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ABSTRACT 
 

Due to the potential of quantum computers to revolutionize computation by 

solving some types of traditionally intractable problems by the classical computer, this 

field of study has become increasingly active and diverse, involving work on 

developing quantum processing hardware as well as research into applications with a 

potential large speed-up compared to simulations on classical (non-quantum) 

computers. One of the most promising methods for processing quantum information 

involves the use of photonic qubits, which allow for well-established and noise-free 

single-qubit operations. However, since there is no photon-photon interaction, 

processing the qubit-interaction property requires a nonlinear optical operation. 

Therefore, in the experiment section of this project, we created entangled photonic 

qubits by beginning with photon pair generation using a nonlinear crystal, then building 

up the complexity of the optical setup with the Hong-Oa-Mandel dip experiment, 

CHSH experiments, and eventually, photonic qubit generation and tomography. By 

optimizing the efficiency of the system in each experiment, the resultant qubit was 

successfully constructed with high fidelity to the designated Bell’s state. Additionally, 

we experimented with the optical structure of the photon pairs loop, which delivered 

some issues with noise and low signal in the results. Nonetheless, the structure still 

showed potential to be improved and utilized in future experiments. The entangled 

qubits and photon loop created in this project can be used as a foundation for various 

quantum optic algorithms, especially the photon loop structure, which can be used for 

the iteration of an operator, which is used regularly in the standard method for 

constructing multi-qubit gates. However, the method has some limitations in that only 

unitary operators can be created.  Finally, in the second section of this project, we 

explored an alternative scheme for constructing quantum optical multi-qubit gates. This 

purposed scheme, which uses the Hilbert-space expansion technique, is capable of 

independently programming each matrix element of the operator, allowing many 

different types of quantum operators to be realized in quantum optic experiments. The 

advanced scheme can theoretically achieve n-polarization-qubit optical reconfigurable 

quantum gates by arranging linear optical elements.  
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บทคัดย่อ 
 

เนื่องจากศักยภาพของคอมพิวเตอร์ควอนตัมในการปฏิวัติการคำนวณด้วยการแก้ปัญหาบาง
ประเภทท่ียากโดยคอมพิวเตอร์คลาสสิก การวิจัยในสาขาวิชานี้จึงมีบทบาทและความหลากหลายมากขึ้น
ตั้งแต่พัฒนาฮาร์ดแวร์การประมวลผลควอนตัมตลอดจนการวิจัยเกี่ยวกับแอปพลิเคชันที่มีศักยภาพที่มี
ความเร็วสูงขึ้นมากเมื่อเทียบกับการจำลองบนคอมพิวเตอร์แบบคลาสสิก หนึ่งในวิธีการท่ีมีแนวโน้มดีท่ีสุด
สำหรับการประมวลผลข้อมูลควอนตัมคือการใช้คิวบิตทางแสงซึ่งช่วยให้สามารถดำเนินการแบบคิวบิต
เดียวได้อย่างสมบูรณ์และปราศจากสัญญาณรบกวน อย่างไรก็ตามเนื่องจากสมบัติการไม่มีปฏิสัมพันธ์กัน
ระหว่างโฟตอนการสร้างปฏิสัมพันธ์ระหว่างคิวบิตจึงต้องใช้การเนินการทางแสงแบบไม่เชิงเส้นดังนั้นใน
ส่วนการทดลองของวิทยานิพนธ์นี้เราจึงสร้างคิวบิตทางแสงท่ีพัวพันกันโดยเริ่มต้นด้วยการสร้างคู่โฟตอน
โดยใช้คริสตัลแบบไม่เชิงเส้นจากนั้นจึงเพิ่มซับซ้อนของการทดลองทางแสงด้วยการทดลอง Hong-Oa-
Mandel,การทดลอง CHSH และสุดท้ายคือการสร้างคิวบิตเชิงแสงและการตรวจวัดคุณสมบัติด้วยการ
เพิ่มประสิทธิภาพของระบบในการทดลองแต่ละครั้งผลลัพธ์ที่ได้จึงถูกสร้างขึ้นด้วยความแม่นยำใกล้เคียง
ตามสถานะของเบลล์ในเชิงทฤษฎี นอกจากนี้เรายังทดลองกับโครงสร้างเชิงแสงของลูปคู่โฟตอนซึ่งยังคง
พบปัญหาบางอย่างเกี่ยวกับสัญญาณรบกวนและสัญญาณต่ำในผลลัพธ์  อย่างไรก็ตามโครงสร้างดังกล่าว
ยังคงมีศักยภาพในการปรับปรุงและนำไปใช้ในการทดลองในอนาคต คิวบิตที่พัวพันกันและโฟตอนลูปท่ี
สร้างขึ้นในงานวิจัยนี้สามารถใช้เป็นรากฐานสำหรับอัลกอริทึมควอนตัมออปติกต่างๆโดยเฉพาะอย่างยิ่ง
โครงสร้างโฟตอนลูปซึ่งสามารถใช้สำหรับการวนซ้ำของตัวดำเนินการซึ่งใช้เป็นวิธีมาตรฐานสำหรับการ
สร้างมัลติเกทคิวบิต อย่างไรก็ตาม วิธีการมีข้อจำกัดบางประการท่ีสามารถสร้างตัวดำเนินการแบบรวมได้
เท่านั้น ในส่วนที่สองของโครงการนี้ เราจึงได้สำรวจรูปแบบทางเลือกสำหรับการสร้างควอนตัมออปติก
หลายคิวบิตเกท โครงร่างที่มีจุดประสงค์นี้ใช้เทคนิคการขยายฮิลเบิร์ตสเปซ ทำให้สามารถโปรแกรม
องค์ประกอบในเมทริกซ์แต่ละตัวของตัวดำเนินการได้อย่างอิสระ ทำให้สามารถสร้างตัวดำเนินการ
ควอนตัมประเภทต่างๆมากมายในการทดลองด้วยควอนตัมทางแสง ในทางทฤษฎีโครงร่างขั้นสูงสามารถ
บรรลุควอนตัมเกทแบบออปติคอลบนคิวบิตเชิงแสงnตัวที่กำหนดค่าใหม่ได้โดยการจัดเรียงองค์ประกอบ
เชิงเส้นทางแสง 
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CHAPTER 1 

Introduction 

The linear transformation of inputs into outputs is the heart of information processing 

in computer science. In order to realize universal information processing, highly versatile logic-

gate devices are required to perform linear mapping between universal sets of inputs and 

outputs. Quantum computers work under the laws of quantum mechanics, using gate operations 

and information represented by quantum bits or qubits. They only need accessible single- and 

two-qubit gate operations to realize any unitary quantum gate [12]. During recent decades, 

various quantum approaches have experimentally proved the successful operation of single- 

and two-qubit gates [12, 21, 23, 26, 28, 34]. Beyond single- and two-qubit gates, verification 

tests in recent years produced decent outcomes from quantum processors housing 

programmable features [8, 16]. These achievements marked a critical advance in the field as 

they paved the way for future practical machines. 

The use of photonic qubits is one of the most promising approaches to quantum 

information processing. In general, photonic qubits enable free-of-noise and well established 

single-qubit operations. The only drawback that prevents photons from performing efficient 

and scalable processing is their negligible photon–photon interaction. However, the problem 

can be overcome by the introduction of nonlinear optical operations [28, 31]. This approach 

was a fundamental element of an optical quantum processor circuit based on a cascade of beam 

splitters and phase shifters implanted on a single-photon chip [8, 32]. The circuit could 

potentially be programmed to perform any quantum unitary operation on path qubits on a fixed 

circuit. Furthermore, this design could possibly be modified to work with other degrees of 

freedom of photons, such as polarization [25]. 

In the experimental section of this research, we started by exploring the photon pair 

sources and their properties. By using the SPDC (spontaneous parametric down conversion) 

process, photon pair sources were produced by shining the laser beam into a nonlinear crystal 

[7, 9]. The daughter photons from the process were collected by optical fibers and then 

measured. In the second step, the same fibers were used to emit photon pairs perpendicular to 

each other into the 50/50 beam splitter. Using the translation stage to modify displacement 

before two beams interfere, two photons could be established to be indistinguishable for the 

detectors behind the beam splitter with the help of the Hon-Oa Mandel (HOM) dip [18, 30]. In 

the next experiment, the system was measured to prove its quantum properties by using the 

CHSH experiment setup [2, 3], which can be adapted from the HOM setup. After the quantum 

system was confirmed, the optical setup could be used as a foundation for numerous optical 

quantum systems. One of which was the experiment with state tomography, where the 

entangled polarization of the system is set and then measured [1]. Later experiments were 

photon looping setups, where one of the entangled paths entered the beam splitter with a chance 

to go into a loop, expanding the time delay before arriving at the detector. The loop system 

could be used in many advanced quantum algorithms, especially as another option for iterating 

the operator. 

In order to optimize the system and achieve maximum quantum entanglement from the 

system, many optical elements were varied and switched throughout each step of the 

experiments. Lenses, filters, laser sources, and detectors were the main components that 

influenced the amount of photon pairs output. We could increase the efficiency and number of 



2 
 

 

photon pairs output by adjusting their properties and position in the experimental setup, which 

is a crucial factor in any optical quantum experiment. 

Additionally, we did an experiment with photon loop structure. By guiding one of 

entangled paths into a beam splitter with a 50-50 chance of looping back to the beam splitter or 

being detected by the photon detector, the resulting delay histogram shows multiple peaks of 

looped signal. The system can be implemented with various kinds of algorithms. One of which 

is the iteration of an operator, where instead of having multiple copies of the same operator to 

do the iteration, we could use only one operator and loop the qubits into it multiple times. 

This research experiment heavily relies on coincident photon counters. They can count 

the number of photons that enter two detectors in a fixed time interval. However, the existing 

program that comes along with the counter contains some restrictions and lacks a few 

applications. Therefore, we coded new programs to be used for the general purpose of the 

experiment, which involves measuring output from these counters. Using the exported data of 

the time at which the photon incident on the detector and the detector number that triggered, 

the program can calculate and plot the following values: histogram of the number of photons 

incident in each different time between two ports, number of coincident photons in a chosen 

period, and coincident count variation by time (Appendix B).It can also be expanded into 

specific calculations, such as density matrices (Appendix C) or CHSH. 

One of the important components in quantum photonic circuits is the multi-qubit gate, 

which can be constructed from the foundation of an entangled qubit like the one created in this 

experiment. However, expecting higher efficiency in photon pair generation and photon 

detection in future technology and experimentation, we proposed an alternative method for 

constructing the multi-qubit gates where the scheme results in a low probability of success, but 

has multiple advantages over the standard one. 

The standard method [8,33] for constructing an N-qubit unitary gate is based on the 

Reck et al. scheme, where an arbitrary unitary matrix U(N) is factorized into a product of block 

matrices, where successive U (2) transformations can be performed on two dimensional 

subspaces of the full N-dimensional Hilbert space. This architecture can adequately fulfill the 

functions of a programmable quantum gate, where the required circuit will need to be 

decomposed by the optical elements into the functions of reflectivity and phase shift to provide 

the programming input, and has been realized experimentally with good fidelity [8]. Moreover, 

the algorithm is recursive, similar to the Gaussian elimination process, and can increase the 

complexity of realizing an arbitrary quantum gate. More importantly, such a standard scheme 

is limited to unitary operation where the operator is known, hence can be decomposed into 

single- and two-qubit gates. However, in the emergence of quantum technology, a fundamental 

tool in quantum metrology may require a phase estimation where the estimation algorithm U is 

an unknown black box, that may not be decomposed at all [5, 38], particularly when the 

quantum phase estimation requires a conditional gate of the operator U. Therefore, the current 

standard method of realizing quantum gates based on the decomposition into elementary gates 

may not apply for these applications.  

In the theoretical section, we propose a more versatile class of polarization-encoded 

qubit processors. We employ the Hilbert-space expansion technique in linear optical circuits, 

in which the linear combination of operations on the polarization states is available. This 

capability was already reported in previous experiments [32, 38] for a small number of path-

encoding qubits. In this work, we adapt such a technique for polarization qubits and simplify 
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the circuit by designing some operators to make it suitable for possibly the lowest complexity 

realization of programmable multi-qubit gates. The concept starts with the superposition state 

of photon pairs from separate nonlinear elements such as BBO to produce two pairs of photons 

in four spatial paths. When recombining two photons from separate nonlinearities, assuming 

that they have undergone different linear transformations, the signal at the detector will be a 

combination of those transformations. By post-selecting appropriate outputs where only one 

photon leaves each path, all entries of the operator can be obtained. 

This schematic design is different from the standard decomposition of an operation, 

which mostly relies on the products of operators. Using this alternative technique, instead of 

combining several single-qubit and two-qubit gates to produce a universal quantum gate, we 

directly program every entry of the matrix representing the operation. The manipulation of a 

quantum gate is also possible for all kinds of quantum operations, possibly represented by 

complex matrices, including non-unitary ones. The detail of the technique is reviewed in 

Chapter 6.1, where we also describe an improved procedure for constructing an optical 

programmable two-qubit gate. In Chapter 6.2, we explain how to realize optical programmable 

multi-qubit gates by this alternative approach, and in Chapter 6.3, we discuss their advantages 

and technical requirements for practical implementation. 
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CHAPTER 2 

Literature review 

Spontaneous parametric down conversion  

 According to the study by David C. Burnham and Donald L. Weinberg [7], in the 

experiment, the optical photon pairs were created by emitting a pumped laser beam into an 

ammonium dihydrogen phosphate crystal. The coincidence between the split photons could be 

observed with photon multipliers when the phase matching conditions were satisfied. The 

experiment was set up to achieve the highest coincident count rate possible by using optical 

alignment, wavelength filtering, and time delay between two channels. The theory regarding 

type-I spontaneous parametric down conversion is described in detail by L. Caspani, E. 

Brambilla, and A. Gatti [9]. The literature showed the cone-shape of coincidence photon pairs, 

where two points on the contour can be selected to optimize the coincident count rate. Their 

work also shows the photon pairs' cross-correlation with different crystal structures. 

 There are countless factors that account for the number of photon pairs generated by 

SPDC processes. One of them is how the pump beam is focused before splitting into daughter 

photons. In the experiment by H. Di Lorenzo Pires, F. M. G. J. Coppens, and M. P. van Exter 

[13], the pump laser beam was strongly focused into a nonlinear crystal, and then the near and 

far field intensity profiles were studied. The results demonstrate the variance properties of 

SPDC emission under a strong focusing laser pump, as well as potential applications. 

 The spectral properties of entangled photon pairs are studied in the work by So-Young 

Baek and Yoon-Ho Kim [4]. The results show that the two-photon pair spectrum can be 

particularly broad, and that experimenters should exercise caution when experimenting with 

bandwidth properties such as Hong-Ou-Mandel interference. 

 Christophe Couteau's article [11] compares the classical and quantum explanations of 

the SPDC process and shows some practical setups for producing efficient photon pairs.The 

work also presents some applications of SPDC photon pairs and their experimental setups, such 

as entangled photons and quantum computers.  

Hong-Ou-Mandel interference 

 The next phase of creating entangled photons is making the photon pairs generated by 

SPDC interfere on a beam splitter. In the experiment by C. K. Hong, Z. Y. Ou, and L. Mandel 

[18], by adjusting the distance of one incoming photon before the interference, its time interval 

could be corrected, and the indistinguishable photon pairs were formed. The paper displays and 

theoretically explains the relationship between the coincident count rate and the adjusted 

displacement.  

Similar work was done by T.B. Pittman, B.C. Jacobs, and J.D. Franson [30], where 

photon pairs produced by SPDC were interfered with in an optical single-mode fiber and the 

effect of wavelength filters used in front of the detectors was studied. The work shows that to 

increase the visibility of the interference, the appropriate bandpass filters should be carefully 

selected in the experiment. The effect of filters and other variables in Hong-Ou-Mandel 

interference is thoroughly explained in the article by Agata M. Bra´nczyk [15], where several 

types of filters were used in a mathematical model to explore the possible outcomes of Hong-

Ou-Mandel dip.  
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CHSH inequality 

 One way to prove that the quantum system is not just a usual classical state is by 

measuring some states to exceed the CHSH inequality. Literature by Mnacho Echenim and 

Mehdi Mhalla9 detailly explain how to classify the quantum system by using few measurement 

results, then calculate the output value S in the region which cannot be obtained in classical 

mechanic. In the experimental work by Alain Aspect, Philippe Grangier, and Gérard Roger 

[2,3], the systems were measured in multiple projected measurements. By choosing the valid 

sets of the results, the computed values successfully violated the inequality and proved the 

experimental setup to be quantum system. 

 Sets of measurements to achieve this result can be selected before the experiment by 

analyzing the state of the system. Work by K. Muhammed Shafi, R. S. Gayatri, A. Padhye, and 

C. M. Chandrashekar [35] shows a mathematical method to compute the S value from different 

quantum state inputs and varied projective measurements. Their work also demonstrates the 

effect of mixed states on result measurements, which can cause the S value to differ 

significantly from the pure state case. 

Polarization density matrix 

 After the quantum system is set in the desired state, it needs to be measured to prove 

that the state is correct and valid for use in future applications. J. B. Altepeter, D. F. V. James, 

and P. G. Kwiat's article [1] describes the procedures for obtaining the density matrix, which 

represents the quantum state of the system, by measuring multiple qubits in projective state, as 

well as numerical processes for computing the physical density matrix, which is a better 

representative of the system state because it satisfies all the properties of being real and 

physically possible.Work by Daniel F. V. James, Paul G. Kwiat, William J. Munro, and Andrew 

G. White [21] shows some important parameter calculations that are useful quantities to 

comprehend the state and valuable for future usages. 

  In the experimental work by S. Barz, G. Cronenberg, A.Zeilinger, and P. Walther [6], 

the quantum state was measured, and high fidelity between the measured state and the desired 

state could be achieved. showing that the experiment has the potential to be a foundation setup 

for more complicated optical quantum systems. 

Optical multi-qubit gate 

 Qubit(s) gates in quantum computers play a similar role as the logic gates in classical 

computers; they manipulate the state of qubits and are arranged together to perform algorithms. 

Work by A. Barenco et al. [5] shows multiple quantum gates, which are fundamental in 

quantum computation, and shows that the universal gate, which performs on many qubits, can 

be expressed as a composition of these one- and two-qubit gates. In an optical quantum system, 

the properties of a HWP and a QWP can be used as a single qubit gate operator, as represented 

by N. Peters, J. Altepeter, E. Jeffrey, D.Branning, and P. Kwiat [29]. They showed that the 

polarization state of the system can be manipulated in a variety of ways, such as unitary, 

decohering, and polarizing operations. And in the article by E. Knill, R. Laflamme, and G.J. 

Milburn [22], two-qubit gates can be realized using nonlinear optics and post-selection.   

 The experiment by X-Q. Zhou et al. [37] shows an example of the linear combination 

of single qubit operators to perform a two-qubit gate called the control-U gate. They 

demonstrate various types of CU gates practically in an optical quantum system using the same 
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photon-pair and post-selection principle, with high fidelity between experimental and expected 

results. The work also shows the possibility of universal multi-qubit gates with a greater number 

of entangled qubits by adapting the same circuit design. 
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CHAPTER 3 

Theory in the experiment 

3.1 Spontaneous parametric down conversion  

The spontaneous parametric down conversion (SPDC) process is one of several ways 

to create the photon pair sources for optical quantum algorithms. It is the mechanism where one 

photon can be split into two with half the frequency (thus, half the energy) after interacting 

within a nonlinear crystal. The phenomenon is described by the dielectric polarization vector P, 

which can be written as a power series of the electric field vector E as in Eq. 3.1.1. 

P = ε0 (χ(1)E + χ(2)E2 + χ(3)E3 +…)     3.1.1 

where χ(n) is the n-th order electric susceptibility. For an ordinary linear optical material, χ(1) 

term is large and the linear behaviors take place. But when the electric field and χ(2) is sizable, 

the wave mixing effect such as SPDC or SHG (second-harmonic generation) can occur. By 

using special material designed with χ(2)  term, two photons can be produced from one pump 

photon with conserved momentum and energy. There are two categories of SPDC separated by 

the phase matching condition. For Type I SPDC, the two daughter photons have polarization 

orthogonal to the source. Whereas for Type II, they are orthogonal to each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Birefringence crystal are designed with a different refractive index depending on the 

polarization of a pump laser beam.  The crystal has the principle plane which the wave vector 

K and the optic axis Z are in plane with as shown in Fig. 3.1.1. Eq. 3.1.2 represents the refractive 

indices for ordinary direction (no), where the pump polarization is vertical to the principle plane, 

and Eq. 3.1.3 represents the refractive indices for extraordinary direction (ne), where the pump 

polarization is in the principle plane and the beam propagation direction is perpendicular to the 

optical axis.  

Fig. 3.1.1 The diagram depicts the optical axis defined in a nonlinear crystal 

θ 

Ordinary direction 

Optical axis 

K 

Extraordinary 

direction 
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𝑛0
2 = A+

𝐵

λ2−𝐶
− Dλ2      3.1.2 

𝑛e
2 = 𝐴′ +

𝐵′

λ2−𝐶′
− 𝐷′λ

2
     3.1.3 

 

where the capital letters in the equation are constant values depending on the material, and λ is 

the pump wavelength. The refractive index in the ordinary direction is independent of the 

direction of propagation, whereas the refractive index in the principle plane ne (θ) is depends 

on the angle (θ) between the direction of propagation and the optic axis given by Eq. 3.1.4. 

 

𝑛𝑒(𝜃) =  𝑛o√
1+tan2 𝜃

1+𝑛o
2 𝑛𝑒

2⁄ tan2 𝜃
     3.1.4 

 

 For type I phase matching, a photon in ordinary polarization with wave vector K0 and 

frequency ω0 is split into two photons with extraordinary polarization, wave vectors K1, K2 and 

frequencies ω1, ω2. Using these definitions, the conservation of energy is shown in Eq. 3.1.5 

and the conservation of momentum are shown in Eq. 3.1.6 and Eq. 3.1.7. 

ω1 + ω2 = ω0       3.1.5 

K0 = K1 cos θ1 + K2 cos θ2     3.1.6 

0 = K1 sin θ1 – K2 sin θ2     3.1.7 

 

with θ1 and θ2 are the half opening angles as shown in Fig. 3.1.2 
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For phase matching conditions where ω1 = ω2, the phase matching angle θ can be 

calculated by Eq. 3.1.8 

  

tan2 𝜃 =
𝐾ⅆ
2 [𝑛0

2(𝜔0)𝐾0
2]⁄ −1

1−𝐾𝑑
2[𝑛𝑒

2(𝜔0)𝐾0
2]

     3.1.8 

 

 

where Kd is the daughter photons’s wave number. With this equation, the nonlinear crystal can 

be cut at the angle that is applicable to generate photon pairs at the designated opening angle. 

And by detecting daughter photons at both ends, the coincidence count from the photon pairs 

can be detected and modified. 

  

  

Fig 3.1.2 Defined angles between wave vectors K0, K1 and K2 
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3.2 Hong-Ou-Mandel interference 

  

 

 

 

 

 

 

 

 

 

 

When photons enter a 50:50 beam-splitter as shown in Fig. 3.1.2, by using �̂�𝐴
†
 and �̂�𝐵

†
 

as the creation operators to represent the input ports and �̂�𝐴′
†

, �̂�𝐵′
†

 for the output ports, the output 

operators can be written in terms of the input ports as shown in Eqs. 3.2.1 and 3.2.2 

�̂�𝐵′
†  =

1

√2
(𝑖�̂�𝐴

† + �̂�𝐵
†  )      3.2.1 

 �̂�𝐴′
† =

1

√2
(𝑖�̂�𝐵

†  + �̂�𝐴
†)      3.2.2 

 Here the i  factors are the phase shifts resulting from the conservation of energy. If two 

input photons are indistigusable, which means they have the same polarization and all other 

properties are eqaul, such as  spectrum, arrival time, and transverse spatial mode. The output 

state, written in the number of photon states in the ports, can be calculated as in Eq. 3.2.3 

|1⟩𝐴|1⟩𝐵 = �̂�𝐴
†�̂�𝐵
† |0⟩𝐴|0⟩𝐵

𝐵𝑆
→  

1

2
(𝑖�̂�𝐴′

† + �̂�𝐵′
† )(𝑖�̂�𝐵′

† + �̂�𝐴′
† )|0⟩𝐴′|0⟩𝐵′ = 

i

2
 [ |2⟩𝐴′|0⟩𝐵′ +

|0⟩𝐴′|2⟩𝐵′]  3.2.3 

 The result state shows that there is no probability where photons are detected as "both 

reflected" or "both transmitted" because their amplitudes cancel out in the process.   

 In the Hong-Ou-Mandel experimental setup, the photons in the input ports are produced 

from a down conversion source, and the path lengths are varied with respect to each other to 

control the arrival time delay (𝛿𝜏) between the photons on the beam splitter and therefore adjust 

their level of distinguishability. Then the coincident count rate is measured by the rate at which 

photons are detected in both output ports in a fixed window time. This means the number of 

coincidences is higher when the two photons are more distinguishable and equal to zero (dip) 

when they are completely indistinguishable. The number of coincidences (NC) is given by 

equation Eq. 3.2.4 when the photons have Gaussian spectral amplitude with bandwidth Δ𝜔.   

Fig. 3.2.1 simple HOM experimental setup where two photons interfere in the beam splitter and 

are then measured by the detectors 

Laser coupler 

Laser coupler 

Laser coupler 

Beam splitter 
Laser coupler 

A 

B 
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𝑁𝐶 = 𝐶(𝑇
2 + 𝑅2) [1 −

2𝑅𝑇

𝑅2+𝑇2
ⅇ−(Δ𝜔𝛿𝜏)

2
]    3.2.4 

where T and R mean the transmitted and refracted coefficients of the beam splitter, respectively. 

And C is a constant that is related to the coincident counts when two photons are totally 

distinguishable. From the graph plotted by Eq. 3.2.4 as a function of number of coincidences 

varied by time delay, the full width at half maximum (FWHM) is the coherence length of the 

photon. The visibility (V), which  in this case is equal to the photon purity, can be calculated 

from the maximum and minimum of the coincident counts (Nmax and Nmin) given by Eq. 3.2.5. 

𝑉 =
𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥+ 𝑁𝑚𝑖𝑛
     3.2.5 
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3.3 CHSH inequality  

 The statement that in quantum systems, the outcome is only determined after the 

measurement and has not pre-existed in some form of hidden value was one of the most 

controversial topics in quantum mechanics. Because when the entangled state is measured on 

one side, the other end will receive the information immediately and collapse into a single state. 

Here, the information about the state seems to be traveling faster than light speed, breaking the 

classical rule. According to one theory, there are some hidden variables in which the states are 

determined prior to measurement. which was later proven false by Bell's inequality, 

demonstrating a difference between quantum mechanics and the hidden variable theory. The 

CHSH (Clause, Horne, Shimony, and Holt) inequality is similar to the Bell’s and can also be 

used to demonstrate the classical mechanics violation. The simple experimental setup is shown 

in Fig. 3.3.1. The polarization state of the input photon pairs can be assigned by HWPs on A 

and B paths. And the measurement state can be set using HWPs and PBSs at the output ends. 

 

 

 

 

 

 

 

 

 

 

 

 

 Then, a series of coincidence counts are measured as a function of HWP angles on A’ 

(a) and B’ (b), and the E (a, b) is calculated using Eq. 3.3.1 

𝐸(a, b)   =  
𝑁++− 𝑁+−− 𝑁−++𝑁−−

𝑁+++ 𝑁+−+ 𝑁−++𝑁−−
     3.3.1 

 N represents the coincident counts where + and – sign designate the normal 

measurement and orthogonal measurement respectively. For instance, 𝑁+−(0,0)  is the 

measurement with HWP angle of 0 degree on A’ and 45 degrees on B’. The S value is then 

calculated from four sets of the E value as shown in Eq. 3.3.2 

𝑆 =  𝐸(a, b)  −  𝐸(a, b′)   + 𝐸(a′, b)   + 𝐸(a′, b′)      3.3.2 

Fig 3.3.1 CHSH inequality measurement setup where the state of the input qubit is set and then 

measured in multiple projective states using HWPs and PBSs 
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where a’ and b’ are another set of angles in A’ and B’ paths, respectively. In classical mechanics, 

the maximum S value is 2, which is different from quantum mechanics, where the value can 

reach 2√2 and exceed the classical boundary.   

 If the input polarization state is |𝐻⟩𝐴′|𝑉⟩𝐵′  +  |𝑉⟩𝐴′|𝐻⟩𝐵′ by using a = -22.5 degree 

and a’ = 0 degree, the S value can be calculated as a function of b and b’ angles, as shown in 

Fig. 3.3.2 

 

 

 

 

 

 

 

 

 

 

 

 

 From the contour graph, an appropriate set of angles can be selected to demonstrate 

the inequality in the experiment setup. 

  

  

 

 

 

 

 

 

 

 

 

Fig. 3.3.2 S value computed by using input state |𝐻⟩𝐴′|𝑉⟩𝐵′  +  |𝑉⟩𝐴′|𝐻⟩𝐵′, a = −22.5° and 

a’ = 0° 
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3.4 Polarization density matrix 

 

ธhe procedures for obtaining the density matrix, which represents the quantum state 

of the system, are described in the work by J. B. Altepeter, D. F. V. James, and P. G. Kwiat's 

[1]. 

 

Single qubit tomography 

 The density matrix of a single qubit (�̂�) can be represented by Eq. 3.4.1 where A, B, 

and C are real and non-negative constants, A+B = 1 and 𝐶 ≤  √𝐴𝐵 . The matrix can also be 

written in terms of the sum of pure states with probabilities Pi for each orthogonal state |𝜑𝑖⟩. 

�̂�  =  ∑ 𝑃𝑖𝑖  |𝜑𝑖⟩⟨𝜑𝑖|  =  [
𝐴 𝐶𝑒𝑖∅

𝐶𝑒−𝑖∅ 𝐵
]     3.4.1 

 

 The density matrix has four important properties that are required to be physically and 

theoretically correct. First, it has the probability of conservation, which means Tr (�̂�)  =  1. 

Secondly, the matrix is Hermitian ( �̂�  = �̂�’). The third and last requirements come from the 

positive semi-definiteness property, which implies that all the eigenvalues are zeroes, one, or 

between and the sum is 1, which causes 0 ≤ Tr(�̂� 2) ≤ 1 . 

The definition of each polarization pure state in this thesis is defined as in equation Eq. 

3.4.2, where H, V, D, A, R, and L are horizontal, vertical, diagonal, anti-diagonal, right-hand, 

and left-hand polarizations, respectively. and their mixed state forms can be determined by 

using �̂�  =  |𝜌⟩⟨𝜌| 

|𝐻⟩  =  [1
0
] , |𝑉⟩  =  [0

1
] , |𝐷⟩  =  

1

√2
[1
1
] , |𝐴⟩  =  

1

√2
[ 1
−1

]  

|𝑅⟩  =  
1

√2
[ 1
−𝑖
] , |𝐿⟩  =  1

√2
[1
𝑖
]     3.4.2 

 

To measure the single state in the form of a density matrix, also known as single qubit 

tomography, the process can be performed using stoke parameters that are defined from the set 

of measurements shown in Eq. 3.4.3 and Eq. 3.4.4 

𝑛0 =
𝑁
2
( ⟨𝐻|�̂�|𝐻⟩ + ⟨𝑉|�̂�|𝑉⟩ ), 𝑛1 =𝑁( ⟨𝐻|�̂�|𝐻⟩ ), 

 𝑛2 =𝑁 ( ⟨𝐷|�̂�|𝐷⟩ ), 𝑛3 =𝑁 ( ⟨𝑅|�̂�|𝑅⟩ )    3.4.3 

𝑆0  =  2𝑛0, 𝑆1  =  2(𝑛1  −  𝑛0), 

𝑆2  = 2(𝑛2  − 𝑛0) , 𝑆3  =  2(𝑛3  −  𝑛0)        3.4.4 

where N is a constant implied to the amplitude of photons count. ni refer to the numbers of 

photons counted (or count rate) in each projective measurement, where n0 refers to the 

measurement when half of the intensity of light is detected regardless of the polarization. n1, 
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n2 and 𝑛3 are the measurements with horizontal, diagonal, and right circular projection. The 

density matrix can be calculated from the stoke parameters with Eq. 3.4.5. 

�̂�  =  
1
2
∑

𝑆𝑖

𝑆0

3
𝑖 = 0  �̂�𝑖      3.4.5 

 

where  �̂�𝑖 are Pauli spin operators defined by Eq. 3.4.6 

�̂�0  =  [
1 0
0 1

] , �̂�1  =  [
0 1
1 0

] , �̂�2  =  [
0 −𝑖
𝑖 0

] , �̂�3  =  [
1 0
0 −1

]    3.4.6 

, 

Two qubits density matrix and tomography 

 For a two-qubit state, the density matrix can be written as in Eq. 3.4.7. It still has the 

same four properties to follow as in a single qubit state.  

 

�̂�  =  

[
 
 
 
 

𝑨𝟏 𝐵1𝑒
𝑖∅1

𝐵1𝑒
−𝑖∅1 𝑨𝟐

𝐵2𝑒
𝑖∅2 𝐵3𝑒

𝑖∅3

𝐵4𝑒
𝑖∅4 𝐵5𝑒

𝑖∅5

𝐵2𝑒
−𝑖∅2 𝐵4𝑒

−𝑖∅4

𝐵3𝑒
−𝑖∅3 𝐵5𝑒

−𝑖∅5

𝑨𝟑 𝐵6𝑒
𝑖∅6

𝐵6𝑒
−𝑖∅6 𝑨𝟒 ]

 
 
 
 

     3.4.7 

 

 The projective states of the matrix can be measured to perform qubit tomography. 

HWPs, QWPs, and PBSs on the transmitted path are used as a projective operator, as shown in 

Eq. 3.4.8. 

U ̂𝐻𝑊𝑃(𝜃) = [
𝑐𝑜𝑠( 2𝜃) 𝑠𝑖𝑛( 2𝜃)
𝑠𝑖𝑛( 2𝜃) − 𝑐𝑜𝑠( 2𝜃)

], 

U ̂𝑄𝑊𝑃(𝜃)  =  [
𝑐𝑜𝑠2 𝜃 + 𝑖 𝑠𝑖𝑛2 𝜃 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑖 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑖 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃 + 𝑖 𝑐𝑜𝑠2 𝜃
], 

U ̂𝑃𝐵𝑆𝑡= [
1 0
0 0

]       3.4.8 

 Using the experiment setup with the HWPs, QWPs and PBSs in order before the 

detector on both ends of the measurement, return the projection state as shown in Eq. 3.4.9. 

|ψ𝑝𝑟𝑜𝑗
(2) (ℎ1, ℎ2, 𝑞1, 𝑞2)⟩  =   (U ̂𝐻𝑊𝑃(ℎ1) ∙ U ̂𝑄𝑊𝑃(𝑞1) ∙  U ̂𝑃𝐵𝑆𝑡) 

⨂(U ̂𝐻𝑊𝑃(ℎ2) ∙ U ̂𝑄𝑊𝑃(𝑞2) ∙  U ̂𝑃𝐵𝑆𝑡)    3.4.9 

where h1, h2, q1 and q2 are waveplate angles in path 1 and 2. The average coincident counts 

measured in the given state can be shown as in Eq. 3.4.10 

𝑛𝜈  =  𝑁 ⟨ψ𝜈|�̂�|ψ𝜈⟩       3.4.10 

 Full sets of tomography states require at least 16 projective states to be measured. By 

using the simplest state projection for 𝑛1to n16 as HH, HV, VV, VH, RH, RV, DV, DH, DR, 
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DD, RD, HD, VD, VL, HL, and RL, a density matrix of 2 polarization qubits can be constructed 

using Eq. 3.4.11. 

�̂�  =   (∑ �̂�𝜈𝑛𝜈 
16
𝜈 = 1  ) (∑ 𝑛𝜈 

4
𝜈 = 1 )⁄    3.4.11 

 Here �̂�𝜈  matrices (see Appendix A) are created to allow the density matrix to be 

constructed linearly. However, density matrix created by equation (2.26) still lag the properties 

of the positive semi-definiteness. In order to construct the density matrix where all the 

requirements are met, the physical density matrix �̂�𝑃 is defined by the formula in Eqs. 3.4.12 

and 3.4.13. 

T̂(t)  =  [

t1 0
t5 + it6 t2

0 0
0 0

t11 + it12 t7 + it8
t15 + it16 t13 + it14

t3 0
t9 + it10 t4

]    3.4.12 

�̂�𝑃(𝑡) =  �̂�
†(𝒕) �̂�(𝒕) 𝑇𝑟(�̂�†(𝒕) �̂�(𝒕)) ⁄      3.4.13 

where ti are parameters in real numbers. The physical density matrix is constructed as a function 

of t in such a way that �̂�𝑃 has all the constraint properties. Then the parameters are adjusted 

numerically by the program to ensure the maximum likelihood between the physical and 

measured density matrices. Which leads to the challenge of finding the minimum value of the 

function in Eq. 3.4.14. 

𝑳(t1, t2, t3, . . . , t16)  =  ∑
(𝑁 ⟨ψ𝜈|�̂�𝑃(𝑡)|ψ𝜈⟩ − 𝑛𝜈 )

2

2𝑁 ⟨ψ𝜈|�̂�𝑃(𝑡)|ψ𝜈⟩ 
 16

𝜈 = 1     3.4.14 

 

 Quantities derived from density matrix 

 The von Neumann entropy (S) of the quantum state is defined by Eq. 3.4.15, the value 

of entropy is minimum at zero if �̂� is a pure state and maximizes to ln(NH) for the maximally 

mixed state, where NH is the dimension of the Hilbert space. In the equation, pa refers to an 

eigenvalue of �̂�. 

S =  −Tr {�̂�log2 (�̂�)}  =  −∑ 𝑝𝑎𝑙𝑜𝑔2(𝑝𝑎) 
4
𝑎 = 1      3.4.15 

 The linear entropy (P) is a quantity representing the degree of mixture of quantum states 

in a normalized form (maximum at 1). For two qubits state, the linear entropy is defined as in 

Eq. 3.4.16. 

P =  
4

3
(1 − Tr {�̂�2})  =  

4

3
(1 − ∑ 𝑝𝑎

2 4
𝑎 = 1 )     3.4.16 

 The quantities concurrence (C), entanglement of formation (E) and tangle (T) 

correspond to the coherence properties of a mixed state and can be calculated by Eq. 3.4.17. 

𝐶 =  𝑀𝑎𝑥{0,√𝑟1  − √𝑟2 −√𝑟3 −√𝑟4} 

𝑇 =  𝐶2 

𝐸 =  ℎ (
1+√1 − 𝐶2

2
)     3.4.17 
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where ra are the eigenvalues of �̂�  =  �̂�Σ̂�̂�𝑇Σ̂ in decreasing order ( 𝑟1 ≥ 𝑟2 ≥ 𝑟3 ≥ 𝑟4). Σ̂ here is 

the spin flip matrix defined by Eq. 3.4.18 and h(x) is a function defined by Eq. 3.4.19. 

Σ̂  =  [

0 0
0 0

0 −1
1 0

0 1
−1 0

0 0
0 0

]     3.4.18 

ℎ(𝑥)  =  −𝑥𝑙𝑜𝑔2𝑥 − (1 − 𝑥)𝑙𝑜𝑔2(1 − 𝑥)    3.4.19 

 

3.5 Accidental count rate  

 When measuring coincident counts on two detectors receiving two photon paths, there 

are some probabilities where the count gets triggered by non-pair photons depending on the 

rate of the photon counts detected on a single port and the types of laser source used. For 

continuous laser, the accidental coincident count rate (Racc) is shown in Eq. 3.5.1. RA and RB 

are single count rates on ports A and B, and Tw is the window time of a coincident count. 

Racc = RA × RB × Tw      3.5.1 

 For pulse lasers, the computation is split into two cases: when the window time is larger 

or equal to the laser pulse period, the accidental coincident count rate is defined by Eq. 3.5.2, 

and for the opposite, it is shown in Eq. 3.5.3. 

Racc = RA × RB/ frep + Rd
2 × Tw     3.5.2 

Racc = (RA × RB/ frep) * (Tw/Tpulse) + Rd
2 × Tw    3.5.3 

where Tpulse = laser pulse width, frep = laser pulse frequency and Rd = dark count rate.  
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CHAPTER 4 

Methodology 

 
4.1 Photon pairs from type-I BBO using a CW laser pump 

Fig. 4.1.1 shows the experimental setup for generating photon pairs using type-I BBO with 

a CW laser pump (see Appendix D). Two mirrors are used to help with laser beam alignment 

from a 404-nm CW laser source. The laser couplers are mounted on 3-dimensional translation 

stages together with single mode fiber heads to locate the 808-nm wavelength beams produced 

by the SPDC process from type-I BBO crystal. The other ends of the fibers are plugged into 

coincidence photon counters, which can detect coincident photons that enter the receiver with 

time resolution in picosecond order. Time and port where the photons trigger the counters are 

recorded in a file, which is later processed by a program into a coincidence count histogram. 

(See Appendix B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1.1 Experimental setup for photon pair creation 

CW laser 
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photons counter 

mirror 

mirror 
Beam dump 
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4.2 Hong-Oa Mandel dip 

Fig. 4.2.1 shows the setup for the Hong-Ou-Mandel experiment. The polarization maintain 

(PM) fibers are used to guide two photon pairs from part 1 into two laser couplers, which lead 

to two outgoing beams from another set of couplers instead of entering the photon counter. The 

two beam paths go through HWPs and QWPs before crossing each other in the 50-50 beam 

splitter. The waveplates are set to adjust the beams' polarization to horizontal in both paths. 

Whereas in the second part, all four couplers are mounted to the translation stages and arranged 

so that two outgoing beams cross perpendicularly to each other and to the beam splitter surface, 

as well as aligning with two receiver ends. The distance between one output coupler and the 

beam splitter is set to be varied in micrometer order by the translation stage along the 

displacement axis. The number of coincident counts per second where two photons enter both 

detectors by delay within three nanoseconds is recorded along with the displacement of the 

translation stage and then plotted into the Hong-Ou-Mandel dip fitting with Eq. 3.2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2.1 Setup for the HOM dip experiment 
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4.3 CHSH inequality  

CHSH inequality and Bell’s state experiment can be operated using the same optical 

compositions. Fig. 4.3.1 shows the experiment setup for both studies. The distance between 

two laser couplers with an outgoing beam to the beam splitter is set to be equal in the second 

experiment. HWPs and QWPs are set after the beam emitted from the couplers to rotate one of 

the photon beams to vertical polarization, while another path is still horizontal polarization. By 

adding HWPs, QWPs, and PBSs in front of the laser couplers that sent the photons to the photon 

counters, two outgoing beams from the beam splitter can be measured on any polarization basis. 

For each experiment, there are sixteen waveplate angle sets of measurements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CHSH experiment needs specific sets of measurements to achieve the inequality 

boundary as shown in Fig. 3.3.2. The angles of the HWPs in paths A’ and B’ are as shown in 

Table 4.3.1. Note that the angles are measured counterclockwise from the x-axis, looking in the 

same direction as beam propagation. Here both QWPs are set to 0 degrees from the x-axis. 

 

 

 

 

Fig. 4.3.1 Experimental setup for CHSH and state tomography 
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Measurement number HWP A’ (degrees) HWP B’ (degrees) 

1 -22.5 -12 

2  -22.5 33 

3 22.5 -12 

4 22.5 33 

5 -22.5 12.5 

6  -22.5 57.5 

7 22.5 12.5 

8  22.5 57.5 

9 0 -12 

10 0  33 

11 45 -12 

12  45 33 

13 0 12.5 

14  0 57.5 

15 45 12.5 

16  45 57.5 

 

 

The number of coincident counts per second that both counters triggered within three 

nanoseconds is recorded along with the experiment setup for each measurement in the 

experiments. Then the S value can be calculated for the CHSH experiment using Eq. 3.3.2. 

 

4.4 Bell’s state experiment 

 In Bell’s state experiment, waveplate angles are selected to calculate the polarization 

density matrix. In Eq. 3.4.10, each waveplate set is used to measure the simple polarization 

basis for each path. Given that H is horizontal, V is vertical, D is diagonal, A is anti-diagonal, 

R is right-hand, and L is left-hand polarization. The sixteen basis measurements are HH, HV, 

VV, VH, RH, RV, DV, DH, DR, DD, RD, HD, VD, VL, HL, and RL, where the first and 

second letters correspond to A' and B' path measurements, respectively.  

 For each measurement in the experiments, the coincident counts rate is recorded in the 

same manner as in the CHSH experiment, and then the polarization density matrix and its 

valuable quantities can be computed using Eqs. 3.4.13–3.4.19 with the help of MATLAB 

programming in numerical computation (Appendix C). 

 

 

 

 

Table. 4.3.1 HWP angles used in 16 measurements to calculate the S value in the 

CHSH experiment 
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4.5 Photon pairs from type-I BBO using an 80 MHz pulse laser pump 

The experimental setup for photon pairs generated using a pulse laser pump (Appendix 

D) is similar to the CW pump setup as shown in Fig. 4.5.1 Due to the difference between beam 

profiles, the laser beam from the pulse laser source must pass through a focusing and 

collimating lens in order to be more efficient in generating photon pairs. The pulse laser 

frequency is set to its maximum at 80 MHz to achieve the highest photon pair count. The port 

and time bin where any photons trigger in the counter are then computed to generate the delay 

histogram.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.5.1 Setup for creating photon pairs with a pulse laser 
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4.6 Loop using 50/50 Beam splitter 

Fig. 4.6.1 shows the experimental setup for photon loop using a beam splitter. One path 

of the photon pairs from experiment 4 is directly entering the photon counter. Whereas another 

path goes through a 50/50 beam splitter, which results in a 50% chance to enter the counter and 

a 50% chance to enter the 5-meter polarization maintenance fiber, where delay time is added 

when it triggers into the second port in the counter. The outgoing beam from the PM fiber also 

enters the beam splitter and therefore has a 50/50 chance of entering the port or adding more 

delay. Here, HWPs, QWPs, and PBSs are used to maintain the beam polarization and reduce 

noise from the laser source, which has perpendicular polarization compared to photon pairs. 

The delay histogram calculated from the recorded values of the photon counter is then analyzed 

to determine how many photon loops can be measured by the experimental setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

Fig. 4.6.1 Experiment setup for creating a photon loop using a 50/50 beam splitter 
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4.7 Improve loop setup with lens and reduce laser pulse frequency 

The collimated lens is added behind the BBO crystal in experiment five, as shown in 

Fig. 4.7.1, to reduce the loss over long distances for the photon beam in the B path. And the 

laser pulse frequency is reduced to 2.5 MHz to improve visibility in the delay histogram. Then 

the photon counter can record the result of the counter port and time bin trigger, which can be 

calculated to delay histogram and analyze the photon loop visibility afterward. 
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Fig 4.7.1 Experiment setup for creating a photon loop using a 50/50 beam splitter 
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a. b. 

CHAPTER 5 

Result and discussion 

 
5.1 Photon pairs from type-I BBO using a CW laser pump 

 
 

 

 

 

 From Fig. 5.1.1, the result shows the delay histogram between two ports with a FWHM 

of the histogram peak around 3 nanoseconds. There are two noise peaks that appeared in the 

histogram that might occur if one port of the counter gets triggered by a laser source instead of 

the photon pairs. The average photon counts per second from ports 1 and 2 are 4,140 and 4,194, 

respectively, according to the single count graph. Using a window time of 6 nanoseconds, a 

coincident count rate of 361.2 counts per second can be calculated from the delay histogram. 

 Eq. 3.5.1 can be used to calculate the accidental coincident count. Using the window 

time of 6 nanoseconds, its value is 0.1042 count per second, which, when compared to the 

actual coincident count, allows us to calculate a signal-to-noise ratio of 3,468. The results show 

that the SPDC process successfully generates photon pairs with a delay in nanosecond order 

between pairs when using this experimental setup, and the number of pairs generated is 

noticeably higher than the number of non-pair photons.  

Additionally, the accidental counts occurred consistently and appear as the baseline in 

the histogram plot at around 2x10-3 counts per time bin per second. Which is a normal 

phenomenon considering that with continuous laser the photons are generated continuously and 

can trigger the counter at any time.  

  

Fig. 5.1.1 (a). single count rate on ports A’ and B’ as a function of time. (b). delay histogram 

showing the number of counts triggered in port B’ after a varied time delay from when port A’ 

gets triggered. 
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5.2 Hong-Oa Mandel dip 

 

 

 Fig. 5.2.1 shows the result from the Hon-Ou-Mandel experiment. The dots represent a 

coincident count per second at various translation stage displacements on one side. The red line 

represents the fitted graph by equation Eq. 3.2.4. Here the displacement values are shifted to 

zero at the lowest fitted value of coincident count to simplify the data. The fitted constant values 

are shown in Table. 5.2.1, and the visibility can be calculated from Eq. 3.2.5 to be about 0.89. 

constant value 

C 1325 cps 

T 0.51 

R 0.49 

w 0.060 μm 

d0 0.55 μm 

 

 

  

 From the measurement, there are peaks on both sides of the dip, which are possibly the 

result of the rectangular spectrum bandpass filter used in the setup. However, the overall result 

shows that there are interferences between the photon pairs generated and propagated in two 

perpendicular paths. And the setup can be improved for more complex experiments requiring 

the interference process. 

Fig 5.2.1 Measurement result and fitting plot of the HOM dip experiment 

Table. 5.2.1 Result values from plot fitting of the HOM dip experiment 
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5.3 CHSH experiment 

 

 

HWP1 HWP2 cc net (cps) cc std (cps) 

-22.5 -12 150 14 

  33 60 7 

22.5 -12 49 8 

  33 136 13 

-22.5 12.5 44 8 

  57.5 156 12 

22.5 12.5 153 15 

  57.5 35 7 

0 -12 24 5 

  33 166 15 

45 -12 163 13 

  33 26 5 

0 12.5 43 7 

  57.5 141 14 

45 12.5 149 13 

  57.5 43 7 
 

  

   

 
 

The result of the CHSH experiment is shown in Table. 5.3.1, where the first two 

columns are the angles of the HWPs used on paths A’ and B’ respectively. And the third and 

fourth columns are the coincident count per second and the standard deviation of its value. 

From Eqs. 3.3.1 and 3.3.2, E and S values can be calculated using the first four rows as a setup 

for E(a,b), the next four rows are for E(a,b') , the ninth to the twelfth rows are for E(a',b), and 

the last four rows are for E(a',b'). 

 

 

 

 

 

 

 

 

 avg std 

E(a,b) 0.45 0.06 

E(a,b') -0.59 0.06 

E(a',b) -0.74 0.07 

E(a',b') -0.54 0.07 

   

   
S 2.32 0.13 

Table. 5.3.1 Coincident count rate and its standard deviation for each projective measurement in 

the CHSH experiment 
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The calculated E and S values are shown in Table 5.3.2. The S value is 2.3 ± 0.2, which 

is greater than 2 and therefore violates the inequality, meaning that the experimental setup 

cannot be described by classical mechanics or by local hidden-variable theories. 

 

5.4 Density matrix experiment 

 From the experiment setup, the coincident count per second on each basis measurement 

is shown in Table 5.4.1, where the first and second letter in the first column refer to the basis 

measured in path A’ and path B’, respectively. By using Eq. 3.4.13, the density matrix of the 

polarization state can be estimated numerically (Appendix C) and shown in Table. 5.4.2 and 

Fig. 5.4.1. 

  

Table. 5.3.2 Calculated E and S values in the CHSH experiment 
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a. b. 

<ψ∣ 
∣ψ> 

<ψ∣ 
∣ψ> 

Basis measurement Coincident count per second 

HH 2.13 

HV 180.30 

VV 1.52 

VH 173.03 

RH 97.87 

RV 73.84 

DV 78.09 

DH 96.79 

DR 60.25 

DD 157.17 

RD 109.01 

HD 93.34 

VD 73.59 

VL 69.47 

HL 67.95 

RL 16.03 

 

 
 

 

 

 

 

 HH HV VH VV 

HH 0.01 0.01 0.01 0.00 

HV 0.01 0.49 0.37 -0.03 

VH 0.01 0.37 0.49 -0.03 

VV 0.00 -0.03 -0.03 0.01 

 HH HV VH VV 

HH 0.00 0.04 0.02 0.00 

HV -0.04 0.00 0.16 -0.01 

VH -0.02 -0.16 0.00 0.01 

VV 0.00 0.01 -0.01 0.00 

Table. 5.4.1 Coincidence count rate for each basis measurement in the density matrix tomography 

experiment 

Table. 5.4.2 Computed physical density matrix in (a) real part and (b) imaginary part  
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a. b. 

a. b. 

 

 

 

 The result shows that the polarization state is close to the Bell state 𝜓+  in this 

experiment setup with a fidelity of 0.8685. From Eq. 3.4.13 to Eq. 3.4.19, the derived quantities 

are S = 0.431, P = 0.2134, C = 0.7449, T = 0.5549, and E = 0.6494. S and P values show that 

the polarization state has some degree of mixture and is not completely in a pure state. Whereas 

the last three values show that the entanglement state is successfully produced in this 

experimental setup. 

5.5 Photon pairs from type-I BBO using a 80MHz pulse laser pump 

 

 

 

  

 

 

 

 

 

 

 Fig. 5.5.1 shows the result of the experimental setup for photon pairs generated by 

using a pulse laser pump into a type-I BBO. From the single count graph, the average photon 

counts per second in ports 1 and 2 are 2,863 and 3,800, respectively. The delay histogram shows 

a coincident peak with FWHM around 3 nanoseconds, and the coincident count can be 

calculated at 51.24 counts per second with a window time of 6 nanoseconds. Using Eq. 3.5.2, 

the accidental coincident is 0.136, which yields the signal-to-noise ratio at 376.8. 

Fig. 5.4.1 Real part (a) and imaginary part (b) of the density matrix plotted in 3D columns 

Fig. 5.5.1 The results of an experiment using a pulse laser as a photon pair source. (a) single count 

rate on ports A’ (bottom line) and B’ (top line). (b). Delay histogram between two ports. 
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From the delay histogram, there are repeating noise peaks every 12.5 nanoseconds. 

These peaks are accidental coincidences where two ports are triggered by two different pulses 

instead of the same pulse that generated pairs of photons. Additionally, there are peaks at -20 

and +20 nanoseconds that might be caused by errors in system signal processing or the detector 

deadtime.  

 From the result, the photon pairs generated by using pulse lasers have a lower signal-

to-noise ratio compared to the experiment using a continuous laser source. The main reason 

here is the difference in laser power that the pump can generate. However, by using a pulse 

laser, the delay histogram can show better visibility and be easier to distinguish between a real 

coincidence count and an accidental coincident count peak. This shows that the pulse source is 

a better choice in the experiment where the delay peaks need to be analyzed carefully or there 

are low signal counts that need to be examined and the baseline noise is undesirable. 

 

5.6 Loop using a 50-50 Beam splitter 

 

 
 

 

 

 

 

  

Fig 5.6.1 A delay histogram between two ports in the experiment that guides one path of photon 

pairs into an optical loop 
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Peak Index Center Max(ns) Max Height (cps) FWHM (nm) 

1 -9.43 3.5E-03 2.03 

2 2.43 1.5E+00 2.08 

3 15.31 2.1E-03 2.37 

4 29.66 7.2E-01 2.11 

5 40.62 3.1E-03 2.00 

6 56.92 1.5E-01 2.12 

7 65.63 2.6E-03 1.90 

8 78.76 2.5E-03 2.74 

9 84.14 2.7E-02 1.86 

10 89.59 4.4E-03 0.28 

11 103.01 5.4E-03 0.22 

12 111.44 3.4E-03 1.31 

13 115.28 3.1E-03 1.68 

14 128.07 3.4E-03 2.01 

15 140.45 2.8E-03 1.92 

16 152.93 3.0E-03 1.65 

17 165.48 3.2E-03 1.78 

18 178.34 4.7E-03 0.25 

19 190.22 2.6E-03 1.55 

 

 

 Fig. 5.6.1 and Table 5.6.1 show the result delay histogram from photon loop setup and 

peak properties for each peak index. The accidental peak noises repeat every 12.5 nanoseconds 

with a maximum height of around 0.003 counts per second and can be easily recognized from 

their time delay. Peak index 2,4,6 and 9 can be identified as signals with the first one accounting 

for photon that trigger without entering the fiber loop, and those after are for 1,2 and 3 times in 

the loop respectively. The histogram peak, which accounted for the fourth and higher loop, is 

not distinguishable from other noise peaks due to its low signal and overlap between peaks. 

 From the result, it appears that each loop delays the photon signal time by around 27 

nanoseconds and lowers the peak height by about 80%, compared to 50% in theory. The large 

power loss could be a result of multiple reasons, such as loss in fiber, imperfect mirrors, an 

imperfect beam splitter, and inaccurate alignment.   

  

Table. 5.6.1 Peak indices and their properties from the histogram in Fig. 5.6.1 
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5.7 Improve loop setup with lens and reduce laser pulse frequency  

 

 
 

Peak Index Center Max (ns) Max Height (cps) FWHM (ns) 

2 9.13 1.6E+00 1.92 

5 72.39 5.0E-01 1.96 

8 135.66 6.4E-02 1.95 

14 198.91 6.5E-03 1.94 

18 262.03 2.8E-04 0.69 

20 317.67 1.2E-04 0.04 

21 409.36 6.4E-03 1.83 

 

 

 By lowering the pulse frequency, accidental coincident peaks are separated with a 

longer time delay and the signals can be analyzed more accurately, but in return, the laser power 

is lower and results in small signal counts. Therefore, in this setup, lens is added to help with 

photon pair beam alignment and focusing. The resulting delay histogram from the experimental 

setup is shown in Fig. 5.7.1, and the peak properties from the graph are shown in Table 5.7.1. 

With a 2.5 MHz pulse laser, the accidental coincident peaks repeat every 400 nanoseconds and 

appear only once at peak number 21 in the graph. Here peak numbers 5, 8, 14, 18, and 20 are 

accounted for signal from photons traveling in loop fiber 1, 2, 3, 4, and 5 times before entering 

the counter, respectively. Peak 2 shows the signal where photons trigger the counter without 

entering a loop. 

 The results show that each time photons enter the fiber loop, a delay of about 63 

nanoseconds is added, with a 90% reduction in peak height. The larger power loss might come 

from the longer fiber used in the experiment or from more inaccurate alignment. Nonetheless, 

Fig. 5.7.1 Delay histogram between two ports in the improved experiment with lens 

 

Table. 5.7.1 Peak indices and their properties from the histogram in Fig. 5.7.1 
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the histogram peak can be analyzed up to the fifth loop, which is a huge improvement from the 

previous experiment setup.  

 There are some noise peaks around the main peak; these can be caused by a variety of 

factors but were most likely caused by the additional path that some photon pairs can take to 

add constant time to their delay before entering the main path and triggering the counter. For 

example, if one of the pair reflected back and forth inside the 5-meter fiber before entering the 

same path, it will add approximately 20 nanoseconds to the delay histogram and shift the peak 

to the left or right side depending on which port that photon triggers.  
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CHAPTER 6 

An alternative scheme of universal optical programmable  

multi-qubit gates for polarization qubits 

 
6.1 Hilbert-space expansion technique for two polarization qubits 

Universal quantum computers need single-qubit and two-qubit gates realized by 

particular physical systems [5]. The single-qubit gate of the polarization state of light is simply 

given by a cascade of birefringent materials, such as half-waveplates (HWP) and quarter-

waveplates (QWP). Peters et al. [29] demonstrated that single-qubit gates comprising two 

HWPs and a QWP had great versatility, yielding all possible unitary single-qubit gates. In 

addition, non-unitary single-qubit gates were also possible with the use of an interferometer to 

introduce decoherence into the optical circuit. Two-qubit gates are also of primary interest, as 

they are far more difficult to achieve with photon qubits. Here, we develop optical 

decomposition to realize any possible two-qubit gate. First of all, any two-qubit gate can be 

expressed as a linear combination of tensor products of single-qubit gates, which can be written 

as ∑ �̂�𝟏𝒊⊗ �̂�𝟐𝒊𝒊 . Using four separate single-qubit gates  γ̂00 , γ̂01 , γ̂10 , γ̂11 , which were 

realized experimentally in [29], a two-qubit gate can be mathematically decomposed as  

 
|0⟩ ⟨0| ⊗ γ̂

00
+ |0⟩ ⟨1| ⊗ γ̂

01
+ |1⟩ ⟨0| ⊗ γ̂

10
+ |1⟩ ⟨1| ⊗ γ̂

11
   6.1.1 

 

which implies that once programmable single qubit gates are realized, programmable two-qubit 

gates will be as well.  

  
 

 

To realize such two-qubit gates using photons, we started from previous works that 

dealt with the linear combination of quantum operators [32, 38]. The approach requires two 

pairs of type-I spontaneous parametric down-conversion (SPDC) processes (Fig. 6.1.1a) and 

two symmetrical beam splitters (BS) to merge four spatial modes of photons resulting from the 

SPDCs (Fig. 6.1.1b). Once a laser beam is pumped to two nonlinear crystals, as presented in 

Fig. 6.1.1a, two pairs of identical photons are produced, whose states can be written in the 

polarization states as  
1

√2
(|𝜓⟩𝑎1|𝜓⟩𝑎2 + |𝜓′⟩𝑏1|𝜓′⟩𝑏2)     6.1.2 

 

Fig. 6.1.1 (a)  
SPDC source to produce two pairs of 

entangled photons resulting as Eq. 6.1.2  

(b) Experimental scheme to realize the 

two-qubit operation 

�̂�1 ⊗ �̂�2 + �̂�1 ⊗ �̂�2 according to the input 

state (Eq. 6.1.3), which is derived from the 

source (Eq. 6.1.2) 
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where a1, a2, b1, and b2 denote the spatial paths of the photons, and ψ and ψ’ are the polarization 

states of each photon pair. After the SPDCs, by priorly knowing of the possible states from 

SPDCs, we can transform the output states to  

 
1

√2
(|𝜓1⟩𝑎1|𝜓2⟩𝑎2 + |𝜓1⟩𝑏1|𝜓2⟩𝑏2)     6.1.3 

 

using waveplates. The polarization states ψ1 on the paths a1 and b1 are set identically and 

constitute the states of the first qubit. Similarly, the states ψ2 on the paths a2 and b2 constitute 

the states of the second qubit. Afterward, the photon on each spatial path is operated by the 

single-qubit gates �̂�1, �̂�2, �̂�1, �̂�2, and then the paths are merged by two BSs. Since each state is 

actually the hyper-entanglement of paths and polarization qubits, a beam splitter produces 

separate paths of photons but conserves their polarization. Consequently, two BSs (Fig. 6.1.1b) 

transform the states in Eq. 6.1.3 as follows: 

 

|𝜓1⟩𝑎1 →
1

√2
(�̂�1|𝜓1⟩𝑎1 + �̂�1|𝜓1⟩𝑏1)     6.1.4 

|𝜓1⟩𝑏1 →
1

√2
(�̂�1|𝜓1⟩𝑎1 − �̂�1|𝜓1⟩𝑏1)     6.1.5 

|𝜓2⟩𝑎2 →
1

√2
(�̂�2|𝜓1⟩𝑎1 + �̂�2|𝜓2⟩𝑏2)     6.1.6 

|𝜓2⟩𝑏2 →
1

√2
(�̂�2|𝜓1⟩𝑎2 − �̂�2|𝜓2⟩𝑏2)     6.1.7 

 

 
 

 
As a result of post-selecting photons in the paths a1, a2 or b1, b2, the final state of photons 

becomes 

 
1

√2
(�̂�1⊗ �̂�2 + �̂�1⊗ �̂�2)|𝜓1⟩|𝜓2⟩      6.1.8 

Fig. 6.1.2 (a) A nonlinear single-photon source gives the superposition of photon states (Eq. 

6.1.10). (b) A linear optical circuit to perform the linear combination of four tensor products of 

single-qubit gates in Eq. 6.1.12. The photons in the circuit are delivered from eight paths in Fig. 

6.1.2a. Before entering the circuit, all photons are initialized as the superposition of the identical 

input polarization states on different spatial paths in Eq. 6.1.10 
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The quantum operator �̂�1⊗ �̂�2 + �̂�1⊗ �̂�2 is realized with a probability of 
1

4
 

 In order to achieve Eq. 6.1.1, the construct of four SPDCs, eight spatial paths, and eight 

BSs is presented in Fig. 6.1.2. The circuit is indeed a scaled-up version of Fig. 6.1.1. Similar to 

Eq. 6.1.2, we can expect the state  

 
1

2
(|𝜓𝑎⟩𝑎1|𝜓𝑎⟩𝑎2 + |𝜓𝑏⟩𝑏1|𝜓𝑏⟩𝑏2 + |𝜓𝑐⟩𝑐1|𝜓𝑐⟩𝑐2 + |𝜓𝑑⟩𝑑1|𝜓𝑑⟩𝑑2)   6.1.9 

 

from four SPDCs (Fig. 6.1.2a). If we assume that the polarization states in (Eq. 6.1.9) are known, 

we can generate an output state for the two qubits before entering the circuit of Fig. 6.1.2b 

as  

 
1

2
(|𝜓1⟩𝑎1|𝜓2⟩𝑎2 + |𝜓1⟩𝑏1|𝜓2⟩𝑏2 + |𝜓1⟩𝑐1|𝜓2⟩𝑐2 + |𝜓1⟩𝑑1|𝜓2⟩𝑑2)   6.1.10 

 
In the first stage of the circuit, by using �̂�1  = |0⟩⟨0|, �̂�1  = |0⟩⟨1|, �̂�1  = |1⟩⟨0|, �̂�1  = |1⟩⟨1|,
�̂�2  =   γ̂00, �̂�2  =   γ̂01, �̂�2  =   γ̂10, �̂�2  =   γ̂11 , functioning as the programmable apparatus, (Eq. 

6.1.10) leads to 

 
1

2
[(|0⟩⟨0||𝜓1⟩𝑎1)⊗ (γ̂00|𝜓2⟩𝑎2) + (|0⟩⟨1||𝜓1⟩𝑏1)⊗ (γ̂01|𝜓2⟩𝑏2) + (|1⟩⟨0||𝜓1⟩𝑐1)⊗

(γ̂10|𝜓2⟩𝑐2) + (|1⟩⟨1||𝜓1⟩𝑑1)⊗ (γ̂11|𝜓2⟩𝑎𝑑2)]    6.1.11 

 

Finally, using the relation between inputs and outputs expressed in Eqs. 6.1.4 - 6.1.7 together 

with the post-selection measurement of photon coincidences in the paths (a1, a2), 

(b1, b2), (c1, c2) or (d1, d2), the final state becomes 

 
1

2
(|0⟩⟨0| ⊗ γ̂

00
+ |0⟩⟨1| ⊗ γ̂

01
+ |1⟩⟨0| ⊗ γ̂

10
+ |1⟩⟨1| ⊗ γ̂

11)   6.1.12 

 

with a probability of 1/4. In particular, this yields a two-qubit operation, namely 

 

[
γ̂
00

γ̂
01

γ̂
10

γ̂
11

] |𝜓1⟩|𝜓2⟩      6.1.13 

where all the entries of the 4 × 4 matrix are programmable  
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6.2 Universal optical programmable multi-qubit gates 

The recent experimental creation of three photon polarization GHZ states from SPDC 

[17] suggests that we can expect to access more photonic quantum processing with polarization-

entangled photons in the coming years. Apart from other sophisticated approaches to photon 

entanglement, SPDC from nonlinear crystals in bulk optics setups, as presented here, can play 

a role as the simplest possible source of entangled photons. Suppose that the n-photon entangled 

state  

1

√2
(|𝜓1⟩𝑜11|𝜓2⟩𝑜12⋯|𝜓𝑛⟩𝑜1𝑛  +  |𝜓1⟩𝑜21|𝜓2⟩𝑜22⋯|𝜓𝑛⟩𝑜2𝑛)    6.2.1 

 

is accessible from the source depicted in Fig. 6.2.1 and that the n-photon coincidence counting 

operates with high efficiency, our architecture is able to accommodate programmable n-qubit 

gates. The scheme in Fig. 6.2.1 is actually the n-photon version of the paired-photon source in 

Fig. 6.1.1a, in which the paths a1, a2, b1, and b2 are replaced, respectively, by O11, O12, O21, and 

O22 for generalization; and ES represents the entanglement source. For clarity in notation, two 

indices, say m and p of the path Omp, indicate photons from the pth source (ESp) and the mth qubit, 

which will be later encoded into the polarization state |𝜓𝑚⟩. 

 

 

Fig. 6.2.1 Two coupled notional single-photon sources (ES1 and ES2) provide n entangled 

photons. The sources give the polarization states as Eq. 6.2.1 
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In order to generalize all operations in the previous section to the n-qubit case, we 

introduce a combination block (Ckl); see Fig. 6.2.2. Here, the Ckl block consists of BSs, where 

each BS fuses the two paths sharing the second index, e.g., from sources ESk and ESl in this case. 

When the single-qubit gate Omp operates on each of its corresponding paths Omp, the Ckl block 

transforms the initial state  

1

√2
(|𝜓1⟩𝑜𝑘1|𝜓2⟩𝑜𝑘2⋯|𝜓𝑛⟩𝑜𝑘𝑛  + |𝜓1⟩𝑜𝑙1|𝜓2⟩𝑜𝑙2⋯|𝜓𝑛⟩𝑜𝑙𝑛)   6.2.2 

 

to 

 

1

(√2)
𝑛+1 [(�̂�𝑘1|𝜓1⟩𝑜𝑘1 + �̂�𝑘1|𝜓1⟩𝑜𝑙1)⊗ (�̂�𝑘2|𝜓2⟩𝑜𝑘2 + �̂�𝑘2|𝜓2⟩𝑜𝑙2)⊗⋯⊗ (�̂�𝑘𝑛|𝜓𝑛⟩𝑜𝑘𝑛 +

�̂�𝑘𝑛|𝜓𝑛⟩𝑜𝑙𝑛)  + (�̂�𝑙1|𝜓1⟩𝑜𝑘1 − �̂�𝑙1|𝜓1⟩𝑜𝑙1)⊗ (�̂�𝑙2|𝜓2⟩𝑜𝑘2 − �̂�𝑙2|𝜓2⟩𝑜𝑙2)⊗⋯⊗

(�̂�𝑙𝑛|𝜓𝑛⟩𝑜𝑘𝑛 − �̂�𝑙𝑛|𝜓𝑛⟩𝑜𝑙𝑛)]    6.2.3 

 

 Thereafter, by post-selecting the case where only one photon leaves each path of Ok1 - 

Okn simultaneously, we will obtain the final state 

 

(�̂�𝑘1⊗ �̂�𝑘2⊗⋯⊗ �̂�𝑘𝑛 + �̂�𝑙1⊗ �̂�𝑙2⊗⋯⊗ �̂�𝑙𝑛) × |𝜓1⟩𝑜𝑘1|𝜓2⟩𝑜𝑘2⋯|𝜓𝑛⟩𝑜𝑘𝑛 

 6.2.4 

Fig. 6.2.2 A combination block (Ckl), a series of beam splitters combining photons from ESk and 

ESl, supposing each ES produces n distinguishable single photons 
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with a success probability of (1/√2)𝑛+1. Likewise, by post-selection on all l-paths, we obtain 

 

(�̂�𝑘1⊗ �̂�𝑘2⊗⋯⊗ �̂�𝑘𝑛 − �̂�𝑙1⊗ �̂�𝑙2⊗⋯⊗ �̂�𝑙𝑛) × |𝜓1⟩𝑜𝑙1|𝜓2⟩𝑜𝑙2⋯|𝜓𝑛⟩𝑜𝑙𝑛  

 6.2.5 

 

with a success probability of (1/√2)𝑛+1. The realization of Eq. 6.2.4 is a cornerstone of the 

complete realization of the n-qubit programmable operation.  

First of all, any n-qubit operation is represented by a 2n × 2n matrix and can be 

decomposed into a linear combination of tensor products written as  

∑ ∑ 𝛾(𝑖. 𝑗) ⊗2𝑛−1

𝑗=1
2𝑛−1

𝑖=1 |𝑖⟩⟨𝑗|     6.2.6 

where 𝛾(𝑖. 𝑗) is a 2 × 2 operator as defined in Eq. 6.1.1, and all of its matrix elements are 

programmed by the programmable single-qubit gates. Here, |𝑖⟩⟨𝑗| represents a basis for each 

matrix element of the 2n-1 × 2n-1 all-ones matrix.  

 

 

As the initial state in Eq. 6.2.1 from the source in Fig. 6.2.1 is necessary to realize the 

summation of two terms of tensor products of n single-qubit gates, we will, at least, need the 

kind of source illustrated in Fig. 6.2.3 to complete the summation of n’ = (2n-1)2 terms following 

Eq. 6.2.6. The quantum state is then written as  

1

√𝑛′
∑

𝑛
⊗
𝑙 = 1

𝑛′
𝑘=1 |𝜓𝑙⟩𝑜𝑘𝑙      6.2.7 

Fig. 6.2.3 A cascade of n ESs, where each ES produces n entangled single photons in separate 

paths, resulting the initial state as expressed in Eq. 6.2.7 
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From this stage of the scheme, photons from each ES play a role as each term in Eq. 

6.2.6 arising from applying the local operator (Fig. 6.2.4). The local operators applied on paths 

Ol,1, Ol,2, …, Ol,n-1 are the members of {|0⟩⟨0|, |0⟩⟨1|, |1⟩⟨0|, |1⟩⟨1|}. A tensor product of n - 1 

terms from this set of operators results in a (2n-1) × (2n-1) matrix with all zero entries except the 

element (i, j). The relation between the tensor product and (i, j) follows the relation 

|0⟩⟨1| ⊗ |1⟩⟨0| ⊗⋯⊗ |1⟩⟨0| ≡ |01⋯1⟩⟨10⋯0|  =  |𝑖⟩⟨𝑗|   6.2.8 

 

where i and j correspond to decimal equivalents of the binary representations 01⋯1 and 10⋯0, 

respectively. The summation of two separate terms building from two ESs and the state 

preparation schemes in Fig. 6.2.4 is presented in Fig. 6.2.5. Finally, using the combination 

blocks to merge all paths (Fig. 6.2.6) and post-selecting only photons in path O’’(1, n), the 

operation in Eq. 6.2.6 is realized, obtaining the n-qubit operation represented by the matrix 

 

[
 
 
 
 
𝛾(1,1) 𝛾(1,2) 𝛾(1,3) ⋯ 𝛾(1,2𝑛−1)
𝛾(2,1) 𝛾(2,2) 𝛾(2,3) ⋯ 𝛾(2,2𝑛−1)

⋮ ⋮ ⋮̂ ⋱ ⋮
𝛾(2𝑛−1,1) 𝛾(2𝑛−1,2) 𝛾(2𝑛−1,3) ⋯ 𝛾(2𝑛−1,2𝑛−1)]

 
 
 
 

    6.2.9 

with a success probability of (1/√2)n 

Fig. 6.2.4 The example of the local operations applied to 

the photon state after being initialized to the state in Eq. 

6.2.7 on each ES output (ESl for this example). This 

example represents just one term in Eq. 6.2.6. In order to 

assign the position (i, j) of the single-qubit operation 𝛾 (i, 

j) on the (2n-1) × (2n-1) all-ones 

matrix, the local operations representing the position are 

applied on the paths O(l,1), O(l,2), …, O(l,n’-1). In this 

example, the operators relating to entries on the all-ones 

matrix follow from Eq. 6.2.8 
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Fig. 6.2.5 A modified combination block. Paths O(p,m) sharing p are grouped as a composite path 

o’(p,n’) with a set of local operations in Fig. 6.2.4, where m = 1, 2, …, n’. In this case, the composite 

paths o’l,n’ and o’k ,n’ are combined by the modified combination block Cl,k,n’ , resulting in the 

composite path O’’l,n’ . This output composite path is the post-selection of the photons leaving at 

the output paths O(l,1), O(l,2), …, O(l, n -1) 

Fig. 6.2.6 The application of the modified combination blocks to combine entire composite paths 

O’1,n, O’2,n, . . . , O’n’-1,n, O’n’,n, resulting in the post-selection of only one composite path as the 

output  
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6.3  Discussion 
We have presented an alternative optical circuit design that can achieve complete 

versatility in a programmable multi-qubit gate. By directly programming the entries of the 

matrix with a single-qubit gate, our proposed scheme circumvents the need to decompose the 

required gates into elementary single- and two-qubit gates in the standard method of realizing 

any unitary quantum operator. Accordingly, this alternative approach has the potential to 

accelerate quantum simulation and information processing because it does not require iteration 

as does the standard method. Due to the increased feasibility of controlling every entry of the 

matrix independently by linear optics, it also provides great capacity to generate whole sets of 

operations, including complex and non-unitary operations.  

However, the demonstrated quantum gate based on this scheme is probabilistic and will 

undergo an exponentially small probability of success. In this sense, we can regard this 

alternative scheme as a way of trading the decoherence for the power of generating any operator. 

One can argue that ideally the alternative scheme can be used to probe noise or decoherence 

since the matrix entries are independently programmed and can be complex; in particular, the 

off-diagonal terms can be probed systematically. This arguably can yield great benefits in 

decoherence suppression and noise spectroscopy in metrology, and possibly in errors correction 

in quantum communication. Furthermore, gate-based computation using a small number of 

qubits is rather possible, and such a class of computation can shed some light on problems in 

the fundamental concepts of quantum information requiring an arbitrary quantum gate. 

Examples of such scenarios, such as controlling operation of an unknown U (2), the complete 

quantum phase estimation algorithm via the semiclassical Fourier transform, entanglement 

filters, the quantum approximate optimization algorithm, and Szegedy quantum walks, have 

been demonstrated already [32, 37, 38]. 

Perhaps, it is more insightful and useful to compare our proposed scheme to the 

standard method [8, 33], which relies on a decomposition of an N × N unitary matrix into a 

product of 2 × 2 matrices, which can then be determined by using successive 2 × 2 

transformations. Both approaches require linear optical devices to program a multi-qubit gate; 

the standard method uses phase shifters and beam splitters on two-dimensional subspaces, and 

iteratively expands to the full N-dimensional Hilbert space, while our scheme uses 

entanglement photon sources and beam splitters to create all possible linear combinations of 

tensor products in the entire Hilbert space and employs post-selection to program the operator. 

To quantitatively analyze the complexity of the two approaches, we firstly note that, in order 

to realize a U(2m), for m ≥ 2, it will need to be factorized into a multiplication of  2𝑚(2𝑚 −
1)/2 of U (4): 

 

𝑈(2𝑚)  =  [∏ 𝑈𝑖(4)
2𝑚(2𝑚−1)

2

𝑖=1
] 𝐷     6.3.1 

 

where D is a diagonal matrix with elements of modulus 1. There are several classical algorithms 

to perform this type of factorization. However, preparing any arbitrary N × N gates could endure 

exponential growth complexity as a result of this requirement. Compared to our scheme, which 

is built from the summation of matrices U (4) given in Eq. 6.3.2, the number of required U (4) 

operations is 4m-1 which is just a slight improvement.  

𝑈(2𝑚)  =  ∑ 𝑈′̂𝑖(4)
4𝑚−1

𝑖=1      6.3.2 
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or equivalently 

 

U(2𝑚) =

[
 
 
 
 

�̂�1(4) �̂�2(4) … �̂�(2𝑚−1)(4)

�̂�(2𝑚−1+1)(4) �̂�(2𝑚−1+2)(4) ⋯ �̂�(2𝑚)(4)

⋮ ⋮ ⋱ ⋮
�̂�(4𝑚−1−2𝑚−1)(4) �̂�(4𝑚−1−2𝑚−1+1)(4) ⋯ �̂�(4𝑚−1)(4)]

 
 
 
 

 =

 [

�̂�1(4) 0 … 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

] + [

0 �̂�2(4) … 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

] +⋯+ [

0 0 … 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ �̂�(4𝑚−1)(4)

]  

 6.3.3 
 

However, with no requirement for factorization of the matrix, our scheme can avoid a large 

growth in complexity. The linear combination is the main strength of gate structure based on 

X. Qiang et al.’s scheme in Ref. [32], like our scheme. The prepared U’(4)s can be simply 

placed directly in the circuit as shown in Figs. 6.2.4 and 6.2.5 to realize a whole matrix of U(2m).  

Clearly, there is a trade-off between iteration, which can increase complexity, and post-

selection, which yields low probability. For a small number of qubits, both approaches have 

been realized experimentally with good fidelity [32, 37]. In particular, a similar linear 

expansion technique for arbitrary two-qubit processing has been demonstrated [32] on a silicon 

photonics chip that could generate two photonic qubits, on which it could perform arbitrary 

two-qubit unitary operations, including arbitrary entanglement operations. As emphasized, our 

proposed scheme circumvents the decomposition issue by directly programming matrix 

elements of the operator, which can be applied to non-unitary matrices or the operation that is 

governed by an unknown matrix, such as the phase estimation algorithm. For the latter, there is 

no operator to decompose; hence, our method can have an advantage over the standard method. 

Concerning the unknown quantum operation, our work can be regarded as the theoretical 

extension of the work by Zhou et al. [38], where only 4 × 4 matrix was concerned. In some 

sense, our analysis is similar to that of Reck et al. [33] but emphasizes the alternative approach 

to their decomposition method. To our best knowledge, neither has been realized 

experimentally for arbitrary N × N operators.  

To further remark on the experimental realization of this architecture, our proposed 

scheme demands extremely strong nonlinearity and highly efficient single-photon detection. 

Unfortunately, the demonstration of these entirely programmable two-qubit gates is perhaps 

beyond the capabilities of existing nonlinear optics technology. However, some previous 

studies using the smallest possible configuration have proven the advantages of this approach 

[37, 38]. In fact, photon pairs from the process of spontaneous four-wave mixing in strip 

waveguides on a photonic chip could also produce polarization-entangled pairs [24]. In addition 

to polarization-encoded qubits, micro-ring resonators for a path entangled two-qubit state also 

have their potential. The Bell’s state of multi-photon pairs was realized in photonics-integrated 

circuits [36]. Regardless of relying on the nonlinear optics as the single-photon source, the 

future potential of a semiconductor quantum dots platform is currently envisaged [1, 10, 14, 19, 

25]. 
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Finally, we comment that, like the standard method, this alternative scheme is valid to 

realize discrete operations. Once all N × N matrices can be implemented, it is possible to 

measure the continuous observable. This can be done by truncating Fourier transforms into an 

arbitrary large but discrete operator. In the context of quantum simulation, this can be very 

beneficial for time-evolution operators of some physical systems, especially with random 

interaction with the environment or fluctuation. 
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CHAPTER 7 

Conclusion 

In the experiment section, several experiments are used to measure the properties of the 

system, and multiple optical elements are adjusted in each step to ensure the maximum outcome. 

As a result, the photonic qubit is successfully created starting from the foundation concept of 

photon pairs generated by a nonlinear process. The qubits created in the experiment can be used 

as an entangle source in several quantum photonic experiments, such as teleportation or phase 

estimation. However, because the qubits are created continuously by a continuous laser source, 

they lose the possibility of being used in the algorithm, which relies on altering the extensive 

time delay between the pairs. 

In the experiment with the photon loop, there are still some issues with noise and signal 

losses that need to be considered before adding more components to the system. The setup gave 

the highest identifiable loop at the fifth one, which is insufficient considering that the planned 

experiment includes more path splitting and therefore inevitably reduces more signal. In the 

future study, it is of the utmost importance to identify the sources of system noise and signal 

loss and then improve the signal-to-noise ratio to some degree before progressing to the next 

experiment. 

In the theoretical section, the alternative scheme for polarization qubit gates, which adopted 

the Hilbert-space expansion technique, has multiple advantages over the standard scheme, 

which relies on matrix decomposing. Those advantages are: 

- The process of decomposing the required gates into elementary single- and two-qubit 

gates can be avoided. 

- The scheme has the potential to accelerate quantum simulation and information 

processing due to the lack of iteration required. 

- A non-unitary matrix, or unknown matrix, can be programmed into the operator. 

- By using linear combination, the circuit structure can avoid a large growth in 

complexity with a larger matrix operator. 

- The scheme can be used to probe noise or decoherence, which makes it potentially 

useful in decoherence suppression, noise spectroscopy, and error correction. 

The disadvantages of the alternative scheme are: 

- As a result of post-selection, the probability of success decreases exponentially with a 

larger matrix operator. 

- The system requires strong nonlinearity and highly efficient single-photon detection. 

A large operator is unlikely to be built successfully with current technology.  

With these advantages, the demonstrated scheme is a convenient method to construct 

numerous quantum algorithms, which is not possible or impractical for the standard scheme, 

and the disadvantage part could be weak with advancing technologies in nonlinear optics such 

as photonics-integrated circuits or higher efficiency photon pairs sources.
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Programing for coincident count 

- Program first interface 

 
 

- Coding for initial value 

% Code that executes after component creation 

        function startupFcn(app) 

            %initial value 

            app.delayx = zeros(1,16); 

            app.arraysinglecount =[]; 

            app.filename = ''; 

            app.filepath = ''; 

            app.timebinsingle = 1; 

            app.singletimediv = 1; 

            app.delaychange =0; 

            app.currentgraph = 0; 

            app.cctimediv = 1; 

        end 

 

- File import and edit 

% Button pushed function: selectButton 

        function selectButtonPushed(app, event) 

            %file name and filepath select 

            [filenamehandle,filepathhandle] = uigetfile('*.*'); 

            %the handle will be 0 if cancle or exit ,else we get text value 

            if filenamehandle ~= 0 

                app.filename = filenamehandle; 

            end   

            if filepathhandle ~=0 

                app.filepath = erase(filepathhandle,filenamehandle); 
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            end 

            app.exportpath = app.filepath; 

            %this cause bug that defocus the app 

            %refocus with next two commands 

            drawnow; 

            figure(app.UIFigure) 

            app.filenameEditField.Value = app.filename; 

            app.ReadyLamp_Import.Color = 'red'; 

        end 

        % Value changed function: filenameEditField 

        function filenameEditFieldValueChanged(app, event) 

            app.filename = app.filenameEditField.Value; 

            app.ReadyLamp_Import.Color = 'red'; 

        end 

        % Button pushed function: importButton 

        function importButtonPushed(app, event) 

  

            %import command 

            if strcmp('Qutag',app.filetypeDropDown.Value) == true 

                %complier 

                fileID = fopen(join([app.filepath,app.filename])); 

                C = textscan(fileID,'%f %f ','Delimiter',';','headerlines', 5); 

                fclose(fileID); 

                app.A=C{1}; %bin where the count triggered 

                 

                %in case timetag overflow 

                overflowtimetag = 2^52; %if bin go over this it'll reset to 0 

                difneg = find(diff(app.A)<0) ; %find where time tag overflow and reset 

                if numel(difneg) > 0 

                    for i = 1:numel(difneg) 

                        app.A((difneg(i)+1):end) = app.A((difneg(i)+1):end)+overflowtimetag;  

                    end 

                end 

                app.A=app.A-app.A(1); %set initial time to 0 

                 

                app.B=C{2}; %port where the count triggered 

                app.Asave = app.A; 

                app.Bsave = app.B; 

                app.nA = numel(app.A); 

                app.binwidth = 1; %for qutag 

                app.mergebinEditField.Value = 100; %for qutag 

                 

             

            elseif strcmp('Qutool',app.filetypeDropDown.Value) == true 

                %complier 

                fileID =  fopen(join([app.filepath,app.filename])); 

                C = textscan(fileID,'%f %f ','Delimiter',','); 
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                fclose(fileID); 

                app.A=C{1}; %bin where the count triggered 

                app.B=C{2}; %port where the count triggered 

                app.Bsave = app.B; 

                app.A=app.A-app.A(1); %set initial time to 0 

                app.Asave = app.A; 

                app.nA = numel(app.A); 

                app.binwidth = 81; %for qutool 

                app.mergebinEditField.Value = 2; %for qutool 

            end 

             

             

            %reset all value 

            app.timebinsingle = 1; 

            app.singletimediv = 1; 

            app.delaychange =0; 

            app.delayx = zeros(1,16); 

            %reset in singlecount 

            app.arraysinglecount =[]; 

             

            %%%calculate value 

            app.alltimerec = app.A(end)*app.binwidth*1e-12; 

            app.captimerec = app.alltimerec; 

            for i = 1:16 

                app.xport(i) = numel(find(app.Bsave == i))/app.captimerec; %set port count 

                app.(join(['port',num2str(i),'EditField'])).Value = app.xport(i); %show on display 

            end 

            app.FilenameEditField.Value = app.filename; 

             

            app.timecolectedhour.Value = floor(app.alltimerec/3600); 

            app.timecolectedmin.Value = floor(rem(app.alltimerec,3600)/60); 

            app.timecolectedsec.Value = rem(app.alltimerec,60); 

             

             

            app.nport = find(app.xport ~=0); %array of which port triggered 

            for i = 1:numel(app.nport) 

                nporthandle(i) = {num2str(app.nport(i))}; %convert to list 

            end  

            %set the dropdown 

            app.StopportDropDown.Items = nporthandle; 

            app.StartportDropDown.Items = nporthandle; 

            app.StartportDropDown.Value = app.StartportDropDown.Items(1); 

            app.StopportDropDown.Value = app.StopportDropDown.Items(2); 

            app.Portshift.Items = nporthandle; 

             

            %lamp unready 

            app.ReadyLamp_CC.Color = 'red'; 
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            app.ReadyLamp_Delay.Color = 'red'; 

            app.ReadyLamp_Single.Color = 'red'; 

            app.ReadyLamp_FileEdit.Color = 'white'; 

            app.CCDataLamp.Color = 'white'; 

             

            %Clear File Edit 

            app.SelecttimeCheckBox.Value = 0; 

            app.toEditField.Value = app.alltimerec; 

            app.fromEditField.Value = 0; 

            app.ShiftportCheckBox.Value = 0; 

            app.PortShiftEditField.Value = 0; 

            app.SelecttimeDropDown.Value = app.SelecttimeDropDown.Items(1); 

            app.selecttimediv = 1; 

             

            %lamp ready 

            app.ReadyLamp_Import.Color = 'green'; 

            app.SingleDataLamp.Color = 'green'; 

             

        end 

        % Callback function 

        function test2ButtonPushed(app, event) 

            app.txttestEditField.Value = app.exportpath; 

        end 

        % Value changed function: SelecttimeDropDown 

        function SelecttimeDropDownValueChanged(app, event) 

            %remember timediv b4 change 

            timedivb4 = app.selecttimediv; 

             

            %set timediv according to dropdown value 

            if strcmp('sec',app.SelecttimeDropDown.Value) == true 

                app.selecttimediv = 1; 

            elseif strcmp('min',app.SelecttimeDropDown.Value) == true 

                app.selecttimediv = 60; 

            elseif strcmp('hour',app.SelecttimeDropDown.Value) == true 

                app.selecttimediv = 60*60; 

            end 

             

            %change number in time box 

            app.fromEditField.Value = app.fromEditField.Value*timedivb4/app.selecttimediv; 

            app.toEditField.Value = app.toEditField.Value*timedivb4/app.selecttimediv; 

             

        end 

        % Value changed function: PortShiftEditField 

        function PortShiftEditFieldValueChanged(app, event) 

            port2shift = str2num(app.Portshift.Value); 

            app.delayx(port2shift) = app.PortShiftEditField.Value; %change delay value from input 

        end 
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        % Value changed function: Portshift 

        function PortshiftValueChanged(app, event) 

            port2shift = str2num(app.Portshift.Value); 

            app.PortShiftEditField.Value = app.delayx(port2shift) ; %change input box according to 

drop down pick 

        end 

        % Button pushed function: ApplyButton 

        function ApplyButtonPushed(app, event) 

            app.ReadyLamp_FileEdit.Color = 'red'; 

            drawnow 

             

            %timeEdit 

                app.A = app.Asave; 

                app.B = app.Bsave; 

            if app.SelecttimeCheckBox.Value == 1 

               cutfrom = find(app.A >= 

app.fromEditField.Value*app.selecttimediv*1e12/app.binwidth,1); 

               if or(cutfrom == [],cutfrom == [1]) 

                   cutfrom = [1]; 

               end 

               cutto = find(app.A <= 

app.toEditField.Value*app.selecttimediv*1e12/app.binwidth,1,'last'); 

               app.A = app.Asave(cutfrom:cutto); 

               app.B = app.Bsave(cutfrom:cutto); 

            end 

             

            %delayEdit 

            if app.ShiftportCheckBox.Value == 1 

                for i =1:16 

                    locate = []; 

                    if app.delayx(i) ~= 0 

                        locate = find(app.Bsave == i); 

                        app.Asave(locate) = app.Asave(locate) + app.delayx(i)*1000/app.binwidth; 

                    end 

                end       

            end 

             

            %%%calculate value 

            app.captimerec = app.A(end)*app.binwidth*1e-12; 

            for i = 1:16 

                app.xport(i) = numel(find(app.B== i))/app.captimerec; %set port count 

                app.(join(['port',num2str(i),'EditField'])).Value = app.xport(i); %show on display 

            end 

             

             

            %lamp unready 

            app.ReadyLamp_CC.Color = 'red'; 
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            app.ReadyLamp_Delay.Color = 'red'; 

            app.ReadyLamp_Single.Color = 'red'; 

            %lamp ready 

            app.ReadyLamp_FileEdit.Color = 'green'; 

        end 

 

- Interface single count vs time computed and plot. 
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- Coding for single count vs time  

% Button pushed function: ComputeButton_Single 

        function ComputeButton_SinglePushed(app, event) 

            hissecnum = zeros(16 ,floor(((app.A(end)-app.A(1))*app.binwidth*(10^(-

12)))/app.timebinsingle+1) ); %row = port and colum = amount of that port trigger in that sec 

            for t = 1:numel(app.A) 

                seccount = floor(((app.A(t)-app.A(1))*app.binwidth*(10^(-12)))/app.timebinsingle+1); 

                hissecnum(app.B(t),seccount) = hissecnum(app.B(t),seccount)+1; 

            end 

            hissecnum(:,end) = []; 

            app.arraysinglecount =[]; 

            for i =1:numel(app.nport) 

                app.arraysinglecount(i,:) = hissecnum(app.nport(i),:); %this will only save the triggered 

port 

            end 

             

            %reset value seting 

            app.timebinsingle = 1; 

            app.timebinwidthEditField.Value = app.timebinsingle; 

            app.x1single.Value = 0; 

            app.x2single.Value = app.captimerec; 

            app.singletimediv = 1; 

            app.DropDown_xlimsingle.Value = 'sec'; 

            app.y1single.Value = 0; 

            app.y2single.Value = max(max(app.arraysinglecount))*1.2; 
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            %reset the rate 

            app.rxvstime = app.arraysinglecount; 

            app.ratetime = 0:size(app.arraysinglecount,2)-1 ; 

             

             

            %lamp on 

            app.ReadyLamp_Single.Color = 'green'; 

        end 

        % Value changed function: DropDown_xlimsingle 

        function DropDown_xlimsingleValueChanged(app, event) 

            %remember timediv b4 change 

            timedivb4 = app.singletimediv; 

             

            %set timediv according to dropdown value 

            if strcmp('sec',app.DropDown_xlimsingle.Value) == true 

                app.singletimediv = 1; 

            elseif strcmp('min',app.DropDown_xlimsingle.Value) == true 

                app.singletimediv = 60; 

            elseif strcmp('hour',app.DropDown_xlimsingle.Value) == true 

                app.singletimediv = 60*60; 

            end 

             

            %change number in time box 

            app.x1single.Value = app.x1single.Value*timedivb4/app.singletimediv; 

            app.x2single.Value = app.x2single.Value*timedivb4/app.singletimediv; 

             

        end 

        % Button pushed function: plotButton 

        function plotButtonPushed(app, event) 

             

            app.rxvstime =[]; 

            %caculate x y data 

            if app.timebinwidthEditField.Value ==1 

                app.timebinsingle = 1; 

                app.rxvstime = app.arraysinglecount; 

                app.ratetime = 0:size(app.arraysinglecount,2)-1 ; 

            else 

                app.timebinsingle = app.timebinwidthEditField.Value; 

                %the folowing code cal mean for every time bin 

                numadd = app.timebinsingle-mod(size(app.arraysinglecount,2),app.timebinsingle); 

                A2 = app.arraysinglecount; 

                if numadd ~= 0 

                    A2(:,end+1:end+numadd)=missing; %add nan to fill b4 reshape 

                end 

                for i = 1:size(A2,1) 

                    S = reshape(A2(i,:),app.timebinsingle,[]); 
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                    app.rxvstime(i,:) = mean(S,'omitnan'); %here we get the mean 

                end 

                app.ratetime = 0:app.timebinsingle:(size(app.rxvstime,2)-1)*app.timebinsingle; 

            end 

             

            %ploting 

            for i =1:numel(app.nport) 

                plot(app.UIAxes,app.ratetime/app.singletimediv,app.rxvstime(i,:)) 

                hold(app.UIAxes,'on') 

            end 

            hold(app.UIAxes,'off') 

             

            %plot detail 

            app.UIAxes.XLim = [app.x1single.Value,app.x2single.Value]; 

            app.UIAxes.YLim = [app.y1single.Value,app.y2single.Value]; 

            app.UIAxes.Title.String = 'singlecount vs time'; 

            app.UIAxes.Title.FontWeight = 'normal'; 

            if app.singletimediv == 1 

                app.UIAxes.XLabel.String = 'time (sec)'; 

            elseif app.singletimediv ==60 

                app.UIAxes.XLabel.String = 'time (min)'; 

            elseif app.singletimediv == 3600 

                app.UIAxes.XLabel.String = 'time (hour)'; 

            end 

            app.UIAxes.YScale = 'linear'; 

            app.UIAxes.YLabel.String = 'counts per sec'; 

             

            %add legend 

            for i = 1:numel(app.nport) 

                nporthandle(i) = {num2str(app.nport(i))}; %convert to list 

            end 

            legend(app.UIAxes,nporthandle); 

             

            %change tab to graph 

            app.TabGroup2.SelectedTab = app.GraphTab; 

             

            %change graph name 

            if app.autographnameCheckBox.Value ==1 

                filenamenodot = erase(app.filename,'.txt'); 

                app.ExportgraphnameEditField.Value = join([filenamenodot,'_singlecount_vs_time']); 

            end 

            app.currentgraph = 1; 

        end 

        % Button pushed function: copytoclipboardButton 

        function copytoclipboardButtonPushed(app, event) 

            %arraytocoppy = [app.ratetime/app.singletimediv;app.rxvstime]; %this will copy all data 

            %instead we want only data in plot range 
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            xfirst = find(app.ratetime >= app.x1single.Value*app.singletimediv,1); 

            xlast = find(app.ratetime <= app.x2single.Value*app.singletimediv,1,'last'); 

            arraytocoppy = [app.ratetime(xfirst:xlast)/app.singletimediv;app.rxvstime(:,(xfirst:xlast))]; 

            num2clip(app,transpose(arraytocoppy)); 

        end 

 

- Interface with delay histogram plotted. 

 

   

- Coding for delay histogram 

% Button pushed function: ComputeButton_Delay 

        function ComputeButton_DelayPushed(app, event) 

            %lamp unready 

            app.ReadyLamp_Delay.Color ='red'; 

            drawnow 

             

            %computation 

            hw = app.HistogramwidthEditField.Value*1000/app.binwidth; 

            diffA=diff(app.A); %dif of time in adjecenct tile 

            difflo = find(diffA < hw+1); %find tile where dif < width 

            nlo = numel(difflo); %number of tiles in such condition 

             

            startp = str2num(app.StartportDropDown.Value); 

            stopp = str2num(app.StopportDropDown.Value); 
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            %cal. ccdif = bindif(bin) which is in range of histogram 

            p=1; 

            for i =1:nlo 

                j=1; %tile seperation 

                while app.A(difflo(i)+j)-app.A(difflo(i)) < hw+1  

                    if and(app.B(difflo(i)+j) == stopp,app.B(difflo(i)) == startp) 

                        ccdif(p)= (app.A(difflo(i)+j)-app.A(difflo(i))); %if start -> stop, collect delay 

                        p = p+1; 

                    elseif and(app.B(difflo(i)+j) == startp,app.B(difflo(i)) == stopp) 

                        ccdif(p)= (app.A(difflo(i)+j)-app.A(difflo(i)))*(-1); %if stop -> start, collect -delay 

                        p = p+1; 

                    end 

                    j=j+1; 

                    if difflo(i)+j > numel(app.nA) 

                        break 

                    end 

                end 

            end 

             

            %histogram cal 

            hw_m = app.mergebinEditField.Value ; %merge histogram width 

            edges = -1*hw-0.1:hw_m:hw-0.1; %(bin) 

            xdata = -1*hw+hw_m/2:hw_m:hw-hw_m/2; %(bin) 

            app.timedata = xdata*app.binwidth/1000; %ns 

            Nhis = histcounts(ccdif,edges); 

            app.ccps = Nhis./app.captimerec; %photon per sec that trigger in stop port in range ~[start 

time +delay-hw_m/2:start time +delay+hw_m/2] 

             

            %set graph limit value 

             

            app.x1delay.Value = -1*app.HistogramwidthEditField.Value; 

            app.x2delay.Value = app.HistogramwidthEditField.Value; 

            if startp == stopp 

                app.x1delay.Value =0; %set xlim left to 0 when compute the self trigger 

            end 

             

             

            app.y1delay.Value = (1./app.captimerec)*0.5; 

            app.y2delay.Value = max(app.ccps)*1.2; 

             

            %lamp ready 

            app.ReadyLamp_Delay.Color ='green'; 

             

             

        end 

        % Button pushed function: plotButton_Delay 

        function plotButton_DelayPushed(app, event) 
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            plot(app.UIAxes,app.timedata,app.ccps) 

             

            if app.yaxislogscaleCheckBox.Value == 1 

                app.UIAxes.YScale = 'log'; 

            elseif app.yaxislogscaleCheckBox.Value == 0 

                app.UIAxes.YScale = 'linear'; 

            end 

             

            app.UIAxes.XLim = [app.x1delay.Value,app.x2delay.Value]; 

             

            app.UIAxes.YLim = [app.y1delay.Value,app.y2delay.Value]; 

             

            app.UIAxes.Title.String = 'Delay Histogram'; 

            app.UIAxes.Title.FontWeight = 'normal'; 

            app.UIAxes.XLabel.String = 'time (ns)'; 

            app.UIAxes.YLabel.String = 'coincidence counts per sec'; 

             

            %remove legend 

            legend(app.UIAxes,'off'); 

             

            %change tab to graph 

            app.TabGroup2.SelectedTab = app.GraphTab; 

             

            %change graph name 

            if app.autographnameCheckBox.Value ==1 

                filenamenodot = erase(app.filename,'.txt'); 

                app.ExportgraphnameEditField.Value = join([filenamenodot,'_delay_histogram']); 

            end 

             

            %change cc cal plot 

            app.ShowingraphDelay.Value = 0; 

            app.ShowingraphWt.Value = 0; 

             

            app.currentgraph = 2; 

        end 

        % Value changed function: HistogramwidthEditField 

        function HistogramwidthEditFieldValueChanged(app, event) 

            %lamp unready 

            app.ReadyLamp_Delay.Color ='red'; 

        end 

        % Value changed function: mergebinEditField 

        function mergebinEditFieldValueChanged(app, event) 

            %lamp unready 

            app.ReadyLamp_Delay.Color ='red'; 

        end 

        % Value changed function: StartportDropDown 

        function StartportDropDownValueChanged(app, event) 
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            %lamp unready 

            app.ReadyLamp_Delay.Color ='red'; 

        end 

        % Value changed function: StopportDropDown 

        function StopportDropDownValueChanged(app, event) 

            %lamp unready 

            app.ReadyLamp_Delay.Color ='red'; 

        end 

        % Button pushed function: copytoclipboardButton_Delay 

        function copytoclipboardButton_DelayPushed(app, event) 

            xfirst = find(app.timedata >= app.x1delay.Value,1); 

            xlast = find(app.timedata <= app.x2delay.Value,1,'last'); 

            arraytocoppy = [app.timedata(xfirst:xlast);app.ccps(xfirst:xlast)]; 

            num2clip(app,transpose(arraytocoppy)); 

        end 

        % Value changed function: ShowingraphDelay 

        function ShowingraphDelayValueChanged(app, event) 

            %vertical line for middle cc calculate 

            delete(app.showmidcc); 

            if app.currentgraph == 2 

                if app.ShowingraphDelay.Value == 1 

                    hold(app.UIAxes,'on') 

                    xdata = [app.delayEditField.Value app.delayEditField.Value]; 

                    ydata = [app.y1delay.Value app.y2delay.Value]; 

                    app.showmidcc = plot(app.UIAxes,xdata,ydata,'--'); 

                    hold(app.UIAxes,'off') 

                end 

            end 

             

             

        end 

        % Value changed function: delayEditField 

        function delayEditFieldValueChanged(app, event) 

            %vertical line for middle cc calculate 

            delete(app.showmidcc); 

            if app.currentgraph == 2 

                if app.ShowingraphDelay.Value == 1 

                    hold(app.UIAxes,'on') 

                    xdata = [app.delayEditField.Value app.delayEditField.Value]; 

                    ydata = [app.y1delay.Value app.y2delay.Value]; 

                    app.showmidcc = plot(app.UIAxes,xdata,ydata,'--'); 

                    hold(app.UIAxes,'off') 

                end 

            end 

             

            %vertical line for cc edge 

            delete(app.showleftcc); 
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            delete(app.showrightcc); 

            if app.currentgraph == 2 

                if app.ShowingraphWt.Value == 1 

                    hold(app.UIAxes,'on') 

                    xdata1 = [app.delayEditField.Value-app.WindowtimeEditField.Value/2 

app.delayEditField.Value-app.WindowtimeEditField.Value/2]; 

                    xdata2 = [app.delayEditField.Value+app.WindowtimeEditField.Value/2 

app.delayEditField.Value+app.WindowtimeEditField.Value/2]; 

                    ydata = [app.y1delay.Value app.y2delay.Value]; 

                    app.showleftcc = plot(app.UIAxes,xdata1,ydata,':r'); 

                    app.showrightcc = plot(app.UIAxes,xdata2,ydata,':r'); 

                    hold(app.UIAxes,'off') 

                end 

            end 

        end 

        % Value changed function: ShowingraphWt 

        function ShowingraphWtValueChanged(app, event) 

            %vertical line for cc edge 

            delete(app.showleftcc); 

            delete(app.showrightcc); 

            if app.currentgraph == 2 

                if app.ShowingraphWt.Value == 1 

                    hold(app.UIAxes,'on') 

                    xdata1 = [app.delayEditField.Value-app.WindowtimeEditField.Value/2 

app.delayEditField.Value-app.WindowtimeEditField.Value/2]; 

                    xdata2 = [app.delayEditField.Value+app.WindowtimeEditField.Value/2 

app.delayEditField.Value+app.WindowtimeEditField.Value/2]; 

                    ydata = [app.y1delay.Value app.y2delay.Value]; 

                    app.showleftcc = plot(app.UIAxes,xdata1,ydata,':r'); 

                    app.showrightcc = plot(app.UIAxes,xdata2,ydata,':r'); 

                    hold(app.UIAxes,'off') 

                end 

            end 

             

        end 

        % Value changed function: WindowtimeEditField 

        function WindowtimeEditFieldValueChanged(app, event) 

            %vertical line for cc edge 

            delete(app.showleftcc); 

            delete(app.showrightcc); 

            if app.currentgraph == 2 

                if app.ShowingraphWt.Value == 1 

                    hold(app.UIAxes,'on') 

                    xdata1 = [app.delayEditField.Value-app.WindowtimeEditField.Value/2 

app.delayEditField.Value-app.WindowtimeEditField.Value/2]; 

                    xdata2 = [app.delayEditField.Value+app.WindowtimeEditField.Value/2 

app.delayEditField.Value+app.WindowtimeEditField.Value/2]; 
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                    ydata = [app.y1delay.Value app.y2delay.Value]; 

                    app.showleftcc = plot(app.UIAxes,xdata1,ydata,':r'); 

                    app.showrightcc = plot(app.UIAxes,xdata2,ydata,':r'); 

                    hold(app.UIAxes,'off') 

                end 

            end 

             

        end 

        % Button pushed function: calculateButton 

 

             

- Interface with coincident count computed by selecting windows time range from the 

histogram 
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- Coding for CC computation 

% Button pushed function: calculateButton 

        function calculateButtonPushed(app, event) 

            %change tab to Data 

            app.TabGroup2.SelectedTab = app.DataTab; 

             

            ccleft = find(app.timedata < app.delayEditField.Value-

app.WindowtimeEditField.Value/2,1,'last')+ 1 ; 

            ccright = find(app.timedata > 

app.delayEditField.Value+app.WindowtimeEditField.Value/2,1)- 1; 

            sumcc = sum(app.ccps(ccleft:ccright)); 

            app.ccEditField.Value = sumcc; 

             

            %calculate accidental cc 

            startp = str2num(app.StartportDropDown.Value); 

            stopp = str2num(app.StopportDropDown.Value); 

            n1 = app.xport(startp); 

            n2 = app.xport(stopp); 

             

            if strcmp('CW',app.LasertypeDropDown.Value) == true 

                app.accidentalccEditField.Value = n1*n2*app.WindowtimeEditField.Value*1e-9; 

            elseif strcmp('Pulse',app.LasertypeDropDown.Value) == true 

                if app.WindowtimeEditField.Value>= app.PulsewidthEditField.Value 

                    app.accidentalccEditField.Value = (n1*n2/(app.PulsefreqEditField.Value*1e6)); 

                else 
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                    app.accidentalccEditField.Value = 

(n1*n2/(app.PulsefreqEditField.Value*1e6))*(app.WindowtimeEditField.Value/app.PulsewidthE

ditField.Value); 

                end 

            end 

             

            app.SNREditField.Value = app.ccEditField.Value/app.accidentalccEditField.Value; 

             

            %lamp 

            app.CCDataLamp.Color = 'green'; 

             

        end 

        % Value changed function: LasertypeDropDown 

        function LasertypeDropDownValueChanged(app, event) 

            %calculate accidental cc 

            startp = str2num(app.StartportDropDown.Value); 

            stopp = str2num(app.StopportDropDown.Value); 

            n1 = app.xport(startp); 

            n2 = app.xport(stopp); 

             

            if strcmp('CW',app.LasertypeDropDown.Value) == true 

                app.accidentalccEditField.Value = n1*n2*app.WindowtimeEditField.Value*1e-9; 

            elseif strcmp('Pulse',app.LasertypeDropDown.Value) == true 

                if app.WindowtimeEditField.Value>= app.PulsewidthEditField.Value 

                    app.accidentalccEditField.Value = (n1*n2/(app.PulsefreqEditField.Value*1e6)); 

                else 

                    app.accidentalccEditField.Value = 

(n1*n2/(app.PulsefreqEditField.Value*1e6))*(app.WindowtimeEditField.Value/app.PulsewidthE

ditField.Value); 

                end 

            end 

             

            app.SNREditField.Value = app.ccEditField.Value/app.accidentalccEditField.Value; 

             

        end 

        % Value changed function: PulsefreqEditField 

        function PulsefreqEditFieldValueChanged(app, event) 

            %calculate accidental cc 

            startp = str2num(app.StartportDropDown.Value); 

            stopp = str2num(app.StopportDropDown.Value); 

            n1 = app.xport(startp); 

            n2 = app.xport(stopp); 

             

            if strcmp('CW',app.LasertypeDropDown.Value) == true 

                app.accidentalccEditField.Value = n1*n2*app.WindowtimeEditField.Value*1e-9; 

            elseif strcmp('Pulse',app.LasertypeDropDown.Value) == true 

                if app.WindowtimeEditField.Value>= app.PulsewidthEditField.Value 
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                    app.accidentalccEditField.Value = (n1*n2/(app.PulsefreqEditField.Value*1e6)); 

                else 

                    app.accidentalccEditField.Value = 

(n1*n2/(app.PulsefreqEditField.Value*1e6))*(app.WindowtimeEditField.Value/app.PulsewidthE

ditField.Value); 

                end 

            end 

             

            app.SNREditField.Value = app.ccEditField.Value/app.accidentalccEditField.Value; 

             

        end 

        % Value changed function: PulsewidthEditField 

        function PulsewidthEditFieldValueChanged(app, event) 

            %calculate accidental cc 

            startp = str2num(app.StartportDropDown.Value); 

            stopp = str2num(app.StopportDropDown.Value); 

            n1 = app.xport(startp); 

            n2 = app.xport(stopp); 

             

            if strcmp('CW',app.LasertypeDropDown.Value) == true 

                app.accidentalccEditField.Value = n1*n2*app.WindowtimeEditField.Value*1e-9; 

            elseif strcmp('Pulse',app.LasertypeDropDown.Value) == true 

                if app.WindowtimeEditField.Value>= app.PulsewidthEditField.Value 

                    app.accidentalccEditField.Value = (n1*n2/(app.PulsefreqEditField.Value*1e6)); 

                else 

                    app.accidentalccEditField.Value = 

(n1*n2/(app.PulsefreqEditField.Value*1e6))*(app.WindowtimeEditField.Value/app.PulsewidthE

ditField.Value); 

                end 

            end 

             

            app.SNREditField.Value = app.ccEditField.Value/app.accidentalccEditField.Value; 

             

        end 

 

-  

-  
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Interface in CC vs time plot 

 

- Coding for cc vs time 

% Button pushed function: ComputeButton_CC 

        function ComputeButton_CCPushed(app, event) 

            hw = app.HistogramwidthEditField.Value*1000/app.binwidth; 

            diffA=diff(app.A); %dif of time in adjecenct tile 

            difflo = find(diffA < hw+1); %find tile where dif < width 

            nlo = numel(difflo); %number of tiles in such condition 

            startp = str2num(app.StartportDropDown.Value); 

            stopp = str2num(app.StopportDropDown.Value); 

            app.hisseccc = zeros(1 ,floor((app.A(end)-app.A(1))*app.binwidth*(10^(-12))+1) ); 

            p=1; 

            ccdif =[]; 

            for i =1:nlo 

                j=1; %tile seperation 

                while app.A(difflo(i)+j)-app.A(difflo(i)) < hw+1 

                    if and(app.B(difflo(i)+j) == stopp,app.B(difflo(i)) == startp) 

                        ccdif(p)= (app.A(difflo(i)+j)-app.A(difflo(i)))*app.binwidth*(10^(-3)); %here 

ccdif cal in unit of ns instead of bin 

                        if abs(ccdif(p)-app.delayEditField.Value) <= app.WindowtimeEditField.Value/2 

                            seccc = floor((app.A(difflo(i)+j)-app.A(1))*app.binwidth*(10^(-12)))+1; 

                            app.hisseccc(seccc) = app.hisseccc(seccc) +1; 

                        end 

                        p = p+1; 

                    elseif and(app.B(difflo(i)+j) == startp,app.B(difflo(i)) == stopp) 
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                        ccdif(p)= (app.A(difflo(i)+j)-app.A(difflo(i)))*app.binwidth*(10^(-3));  

                        if abs(ccdif(p)+app.delayEditField.Value) <= app.WindowtimeEditField.Value/2 

                            seccc = floor((app.A(difflo(i)+j)-app.A(1))*app.binwidth*(10^(-12)))+1; 

                            app.hisseccc(seccc) = app.hisseccc(seccc) +1; 

                        end 

                        p = p+1; 

                    end 

                        j=j+1; 

                end 

            end 

             

            %Lamp on 

            app.ReadyLamp_CC.Color = 'green'; 

             

            %set the Value 

            app.timebinwidthCCplot.Value = 1; 

            app.x1cc.Value = 0; 

            app.x2cc.Value = numel(app.hisseccc)-1; 

            app.y1cc.Value = 0; 

            app.y2cc.Value = max(app.hisseccc)*1.2; 

            app.ccxDropDown.Value = 'sec'; 

             

        end 

        % Value changed function: ccxDropDown 

        function ccxDropDownValueChanged(app, event) 

            %remember timediv b4 change 

            timedivb4 = app.cctimediv; 

             

            %set timediv according to dropdown value 

            if strcmp('sec',app.ccxDropDown.Value) == true 

                app.cctimediv = 1; 

            elseif strcmp('min',app.ccxDropDown.Value) == true 

                app.cctimediv = 60; 

            elseif strcmp('hour',app.ccxDropDown.Value) == true 

                app.cctimediv = 60*60; 

            end 

             

            %change number in time box 

            app.x1cc.Value = app.x1cc.Value*timedivb4/app.cctimediv; 

            app.x2cc.Value = app.x2cc.Value*timedivb4/app.cctimediv; 

             

        end 

        % Button pushed function: plotccvstimeButton 

        function plotccvstimeButtonPushed(app, event) 

            app.ccvstime =[]; 

            %caculate x y data 

            if app.timebinwidthCCplot.Value ==1 
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                app.ccvstime = app.hisseccc; 

                app.cctime = 0:numel(app.hisseccc)-1 ; 

            else 

                timebin = app.timebinwidthCCplot.Value; 

                %the folowing code cal mean for every time bin 

                numadd = timebin-mod(numel(app.hisseccc),timebin); 

                A2 = app.hisseccc; 

                if numadd ~= 0 

                    A2(end+1:end+numadd)=missing; %add nan to fill b4 reshape 

                end 

                S=reshape(A2,timebin,[]); 

                app.ccvstime = mean(S,'omitnan'); 

                app.cctime = 0:timebin:(numel(app.ccvstime)-1)*timebin; 

            end 

             

            %ploting 

            plot(app.UIAxes,app.cctime/app.cctimediv,app.ccvstime) 

             

            %plot detail 

            app.UIAxes.XLim = [app.x1cc.Value,app.x2cc.Value]; 

            app.UIAxes.YLim = [app.y1cc.Value,app.y2cc.Value]; 

            app.UIAxes.Title.String = 'coincidence count vs time'; 

            app.UIAxes.Title.FontWeight = 'normal'; 

            if app.cctimediv == 1 

                app.UIAxes.XLabel.String = 'time (sec)'; 

            elseif app.cctimediv ==60 

                app.UIAxes.XLabel.String = 'time (min)'; 

            elseif app.cctimediv == 3600 

                app.UIAxes.XLabel.String = 'time (hour)'; 

            end 

            app.UIAxes.YScale = 'linear'; 

            app.UIAxes.YLabel.String = 'coincidence counts per sec'; 

             

            legend(app.UIAxes,'off'); 

             

            %change tab to graph 

            app.TabGroup2.SelectedTab = app.GraphTab; 

             

            %change graph name 

            if app.autographnameCheckBox.Value ==1 

                filenamenodot = erase(app.filename,'.txt'); 

                app.ExportgraphnameEditField.Value = join([filenamenodot,'_cc_vs_time']); 

            end 

            app.currentgraph = 3; 

        end 

        % Button pushed function: copytoclipboardCC 

        function copytoclipboardCCButtonPushed(app, event) 
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            % data in plot range 

            xfirst = find(app.cctime >= app.x1cc.Value*app.cctimediv,1); 

            xlast = find(app.cctime <= app.x2cc.Value*app.cctimediv,1,'last'); 

            arraytocoppy = [app.cctime(xfirst:xlast)/app.cctimediv;app.ccvstime(:,(xfirst:xlast))]; 

            num2clip(app,transpose(arraytocoppy)); 

        end 

 

- Coding in exporting part 

% Button pushed function: selectfolderButton 

        function selectfolderButtonPushed(app, event) 

            pathhandle = uigetdir(app.exportpath); 

            if pathhandle ~= 0 

                app.exportpath = pathhandle; 

            end 

             

            %this cause bug that defocus the app 

            %refocus with next two commands 

            drawnow; 

            figure(app.UIFigure) 

        end 

        % Button pushed function: ExportButton 

        function ExportButtonPushed(app, event) 

            % Create a temporary figure with axes. 

            fig = figure; 

            fig.Visible = 'off'; 

            figAxes = axes(fig); 

            % Copy all UIAxes children, take over axes limits and aspect ratio.             

            allChildren = app.UIAxes.XAxis.Parent.Children; 

            copyobj(allChildren, figAxes) 

            figAxes.XLim = app.UIAxes.XLim; 

            figAxes.YLim = app.UIAxes.YLim; 

            figAxes.Title.String = app.UIAxes.Title.String; 

            figAxes.Title.FontWeight = app.UIAxes.Title.FontWeight; 

            figAxes.XLabel.String = app.UIAxes.XLabel.String; 

            figAxes.YLabel.String = app.UIAxes.YLabel.String; 

            figAxes.DataAspectRatio = app.UIAxes.DataAspectRatio; 

            figAxes.XGrid = app.UIAxes.XGrid; 

            figAxes.YGrid = app.UIAxes.YGrid; 

            figAxes.YScale = app.UIAxes.YScale; 

             

            app.graphname = app.ExportgraphnameEditField.Value; 

            % Save as jpg files. 

            saveas(fig, fullfile(app.exportpath, app.graphname), 'jpg'); 

            % Delete the temporary figure. 

            delete(fig); 

        end 

  



77 
 

 

APPENDIX C 

 



78 
 

 

MATLAB coding for density matrix 

clear 

%input 

filename = 'sixteen_states_density_matrix'; 

hw = 100; %histogram_width 

hw_m = 2; %merge hw 

tau2 = 6; %delay correction 

wt = 39; %windows time (bin) 

  

timecollectcc = [0 340 675 1020 1360 1695 2070 2400 2755 3130 3470 3820 4170 4525 4880 

5310]; 

ccbinwidth = 300; 

  

%complier 

fileID = fopen(filename); 

C = textscan(fileID,'%f %f ','Delimiter',','); 

fclose(fileID); 

A=C{1}; %bin where the count triggered 

B=C{2}; %port where the count triggered 

nA = numel(A); 

A=A-A(1); %set initial time to 0 

  

%delay correction 

for k = 1:nA 

    if B(k) == 2 

        A(k) = A(k)+tau2; 

    end 

end 

  

diffA=diff(A); %dif of time in adjecenct tile 

difflo = find(diffA < hw+1); %find tile where dif < width 

nlo = numel(difflo); %number of tiles in such condition 

  

hisseccc = zeros(1 ,floor((A(end)-A(1))*81*(10^(-12))+1) ); 

p=1; 

for i =1:nlo 

    j=1; %tile seperation 

    while A(difflo(i)+j)-A(difflo(i)) < hw+1 

        if B(difflo(i)+j) ~= B(difflo(i)) 

            ccdif(p)= (A(difflo(i)+j)-A(difflo(i)))*(B(difflo(i)+j) - B(difflo(i))); 

            if abs(ccdif(p)) <= wt 

                seccc = floor((A(difflo(i)+j)-A(1))*81*(10^(-12)))+1; 

                hisseccc(seccc) = hisseccc(seccc) +1; 

            end 

            p = p+1; 

        end 

            j=j+1; 

    end 
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end 

  

%calculate cc/sec 

cc = nlo/((A(end)-A(1))*81*(10^(-12))); 

cc12 = numel(find(abs(ccdif) <= wt))/((A(end)-A(1))*81*(10^(-12))); 

  

%histogram(ccdif,100) 

edges = -1*hw:hw_m:hw; 

xdata = -1*hw+hw_m/2:hw_m:hw-hw_m/2; 

timedata = xdata*0.081; 

Nhis = histcounts(ccdif,edges); 

r1 = sum(B(:) == 1); 

r2 = sum(B(:) == 2); 

div = r1*r2; 

gtwo = Nhis./(div*81*10^-12); 

ccps = Nhis./((A(end)-A(1))*81*(10^(-12))); 

%plot(timedata,ccps) 

%xlabel('tau(ns)') 

%ylabel('cc/sec') 

%title('cc per sec vs time delay between port 1 and 2') 

%text(max(timedata)*0.6,max(gtwo)*0.6,join([num2str(cc), '  cc/sec' ])) 

%text(max(timedata)*0.6,max(ccps)*0.6,join([num2str(cc12), '  cc12/sec' ])) 

  

%calculate single count 

p1c = numel(find(B ==1))/((A(end)-A(1))*81*(10^(-12))); 

p2c = numel(find(B ==2))/((A(end)-A(1))*81*(10^(-12))); 

  

hisseccc(end) = []; 

hisminutecc = zeros(1 ,floor((A(end)-A(1))*81*(10^(-12))/60) ); 

for m = 1:floor((seccc-1)/60) 

    for n = 1:60 

    hisminutecc(m) = hisminutecc(m) + hisseccc(((m-1)*60)+n); 

    end 

end 

%plot(hisseccc) 

%plot(hisminutecc) 

  

%calculate cc bin 

ncollecbin = numel(timecollectcc); 

for l =1:ncollecbin 

    ccavg(l) = mean(hisseccc(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth)); 

    ccstd(l) = std(hisseccc(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth)); 

end 

  

%calculate singlecount vs time 

hissecnum1 = zeros(1 ,floor((A(end)-A(1))*81*(10^(-12))+1) ); 

hissecnum2 = zeros(1 ,floor((A(end)-A(1))*81*(10^(-12))+1) ); 

for t = 1:numel(A) 
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    seccount = floor((A(t)-A(1))*81*(10^(-12))+1); 

    if B(t) == 1 

        hissecnum1(seccount) = hissecnum1(seccount)+1; 

    elseif B(t) == 2 

        hissecnum2(seccount) = hissecnum2(seccount)+1; 

    end 

end 

hissecnum1(end)=[]; 

hissecnum2(end)=[]; 

for l =1:ncollecbin 

    single1(l) = mean(hissecnum1(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth)); 

    single1std(l) = std(hissecnum1(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth)); 

    single2(l) = mean(hissecnum2(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth)); 

    single2std(l) = std(hissecnum2(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth)); 

end 

  

netcc = hisseccc-hissecnum1.*hissecnum2*wt*81e-12; 

for q = 1:numel(netcc) 

    if or(or(hissecnum1(q) < 3500,hissecnum1(q) > 5000),or(hissecnum2(q) < 3500,hissecnum2(q) 

> 5000)) 

        netcc(q) = 0; 

        hissecnum1(q) = 0; 

        hissecnum2(q) = 0; 

    end 

end 

%plot(nonzeros(netcc)) 

%plot(nonzeros(hissecnum1)) 

%plot(nonzeros(hissecnum2)) 

  

for l =1:ncollecbin 

    netccavg(l) =  mean(nonzeros(netcc(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth))); 

    netccstd(l) =  std(nonzeros(netcc(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth))); 

end 

  

  

%%%%density matrix calculation 

n = netccavg; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%defination 

part%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

%define polarization matrix 

H = [1 0;0 0]; Hp = [1 ; 0]; 

V = [0 0;0 1]; Vp = [0;1]; 

D = (1/2)*[1 1;1 1]; Dp = (1/sqrt(2))*[1;1]; 

A = (1/2)*[1 -1;-1 1]; Ap = (1/sqrt(2))*[1;-1]; 

R = (1/2)*[1 1i;-1i 1]; Rp = (1/sqrt(2))*[1;-1i]; 

L = (1/2)*[1 -1i;1i 1]; Lp = (1/sqrt(2))*[1;1i]; 
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phi(:,1) = kron(Hp,Hp);phi(:,2) = kron(Hp,Vp);phi(:,3) = kron(Vp,Vp);phi(:,4) = kron(Vp,Hp); 

phi(:,5) = kron(Rp,Hp);phi(:,6) = kron(Rp,Vp);phi(:,7) = kron(Dp,Vp);phi(:,8) = kron(Dp,Hp); 

phi(:,9) = kron(Dp,Rp);phi(:,10) = kron(Dp,Dp);phi(:,11) = kron(Rp,Dp);phi(:,12) = 

kron(Hp,Dp); 

phi(:,13) = kron(Vp,Dp);phi(:,14) = kron(Vp,Lp);phi(:,15) = kron(Hp,Lp);phi(:,16) = 

kron(Rp,Lp); 

%define M matrix (density matrix = sum ni*Mi) 

M = (1/2)*[2 -1+1i -1-1i 1;-1-1i 0 1i 0;-1+1i -1i 0 0;1 0 0 0]; 

M(:,:,2) = (1/2)*[0 -1+1i 0 1; -1-1i 2 1i -1-1i; 0 -1i 0 0; 1 -1+1i 0 0]; 

M(:,:,3) = (1/2)*[0 0 0 1; 0 0 1i -1-1i; 0 -1i 0 -1+1i; 1 -1+1i -1-1i 2]; 

M(:,:,4) = (1/2)*[0 0 -1-1i 1;0 0 1i 0; -1+1i -1i 2 -1+1i;1 0 -1-1i 0]; 

M(:,:,5) = (1/2)*[0 0 2i -1-1i;0 0 1-1i 0;-2i 1+1i 0 0; -1+1i 0 0 0]; 

M(:,:,6) = (1/2)*[0 0 0 -1-1i;0 0 1-1i 2i; 0 1+1i 0 0;-1+1i -2i 0 0]; 

M(:,:,7) = (1/2)*[0 0 0 -1-1i;0 0 -1+1i 2;0 -1-1i 0 0;-1+1i 2 0 0]; 

M(:,:,8) = (1/2)*[0 0 2 -1-1i;0 0 -1+1i 0;2 -1-1i 0 0;-1+1i 0 0 0]; 

M(:,:,9) = [0 0 0 1i; 0 0 -1i 0;0 1i 0 0;-1i 0 0 0]; 

M(:,:,10) = [0 0 0 1; 0 0 1 0; 0 1 0 0; 1 0 0 0]; 

M(:,:,11) = [0 0 0 1i; 0 0 1i 0;0 -1i 0 0; -1i 0 0 0]; 

M(:,:,12) = (1/2)*[0 2 0 -1-1i; 2 0 -1-1i 0; 0 -1+1i 0 0; -1+1i 0 0 0]; 

M(:,:,13) = (1/2)*[0 0 0 -1-1i;0 0 -1-1i 0; 0 -1+1i 0 2; -1+1i 0 2 0]; 

M(:,:,14) = (1/2)*[0 0 0 -1+1i;0 0 1-1i 0;0 1+1i 0 -2i;-1-1i 0 2i 0]; 

M(:,:,15) = (1/2)*[0 -2i 0 -1+1i;2i 0 1-1i 0;0 1+1i 0 0;-1-1i 0 0 0]; 

M(:,:,16) = [ 0 0 0 1;0 0 -1 0;0 -1 0 0; 1 0 0 0]; 

%define measurement operator (measurment to get ni) %kron = tensor product 

O = kron(Hp,Hp); 

O(:,2) = kron(Hp,Vp); 

O(:,3) = kron(Vp,Vp); 

O(:,4) = kron(Vp,Hp); 

O(:,5) = kron(Rp,Hp); 

O(:,6) = kron(Rp,Vp); 

O(:,7) = kron(Dp,Vp); 

O(:,8) = kron(Dp,Hp); 

O(:,9) = kron(Dp,Rp); 

O(:,10) = kron(Dp,Dp); 

O(:,11) = kron(Rp,Dp); 

O(:,12) = kron(Hp,Dp); 

O(:,13) = kron(Vp,Dp); 

O(:,14) = kron(Vp,Lp); 

O(:,15) = kron(Hp,Lp); 

O(:,16) = kron(Rp,Lp); 

%define fvui (for error calculation) for more info see error_003 file 

fvui(:,:,1) = ...  

[ -2.0,    0,    0, -2.0, 0, 0,    0,  4.0,    0,    0, 0,    0,    0,    0,    0, 0;... 

     0, -2.0, -2.0,    0, 0, 0,  4.0,    0,    0,    0, 0,    0,    0,    0,    0, 0;... 

     0,  2.0,  2.0,    0, 0, 0, -4.0,    0,    0,    0, 0,    0,    0,    0,    0, 0;... 

   2.0,    0,    0,  2.0, 0, 0,    0, -4.0,    0,    0, 0,    0,    0,    0,    0, 0;... 

     0,    0,    0,    0, 0, 0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0;... 

     0,    0,    0,    0, 0, 0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0;... 
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     0, -2.0,  2.0,    0, 0, 0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0;... 

  -2.0,    0,    0,  2.0, 0, 0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0;... 

  -2.0, -2.0,  2.0,  2.0, 0, 0,    0,    0,    0,    0, 0,    0,    0, -2.0,  2.0, 0;... 

     0,    0,    0,    0, 0, 0,    0,    0,    0,    0, 0, -2.0,  2.0,    0,    0, 0;... 

     0,    0,    0,    0, 0, 0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0;... 

     0,    0,    0,    0, 0, 0,    0,    0,    0,  4.0, 0, -2.0, -2.0,    0,    0, 0;... 

     0,    0,    0,    0, 0, 0,    0,    0,    0, -4.0, 0,  2.0,  2.0,    0,    0, 0;... 

     0,    0,    0,    0, 0, 0, -4.0, -4.0,  4.0,    0, 0,    0,    0,  2.0,  2.0, 0;... 

     0,    0,    0,    0, 0, 0,  4.0,  4.0, -4.0,    0, 0,    0,    0, -2.0, -2.0, 0;... 

     0,    0,    0,    0, 0, 0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0]; 

  

fvui(:,:,2) = ... 

[    0,    0,    0,    0, 2.0,   0,    0, -2.0,    0,    0,   0,    0,    0,    0,    0,    0;... 

     0,    0,    0,    0,   0, 2.0, -2.0,    0,    0,    0,   0,    0,    0,    0,    0,    0;... 

     0, -2.0, -2.0,    0,   0, 2.0,  2.0,    0,    0,    0,   0,    0,    0,    0,    0,    0;... 

  -2.0,    0,    0, -2.0, 2.0,   0,    0,  2.0,    0,    0,   0,    0,    0,    0,    0,    0;... 

  -1.0,    0,    0, -1.0,   0,   0,    0,  2.0,    0,    0,   0,    0,    0,    0,    0,    0;... 

     0, -1.0, -1.0,    0,   0,   0,  2.0,    0,    0,    0,   0,    0,    0,    0,    0,    0;... 

     0,    0, -2.0,    0,   0, 2.0,    0,    0,    0,    0,   0,    0,    0,    0,    0,    0;... 

     0,    0,    0, -2.0, 2.0,   0,    0,    0,    0,    0,   0,    0,    0,    0,    0,    0;... 

     0,    0, -2.0, -2.0, 2.0, 2.0,    0,    0,    0,    0,   0,    0,    0,  2.0,    0, -2.0;... 

     0,    0,    0,    0,   0,   0,    0,    0,    0,    0, 2.0,    0, -2.0,    0,    0,    0;... 

     0,    0,    0,    0,   0,   0,    0,    0,    0,  2.0,   0, -1.0, -1.0,    0,    0,    0;... 

     0,    0,    0,    0,   0,   0,    0,    0,    0, -2.0, 2.0,    0,    0,    0,    0,    0;... 

     0,    0,    0,    0,   0,   0,    0,    0,    0,  2.0, 2.0, -2.0, -2.0,    0,    0,    0;... 

     0,    0,    0,    0,   0,   0,  2.0,  2.0, -2.0,    0,   0,    0,    0, -2.0, -2.0,  2.0;... 

     0,    0,    0,    0,   0,   0, -2.0, -2.0,  2.0,    0,   0,    0,    0,    0,    0,  2.0;... 

     0,    0,    0,    0,   0,   0,  2.0,  2.0, -2.0,    0,   0,    0,    0, -1.0, -1.0,    0]; 

  

fvui(:,:,3) = ... 

[ -2.0, -2.0,    0,    0,    0,    0,    0,    0, 0,    0,    0,  4.0,    0, 0, 0, 0;... 

   2.0,  2.0,    0,    0,    0,    0,    0,    0, 0,    0,    0, -4.0,    0, 0, 0, 0;... 

     0,    0,  2.0,  2.0,    0,    0,    0,    0, 0,    0,    0,    0, -4.0, 0, 0, 0;... 

     0,    0, -2.0, -2.0,    0,    0,    0,    0, 0,    0,    0,    0,  4.0, 0, 0, 0;... 

     0,    0,    0,    0, -2.0, -2.0,    0,    0, 0,    0,  4.0,    0,    0, 0, 0, 0;... 

     0,    0,    0,    0,  2.0,  2.0,    0,    0, 0,    0, -4.0,    0,    0, 0, 0, 0;... 

     0,    0,    0,    0,    0,    0,  2.0,  2.0, 0, -4.0,    0,    0,    0, 0, 0, 0;... 

     0,    0,    0,    0,    0,    0, -2.0, -2.0, 0,  4.0,    0,    0,    0, 0, 0, 0;... 

     0,    0,    0,    0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0, 0, 0;... 

     0,    0,    0,    0,    0,    0,  2.0, -2.0, 0,    0,    0,    0,    0, 0, 0, 0;... 

     0,    0,    0,    0, -2.0,  2.0,    0,    0, 0,    0,    0,    0,    0, 0, 0, 0;... 

  -2.0,  2.0,    0,    0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0, 0, 0;... 

     0,    0,  2.0, -2.0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0, 0, 0;... 

     0,    0,    0,    0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0, 0, 0;... 

     0,    0,    0,    0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0, 0, 0;... 

     0,    0,    0,    0,    0,    0,    0,    0, 0,    0,    0,    0,    0, 0, 0, 0]; 

  

fvui(:,:,4) = ... 
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[  2.0,  2.0,    0,    0,    0,    0,    0,    0,   0,    0,    0, -2.0,    0,    0, -2.0,    0;... 

     0,    0,    0,    0,    0,    0,    0,    0,   0,    0,    0,  2.0,    0,    0, -2.0,    0;... 

     0,    0,    0,    0,    0,    0,    0,    0,   0,    0,    0,    0,  2.0, -2.0,    0,    0;... 

     0,    0,  2.0,  2.0,    0,    0,    0,    0,   0,    0,    0,    0, -2.0, -2.0,    0,    0;... 

     0,    0,    0,    0,  2.0,  2.0,    0,    0,   0,    0, -2.0,    0,    0,    0,    0, -2.0;... 

     0,    0,    0,    0,    0,    0,    0,    0,   0,    0,  2.0,    0,    0,    0,    0, -2.0;... 

     0,    0,    0,    0,    0,    0, -2.0, -2.0, 2.0,  2.0,    0,    0,    0,    0,    0,    0;... 

     0,    0,    0,    0,    0,    0,    0,    0, 2.0, -2.0,    0,    0,    0,    0,    0,    0;... 

     0,    0,    0,    0,    0,    0, -1.0, -1.0,   0,  2.0,    0,    0,    0,    0,    0,    0;... 

     0,    0,    0,    0,    0,    0, -2.0,    0, 2.0,    0,    0,    0,    0,    0,    0,    0;... 

     0,    0,    0,    0,  2.0,    0,    0,    0,   0,    0,    0,    0,    0,    0,    0, -2.0;... 

   2.0,    0,    0,    0,    0,    0,    0,    0,   0,    0,    0,    0,    0,    0, -2.0,    0;... 

     0,    0,    0,  2.0,    0,    0,    0,    0,   0,    0,    0,    0,    0, -2.0,    0,    0;... 

     0,    0, -1.0, -1.0,    0,    0,    0,    0,   0,    0,    0,    0,  2.0,    0,    0,    0;... 

  -1.0, -1.0,    0,    0,    0,    0,    0,    0,   0,    0,    0,  2.0,    0,    0,    0,    0;... 

     0,    0,    0,    0, -1.0, -1.0,    0,    0,   0,    0,  2.0,    0,    0,    0,    0,    0]; 

  

sumop = [0 0 0 -1; 0 0 1 0; 0 1 0 0; -1 0 0 0]; 

  

%%%%%%%%%%%%%%%%%%%end of defination 

part%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%Calculation 

part%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%calculate (experimentally) density matrix  

for i=1:16 

    nM(:,:,i) = n(i)*M(:,:,i); 

end 

N = sum(n(1:4)); 

den = sum(nM,3)/N; 

  

%create T0(T_zero) 

T0(1,1) = sqrt(det(den)/minor(den,1,1)); 

T0(2,1) = minor(den,1,2)/sqrt(minor(den,1,1)*minor2(den,1,1,2,2)); 

T0(2,2) = sqrt(minor(den,1,1)/minor2(den,1,1,2,2)); 

T0(3,1) = minor2(den,1,2,2,3)/(sqrt(den(4,4))*sqrt(minor2(den,1,1,2,2))); 

T0(3,2) = minor2(den,1,1,2,3)/(sqrt(den(4,4))*sqrt(minor2(den,1,1,2,2))); 

T0(3,3) = sqrt(minor2(den,1,1,2,2)/den(4,4)); 

T0(4,1) = den(4,1)/sqrt(den(4,4)); 

T0(4,2) = den(4,2)/sqrt(den(4,4)); 

T0(4,3) = den(4,3)/sqrt(den(4,4)); 

T0(4,4) = sqrt(den(4,4)); 

%t0Cal 

t0(1) = real(T0(1,1)); 

t0(2) = real(T0(2,2)); 

t0(3) = real(T0(3,3)); 

t0(4) = real(T0(4,4)); 

t0(5) = real(T0(2,1)); 
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t0(6) = imag(T0(2,1)); 

t0(7) = real(T0(3,2)); 

t0(8) = imag(T0(3,2)); 

t0(9) = real(T0(4,3)); 

t0(10) = imag(T0(4,3)); 

t0(11) = real(T0(3,1)); 

t0(12) = imag(T0(3,1)); 

t0(13) = real(T0(4,2)); 

t0(14) = imag(T0(4,2)); 

t0(15) = real(T0(4,1)); 

t0(16) = imag(T0(4,1)); 

  

%fine the minimum of L function with t0 initial 

options = optimset('PlotFcns',@optimplotfval,'TolFun',1.e-

13,'MaxFunEvals',10000000,'MaxIter',5e5); 

tans = fminsearch(@(t)genL(t,O,n), t0, options); 

%create physically density matrix 

Tans = [tans(1) 0 0 0;tans(5)+tans(6)*1i tans(2) 0 0;tans(11)+tans(12)*1i ... 

    tans(7)+tans(8)*1i tans(3) 0;tans(15)+tans(16)*1i tans(13)+tans(14)*1i ... 

    tans(9)+tans(10)*1i tans(4)]; 

den_p = (Tans'*Tans)/trace(Tans'*Tans) 

  

%calSv 

for i = 1:16 

    Sv(i) = real(phi(:,i)'*den_p*phi(:,i)); 

end 

%error calculation 

for v = 1:16 

    sumu1u2i =0; 

    for ir = 1:4 

        sumu1u2 = 0; 

        sumfortest(v,ir) = 0; 

        for u1 = 1:16 

            for u2 = 1:16 

                sumu1u2 = sumu1u2 + (0.5*pi/180)^2*fvui(v,u1,ir)*fvui(v,u2,ir)*n(u1)*n(u2)/(N^2); 

                sumfortest(v,ir) = sumfortest(v,ir) + 

(0.5*pi/180)^2*fvui(v,u1,ir)*fvui(v,u2,ir)*n(u1)*n(u2)/(N^2); 

            end 

        end 

        sumu1u2i = sumu1u2i + sumu1u2; 

    end 

    lamV(v) = (n(v)/(N^2))+sumu1u2i; 

end 

%density matrix error 

for i =1:4 

    for j=1:4 

        deldensqr(i,j) = 0; 

        for v = 1:16 
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            deldensqr(i,j) = deldensqr(i,j)+ (M(i,j,v))^2*lamV(v); 

        end 

    end 

end 

delden = sqrt(deldensqr); 

  

[evec,eval] = eig(den_p); 

%Von Newmann Entropy 

S = 0; 

for a=1:4 

    S = S-eval(a,a)*log2(eval(a,a)); 

end 

delSsqr = 0; 

for v = 1:16 

    sumphiM = 0; 

    for a = 1:4 

        sumphiM = sumphiM + (evec(:,a)'*M(:,:,v)*evec(:,a)*(1+log(eval(a,a)))/log(2)); 

    end 

    delSsqr = delSsqr + lamV(v)*sumphiM^2; 

end 

delS = sqrt(delSsqr); 

  

%linear entropy 

P = 0; 

for a = 1:4 

    P = P + (eval(a,a))^2; 

end 

P = (4/3)*(1-P); 

delPsqr = 0; 

for v = 1:16 

    sumtrS = 0; 

    for u = 1:16 

        sumtrS = sumtrS + trace(M(:,:,v)*M(:,:,u))*n(u)/N; 

    end 

    delPsqr = delPsqr + (sumtrS*(8/3))^2*lamV(v); 

end 

delP = sqrt(delPsqr); 

  

%concurence 

Rmat = zeros(4); 

for u = 1:16 

    for v =1:16 

        qmat(:,:,u,v) = M(:,:,u)*sumop*transpose(M(:,:,v))*sumop... 

            + M(:,:,v)*sumop*transpose(M(:,:,u))*sumop; 

        Rmat = Rmat + qmat(:,:,u,v)*Sv(u)*Sv(v); 

    end 

end 

Rmat = Rmat/2; 
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[revec,reval] = eig(Rmat); 

[r,ind] = sort(diag(reval),'descend'); 

c = max([0 ,sqrt(r(1))-sqrt(r(2))-sqrt(r(2))-sqrt(r(3))]); 

T = c^2; %tangle 

E = h((1+sqrt(1-c^2))/2); %entangle 

  

%HVpVH = [0 0 0 0; 0 0.5 0.5 0; 0 0.5 0.5 0; 0 0 0 0]; 

%fidelity = (trace(sqrtm(sqrtm(HVpVH)*den_p*sqrtm(HVpVH))))^2; 

  

%%%%%%%%%%%%%%%%%End of calculation 

part%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%underneath here are function 

defination%%%%%%%%%%%%%%%% 

  

%define likelihood fuction L(t1,t2,...,t16) 

function L = genL(t,O,n) 

T = [t(1) 0 0 0;t(5)+t(6)*1i t(2) 0 0;t(11)+t(12)*1i t(7)+t(8)*1i t(3) ... 

    0;t(15)+t(16)*1i t(13)+t(14)*1i t(9)+t(10)*1i t(4)]; 

den_p = (T'*T)/trace(T'*T); 

N = sum(n(1:4)); 

for j = 1:16 

    den_p_measure(j) = real(O(:,j)'*den_p*O(:,j)); 

    L_mat(j) = ((N*den_p_measure(j)-n(j))^2)/(2*N*den_p_measure(j)); 

end 

L = sum(L_mat); 

end 

%define minor function 

function Det_minor=minor(x,p,q) %det of x matrix without p-row and q columm 

x0= x; 

x0(p,:) = []; 

x0(:,q) = []; 

Det_minor = det(x0); 

end 

%define minor2 function 

function Det_minor2=minor2(x,p,q,r,s) %without p,r row and q,s columm 

x0= x; 

x0([p r],:) = []; 

x0(:,[q s]) = []; 

Det_minor2 = det(x0); 

end 

function hcal = h(x) 

hcal = -x*log2(x)-(1-x)*log2(1-x); 

end 
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Laser source specifications 

 
CW laser spectrum 

 

Pulse laser spectrum 
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Universal Optical Programmable Multi-Qubit Gates for Polarization Qubits.” Quantum 

Information Processing 19 (June 8, 2020). 
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