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ABSTRACT 

 

 

 

 

Private forest has crucial role in maintaining the functioning of Indonesian forest 

ecosystem especially the continuous degradation of natural forest. Private forest is a 

part of social forestry which becomes a tool for the Indonesian government to reduce 

Carbon dioxide (CO2) emission by 26 % by 2030. The Reduction Emission Degradation 

and Deforestation (REDD) scheme has encouraged the Indonesian government to 

establish forest monitoring system by estimating forest carbon stock using a 

combination of forest inventory and remote sensing. This study aimed to assess 

potential Sentinel-1 and Sentinel-2 for estimating Above Ground Biomass (AGB) of 

private forest. We found that gamma VH delivered from sentinel-1 had significant 

correlation with AGB whereas parameters from sentinel-2 which had significant 

correlation with AGB were B3, B4, NDI45, NDVI, SR, IRECI, EVI and NDI75. 

Combination between NDI45 and EVI through Stepwise linear regression fitted for 

establishing model between field AGB and vegetation indices (R² = 0.81). We also 

found that the AGB in the study area based on spatial analysis was 72.54 ton/ha. A Root 

Mean Square Error (RMSE) value from predicted and observed AGB was 27 ton/ha. 

AGB in private forest is categorized into moderate class due to behavior of the farmers 

to cut the forest in particular time. Overall, vegetation indices more superior than 

spectral value and radar backscatter to assess AGB in private forest. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1. Background  

  

Deforestation is a major problem for countries that have a large number of 

tropical rain forests like Brazil, Congo and Indonesia.  Deforestation is the long-term 

permanent loss of forest cover through the conversion of forest into another land cover 

type [1]. Deforestation in Indonesia has been increasing rapidly and has become a 

global concern. Recently, as a report by Margono et al. (2014) about Indonesia 

deforestation showed that Indonesia lost natural forest over 6.02 million hectares during 

2000 – 2012 and the number of deforestation increased around 46,000 hectares annually 

[2]. Margono et al. (2014) added that the higher rate of deforestation in Indonesia 

occurred in 2012, accounted for 0.84 million ha. It overshadowed the deforestation rate 

in Brazil which reached 0.46 million ha in the same year [2]. Hansen et al. (2009) used 

multi-temporal data from MODIS and AVHRR satellite images to evaluate the 

deforestation rate  in Indonesia during 1990 – 2005 [3]. The study reported that the rate 

of deforestation in Indonesia between 1990 – 2000 was 1.79 million ha/year, whereas 

in 2000 – 2005 the rate was 0.71 million ha/year [3]. There were many factors that 

contributed to the phenomenon. In 2009, Forest Watch Indonesia (FWI) exposed that 

palm oil plantations, timber concessions, pulp and paper industries and forest fires were 

the major factors of Indonesian deforestation [4].  

Deforestation has not only driven Indonesia to lose the forest areas but also has 

increased greenhouse gas emission. World Bank (2007) revealed that 75% of 

greenhouse gas emission in Indonesia was contributed by the forestry sector [5]. Based 

on statistical data from Ministry of Environment and Forestry of Indonesia (MOEF), 

the average rate of greenhouse gases in Indonesia during 2000 - 2013 was as much as 

1.262 Gt (CO2), dominated by the forestry sector (LULUCF) [6] (Figure 1).   
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                 Figure 1. Total emission emitted by each sector  

                                   

  

Indonesian government has intended to reduce greenhouse gas emission. It is 

proved by the commitment of this country at the 21st of Conference of Parties (COP) to 

reduce global greenhouse gas emission at 26% by 2030 [7].  Social forestry then is one 

of the programs to achieve the goal. Through the program, the government attempts to 

conserve ecosystem and landscape [7]. In Indonesia, social forestry has long been 

conducted in private lands and forest areas (state forest). Particularly in the forest areas, 

Indonesian government has prepared 12.7 million ha or 10% of the number of 

Indonesian forest during 2015 – 2019 to be distributed to the farmers [8].  It was known 

that Ministry of Environment and Forestry has distributed 192,031 ha of forest areas to 

the farmers by the middle of 2016 [9].  

The second type of social forestry in Indonesia is a private forest.  The main 

difference between private forest and natural forest in Indonesia is vegetation. It can be 

said that in the natural forest, vegetation will grow naturally, managed legally by the 

government and distributed over a large area [10]. In contrast, in the private forest, 

vegetation will be cultivated by farmers on their land and owned by themselves [10]. 

Policy brief released by Center for International Forestry Research (CIFOR) (2015) 

showed that the number of the private forests in Indonesia were around 2.8 million ha 



3 

[11]. The establishment of social forestry both in private lands and forest areas will not 

only improve the livelihood of the farmers but also will increase carbon sequestration, 

forest biomass and reduce greenhouse gas emission. 

The 16th COP held in Mexico in  2010 resulted in a concept of  Reduction 

Emission Degradation and Forest Deforestation (REDD) +  as a recognition of efforts 

to reduce green house gasses emission outside the natural forests [12]. REDD + 

activities include forest deforestation and degradation, the mission of conservation, 

sustainable forests and improvement of forest carbon sink [12]. The concept of REDD 

+ will not only be applicable in the forest areas but also in the private lands as long as 

they can increase carbon sink and reduce carbon dioxide (CO2) [12]. The concept 

allows the farmers to include the private forests in Indonesia to access funding from the 

others countries or organizations which concern on global warming. Therefore, 

information of carbon and biomass in the private forest is very important as data base 

to deal with REDD + that will be implemented in 2020. For implementing REDD +, 

each member of United Nations Frame Work Convention of Climate Change 

(UNFCCC) including Indonesia has to establish forest monitoring system [13]. The 

methodology recommended is a combination of remote sensing and ground-based 

forest carbon inventory [13]. 

Remote sensing has been widely used for estimating Above Ground Biomass 

(AGB). Several studies reported the advantages of optical image utilization such as 

SPOT [14], Landsat [15] [16], and Terra Aster [17] for estimating AGB. To estimate 

AGB, determining correlation between spectral value or vegetation index and measured 

AGB from ground data collection in the sample plots is commonly applied. However, 

there is a major problem to procure optical images, which mainly come from cloud 

cover particularly in tropical areas such as Brazil, Indonesia and Malaysia. Therefore, 

to overcome that issue, radar satellite images were used since it can penetrate clouds 

and provide image with free clouds cover.  A number of researchers have reported the 

use of radar satellite image for estimating AGB  [17] [18] [19] with different kinds of 

radar satellite images, for example ALOS-PALSAR [20], RADARSAT [18], 

ENVISAT ASAR [21] and ERS–2 [17]. Currently, researchers have examined 

combination between optical and radar images to obtain AGB information [22] [14].   
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Several attempts have been made to know AGB of forestry sector using high 

resolution of satellite images [23]. Along with the progress, there are still obstacles. For 

instance, Foody et al. (2003) stated that AGB model which has been established in a 

region cannot be applied in other areas despite having close vegetation, thereby, it is 

imperative to develop a new model of AGB estimation [24]. Moreover, although the 

application of high resolution can increase accuracy of land cover mapping, it is costly 

particularly in large areas [25]. These problems become more serious in developing 

countries and institutions or researchers with low budget. Thus, the application of free 

or low cost satellite image for AGB estimation is important [25] . 

Sentinel-1 and Sentinel-2 Satellite data are new satellite images provided by 

ESA European Space Agency (ESA). Sentinel-1 is Synthetic Aperture Radar (SAR), 

providing C band with centre frequency of 5.405 GHz and it was launched in 2014. 

Sentinel-2 is an optical image with 13 spectral bands: 4 bands at 10 m, 6 bands at 20 m 

and 3 bands at 60 m spatial resolution and it was released in 2015. Both satellites can 

be freely downloaded from ESA website (https://scihub.copernicus.eu/dhus).  Sentinel-

1 and Sentinel-2 can be applied for mapping and monitoring the forest areas and 

measuring biophysical structure of the vegetation like AGB and growing stock volume. 

However, there is lack evidence about AGB investigation especially for utilization of  

Sentinel-1 and Sentinel-2 for predicting AGB on the private forest in Indonesia. 

 

1.2. Objectives 

The major objectives of this research are following: 

1. To develop model for estimating AGB on private forest based on parameters from 

Sentinel-1  data, Sentinel-2 data and AGB data from the field. 

2. To assess Sentinel-1 and Sentinel-2 remote sensing data in order to improve the 

estimation accuracy of private forest AGB.  

3. To examine the potential of satellite data for AGB mapping on private forest. 

 

 

 

https://scihub.copernicus.eu/dhus
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1.3. Research questions 

This study aimed to address the following questions: 

1. What is the correlation between Sentinel-1 parameters (VV/VH backscatter values), 

Sentinel-2 parameters (spectral values and vegetation indices) and AGB 

measurement of private forest from sample plots?  

2. What is the contribution of combination between Sentinel-1 parameters and 

Sentinel-2 parameters to establish AGB on private forest through multilinear 

regression? 

3. How much distribution of AGB of private forest which is stored on the study area? 

 

1.4.  Outcomes 

The outcome of this research is AGB model from integration between AGB 

measurement of private forest from sample plots and the satellite image parameters.  

Another outcome is the AGB map of private forest in study are based on selected model. 

 

1.5. Significance of study 

The study provides an important opportunity to advance the understanding of 

Sentinel-1 and Sentinel-2 image usage. Both Sentinel-2 and Landsat 8 can capture large 

areas, but Sentinel-2 has a better temporal and spatial resolution than Landsat 8 images. 

Sentinel-1 is a useful option where clouds are persistent because SAR data is not 

weather dependent.   
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1.  Private forest 
 

Based on the Indonesia Forestry Regulation No. 41/1999, a private forest is 

forest developed in a private land [26].  The complete definition of  private forest can 

be seen on a decision letter of Indonesian Forestry Minister No. 49/Kpts-II/1997 which 

explains that a private forest grows in a private land,  has a minimum area of 0.25 

hectares and minimum canopy closure of 50% [27].  Private forest can be divided by 

three categories which are full private forest, mix private forest, and agroforestry [28].  

Full private forest is cultivated by a kind of tree, mix private forest is cultivated by more 

than one tree and agroforestry is mixed between trees and agriculture commodity [28].  

Private forest has a significant role in reducing greenhouse gas emission in 

Indonesia because it can absorb CO2 from the air and convert it to biomass. Carbon 

value can be inferred 50% from dry biomass [29]. The table below shows the resume 

of some research on carbon sequestration on private forests in Indonesia  [30]: 

Tabel 1. Resume of some researches about carbon sequestration in Indonesia 

No Location Carbon  Source 

1 Private forest in Dengok Village, 

Gunung Kidul Regency 

49 ton/Ha Aminuddin (1998) 

2 Private forest in Karya Sari 

Village, Bogor Regency 

15.56  - 194.97 ton/ha Asyisanti (2004) 

3 Albazia falcataria private forest Class of diameter Rachman (2009) 

    5 - 10  (0.0 ton/ha)   

    10 - 15 (0.99 ton/ha)   

    15 - 20 (1.75 ton/ha)   

    20 - 25 (6.42 ton/ha)   

    25 - 30 (5.24 ton/ha)   

    30 - 40 (8.26 ton/ha)   

    40 - 50 (20.306 ton/ha)   

    50 - Up (34.378 ton/ha)   

Source : Centre of Research and Development of Policy and Climate Change, Ministry 

of environmental and forestry of Indonesia 
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2.2. Biomass 

 
Biomass is described as the living organic matters that is present above ground 

and it expresses the mass of material per unit area. In general, carbon in forests can be 

grouped into five types based on the position on  the ground [31]. They are above 

ground biomass (AGB) (stems, soil, branches, barks and side), below ground biomass 

(roots), dead wood, litter and soil organic carbon  [31]. In regard to measurement 

methods, direct measurement of below ground biomass is hard to do since it requires 

root collection [32].  So, most studies on biomass measurement have focused on AGB 

as it is more simple in data collection and it accounts the majority of the AGB widely 

[33] [25] [34].  

There are two ways to estimate AGB from the  [31]  [35]. The first is the field 

measurement method (biomass expansion factor and allometric equation) and the 

second is remote sensing  [31]. Developing Biomass Expansion Factor (BEF) and 

allometric equation requires tree sample element such as branches, leaves, stems and 

twigs through the harvesting method [36] [37]. The fresh weight and oven – dried 

weight of these component then are measured. BEF converts volume (m3/ha) from 

terrestrial inventory to the biomass value  [29]. Allometric equation will generates 

relationship between component of tree (diameter or height) and biomass from tree 

harvesting.  Basuki et al. (2009) established allometric equestion for lowland 

dipterocarp forest in Borneo Indonesia [38]. They sampled 122 trees and developed 

allometric equations by establishing relationship between AGB with diameter at breast 

height, commercial bole height and wood density [38].  Navar J. (2009) harvested 873 

trees to develop allometric equations for temperate forest and tropical dry forest in 

Mexico [39]. Then, he estimated AGB based on the selected equations and resulted 

AGB around 130 Mg/Ha in temperate forest and 73 Mg/ha in tropical dry forest [39].  

In forest areas, several studies argued that allometric equation would show a good 

performance in area where it was naturally established and could result in some errors 

if it was applied in outside [33]. Nelson et al. (2008) found that there was AGB 

overestimated when they estimated AGB in tropical forest in Amazonia brazil using 

some published tropical forest allometric equations [40]. Field  measurement method is 
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more accurate to estimate biomass since it can access biomass directly but data 

collection is time consuming, expensive and is hampered by geographic and 

inaccessible area [25] [15]. 

Secondly, remote sensing method using radar and optical images is applied to 

estimate AGB from ecosystem. To predict biomass, model is established through 

correlation between biomass measurement derived sample plot and parameters from 

the image based on pixel value. Remote sensing has the ability to capture large and 

difficult areas which is the limitation of the field measurement method [15] [35].  In the 

past three decades, a number of researchers have sought to determine AGB from forest 

areas with different vegetation.  Pedro et al. (2015) used RADARSAT-2 to estimate 

AGB on regenerating mangrove forest in Brazil [18]. The study showed that sigma 

nought (σº) value has better correlation than beta nought (βº) and gamma nought (γº) to 

develop AGB in the mangrove forest [18].  In a study which utilize vegetation indices 

from Landsat 5, Wani et al.(2014) found that AGB value of conifer forest in Himalayan 

India is 0 – 400 ton/ha. In 2014, Hamdan et al. (2014) published a paper in which 

described utilisation of ALOS PALSAR to estimate AGB of tropical forest in  

Trengganu Malaysia [20].  The study showed that HV polarization more capable to 

estimate AGB in the tropical forest than HH Polarization [20]. Eckert (2012) used 

WorldView-2 to estimate AGB at Tropical forest in Madagascar [23]. The study of 

Eckert demonstrated application of image texture and vegetation indices as parameters 

for estimating AGB [23].  

 

2.3.  Radar image 

Radar is acronym of radio detection and ranging which use radio waves for 

detecting an object, determining their distance and their angular position [41]. Radiation 

of radar signals can penetrate through cloud cover, all weather conditions and record 

surface of the world at any time, day or night. Signal from the sensor of radar is 

transmitted to the object then backscatter from the object will be processed by the 

sensor to create image. The volume of backscatter depends on roughness and the angle 

of the objects  when signals are transmitted from the sensor [42].  Lilesand et al. (2008) 

highlighted backscatter as fraction energy that is reflected back to the sensor as result 

of interaction between signals from the sensor and the object [41]. Signal power, 
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directly or log transformed in decibel unit is used to represent the value of backscatter 

[41].  

Radar emits pulse and receives backscatter from the side perpendicular to the 

direction of flight, that is called side looking radar [41]. Distortion of radar image 

appears because radar measures object through slang range than horizontal distance on 

the ground and various of topography and valley when the sensor interact with the 

object [42]. It will result varying scale of the image and the object does not represent 

actual size and distance. To tackle that issue, terrain correction should be applied on 

radar pre-processing before further analysis. Based on Canadian Centre of Remote 

Sensing (CCRS) (2014), there are three forms of radar image distortion: shadow, 

forshortening, and layover [42]. Synthetic Aperture Radar, or often called SAR is one 

of remote sensing systems using microwave for recognizing objects. The system 

utilizes a short physical antenna because the sensor is less able to carry a long physical 

antenna. To overcome the size limitation, the forward motion of the sensor and data 

recording modification are used to simulate a very long antenna and produce finer 

azimuth resolution [41] [42].  

Radar images have been used widely for estimating AGB in many types of radar 

images such as RADARSAT[18], ALOS PALSAR [22], DLR – ESAR [20], ENVISAT 

ASAR [21]. Gashemi et al. (2010) mentioned that type of bands and polarization are 

important to assess AGB in forest areas [22].  SAR data are commonly extracted in X, 

C, L, and P bands and each band has different characteristics in regard to vegetation 

structure. Backscatter from X band comes from leaves and surface layer of trees. 

Whereas, source of C band backscatter comes from leaves and small branches. Trunk 

and main branches are the main sources of L band backscatter. P and L band wavelength 

are longer than the X and C band so it can penetrate deeply through canopy cover and 

get backscatter from trunk [19]. P and L band are more capable to estimate AGB from 

the forest areas than X and C band [15] [19] [43]. Polarisation is orientation of electric 

field on electromagnetic waves, resulting from interaction between signals that have 

been transferred by sensor and reflector [19].  The types of polarisation are HH (signals 

transmitted and backscattered in horizontal), HV (signals transmitted on horizontal and 

backscattered on vertical), VV (signals transmitted and backscattered on vertical) and 

VH (signals transmitted on vertical and backscattered on horizontal) [19] [42].  
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Sentinel-1A Synthetic Aperture Radar (SAR) data is generated by the Sentinel-

1 satellite recording belong to Europe which was launched in 3 April 2014 [44]. In April 

2016, ESA launched Sentinel-1B which has similar characteristic with Sentinel-1A 

[45].  Both satellites carry a SAR sensor to record the earth's surface using C-band at 

frequency of 5.405 Hz. The satellite image can operate well in cloud area, rain 

condition, day or night so the result of the recording is free from weather distortion and 

clouds. Summary of Sentinel-1 SAR is provided in the table below [44] [45]: 

Table 2. Description of Sentinel-1 SAR 

No Aspects Description 

1 Launched Sentinel-1A : April 2014, Sentinel-1B : April 

2016 

2 Mission  Land monitoring of forest, water, soil and 

agriculture 

 Marine monitoring 

 Sea observation 

 Mapping oil spill 

 

3 Mission orbit 6 days 

4 C band instrument Centre frequency : 5.405- 6 Ghz 

Incident angle : 20 – 45 

Polarization : VV/VH,HH /HV,HH,VV 

5 Mode, swatch widths, and 

resolution 
 Strip map mode : 80 Km, 5 m x 5 m spatial 

resolution 

 IW swath : 250 km, 5 x 20 m resolution 

 Wave mode : 20 m x 20 m, 5 x 5 spatial 

resolution 

 

6 Product  L-0 Raw, L-1 SLC, L-1 GRD, L-2 

Ocean 

 Source : Sentinel 1 Hand book  

 Although Sentinel-1 is relatively new, this image has been used for many 

purposes especially for land monitoring. For example, Abdikan et al. (2016) 

demonstrated the ability of Sentinel-1 to classify land cover in Istanbul Turkey [46]. 

Furthermore, Bayanuddin et al. (2016) investigated AGB in forest community in 

Sukoharjo Indonesia using Sentinel-1 [47]. The result showed low correlation between 

AGB and VV/VH value [47]. Former study revealed that C band had less ability to 
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predict AGB from dense vegetation than L and P bands because L and P bands can 

penetrate deep through canopy and get backscatter from the trunk [43]. C band will 

saturate in biomass level around 60 - 70 Mg/Ha compared to L band that can capture 

AGB value around 160 Mg/Ha [43].  

To improve the level of C band for predicting AGB in the forest areas, there are 

some innovations have been done by the scientists. Castillo et al. (2016) added elevation 

as a parameter beside backscatter value from Sentinel-1 SAR to estimate AGB on the 

mangrove forest in Honda Bay beach Philippines [48]. Another way to improve 

estimation AGB  is by combining SAR data and optical image data [22] [14]. For 

instance, Huang et al. (2016) combined  backscatter value from ENVISAT ASAR and 

vegetation indices of Landsat image to calculate AGB in Xixi national wetland park in 

China [17].    

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

2.4. Optical image 

Optical satellite image systems use energy from the sun to recognize objects on 

surface. It is usually called passive sensor which can only be used to detect objects 

when the energy from the sun is available through earth illumination process. So, the 

sensor could not work at the night because no energy available. Energy from the sun is 

absorbed or reflected in visible wavelength and more reflected or reemitted on the 

infrared wavelengths [42]. 

Each  object on the surface of the earth has different spectral responses to the 

electromagnetic energy from the sun. The colour of the water looks blue because high 

reflectance of energy electromagnetic in blue wavelength and became dark on near 

infrared because high absorbing of  energy electromagnetic [39]. In near infrared and 

green wavelength, vegetation will be bright and green to the people’s eye especially in 

summer. Chlorophyll on the leaves absorbs radiation more in blue and red wavelength  

and reflects green wavelength [42]. In the other hand, healthy leaves reflect more 

energy on near infrared wavelength [42]. Absorption will decrease when the autumn 

season since the number of chlorophylls is less. Consequently, reflectance of red will 

higher than near infrared and green and the color of healthy vegetation will be red or 

yellow [42]. Crops which has low near infrared and green reflectance and high red 

reflectance can be identified as stress crops.  
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Remote sensing using vegetation indices has been widely used for predicting 

AGB. Vegetation indices  are image conversion  of two or more bands that is created 

to improve the contribution of vegetation structure [49]. Determining of vegetation 

indices can be using mathematical function and each index has different formula. The 

most common index that have been widely used for measuring biophysics of vegetation 

is Normalization Difference Vegetation Index (NDVI). NDVI is calculated from ratio 

between difference and sum of near infrared reflectance and  red reflectance [50].  The 

NDVI value for dense vegetation is around 0.4 – 0.8, shrub and meadow between 0.2 – 

0.3 and cloud less than 0. However, NDVI value is sensitive to soil brightness 

particularly in areas with less vegetation cover and it is also influenced by the effect of 

atmosphere from aerosol. In fact, Huete et al. (2002) found that signature from canopy 

background like water, dead wood, falling leaves can influence the value of NDVI [49]. 

To overcome that problems, there are some vegetation indices have been established 

by the scientists.  For example, Soil Adjustment Vegetation Index (SAVI), Modified 

Soil Adjustment Vegetation Index (MSAVI), and Modified Soil Adjustment Vegetation 

Index2 (MSAVI2) are established to reduce the effect of the soil response in low 

vegetation cover [51].  Enhancement Vegetation Index (EVI), furthermore, is useful to 

reduce the effect of the canopy background, to increase saturation level on dense 

vegetation and to decrease effect of aerosol [49] and Global Environmental Vegetation 

Index (GEMI) is created to minimalize the effect of the atmosphere [52]. 

Regarding its utilization, vegetation indices have been widely used for AGB 

estimation with different satellite images. In 2016, Hamdan et al. used SPOT 5 to assess 

AGB in the forest area in Trengganu Malaysia with various vegetation indices [14]. 

Similarly, Devagiri et al. (2013) investigated AGB for different types of vegetation in 

Karnataka India using NDVI from MODIS satellite image [53]. Gaspari et al. (2010) 

used NDVI for predicting AGB in the tropical dry forest of Argentina (R²  = 0.610) 

with biomass range from sample plot 54 – 136 ton/ha using Landsat 7 ETM [54]. 

Vitchanakorn et al. (2014) used combination between various vegetation indices and 

spectral reflectance to assess AGB in Savannaket Lao PDR [25]. Optical image has 

problems in dense vegetation because of data saturation. Landsat image will saturate in 

the forest area with range 100 – 150 ton/ha in the moist tropical forest [15].   
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Sentinel-2A launched at 23 June 2015 in French Guiana and it is part of 

Copernicus European Space Agency (ESA) program. Sentinel-2 offers data which has 

similarity to Landsat 8 and SPOT and it can be used in agricultural and forestry 

monitoring, disaster assessment risk mapping. The Sentinel-2 image has swath width 

of 290 km, repeating the cycles earth  in 5 days and  has 13 bands with 3 resolutions 

(10 meter, 20 meter and 60 meter) [44].  The table below provides Sentinel-2 bands, 

their range and their resolution [56] : 

Table 3. Sentinel-2 bands  

 

No Band 
Band range 

(nm) 

Band 

center 

(nm) 

Resolution (m) 

1 B1- Coastal Aerosol 433 – 453 443 60 

2 B2 – Blue 458 – 523 490 10 

3 B3 – Green 543 – 578 560 10 

4 B4 – Red 650 – 680 665 10 

5 B5 - Vegetation Red Edge 698 – 713 705 20 

6 B6 - Vegetation Red Edge 734 – 748 740 20 

7 B7 - Vegetation Red Edge 765 – 785 783 20 

8 B8 – NIR 785 – 900 842 10 

9 B8a -Vegetation Red Edge 855 – 875 865 20 

10 B9 - Water Pavour 930 – 950 945 60 

11 B10 - SWIR/Cirrus 1365 – 1385 1375 60 

12 B11 – SWIR 1565 – 1655 1610 20 

13 B12 – SWIR 2100 – 2280 2190 20 

Source : https://eox.at/2015/12/understanding-sentinel-2-satellite-data 

Based on Sentinel-2 user hand book (2015), the product of sentinel-2 image are [55]: 

1. Level 0 and level 1 – A which are not released to users. 

2. Level 1–B 

The Level-1B product is the lowest product level made available to users.  It has 

been applied by radiometric correction which includes dark signal correction pixel 

response non- uniform, crosstalk, defective pixels, restoration and binning 60 meter 

bands. 

3. Level 1-C 

Level 1–C can be downloaded directly from the ESA website 

(https://scihub.copernicus.eu/dhus).  The product is available on geometric and 

radiometric corrected in Top of Atmosphere (TOA). 

https://scihub.copernicus.eu/dhus
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4. Level 2-A 

Output of the Level 2-A is Bottom of Atmosphere (BOA) corrected atmosphere 

product.  BOA represents surface reflectance from conversion of TOA reflectance 

of level 1-C product.   

Level 2-A is not readily available since it needs pre-processing (atmospheric 

correction) from level 1-C product through sen2cor Plugin in Sentinel Application 

Platform (SNAP) software. SNAP is designed by ESA to process Sentinel-1 and 

Sentinel-2.  Pre-processing in Sen2cor plugin in SNAP requires large of memory so the 

computer has to be equipped with at least 8 GB of RAM.  

One of differences between Sentinel-2 image and Landsat 8 OLI is the 

availability of red edge bands in Sentinel-2, that is usually called narrow band. The 

position of red edge bands (5,6,7) is between red and NIR band where chlorophyll 

strongly absorbs in red and strongly reflectance from leave cell structure in NIR. The 

main purpose of band 5 (705 nm), band 6 (740 nm), and band 7 (783 nm) is to improve 

monitoring vegetation [57]. The red edge bands cover the portion of the spectrum where 

reflectance significantly improve from the red region to the NIR region [58].  

Sentinel-2 image provides vegetation indices like the other optical images 

(NDVI, EVI, SAVI, GEMI and others). There are some new vegetation indices coming 

from band combination of Sentinel-2, especially red edge bands.  The vegetation 

indices coming  from Sentinel-2 image are Inverted Red Edge Vegetation Indices 

(IRECI), Normalization Difference Index from band 4 and 5 (NDI 45), Sentinel-2 Red 

Edge Position Index (S2REP), Red edge Inflection Point Index (REIP) and Modified 

Chlorophyll Absorption in Reflectance Index (MCARI) [59][60]. In an investigation 

into chlorophyll assessment using Sentinel-2 simulation, Delgado et al. (2011) reported 

that NDI 45 can improve accuracy of chlorophyll estimation [61].  Castillo et al. (2016) 

used Sentinel-2 to estimate AGB of mangrove Forest in Honda Bay Beach Philippines 

[48]. The study showed that IRECI and NDI 45 more capable than NDVI to estimate 

AGB in mangrove forest [48]. 
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     CHAPTER 3 

 

MATERIALS AND METHODS 

 

3.1.  Study area 

Geographically, the study area is situated in 8º 01’ 15” N and 110º 27’ 30” E 

(Fig.2). The area is located in Jetis and Girisekar private forest management unit in 

Gunung Kidul Region, Yogyakarta Province, Indonesia. Girisekar is one of the 19 

private forest management units that have been certified by TUV Rheinland. The study 

area covers an area of approximately 2,650 Ha (26.5 Km²). The annual mean 

temperature is 27º C with maximum temperature of 32.4 º C and minimum temperature 

of 23.2 º C [62]. The climate type is warm with annual rainfall of 1,602 mm/year [62].  

The rainy season is mainly from october to may. The area is  occupied by limestone 

mountain with elevation of  250 – 300 meter [62].  

The private forest in Gunung Kidul regency in  Yogyakarta province is one of 

large private forests and has become a model of private forest management in 

Indonesia. The number of forest community in Gunung Kidul are provided by the Table 

4 below [63] : 

      Tabel 4. Comparison the number of private and state forest in Gunung Kidul 

 

No Year 
Forest area (Ha) 

Private forest State forest 

1 2006 28,630 14,896 

2 2010 31,672 14,896 

3 2013 41,954 14,896 

      Source : http://bappeda.jogjaprov.go.id/ 

Table 4 shows that the number of the private forests in Gunung Kidul are higher 

than that of the state forests. It means that the private forests have a significant impact 

in reducing greenhouse gas emission in Yogyakarta and, therefore, the private forest is 

a source of AGB accumulation.  



16 

Figure 2. The study area (a) map of Girisekar and Jetis (b) The location of study area 

in Yogyakarta Province, (c) The location  of Yogyakarta Province in the Indonesian 

map 

3.2.  Materials 

Materials utilised for this study consisted of softwares, field equipments and 

satellite data. Therefore, this section explains the list of materials used in order to carry 

out this research. 

3.2.1 Software 

Several software were used during research. One of them is Sentinel Aplication 

Platform (SNAP). SNAP is open source software released by ESA to support pre-

processing of Sentinel-1 and Sentinel-2. A list of software used in this study is shown 

by Table 5 below: 
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Table 5. Software used during research 

No Software Usage 

1 SNAP  Pre processing Sentinel -1  

 Pre processing Sentinel- 2 

2 ArcMap 10.5 

 

 

 

 

 Subsetting of study area from the whole image 

 Retrieving radar backscatters, spectral values 

and vegetaton indices values 

 Producing AGB map 

 Lay outing AGB map 

3 SPSS 17  Correlation analysis 

 Regression analysis 

 Validation model 

4 Envi classic   Land cover classification 

 Image accuracy assesement 

5 Microsoft excel  Creating scatter plot 

 Retrieving AGB field from field data 

 Preliminary study of AGB model 

 

3.2.2  Field equipments 

Field equipments were used to collect data. Table 6 summarised numerous 

equipments used in this study. 

Table 6. Lists of field equipments used in this study 

No Equipment Use 

1 Diameter tape Measuring diameter of trees 

2 Sunto clinometer Measuring height of trees 

3 GPS Marking of sample plots 

4 Distance meter tape Measuring radius of plots 

5 Field sheets Recording field data 
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3.2.3. Remote sensing data 

Details of satellite image  that will be used on this research are shown in Table 7: 

Table 7. Detailed specification of Sentinel-1A data used in this study 

1 Mission Sentinel-1A 

2 Sensor type Radar-C band 

3 Radar Type Level 1 GRDH (Ground Range Detected High 

Resolution)  

4 Acquisition mode IW (Interferometric Wide Mode) 

5 Orbit Circle 109 

6 Orbit Track 127 

7 Polarization VV/VH 

8 Range resolution 10 meter 

9 Azimuth resolution 10 meter 

10 Time Recording 19 May 2017 

11 Pass Ascending 

12 Detail of product S1A_IW_GRDH_1SDV_20170519T105745_2017

0519T105814_016649_01BA24_42B9.SAFE 

     Source : Sentinel-1A metadata 

 Table 8. Detailed specification of Sentinel-2A data used in this study 

1 Mission Sentinel-2A level 1-C 

2 Product type S2MSI1C 

3 Orbit Number 89 

4 Spectral bands 13  

5 Spatial Resolution 10 meter : Band 2,3,4 and 8 

  20 meter : Band 5,6,7,8A,11 and 12 

  60 meter : Band 1,9 and 10 

6 Time Recording 19 May 2017 

7 Pass Descending 

8 Details of product  S2A_MSIL1C_20170519T023351_N0205_ 

 R 089_T49MDN_20170519T025549.SAFE 

 

Source : Sentinel-2A metadata 

 

3.3. Field data 

3.3.1. Field sampling design 

Field data was collected in September 2017 and the end of November 2017. A 

total of 45 plots  were set up. We used 30 plots for establishing model and another 15 

plots for model validation. A stratified random sampling method was applied to select 

the plots based on accessibility, size and type of trees. This sampling method was used 

to ascertain areas with low and high AGB in community forest that would be sampled. 

Since data collection in forest area was limited by time, budget and geographical 
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condition, many researchers collected data based on their ability with normally 10 – 50 

plots  [14] [17] [18] [20] [22] [47] [53]. Utilization of 35 sample plots for modelling is 

based on the minimum sample that is required for statistical analysis.  

3.3.2. Field data collection  

As many as 45 plots established using the random sampling method were 

subjected to field data collection (Figure 3). We used a rectangle plot for collecting 

data. The size of the actual plot on the field would be 20 x 20 m as to pixel size of 

Sentinel-1 and Sentinel-2. The radius of the plot was 10 m from the edge of imaginary 

line (Figure 4).  Therefore, the center of plot would be connective point. Coordinate of 

the center point then was recorded by GPS.  

Figure 3. Map of sample plots disribution 
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All trees within the sample plots were measured. The main parameters recorded 

during the fieldwork were circumference (1.3 m above the ground) and height of trees. 

Moreover, the additional data measured was elevation on the selected plots. 

Circumference of trees was measured using tape meter and height was measured by 

sunto clinometer.  

 

 

 

 

 

 

 

 

 

   

 

  Figure 4. A design of sample plot for data collection 

 

3.3.3. Field data analysis 

Field data processing was conducted to calculate AGB based on data collected 

from the sample plots. AGB calculation was derived from allometric equations 

expressed by formula below [64]:  

Table 9. Allometric equations used to estimate AGB 

D = Diameter at breast height at 1.3 meter above the ground (cm), H = Height (m) AGB 

= Above ground biomass (Kg/tree) 

  

No Species Allometric equation  

1 Teak (Tectona grandis) AGB = 0.0149 (D²H) 0835.1  (1) 

2 Silk (Paraserianthes falcataria) AGB = 0.0199 (D²H) 9296.0  (2) 

3 Mahagoni (Swietenia mahagony) AGB = 0.9029 (D²H) 684.0  (3) 

4 Akasia (Acacia auricaliformis) AGB = 0.0775 (D²H) 9018.0  (4) 

5 Other trees AGB = 0.0219 (D²H) 012.1  (5) 

 

 

 

20 m 

20 m 
10 m 
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3.4. Pre-processing satellite images 

3.4.1. Pre-processing Sentinel-2 Image  

3.4.1.1. Atmospheric and Topographic Correction (ATCOR) Sen2cor 

A Sentinel-2 image was downloaded from copernicus scientific data hub 

website. It has been scaled to TOA level including orthoreactification and spatial 

registration on a global reference system [55]. Sentinel-2 Level 1-C was processed to 

Level 2-A to gain BOA corrected reflectance image using ATCOR Algorithm through 

Sen2cor plugin in SNAP. Output of this process was an orthoimage of surface 

reflectance in sentinel level-2A product and ready for further analysis [55]. Spectral 

value from band 3,4,5,6,7 and 8 were used as predictor for AGB estimation of private 

forest.  

3.4.1.2. Resample image 

Resample was a process to change pixels or spatial resolution of satellite 

images. This process is important to process satellite images with different resolution. 

Sentinel-2 has vegetation indices which combine band 3,4,5,6,7 and 8 where the 

location of the bands are in 10 and 20 meter resolution. Therefore, it is necessary to 

equalize spatial resolution so that bands can be used together in the analysis. To 

minimalise effect of geolocation error, each image was resampled to 20 m resolution 

than 10 m using a nearest neighboor method. The nearest neighboor method was used 

during the process since this method utilized spectral values and vegetation indices 

which are established from original Sentinel-2 band. This method does not alter the 

original value of the new image because it fills pixel value from the corrected image 

with the value of  the nearest pixel from the original method [42].  

3.4.1.3. Vegetation indices calculation 

Vegetation indices were directly determined after atmospheric correction and 

resample. Calculation of vegetation indices was conducted by using band math module 

in SNAP software. Vegetation indices images were presented in Bean dimap (Snap) 

and Geotiff format. For this study, we used two vegetation indices called Sentinel-2 

vegetation indices and traditional vegetation indices. Traditional indices involve NDVI, 

EVI,  SR whereas Sentinel -2 vegetation indices include Normalization Difference 

Index from Band 5 and 6 (NDI 75), NDI 45 and IRECI. Traditional indices were 

selected based on simplicity and robustness. SR and NDVI work through simple 
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algorithm which employ ratio of NIR and RED bands. EVI is the robust index and has 

sensitivity to high biomass regions due to correction factor useful to eliminate influence 

of aerosol and canopy background [49]. Details of the indices used as predictor for 

biomass estimation is described by Table 10 below: 

Table 10. A list of vegetation indices 

 

      

3.4.2. Pre-processing Sentinel-1 satellite image 

3.4.2.1. Thermal noise removal 

One of noises which appear in radar image is thermal noise. This is the addition 

background energy causing a noise floor. Cross-polarization (HV/VH), however, is 

always significantly suffered by thermal noise because their depolarized power is more 

weaker than their initially polarized power. 

3.4.2.2. Precise orbit file 

Precise orbit information is available 20 days after data acquisition. Orbit file 

contains the exact location of the sensor when satellite records the object. Orbit file 

helps to correct geolocation error of the image. Orbit file of the image is downloaded 

directly from SNAP 5.0 in https://qc.sentinel1.eo.esa.int/aux_poeorb/[67]. 

 

 

 

 

 

 

No Vegetation indices Band math References 

1 NDVI  NIR-RED

NIR+RED
 

        [50] 

2 EVI  
G*

NIR-RED

NIR+C1*red-C2*Blue+L
 

Note : C1 = 6 ; C2 = 7.5 ; L = 1 ; G = 2.5 

         [49] 

3 SR  NIR

RED
          [65] 

4 NDI75  RED EDGE 2-RED EDGE 1

RED EDGE 2+RED EDGE 1
 

         [66] 

5 NDI45  RED EDGE 1-RED

RED EDGE 1+RED
 

         [61] 

6 IRECI  RED EDGE 3-RED

RED EDGE 1/RED EDGE 2
 

         [59] 
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3.4.2.3. Radiometric calibration 

This stage was very crucial to do as SAR data will be analyzed quantitatively. 

Processing terrain correction in SNAP needs beta nought (βº)  instead of sigma nought 

so that Digital Number (DN) was calibrated to beta nought (βº). This process was 

conducted by radiometric calibration module in SNAP 5.0. Radiometric calibration in 

Sentinel-1 is calibrated using equation below: 

                           Value (i) = 
|DNi|²

Ai²
     

  

Where : 

 Value (i) = one of βº, γº, σº or original DN 

 Ai    = one of beta nought (i), sigma nought(i), gamma nought (i) or DN(i) 

 

3.4.2.4. Speckle reduction 

Speckle effects or spots (looks like salt and pepper) on the SAR image are 

generated by the reflection of the object on the earth, interfered with the scattering of 

the radar signals. The speckle reduces the quality of the image so the filter speckle has 

to be applied. Gamma 5 x 5 filter was used for this purpose [46] [67]. 

  

Figure 5. Speckle filtering image, Left : Sentinel-1 before speckle filtering, Right :  

Sentinel-1 after speckle filtering 

 

 

(6) 
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3.4.2.5. Radiometric terrain flattening 

Radiometric terrain flattening was applied because the study area has many 

terrain variations.  Radar backscatter is strongly caused by surface roughness. If  the 

terrain with many variations of relief (e.g. mountain and hill) face directly to the sensor, 

it will create small local incident angle [42]. The result of this process is brightness of 

the image because strong backscatter from the object to the sensor  [68]. Radiometric 

terrain module in SNAP 5.0 converts beta nought (βº) value to gamma nought (γº) to 

normalize effect of terrain on backscatter value through equation below [68].  

γT°(r,a)=Kγ.

 β°(r,a)

Âγ(r,a)
 

   

Where : 

r,a  = range and azimuth image coordinate 

Kγ   = scalar calibration constant 

Âγ   = Normalization reference for gamma nought 

3.4.2.6. Geometric correction 

The next step of pre-processing Sentinel-1 SAR data was eliminating geometry 

distortion. The terrain correction processing geocoded the image by correcting 

geometry distortion using Digital Elevation Model (DEM) Shuttle Radar Topography 

Mission (SRTM) 3Sec v.4 and projected it into map coordinates. This research used the 

orthorectification method of Doppler Range Terrain Correction (DRTC) to eliminate 

geometry distortion [67].  This process produced data with pixel size of 20 × 20 m and 

projected map based on datum WGS-1984 and Universal Transverse Mercator (UTM) 

projection on 49 S Zone. 

3.4.2.7. Converting to decibel 

The value of gamma nought (γº) was converted into decibel  which is the 

backward scattering coefficient (backscatter). Output of this process was VV/VH 

backscatter values and was converted to Bean dimap in SNAP format and Geotiff 

format. Minchella (2015) mentioned that availability of data SAR Sentinel-1 in South 

(7) 
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 East Asia was VV/VH polarization on the Interferometric Wide Mode (IW) product 

[69]. IW mode captures area with 250 km swath at 5 x 20 m resolution [39].  

 

3.5. Classification process 

The private forest map of the study area was created from the Sentinel-2 image 

through classification process. Supervised classification was used to classify private 

forest and non-private forests. True colour combining red, green and blue channel was 

used to image enhancement. Maximum likelihood algorithm employs a bayes-family 

classifier to assign pixel likelihoods on the basis of mean class values as well as class 

covariance [70]. In order to use this algorithm, an adequate amount of pixels is needed 

for each sample area for the calculation of the covariance matrix. The sample areas 

were collected from the Sentinel-2 image via visual interpretation based on combination 

references between field survey result and base map from google earth. 

An accuracy assessment from supervised classification of the image in each year 

was done. A hundred sixty Ground Control Points (GCP) were generated randomly 

from the field. Then, reference points were compared to the image from supervised 

classification results through confusion matrix to perform accuracy assessment. Overall 

accuracy, producer’s accuracy, and user’s accuracy were performed to determine 

accuracy of the private forest map. 

 

3.6.  Retrieval of backscatter, spectral and vegetation indices value 

All of the image parameters from radar backscatter spectral value and vegetation 

indices was converted to geotiff format. Totally, 30 points representing coordinate of 

sample plots are used to retrieve the values of each image. Process to retrieve the pixel 

values of each image was executed in ArcGis 10.5 through extraction values to point 

feature. Process of retrieving pixel value of the image is illustrated by Figure 6. 
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Figure 6. Retrieval pixel value from NDVI 

 

3.7. Statistical analysis 

3.7.1. Correlation analysis 

Correlation analysis was the first statistical process in this research. Correlation 

analysis indicates the size of the correlation (relationship) or degree closeness 

relationship between two variables which can be between -1 and +1, where close value 

to -1 or +1 is strong correlation and value of  0 implies that there is no correlation 

between the two variables [71].  

In this study, three groups of parameters were correlated. The first group was 

correlation between AGB of private forest and the Sentinel-1 backscatter coefficient of 

VV and VH image data. The second group was correlation between AGB and the 

Sentinel-2 spectral values which include B3, B4, B5, B6, B7 and B8 image data. The 

third group was correlation between AGB and vegetation indices delivered from 

Sentinel-2 consisting of NDI45, NDVI, SR, IRECI, NDI75 and EVI. Scatter plot 

between two variables were established in microsoft excel. Pearson correlation then 

was applied in SPSS 17 to assess correlation between AGB and parameters from 

Sentinel-1 and Sentinel-2. 

 

Plot coordinat 
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3.7.2 Linear regression 

  Linear regression was used to assess the best parameters from Sentinel-1 and 

Sentinel-2 for estimating AGB. Similar with correlation analysis, all of the parameters 

was divided by three groups. AGB was considered as dependent variables and 

parameters from Sentinel-1 and Sentinel-2 as independent variables. Generating simple 

regression was using curve estimation in SPSS 17. The regression between AGB and 

Sentinel-1 and Sentinel-2 parameters is expressed by equation below [72] : 

                        Y = a + bx         (8) 

 

where : 

Y  = Dependent variable (AGB of private forest) 

x  = Independent variable (Sentinel-1 and Sentinel-2 parameters) 

a, b = Coefficient 

 
The best parameters was assessed through R² (coefficient of determination). R² 

is a measure that indicates the proportion of  Y explained by X [72]. The value of R² is 

between 0 and 1 where values close to + 1 mean that parameters in X can explain almost 

of Y behavior. It indicates that our regression model is in fit performance [72]. Values 

close to 0 is the opposite in which X parameters have poor ability to explain of Y 

behavior. 

3.7.3. Model development 

AGB modelling was conducted through the stepwise linear regression model. 

Stepwise linear regression is combination between the forward and backward method 

where all output parameters in the model are tested to see their significance to the model 

[72]. If a non-significant parameter is detected, it will deleted from the model [72]. All 

of the significant parameters with AGB delivered from Sentinel-1 and Sentinel-2 was 

used as independent variable in this process. The equation of the multiple regression is 

expressed below [72]: 

                           Y = a + b1x1 + b2x2 + b3x3 + bnxn    (9) 

where: 

Y  = Dependent variable (AGB of private forest) 

x   = Independent variable (Sentinel-1 and Sentinel-2 parameters) 

a   = Intercept 

b   = Coefficient 
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The ability of the models will be assessed through R² (Coefficient of Determination) 

and Root Mean Square Error (RMSE). Equation of RMSE error is shown below: 

 

RMSE = 
n

YiY 2)( 
    (10) 

 

where: 

RMSE  = Root mean square error 

Y  = Estimated AGB (ton/ha) 

Yi  = Measured AGB (ton/ha) 

n  = Number of sample plots for validation 

The model developed has to be free from the multicollinearity problem which can be 

assessed through tolerance value (>0.1) and Variance Inflation Factor (VIF) (<10) [23].  

 

3.8. Creating AGB Map 

 The AGB map was created from the stepwise linear regression model. Model 

selected was based on high R², low RMSE and fulfilling requirements of 

multicollinearity. The AGB map of the study area was produced through ArcGis 10.5. 

The process was conducted in raster calculator tools in ArcGis 10.5.  Raster calculator 

is a tool in map algebra in spatial analysis extension. The model selected equation was 

entered in raster calculator. The raster calculator converted pixel value from the raster 

image to AGB value accordingly. Consequently, the AGB value based on the raster 

pixel. Negative values were masked without AGB value so that the AGB value started  

from 0. Then, the AGB values were classified into some groups (eg. 0-100, 100 – 150 

etc.). 

 

3.9. AGB map validation 

 The AGB map is very important for the user especially groups of farmers. This 

map can be used for replanting of private forest and helping the farmers to know the 

volume of their forest so they can bargain with trader. Therefore, assessing accuracy of 

AGB map is imperative. A fifteen sample plots as observed AGB were plotted againts 

15 plots as predicted AGB to validate the AGB map. R² and RMSE were calculated 

during this process. 
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Flow chart of the whole study is shown in Figure 7 
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CHAPTER 4 

 

 

RESULT AND DISCUSSION 

 

 

4.1.  Descriptive analysis of field data 

 Forest parameters measured in the field were tree height and Diameter of Breast 

Height (DBH).  Identification of tree species was also done in the field. A number of 

trees recorded in 45 (1.8 Ha) sample plots were 1,451. A total of 8 species of trees were 

found namely Tectona grandis, Swietenia mahagony, Acacia auriculifurmis and other 

trees such as Samanea saman, Gnetum gnemon, Alstonia scholaris, Parkia speciosa  

and Tamarindus indica. The dominant species in Girisekar and Jetis forest management 

unit was Tectona grandis with a total of trees and IVI of 891 and 193.25, respectively 

(Table 11). The IVI for Swietenia mahagony and Acacia auriculifurmis, which were 

being the second and third dominant species, were 54.59 and 37.22. Other tree group 

constituted the lowest value in term of IVI in private forest. 

Table 11. Important value index for each species in this study area 

RD is relative density; RF is relative frequency; RD1 = relative dominance ; IVI is 

important value index, calculated from RD + RF + RD1 [73]. 

 The field AGB of private forest was measured by plotting H and DBH 

allometric equations.  The mean of field AGB was 80 ton/ha, with minimum and 

maximum values of 21 Mg/ha and 226 ton/ha, respectively.  Majority of AGB plots 

was distributed evenly, ranging from 50 – 100 ton/ha. We found 8 sample plots with 

field AGB < 50 ton/ha and few sample plots with field AGB > 150 ton/ha (Figure 8). 

These results show that AGB value from low to medium was dominant in the study 

area.  

 

No Species Count Density RD (%) Frequency RF (%) RD1(%) IVI 

1 Tectona grandis 891 19.80 63.82 0.93 42.43 87.00 193.25 

 2 Swietania mahagony 302 6.71 20.04 0.58 26.26 8.29 54.59 

3 Acacia aucicalifurmis 232 5.16 14.45 0.40 18.18 4.59 37.22 

4 Other trees 26 0.58 1.69 0.29 13.13 0.12 14.94 

  Total 1,451 32.24 100 2.20 100 100 300 
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  Figure 8. Distribution of field AGB within the sample plot 

 

4.2. Private forest map 

 Classification was done through maximum likelihood using ENVI software. A 

maximum likelihood method has been widely used to classify object. In this research, 

two classes-forest and non-forest were set up. Non-forest included road, settlement area 

and water bodies. Forest area obtained by maximum likelihood classification was 1,427 

Ha (Figure 9).  

 

Figure 9. Private forest map unit derived from supervised classification 
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Post classification process was carried out to assess accuracy of private forest 

map. Overall accuracy, producer’s accuracy and user’s accuracy were set up as 

parameters for accuracy control that was calculated using hundred sixthy ground 

control points. Confusion matrix was designed by comparing between ground control  

points and classification results.  Overall accuracy, producer’s accuracy, user’s 

accuracy were calculated through confusion matrix. Finally, user’s accuracy of private 

forest was 95 %, while producer’s and overall accuracy  were 95 % and 94 %, 

respectively. 

 

4.3 Correlationship between AGB and Sentinel-1 data 

Thirty sample plots were taken from the field to establish correlation between 

AGB from private forest and Sentinel-1 data. Then, Pearson correlation was used to 

assess correlation between VV and VH Sentinel-1 polarised backscater and AGB. VV 

and VH showed weak correlation to AGB where VH correlation exhibited significant 

relationship at 95 % confidence level, whereas VV did not correlate significantly with 

AGB (Table 12). The result of this study was in line with some studies who utilised C-

band to assess AGB from the forest. Nizalpur et al. (2015) found that correlation 

between DLR-ESAR data and AGB from tropical forest in India was low (r= 0.31, 

p≤0.05) [43]. In addition, Jha et al. (2006) found similar result when they assessed 

correlation between AGB and Envisat-ASAR data (r= 0.349, p≤0.05) [21]. 

The weak correlation between AGB and C-band data is connected to data 

saturation in low AGB value. Jha et al. (2016) revealed that data saturation occured 

when AGB attained 70 ton/ha [43]. A study by lmhof et al. (1995) showed that 

saturation level of AIRSAR data was 20 ton/ha [74]. This research showed that 

saturation level of Sentinel-1 SAR in VH backscatter was 50 ton/ha (Figure 10). This 

problem can be solved using radar data which utilise L band where it can reach 

saturation level up to 160 ton/ha [43].  All of the backscater showed negative correlation 

with AGB which means that the AGB value increases when backscater decreases 

(Figure 11). This result was confirmed by some studies which showed negative 

correlation between AGB and SAR data [75] [76]. 
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Table 12. Correlation and linear regression between backscatter and AGB 

No Paramater r R2 

1 VH -0.369* 0.13 

2 VV -0.238 0.056 

*significant at 0.05 level 

 

In accordance to the present results, previous studies had demonstrated that 

cross-polarised (HV and VH) had better correlation than co-polarised (VV and HH) 

[77] [78].  In addition, study from Thumaty et al. (2015) reported that HV was more 

stronger than HH in estimating AGB in deciduos forest in India using ALOS PALSAR 

[88]. Castillo et al. (2017) found that VH derived from Sentinel-1 was more robust than 

VV in their study for mapping AGB in mangrove forest [48]. 

 

 

         Figure 10. Scatter plot between AGB and VH backscater  
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 Figure 11. Scatter plot between AGB and VV backscater 

 

A strong correlation between VH and AGB is correlated to volume scattering. 

Volume scattering is the radar energy reflectance which comes from structure of canopy 

including small branch of trees and leaves.  Tree is composed by multiple layers 

including leaf, brunch and trunk where reflection came from them [79]. In C-band case, 

cross polarisation backscatter comes from canopy leaves, secondary branch and twigs 

due to it has less ability to deeply penetrate through canopy [21]. On the other hand, 

VV backscatter only comes from surface scattering from the leaves so that  returned 

signal to the sensor is weak. Bousbish et al. (2017) found that VH backscatter increases 

when the volume of the tree also increases in assesing potensial of Sentinel-1 for 

assesing soil and cereal cover parameters [80]. This result implies that VH backscatter 

from the trees is volume of scattering and it will bounce back strong signal to the radar 

sensor. 
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4.4. Correlationship between AGB and Sentinel-2 spectral reflectance 

  Broadband and narrow band were used to assess correlation AGB and spectral 

reflectance. Broadband are B3, B4 and B8, whereas narrowband are B5, B6 and B7. 

Table 13 presents reflectance in broadband and narrowband in relation to AGB in 

private forest. B4 appeared as stronger and better parameter than others Sentinel-2 

bands. In contary, there was a non significant correlation between AGB and B5-B8. 

On the other hand, B3 showed moderate correlation to AGB.  

The spectral reflectance showed both positive and negative correlation to AGB.  

B3, B4 and B5 exhibited negative corrrelation to AGB which means that the value of 

AGB increases when the value of spectral reflectance decreases (Figure 12). Positive 

correlation to AGB was showed by B6, B7 and B8 and it concluded that AGB value 

will increase when the value of spectral reflectance increases. 

Table 13. Correlation and linear regression between spectral reflectance and AGB 

No Parameters r R2 

1 B3 -0.50* 0.24 

2 B4 -0.73* 0.51 

3 B5 -0.33 0.11 

4 B6 0.20 0.04 

5 B7 0.30 0.09 

6 B8 0.24 0.06 

   *significant at 0.05 level 
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Figure 12. Scatter plot between  AGB and spectral reflectance 

 

Several studies have shown that NIR is band known to have good correlation 
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support the previous research. From the Table 13, it can be seen that red is better than 

other bands in estimating AGB on private forest. This result agreed with the findings 
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al. (2012) utilised spectral values derived from QuickBird-2 image to predict forest 

structural properties and they revealed that the red reflectance was more robust than 

NIR [83]. 

Another finding in this research was red edge bands did not have good 

correlation to AGB in private forest. This finding corroborates the result from Pu et al. 

(2015), who found that visible bands was stronger than red edge bands [82]. 

Furthermore, they added that small variation of red edge reflectance because of narrow 

range did not match with large variation in LAI in mixed forest [82]. This explanation 

supports the result of this study where our study site was composed by mixed plantation 

(Table 11) so that it produced many variations of LAI value. Dussuex et al. (2015) 

found that LAI is more correlated to AGB than other biophysical parameters of the 

vegetation [84]. 

 

4.5. Correlationship between AGB and vegetation indices 

Result of linear regression analysis between AGB and vegetation indices 

derived from Sentinel-2 are shown in Table 14. The r value of vegetation indices was 

ranging from 0.49 to 0.89 and R² varied between 0.23 and 0.79. All of vegetation indices 

showed significant and positive correlation with AGB. NDI45 was the best vegetation 

indices corresponded to AGB (r = 0.89 and R² = 0.79) followed by SR, NDVI, IRECI, 

NDI75 and EVI 

Table 14. Correlation and linear regression between vegetation indices and AGB 

No Parameters r R² 

1 NDI45 0.89** 0.79 

2 NDVI 0.81** 0.65 

3 IRECI 0.7** 0.49 

4 SR 0.86** 0.73 

5 EVI 0.49** 0.23 

6 NDI75 0.62** 0.38 

*significant at 0.05 level 
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      Figure 13. Scatter plot between AGB and vegetation indices 
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Pearson correlation was employed for assessing the relationship between AGB 

and vegetation indices derived from Sentinel-2 image. NDI45, SR and NDVI had strong 

correlation with AGB. NDVI is most widely used to measure biophysics properties of 

vegetation. So, we compared it with other indices on this research. Once NDI45 and 

NDVI was compared, NDI45 was more powerful than NDVI since NDVI had a 

saturation problem at a higher value of biomass (Figure 13). A possible explanation for 

this result may be linked to the lower saturation of high AGB level of red edge 1 

compared to the NIR band (Table 13).   

A substitute of NIR to the red edge 1 on NDI45 at Sentinel-2 image is able to 

improve relationship between satellite data and biophysics properties of the vegetation. 

This is consistent with the result of Frampton et al. (2013) where correlation between 

NDI45 was higher than NDVI in measuring Canopy Chlorophyll Content (CCC) [59]. 

NDI45 created from Sentinel-2 B4 (665 nm) and red edge 1 B5 (705 nm) is more robust 

to measure biophysics parameters of vegetation than other bands combination in 

Sentinel-2 [61]. 

SR outperformed NDVI in this study.  It might be  because the relationship of 

MSR and SR with biophysical properties of the vegetation was more linear than NDVI 

[59] [65]. NDVI is more affected by leaf optical and geometry effect from sun view 

angle hence linearity to parameters of vegetation is lower than SR [65]. EVI is more 

reliable than NDVI to measure AGB on dense vegetation because its ability to reduce 

effect of atmosphere and canopy background. However, EVI showed poor correlation 

to AGB in this research. A possible explanation is that the slope of the plots in the study 

area varies from flat to slightly inclined (slopes range of the sample plots between 0° 

to 19°). EVI is highly influenced by various terrain condition [84] [85]. Soil adjustment 

factor (L) becomes limitation of EVI because it is very sensitive to topography than 

indices which are based on simple ratio algorithm like SR and NDVI [85]. 

 

4.6. Modelling AGB in private forest 

Having reliable AGB values are important to effectively produce an AGB map. 

The AGB map can be derived from modelling between satellite data and AGB from 

field measurement. Regression model has been widely used to modelling AGB and 
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satellite image data [14], [16], [54]. Regression model is used to model relationship 

between independent variables (x) and dependent variable (y). 

Stepwise multilinear linear regression was used to estimate AGB in private 

forest. This model uses more than one independent variables. In this case, all of the 

significant variables from Sentinel-1 and Sentinel-2 was plotted as independent 

variables and AGB as a dependent variable.  The summary output of the model is 

presented in Table 15. 

Table 15. Summary of paramaters for AGB model development 

Sensor Parameters 

Sentinel-1 Gamma VH 

Sentinel-2 B3,B4, NDI45,SR,NDVI,IRECI,NDI75,EVI 

 

 Based on stepwise linear regression, combination between NDI45 and EVI 

appeared as better parameters combination to establish AGB  model in private forest. 

A developed model from NDI45 and EVI fitted for estimating AGB (adjusted R² = 0.81, 

p < 0.05). R² 81 % means that as much as 81 % of AGB variability could be explained. 

AGB model for private forest is expressed by formula below : 

66.353)*42.158()45*537(  EVINDIAGB    (11) 

VIF and Tolerance value for model was 0.87 and 1.14, respectively. It suggested that 

there was no multicolinearity problem because tolerance value was more than 0.1 and 

VIF value was less than 10 [23]. RMSE of the model was 19.4 ton/ha. Thus, this model 

was accepted for estimating AGB private forest. 

 

4.7. AGB Map validation 

 Model validation was employed to assess performance of the model. Lu et al. 

(2016) stated that RMSE and R² commonly are used to validate AGB. Two groups of 

data were choosen, namely observed and predicted AGB. Observed AGB was derived 

from field AGB and predicted AGB was obtained from the AGB map using fiveteen 

sample plots from the field. Finally, simple linear regression has been developed from 

the data to validate the model. Realibility of the model is determined by low RMSE and 

high R² [15].  
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 Figure 14. Scatter plot of observed and predicted AGB 

 

Correlation between observed and and predicted AGB gave a robust R², 0.74. It 

means that 74 % of observed AGB could be explained by predicted AGB. The 

regression analysis results of the the model validation are highlighted in equation 12. 

The scatter plot of the validation model is presented in Figure 14.  

 

                                                    xY 50.085.29      (12)  

Where : 

Y  = observed AGB (ton/ha) 

X   = predicted AGB (ton/ha) 

RMSE obtained from predicted and observed AGB  was 27 ton/ha. In 

accordance to this result, some previous studies resulted RMSE lower than 27 ton/ha 

[23] [14] [87]. For example, Hamdan et al. (2014) estimated AGB in Malaysia where 

they obtained RMSE of 32.57 ton/ha [14]. Futhermore, Jackowsky et al. (2013) 

predicted AGB in mangrove forest in Southern Thailand using WorldView-2 and found 

that RMSE error of AGB model was 53.4 ton/ha [87]. However, this result different 

from some published studies who found that RMSE more than 27 ton/ha [88] [89]. 

Thumaty et al. (2016) reported RMSE in estimating AGB in deciduos forest in India 

using ALOS PALSAR was 19.31 ton/ha [88]. It indicated that RMSE result of this 

study was moderate and reasonable to predict AGB in private forest. 
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4.8. Mapping AGB in private forest 

Estimating AGB in the study area was conducted using equation 11. The process 

was done in ArcGIS 10.5 using map algebra. The equation which was obtained from 

stepwise linear regression was typed in raster calculator to extrapolate AGB map. Due 

to NDI45 and EVI are the x variable in the equation, the software calculates AGB 

directly based on the pixel value. Output in this process is raster AGB map where each 

raster pixel contains AGB values. This method also was used by Castillo et al. (2016) 

who estimated AGB in their study area using raster calculator in ArcGIS [48]. The AGB 

map of the study area is illustrated in Figure 15. 

 

       Figure 15. AGB map of the study area 

 

Figure 15 illustrates AGB map prediction resulted from the stepwise linear 

regression model between AGB field and vegetation indices (NDI 45 and EVI).  The 

number of AGB predicted for Girisekar and Jetis private forest management unit from 

spatial analysis was 72.54 ton/ha. The AGB values varied from 0 – 248 ton/ha. Using 
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0.5 conversion factor from biomass to carbon, above ground carbon biomass estimated 

from the study area was 36.27 ton/ha. 

Table 16. Summary of AGB estimating in  private forest 

No Methodology Location 
Mean AGB 

(ton/ha) 

References 

1 
Forest 

Inventory 
Ngaleran, Yogyakarata 38.1 

[90] 

2 
Destructive 

sampling 
Dengok, Yogyakarta 49 

[91] 

3 
Remote 

sensing 
Girisekar, Yogyakarta 72.54 

This study 

4 
Forest 

Inventory 
Terong, Yogyakarta 64.42 

[92] 

5 
Forest 

Inventory 

Rejomakmur, 

Yogyakarta 
75.31 

[64] 

 

This research found that AGB derived from remote sensing method was 

moderate. To ensure that our result is validated, comparing with another research in 

estimating AGB in private forest is imperative. Because the number of literature for 

estimating AGB in private forest using remote sensing method was limited, so we 

utilised others research using different methods as comparison (Table 16). The AGB 

value of this research is almost similar to AGB value (75.31 ton/ha) reported by Arupa 

in Rejomakmur but higher than the AGB value who found by Aminuddin (49 ton/ha) 

in Dengok and Arupa (64 ton/ha) in Terong.  The AGB value of this study almost 

double than AGB value (38.1 ton/ha) from Ngaleran who was estimated by Purwanto 

et al. (2015) [90].  

AGB value in private forest can be cathegorised as moderate AGB. The number 

of AGB in private forest is lower than AGB from some forest types like natural forest 

[81] and mangrove [87]. For instance, Wijaya et al. (2009) conducted research in 

Borneo and found that AGB value in secondary primary forest was 167 ton/ha [81]. 

However, AGB in private forest is higher than those from deciduous forest in India 

which was estimated by Thumaty (58 ton/ha) [88]. The lower of AGB can be linked to  

traditional philosophy that considers private forest as a long-term investment. It means 

that private forest can be used intentionally (tebang butuh on local language). Farmers 

usually will harvest timber of private forest in particular time such as the start of school 
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year and wedding event. Therefore, the average of field AGB was 80 ton/ha where only 

one sample plot had field AGB more than 200 ton/ha and the others below 200 ton/ha. 

It is too difficult to find areas with high AGB value on  private forest because the 

farmers harvest mature trees. So, it is plausible if majority of the sample plots would be 

only in low to medium AGB areas. 
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CHAPTER 5 

 

 

CONCLUSION 

 

 
This study explored the potential of Sentinel-1 and Sentinel-2 satellite data to 

quantify above ground biomass in Girisekar and Jetis forest management unit, 

Yogyakarta, Indonesia. Pearson correlation and single linear regression were used to 

assess correlation between AGB and satellite data. AGB modelling from private forest 

then was derived using stepwise linear regression. The conclusion of this study is as 

follows : 

1. Sentinel-1 backscatter (VV and VH) showed low correlation with AGB because of 

data saturation of C-band. The accuracy of VH for capturing AGB was significantly 

better than VV. 

2. Broad band from Sentinel-2 which consists of B3 and B4 was better than NIR red 

edge band in retrieving AGB in private forest.  

3. Vegetation indices from Sentinel-2 appeared as strong parameters than reflectance 

from Sentinel-2 band and Sentinel-1 band backscatter. All of the vegetation indices 

which were used in this research showed significant correlation to AGB where 

NDI45 was much better than other indices. 

4. Model of Girisekar and Jetis private forest derived from stepwise linear regression 

found that combination between NDI45 and EVI was more robust ( R2 = 0.81). The 

model can be written as follow: 

66.353)*42.158()45*537(  EVINDIAGB  

5. The mean of AGB in study area was 72. 54 ton/ha. Model validation result showed 

that it can perform well in the study area (RMSE = 27 ton/ha). Based on the literature 

review comparison, the mean of AGB was relatively close to AGB value in other 

research areas which have same characteristics to our study area. 

6. This research focused on private forest cultivated by the farmers in their own land. 

In the future, the methodology in this research  can be tested in the other types of 

forest or agricultural plantations like rubber tree. Moreover, this research utilised 

free and low cost satellite like Sentinel-1 and Sentinel -2 and their own software, 



46 

SNAP. This is important to developing countries or researchers which have 

limitation for satelite purchasing.  

7. The limitations of this research was few sample plots in high AGB area with the 

mean of AGB field of 80 ton/Ha. It implicated satisfying statistic result because the 

model was less affected by data saturation especially in Sentinel-2 image. There is 

available room in the future to test ability of Sentinel-2 in the area which has high 

AGB value such as natural forest so that the potential of Sentinel-2 can be explored 

deeply. 
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APPENDIX 

 

Appendix 1 : data for AGB analysis 

Table A : Summary of AGB based on the plots 

Plot 

Id 

Total of 

trees 

Mean 

DBH 

(cm) 

Mean 

Height 

(m) 

Plot coordinat (UTM) AGB 

(ton/ha) 

x y 

1 18 13.69 8.37 441447 9110726 21 

2 48 13.34 11.41 441321 9111438 98 

3 37 15.33 13.1 441610 9110478 75 

4 28 14.44 9.81 441612 9110650 64 

5 25 17.11 9.42 441048 9111315 65 

6 51 12.95 11.48 440987 9111407 175 

7 34 15.54 12.73 440446 9111032 92 

8 26 15.62 11.69 440766 9111539 69 

9 23 12.39 9.2 440509 9111505 25 

10 22 14.98 10.52 441822 9111808 69 

11 24 12.08 10.68 441068 9112366 42 

12 36 14.29 10.89 442113 9111812 63 

13 34 15.56 13.86 440682 9110215 95 

14 84 16.16 15.57 441611 9111807 84 

15 24 15.15 14.47 441496 9110425 101 

16 34 13.63 14.08 441937 9110205 71 

17 30 10.92 12.82 441047 9112577 67 

18 34 14.07 11.46 443536 9111828 125 

19 51 13.38 10.29 443659 9111407 175 

20 29 15.9 12.78 443747 9112222 101 

21 40 14.68 11.87 443867 9111848 137 

22 44 14.93 12.85 443478 9112123 226 

23 38 12.24 10.92 443694 9112805 48 

24 26 15.32 11.43 443547 9112882 58 

25 51 12.76 11.04 443399 9111751 158 

26 23 11.92 9.55 444524 9112758 32 

27 30 13.45 10.3 444129 9112382 32 

28 31 16.75 13.4 441993 9111789 106 

29 42 10.97 11.87 441745 9109996 62 

30 28 12.73 10 442617 9112183 90 



54 

31 29 15.24 13.78 440118 9111013 86 

32 44 12.5 10.95 442691 9111828 125 

33 41 13.17 14.24 441434 9111322 82 

34 33 16.25 13.21 441691 9111138 96 

35 25 16.39 15.69 441211 9111251 74 

36 39 13.72 10.63 440587 9110836 93 

37 38 12.58 12.04 441248 9110698 82 

38 16 6.71 14.82 441035 9112470 97 

39 33 13.31 10.95 440691 9110360 56 

40 35 13.18 13.86 440957 9110833 76 

41 29 11.3 11.27 441371 9110394 43 

42 38 12.36 11.61 443713 9112136 61 

43 27 17.17 17.78 440687 9111232 80 

44 21 16.17 10.64 441535 9111184 56 

45 24 16.93 13.28 441529 9110901 75 
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Table B : data for correlation between AGB and Vegetation indices 

Plot ID AGB (ton/ha) ND45 NDVI SR IRECI NDI75 EVI 

1 21 0.59 0.84 11.60 0.61 0.43 0.48 

2 98 0.70 0.92 24.64 1.10 0.57 0.57 

3 75 0.66 0.89 17.36 0.80 0.50 0.51 

4 64 0.59 0.87 14.43 1.02 0.51 0.59 

5 65 0.57 0.84 11.71 0.91 0.48 0.59 

6 175 0.79 0.96 44.78 1.27 0.62 0.56 

7 92 0.64 0.89 17.03 1.16 0.52 0.66 

8 69 0.63 0.88 15.52 0.98 0.50 0.61 

9 25 0.58 0.86 13.26 1.01 0.50 0.61 

10 69 0.65 0.89 16.89 0.91 0.50 0.56 

11 42 0.54 0.79 8.32 0.46 0.36 0.42 

12 63 0.64 0.87 14.37 0.91 0.47 0.60 

13 95 0.66 0.89 16.42 0.94 0.49 0.60 

14 84 0.69 0.91 20.71 0.85 0.53 0.50 

15 101 0.65 0.90 18.94 1.02 0.54 0.57 

16 71 0.62 0.88 15.14 1.08 0.50 0.64 

17 67 0.63 0.90 19.44 1.07 0.57 0.56 

18 125 0.69 0.91 20.69 1.16 0.53 0.65 

19 175 0.75 0.93 26.12 1.15 0.53 0.65 

20 101 0.69 0.91 21.37 0.94 0.54 0.55 

21 137 0.71 0.92 23.51 1.18 0.54 0.63 

22 226 0.84 0.96 51.91 1.21 0.57 0.62 

23 48 0.57 0.87 14.58 1.12 0.54 0.62 

24 58 0.57 0.83 11.04 0.79 0.46 0.55 

25 158 0.71 0.92 25.53 1.24 0.57 0.62 

26 32 0.55 0.80 9.19 0.66 0.41 0.52 

27 32 0.58 0.85 12.11 0.69 0.47 0.49 

28 106 0.72 0.91 20.33 0.85 0.48 0.59 

29 62 0.63 0.90 18.30 0.84 0.55 0.47 

30 90 0.75 0.94 34.88 1.09 0.59 0.54 
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Table C : data for correlation between AGB and spectral reflectance 

 

No AGB (ton/ha) B3 B4 B5 B6 B7 B8 

1 21 0.047 0.023 0.09 0.23 0.27 0.29 

2 98 0.035 0.013 0.07 0.27 0.32 0.32 

3 75 0.034 0.016 0.08 0.24 0.28 0.26 

4 64 0.050 0.024 0.09 0.29 0.35 0.34 

5 65 0.059 0.030 0.11 0.31 0.35 0.37 

6 175 0.023 0.007 0.06 0.24 0.30 0.34 

7 92 0.054 0.023 0.11 0.33 0.39 0.37 

8 69 0.054 0.023 0.10 0.30 0.35 0.37 

9 25 0.059 0.028 0.10 0.31 0.37 0.38 

10 69 0.044 0.019 0.09 0.27 0.32 0.34 

11 42 0.053 0.029 0.10 0.21 0.24 0.28 

12 63 0.053 0.024 0.11 0.30 0.35 0.37 

13 95 0.055 0.021 0.10 0.30 0.35 0.36 

14 84 0.029 0.013 0.07 0.23 0.28 0.25 

15 101 0.037 0.017 0.08 0.26 0.32 0.29 

16 71 0.056 0.026 0.11 0.33 0.39 0.40 

17 67 0.034 0.016 0.07 0.25 0.31 0.30 

18 125 0.047 0.018 0.10 0.32 0.38 0.39 

19 175 0.045 0.014 0.10 0.32 0.37 0.37 

20 101 0.038 0.014 0.08 0.25 0.29 0.29 

21 137 0.043 0.016 0.09 0.31 0.37 0.36 

22 226 0.029 0.007 0.08 0.28 0.34 0.34 

23 48 0.048 0.024 0.09 0.30 0.36 0.37 

24 58 0.057 0.029 0.10 0.28 0.32 0.35 

25 158 0.042 0.014 0.08 0.30 0.35 0.36 

26 32 0.057 0.033 0.11 0.27 0.31 0.30 

27 32 0.046 0.022 0.08 0.23 0.27 0.27 

28 106 0.048 0.016 0.10 0.28 0.32 0.37 

29 62 0.029 0.014 0.06 0.21 0.26 0.25 

30 90 0.028 0.008 0.06 0.23 0.29 0.30 
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Table D : Data for correlation between AGB and Sentinel-1 backscatter 

Plot ID AGB (ton/ha) Gamma VH Gamma VV 

1 21 -10.68 -4.45 

2 98 -13.31 -7.52 

3 75 -13.42 -9.55 

4 64 -13.43 -7.50 

5 65 -11.53 -7.25 

6 175 -12.74 -9.43 

7 92 -11.11 -6.48 

8 69 -13.69 -8.47 

9 25 -12.45 -8.62 

10 69 -12.65 -7.39 

11 42 -13.26 -7.96 

12 63 -14.25 -6.42 

13 95 -11.49 -5.18 

14 84 -11.77 -4.10 

15 101 -12.50 -7.77 

16 71 -13.75 -8.46 

17 67 -15.05 -11.78 

18 125 -11.86 -6.70 

19 175 -15.44 -8.11 

20 101 -14.96 -7.05 

21 137 -12.49 -6.69 

22 226 -13.88 -8.27 

23 48 -13.50 -5.71 

24 58 -11.07 -4.77 

25 158 -14.12 -8.55 

26 32 -11.44 -8.30 

27 32 -9.61 -4.43 

28 106 -14.33 -6.99 

29 62 -13.43 -8.17 

30 90 -10.26 -5.69 
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Table E : Data for AGB validation 

Plot Id Observed AGB (ton/ha) Predicted AGB (ton/ha) 

31 86 120 

32 125 175 

33 82 123 

34 96 112 

35 74 103 

36 93 118 

37 82 94 

38 97 125 

39 56 56 

40 76 114 

41 43 72 

42 61 73 

43 80 68 

44 56 37 

45 75 72 
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Appendix 2 : Statistical analysis 

Table F : Correlation analysis between AGB and vegetation indices 

 

Correlations 

 AGB ND45 SR IRECI nd75 evi NDVI 

AGB 

Pearson Correlation 1 ,893** ,857** ,700** ,623** ,486** ,806** 

Sig. (2-tailed)  ,000 ,000 ,000 ,000 ,006 ,000 

N 30 30 30 30 30 30 30 

ND45 

Pearson Correlation ,893** 1 ,573** ,414* ,752** ,163 ,576** 

Sig. (2-tailed) ,000  ,001 ,021 ,000 ,380 ,001 

N 30 31 31 31 31 31 31 

SR 

Pearson Correlation ,857** ,573** 1 ,675** ,544** ,328 ,876** 

Sig. (2-tailed) ,000 ,001  ,000 ,002 ,072 ,000 

N 30 31 31 31 31 31 31 

IRECI 

Pearson Correlation ,700** ,414* ,675** 1 ,677** ,822** ,805** 

Sig. (2-tailed) ,000 ,021 ,000  ,000 ,000 ,000 

N 30 31 31 31 31 31 31 

nd75 

Pearson Correlation ,623** ,752** ,544** ,677** 1 ,273 ,676** 

Sig. (2-tailed) ,000 ,000 ,002 ,000  ,137 ,000 

N 30 31 31 31 31 31 31 

Evi 

Pearson Correlation ,486** ,163 ,328 ,822** ,273 1 ,484** 

Sig. (2-tailed) ,006 ,380 ,072 ,000 ,137  ,006 

N 30 31 31 31 31 31 31 

NDVI 

Pearson Correlation ,806** ,576** ,876** ,805** ,676** ,484** 1 

Sig. (2-tailed) ,000 ,001 ,000 ,000 ,000 ,006  

N 30 31 31 31 31 31 31 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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Table G : Correlation analysis between AGB and vegetation indices 

 

Correlations 

 AGB B3 B4 B5 B6 B7 B8 

AGB 

Pearson Correlation 1 -,492** -,727** -,332 ,199 ,300 ,241 

Sig. (2-tailed)  ,006 ,000 ,073 ,291 ,107 ,200 

N 30 30 30 30 30 30 30 

B3 

Pearson Correlation -,492** 1 ,998** ,994** ,420* ,160 ,408* 

Sig. (2-tailed) ,006  ,000 ,000 ,019 ,391 ,023 

N 30 31 31 31 31 31 31 

B4 

Pearson Correlation -,727** ,998** 1 ,986** ,378* ,121 ,366* 

Sig. (2-tailed) ,000 ,000  ,000 ,036 ,518 ,043 

N 30 31 31 31 31 31 31 

B5 

Pearson Correlation -,332 ,994** ,986** 1 ,485** ,221 ,462** 

Sig. (2-tailed) ,073 ,000 ,000  ,006 ,232 ,009 

N 30 31 31 31 31 31 31 

B6 

Pearson Correlation ,199 ,420* ,378* ,485** 1 ,946** ,910** 

Sig. (2-tailed) ,291 ,019 ,036 ,006  ,000 ,000 

N 30 31 31 31 31 31 31 

B7 

Pearson Correlation ,300 ,160 ,121 ,221 ,946** 1 ,876** 

Sig. (2-tailed) ,107 ,391 ,518 ,232 ,000  ,000 

N 30 31 31 31 31 31 31 

B8 

Pearson Correlation ,241 ,408* ,366* ,462** ,910** ,876** 1 

Sig. (2-tailed) ,200 ,023 ,043 ,009 ,000 ,000  

N 30 31 31 31 31 31 31 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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Table H . Correlation between AGB and SAR backscatter 

 

Correlations 

 AGB Gamma VH Gamma VV 

AGB 

Pearson Correlation 1 -,369* -,238 

Sig. (2-tailed)  ,045 ,206 

N 30 30 30 

Gamma VH 

Pearson Correlation -,369* 1 ,779** 

Sig. (2-tailed) ,045  ,000 

N 30 31 31 

Gamma VV 

Pearson Correlation -,238 ,779** 1 

Sig. (2-tailed) ,206 ,000  

N 30 31 31 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table I  Statistical summary of AGB model  

Model Summary         

Model R R Square 
Adjusted 

R 
Square 

Std. Error of 
the Estimate       

1 ,911b .831 .818 20.499       

                 

ANOVAa    

Model 
Sum of 
Squares df Mean Square F Sig.    

1 Regression 55719.595 2 27859.797 66.299 ,000c 
   

Residual 11345.872 27 420.217     
   

Total 67065.467 29       
   

                 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity Statistics 

B 
Std. 
Error Beta Tolerance VIF 

1 (Constant) -353.661 42.930   -8.238 .000     

ND45 537.391 55.169 .824 9.741 .000 .876 1.141 

evi 158.423 68.279 .196 2.320 .028 .876 1.141 
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Table J. Statistical summary AGB map validation 

Model Summary     

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate    
1 ,864a .746 .726 18.1971054 

   
          

   

Anova 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression 12644.105 1 12644.105 38.184 ,000b 

Residual 4304.750 13 331.135     

Total 16948.855 14       

              

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

1 (Constant) 29.850 19.533   -1.004 .334 

Predicted 0.50 .241 .864 6.179 .000 
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Appendix 3 

Table K. Accuracy assesment of landcover classification 

 

 

Classification accuracy for forest : 

1. User’s accuracy  : 95.0
95

90
  

2. Producer’s accuracy : 95.0
95

90
  

3. Overall accuracy  : 94.0
160

)6090(



 

  

No Item 
Item 

Forest Non forest Total 

1 Forest 90 5 95 

2 Non forest 5 60 65 

 Total 95 65 160 



65 

Appendix 4 

Documentation 

 

Documentation 1. Establishing of sample plots 

 

Documentation 2. Marking of trees within the plot 
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Documentation 3. Measuring circumrence of tree 

 

Documentation 4. Measuring height of tree 
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Documentation 5. Recording of field data 

 

 

Documentation 6. Team survey 
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