: Website window for downloading TPC-H benchmark dataset.

A.4.2 The dataset is built by using an application, which the downloaded contains

http://www.tpc.org/tpc_documents_current_versions/current_specifications.asp
http://www.tpc.org/tpc_documents_current_versions/current_specifications.asp

80

C++ form. Therefore, I opened the project file (i.e., tpch.sln) using Visual

Studio 2015. All I need to do, is to build the entire solution. Depending on

your Visual Studio version, you might be faced with a conversion wizard, just

click Finish to execute the conversion. Then, I build dbgen project to create

dbgen application for generating data, see Figure A.3.

Figure A.3: Tpch projects by Visual Studio 2015.

A.4.3 All you need to do, is to build the entire solution, as shown in Figure .

The result is the files dbgen.exe located in D:\Dataset\tpch_2.17.3\

dbgen\Debug folder, as seen in Figure A.4.

Figure A.4: The directory containing dbgen.exe.

81

A.4.4 To avoid some errors, I copied the file dbgen.exe one level up, so it is located

in the D:\Dataset\tpch_2.17.3\dbgen folder.

A.4.5 I need to execute dbgen.exe via a command prompt, which is a command line

interpreter application available in Windows operating system. Then, I change

the current path to the directory where the file dbgen.exe located. If I execute

the command with –h, I will get some helps, as shown in Figure A.5.

Figure A.5: The command line for dbgen help.

A.4.6 If I simply run dbgen.exe, it will default to generate 1GB of data, divided into

8 different tables (CUSTOMERS, NATION, LINEITEM, ORDERS, PARTS,

PARTSUPP, REGION, SUPPLIER). The –s parameter specifies a scale factor,

so –s 10 gives 10GB, and –s 100 generates 100GB of data. The –v gives

verbose output and the –f enforces to overwrite existing files. If I prefer to

generate the specific table, I will use the option –T followed by the first letter

of the table name corresponding to the help.

82

A.4.7 To generate the data from only table LINEITEM with scale factor 1, I run the

command dbgen.exe –vf –T L –s 1, as shown in Figure A.6. The resulting file

will be located in the same directory as dbgen.exe. Therefore, the output is

the file lineitem.tbl located in the D:\Dataset\tpch_2.17.3\dbgen

folder. The content in this file is shown in Figure A.7. The data in columns

are delimited by ‘|’, which allow extracting the data in a specific column for

the further other processing.

Figure A.6: The command line for generating the data from table LINEITEM with scale
factor 1.

Figure A.7: The generated data containing in table LINEITEM.

83

VITAE

Name Mr. Naphat Keawpibal

Student ID 5710230025

Educational Attainment

Degree Name of Institution Year of Graduation

Master of Science

(Computer Science)

Prince of Songkla

University

2012

Bachelor of Science

(Computer Science)

with first class honor

Prince of Songkla

University

2010

Scholarship Awards

PSU.GS financial support for thesis, Fiscal year 2017 from Graduate School,

Prince of Songkla University, 2017 – 2018.

PSU-PhD scholarship from Prince of Songkla University, 2014 – 2019.

Research Assistant Scholarship supported by Faculty of Science, Prince of

Songkla University, 2010 – 2012.

Work – Position and Address

Lecturer at Department of Information Technology Business, Prince of Songkla

University, Surat Thani campus, Surat Thani, Thailand, May 2013 – October 2013.

Lecturer at Department of Computer Science, Suratthani Rajabhat University,

Surat Thani, Thailand, May 2012 – April 2013.

List of Publications

• Naphat Keawpibal, Ladda Preechaveerakul, Sirirut Vanichayobon, “HyBiX: A

Novel Encoding Bitmap Index for Space- and Time-Efficient Query Processing”,

Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 27, No. 2,

2019, pp. 1504–1522. doi: 10.3906/elk-1807-277.

https://doi.org/10.3906/elk-1807-277

84

• Naphat Keawpibal, Ladda Preechaveerakul, Sirirut Vanichayobon, “Optimizing

Range Query Processing for Dual Bitmap Index”, Walailak Journal of Science

and Technology (WJST), Vol. 16, No. 2, 2019, pp. 133–142.

List of Proceedings

• Naphat Keawpibal, Jarunee Duangsuwan, Wiphada Wettayaprasit, Ladda Preecha-

veerakul, Sirirut Vanichayonon, “DistEQ: Distributed Equality Query Processing

on Encoded Bitmap Index”, in 2015 12th International Joint Conference on Com-

puter Science and Software Engineering (JCSSE 2015), Hat Yai, Thailand, 2015,

pp. 309–314. doi: 10.1109/JCSSE.2015.7219815.

• Amorntep Keawpibal, Niwan Wattanakitrungroj, Sirirut Vanichayonon, “Enhanced

Encoded Bitmap Index for Equality Query”, in 2012 8th International Conference

on Computing Technology and Information Management (NCM and ICNIT), Seoul,

South Korea, 2012, pp. 293–298.

https://doi.org/10.1109/JCSSE.2015.7219815

	ABSTRACT (Thai)
	ABSTRACT (English)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	1 Introduction
	2 Bitmap Index Strategies
	3 Existing Encoding Bitmap Indexes
	4 HyBiX: Hybrid Encoding Bitmap Index
	5 Performance Study
	6 Conclusion and Future Work
	BIBLIOGRAPHY
	APPENDICES
	A Detailed TPC-H Benchmark Dataset
	VITAE

