

Establishing Polarization Qubits from A Photon-Pair Source and

A Design of An Alternative Scheme of Universal Optical

Programmable Multi-Qubit Gates

Paphon Phewkhom

A Thesis Submitted in Fulfillment of the Requirements for the

Degree of Master of Science in Physics (International Program)

Prince of Songkla University

2022

Copyright of Prince of Songkla University

I

Establishing Polarization Qubits from A Photon-Pair Source and

A Design of An Alternative Scheme of Universal Optical

Programmable Multi-Qubit Gates

Paphon Phewkhom

A Thesis Submitted in Fulfillment of the Requirements for the

Degree of Master of Science in Physics (International Program)

Prince of Songkla University

2022

Copyright of Prince of Songkla University

II

Thesis Title Establishing polarization qubits from a photon-pair source and a

design of an alternative scheme of universal optical

programmable multi-qubit gates

Author Mr. Paphon Phewkhom

Major Program Physics (International Program)

 __

Major Advisor

...

(Asst. Prof. Dr. Pruet Kalasuwan)

Examining Committee :

...................................Chairperson

(Asst. Prof. Dr. Chalongrat Daengngam)

...Committee

(Asst. Prof. Dr. Pruet Kalasuwan)

...Committee

(Dr. Ekkarat Pongophas)

...

(Asst. Prof. Dr. Thakerng Wongsirichot)

Acting Dean of Graduate School

The Graduate School, Prince of Songkla University, has approved this thesis as

fulfillment of the requirements for the Master of Science Degree in Physics

(International Program)

III

This is to certify that the work here submitted is the result of the candidate’s own

investigations. Due acknowledgement has been made of any assistance received.

..Signature

(Asst. Dr. Pruet Kalasuwan)

Major Advisor

..Signature

(Mr. Paphon Phewkhom)

Candidate

IV

I hereby certify that this work has not been accepted in substance for any degree, and

is not being currently submitted in candidature for any degree.

...Signature

(Mr. Paphon Phewkhom)

Candidate

V

Thesis Title Establishing polarization qubits from a photon-pair

source and a design of an alternative scheme of

universal optical programmable multi-qubit gates

Author Mr. Paphon Phewkhom

Major Program Physics (International Program)

Academic Year 2022

ABSTRACT

Due to the potential of quantum computers to revolutionize computation by

solving some types of traditionally intractable problems by the classical computer, this

field of study has become increasingly active and diverse, involving work on

developing quantum processing hardware as well as research into applications with a

potential large speed-up compared to simulations on classical (non-quantum)

computers. One of the most promising methods for processing quantum information

involves the use of photonic qubits, which allow for well-established and noise-free

single-qubit operations. However, since there is no photon-photon interaction,

processing the qubit-interaction property requires a nonlinear optical operation.

Therefore, in the experiment section of this project, we created entangled photonic

qubits by beginning with photon pair generation using a nonlinear crystal, then building

up the complexity of the optical setup with the Hong-Oa-Mandel dip experiment,

CHSH experiments, and eventually, photonic qubit generation and tomography. By

optimizing the efficiency of the system in each experiment, the resultant qubit was

successfully constructed with high fidelity to the designated Bell’s state. Additionally,

we experimented with the optical structure of the photon pairs loop, which delivered

some issues with noise and low signal in the results. Nonetheless, the structure still

showed potential to be improved and utilized in future experiments. The entangled

qubits and photon loop created in this project can be used as a foundation for various

quantum optic algorithms, especially the photon loop structure, which can be used for

the iteration of an operator, which is used regularly in the standard method for

constructing multi-qubit gates. However, the method has some limitations in that only

unitary operators can be created. Finally, in the second section of this project, we

explored an alternative scheme for constructing quantum optical multi-qubit gates. This

purposed scheme, which uses the Hilbert-space expansion technique, is capable of

independently programming each matrix element of the operator, allowing many

different types of quantum operators to be realized in quantum optic experiments. The

advanced scheme can theoretically achieve n-polarization-qubit optical reconfigurable

quantum gates by arranging linear optical elements.

VI

ชื่อวิทยานิพนธ์ การสร้างคิวบิตโพลาไรซ์จากแหล่งกำเนิดโฟตอนคู่และการ
ออกแบบโครงสร้างทางเลือกแบบตั้งโปรแกรมได้อย่างอิสระของ
เกททางแสงหลายคิวบิต

ผู้เขียน นาย ปพน ผิวขำ

สาขาวิชา ฟิสิกส์ (หลักสูตรนานาชาติ)
ปีการศึกษา 2565

บทคัดย่อ

เนื่องจากศักยภาพของคอมพิวเตอร์ควอนตัมในการปฏิวัติการคำนวณด้วยการแก้ปัญหาบาง
ประเภทท่ียากโดยคอมพิวเตอร์คลาสสิก การวิจัยในสาขาวิชานี้จึงมีบทบาทและความหลากหลายมากขึ้น
ตั้งแต่พัฒนาฮาร์ดแวร์การประมวลผลควอนตัมตลอดจนการวิจัยเกี่ยวกับแอปพลิเคชันที่มีศักยภาพที่มี
ความเร็วสูงขึ้นมากเมื่อเทียบกับการจำลองบนคอมพิวเตอร์แบบคลาสสิก หนึ่งในวิธีการท่ีมีแนวโน้มดีท่ีสุด
สำหรับการประมวลผลข้อมูลควอนตัมคือการใช้คิวบิตทางแสงซึ่งช่วยให้สามารถดำเนินการแบบคิวบิต
เดียวได้อย่างสมบูรณ์และปราศจากสัญญาณรบกวน อย่างไรก็ตามเนื่องจากสมบัติการไม่มีปฏิสัมพันธ์กัน
ระหว่างโฟตอนการสร้างปฏิสัมพันธ์ระหว่างคิวบิตจึงต้องใช้การเนินการทางแสงแบบไม่เชิงเส้นดังนั้นใน
ส่วนการทดลองของวิทยานิพนธ์นี้เราจึงสร้างคิวบิตทางแสงท่ีพัวพันกันโดยเริ่มต้นด้วยการสร้างคู่โฟตอน
โดยใช้คริสตัลแบบไม่เชิงเส้นจากนั้นจึงเพิ่มซับซ้อนของการทดลองทางแสงด้วยการทดลอง Hong-Oa-
Mandel,การทดลอง CHSH และสุดท้ายคือการสร้างคิวบิตเชิงแสงและการตรวจวัดคุณสมบัติด้วยการ
เพิ่มประสิทธิภาพของระบบในการทดลองแต่ละครั้งผลลัพธ์ที่ได้จึงถูกสร้างขึ้นด้วยความแม่นยำใกล้เคียง
ตามสถานะของเบลล์ในเชิงทฤษฎี นอกจากนี้เรายังทดลองกับโครงสร้างเชิงแสงของลูปคู่โฟตอนซึ่งยังคง
พบปัญหาบางอย่างเกี่ยวกับสัญญาณรบกวนและสัญญาณต่ำในผลลัพธ์ อย่างไรก็ตามโครงสร้างดังกล่าว
ยังคงมีศักยภาพในการปรับปรุงและนำไปใช้ในการทดลองในอนาคต คิวบิตที่พัวพันกันและโฟตอนลูปท่ี
สร้างขึ้นในงานวิจัยนี้สามารถใช้เป็นรากฐานสำหรับอัลกอริทึมควอนตัมออปติกต่างๆโดยเฉพาะอย่างยิ่ง
โครงสร้างโฟตอนลูปซึ่งสามารถใช้สำหรับการวนซ้ำของตัวดำเนินการซึ่งใช้เป็นวิธีมาตรฐานสำหรับการ
สร้างมัลติเกทคิวบิต อย่างไรก็ตาม วิธีการมีข้อจำกัดบางประการท่ีสามารถสร้างตัวดำเนินการแบบรวมได้
เท่านั้น ในส่วนที่สองของโครงการนี้ เราจึงได้สำรวจรูปแบบทางเลือกสำหรับการสร้างควอนตัมออปติก
หลายคิวบิตเกท โครงร่างที่มีจุดประสงค์นี้ใช้เทคนิคการขยายฮิลเบิร์ตสเปซ ทำให้สามารถโปรแกรม
องค์ประกอบในเมทริกซ์แต่ละตัวของตัวดำเนินการได้อย่างอิสระ ทำให้สามารถสร้างตัวดำเนินการ
ควอนตัมประเภทต่างๆมากมายในการทดลองด้วยควอนตัมทางแสง ในทางทฤษฎีโครงร่างขั้นสูงสามารถ
บรรลุควอนตัมเกทแบบออปติคอลบนคิวบิตเชิงแสงnตัวที่กำหนดค่าใหม่ได้โดยการจัดเรียงองค์ประกอบ
เชิงเส้นทางแสง

VII

Acknowledgment

 I would like to express my sincere gratitude to my advisor Dr. Pruet Kalasuwan

who gave me the golden opportunity to do this thesis on the topic “Establishing

polarization qubits from photon pairs source and design on alternative scheme of

universal optical programmable multi-qubits gate” and also provide advice in several

topics regarding the thesis.

 I would also like to give special thanks to the funding support from the NSRF

via the Program Management Unit for Human Resources and Institutional

Development, Research and Innovation and the support from the U.Reka Program,

sponsored by The Siam Commercial Bank Public Company Limited and managed by

Digital Ventures Co., Ltd. With these funding supports the laboratory could have access

to important optical tools and equipment which facilitated the experiments.

 I am grateful to all of those with whom I have had the pleasure to work on this

and other related projects. Each of the members of the Nanophotonics group has

provided me with extensive guidance and taught me a great deal about both scientific

research and life in general, especially my lab associate, Mr. Wisit Sornkrue, with

whom I exchange multiple opinions and strategies regarding the experiments.

 Finally, I would also like to thank my parents and friends, who have supported

me spiritually throughout this project and my life in general.

Paphon Phewkhom

VIII

CONTENTS

CONTENT PAGE

CONTENTS
VIII

LIST OF TABLES
X

LIST OF FIGURES
XI

LIST OF PAPERS AND PROCEEDINGS
XIII

CHAPTER 1 INTRODUCTION
1

CHAPTER 2 LITERATURE REVIEW
4

CHAPTER 3 THEORY IN THE EXPERIMENT
7

3.1 Spontaneous parametric down conversion
7

3.2 Hong-Ou-Mandel interference
10

3.3 CHSH inequality
12

3.4 Polarization density matrix
14

3.5 Accidental count rate
17

CHAPTER 4 METHODOLOGY
18

4.1 Photon pairs from type-I BBO using a CW laser pump
18

4.2 Hong-Oa-Mandel dip
19

4.3 CHSH inequality
20

4.4 Bell’s state experiment
21

4.5 Photon pairs from type-I BBO using an 80 MHz pulse laser

 pump

22

4.6 Loop using 50/50 Beam splitter
23

4.7 Improve loop setup with lens and reduce laser pulse

 frequency

24

CHAPTER 5 RESULT AND DISCUSSION
25

5.1 Photon pairs from type-I BBO using a CW laser pump
25

5.2 Hong-Oa-Mandel dip
26

5.3 CHSH experiment
27

5.4 Density matrix experiment
28

5.5 Photon pairs from type-I BBO using a 80MHz pulse laser

 pump

30

IX

CONTENTS (CONTINUED)

CONTENT PAGE

5.6 Loop using a 50-50 Beam splitter
31

5.7 Improve loop setup with lens and reduce laser pulse frequency
33

CHAPTER 6 AN ALTERNATIVE SCHEME OF UNIVERSAL

 OPTICAL PROGRAMMABLE MULTI-QUBIT GATES

 FOR POLARIZATION QUBITS

35

6.1 Hilbert-space expansion technique for two polarization qubits
35

6.2 Universal optical programmable multi-qubit gates
38

6.3 Discussion
43

CHAPTER 7 CONCLUSION
46

BIBLIOGRAPHY
47

APPENDIX
50

A. M matrices
51

B. Programing for coincident count
54

C. MATLAB coding for density matrix
77

D. Laser source specifications
87

E. Paper
89

VITAE
105

X

LIST OF TABLES

TABLE PAGE

4.3.1 HWP angles used in 16 measurements to calculate the S value in

the CHSH experiment

21

5.2.1 Result values from plot fitting of the HOM dip experiment 26

5.3.1 Coincident count rate and its standard deviation for each projective

measurement in the CHSH experiment

27

5.3.2 Calculated E and S values in the CHSH experiment 28

5.4.1 Coincidence count rate for each basis measurement in the density

matrix tomography experiment

29

5.4.2 Computed physical density matrix in (a) real part and (b)

imaginary part

29

5.6.1 Peak indices and their properties from the histogram in Fig. 5.6.1 32

5.7.1 Peak indices and their properties from the histogram in Fig. 5.7.1 34

XI

LIST OF FIGURES

FIGURE PAGE

3.1.1 The diagram depicts the optical axis defined in a nonlinear

crystal

7

3.1.2 Defined angles between wave vectors K0, K1 and K2 9

3.2.1 Simple HOM experimental setup where two photons interfere in

the beam splitter and are then measured by the detectors

10

3.3.1 CHSH inequality measurement setup where the state of the input

qubit is set and then measured in multiple projective states using

HWPs and PBSs

12

3.3.2 S value computed by using input state |H⟩A' |V⟩B' + |V⟩A' |H⟩B', a

= -22.5° and a’ = 0°

13

4.1.1 Experimental setup for photon pair creation 18

4.2.1 Setup for the HOM dip experiment 19

4.3.1 Experimental setup for CHSH and state tomography 20

4.5.1 Setup for creating photon pairs with a pulse laser. 22

4.6.1 Experiment setup for creating a photon loop using a 50/50 beam

splitter.

23

4.7.1 Experiment setup for creating a photon loop using a 50/50 beam

splitter

24

5.1.1 (a). single count rate on ports A’ and B’ as a function of time.

(b). delay histogram showing the number of counts triggered in

port B’ after a varied time delay from when port A’ gets

triggered.

25

5.2.1 Measurement result and fitting plot of the HOM dip experiment 26

5.4.1 Real part (a) and imaginary part (b) of the density matrix plotted

in 3D columns

30

5.5.1 experiment result from using pulse laser as a photon pairs source

(a). single count rate on port A’ (bottom line) and B’ (top line).

(b). Delay histogram between two ports

30

5.6.1 A delay histogram between two ports in the experiment that

guides one path of photon pairs into an optical loop

31

5.7.1 Delay histogram between two ports in the improved experiment

with lens

33

6.1.1 (a) SPDC source to produce two pairs of entangled photons

resulting as Eq. 6.1.2 (b) Experimental scheme to realize the two-

qubit operation �̂�1 ⊗ �̂�2 + �̂�1 ⊗ �̂�2 according to the input state

(Eq. 6.1.3), which is derived from the source (Eq. 6.1.2)

35

XII

LIST OF FIGURES (CONTINUED)

FIGURE PAGE

6.1.2 (a) A nonlinear single-photon source gives the superposition of

photon states (Eq. 6.1.10). (b) A linear optical circuit to perform the

linear combination of four tensor products of single-qubit gates in

Eq. 6.1.12. The photons in the circuit are delivered from eight paths

in Fig. 6.1.2a. Before entering the circuit, all photons are initialized

as the superposition of the identical input polarization states on

different spatial paths in Eq. 6.1.10

36

6.2.1 Two coupled notional single-photon sources (ES1 and ES2) provide

n entangled photons. The sources give the polarization states as Eq.

6.2.1

38

6.2.2 A combination block (Ckl), a series of beam splitters combining

photons from ESk and ESl, supposing each ES produces n

distinguishable single photons

39

6.2.3 A cascade of n ESs, where each ES produces n entangled single

photons in separate paths, resulting the initial state as expressed in

Eq. 6.2.7

40

6.2.4 The example of the local operations applied to the photon state after

being initialized to the state in Eq. 6.2.7 on each ES output (ESl for

this example). This example represents just one term in Eq. 6.2.6. In

order to assign the position (i, j) of the single-qubit operation �̂� (i,

j) on the (2n-1) × (2n-1) all-ones matrix, the local operations

representing the position are applied on the paths O(l,1), O(l,2), …,

O(l,n’-1). In this example, the operators relating to entries on the all-

ones matrix follow from Eq. 6.2.8

41

6.2.5 A modified combination block. Paths O(p,m) sharing p are grouped

as a composite path O’(p,n’) with a set of local operations in Fig.6.2.4,

where m = 1, 2, …, n’. In this case, the composite paths O’l,n’ and

O’k ,n’ are combined by the modified combination block Cl,k,n’ ,

resulting in the composite path O’’l,n’ . This output composite path

is the post-selection of the photons leaving at the output paths O(l,1),

O(l,2), …, O(l, n -1)

42

6.2.6 The application of the modified combination blocks to combine

entire composite paths O’1,n, O’2,n, . . . , O’n’-1,n, O’n’,n, resulting in

the post-selection of only one composite path as the output

42

XIII

LIST OF PAPERS AND PROCEEDING

PAPER

1. Pewkhom, P., S. Suwanna, and Pruet Kalasuwan. “Alternative Scheme of

Universal Optical Programmable Multi-Qubit Gates for Polarization Qubits.”

Quantum Information Processing 19 (June 8, 2020).

1

CHAPTER 1

Introduction

The linear transformation of inputs into outputs is the heart of information processing

in computer science. In order to realize universal information processing, highly versatile logic-

gate devices are required to perform linear mapping between universal sets of inputs and

outputs. Quantum computers work under the laws of quantum mechanics, using gate operations

and information represented by quantum bits or qubits. They only need accessible single- and

two-qubit gate operations to realize any unitary quantum gate [12]. During recent decades,

various quantum approaches have experimentally proved the successful operation of single-

and two-qubit gates [12, 21, 23, 26, 28, 34]. Beyond single- and two-qubit gates, verification

tests in recent years produced decent outcomes from quantum processors housing

programmable features [8, 16]. These achievements marked a critical advance in the field as

they paved the way for future practical machines.

The use of photonic qubits is one of the most promising approaches to quantum

information processing. In general, photonic qubits enable free-of-noise and well established

single-qubit operations. The only drawback that prevents photons from performing efficient

and scalable processing is their negligible photon–photon interaction. However, the problem

can be overcome by the introduction of nonlinear optical operations [28, 31]. This approach

was a fundamental element of an optical quantum processor circuit based on a cascade of beam

splitters and phase shifters implanted on a single-photon chip [8, 32]. The circuit could

potentially be programmed to perform any quantum unitary operation on path qubits on a fixed

circuit. Furthermore, this design could possibly be modified to work with other degrees of

freedom of photons, such as polarization [25].

In the experimental section of this research, we started by exploring the photon pair

sources and their properties. By using the SPDC (spontaneous parametric down conversion)

process, photon pair sources were produced by shining the laser beam into a nonlinear crystal

[7, 9]. The daughter photons from the process were collected by optical fibers and then

measured. In the second step, the same fibers were used to emit photon pairs perpendicular to

each other into the 50/50 beam splitter. Using the translation stage to modify displacement

before two beams interfere, two photons could be established to be indistinguishable for the

detectors behind the beam splitter with the help of the Hon-Oa Mandel (HOM) dip [18, 30]. In

the next experiment, the system was measured to prove its quantum properties by using the

CHSH experiment setup [2, 3], which can be adapted from the HOM setup. After the quantum

system was confirmed, the optical setup could be used as a foundation for numerous optical

quantum systems. One of which was the experiment with state tomography, where the

entangled polarization of the system is set and then measured [1]. Later experiments were

photon looping setups, where one of the entangled paths entered the beam splitter with a chance

to go into a loop, expanding the time delay before arriving at the detector. The loop system

could be used in many advanced quantum algorithms, especially as another option for iterating

the operator.

In order to optimize the system and achieve maximum quantum entanglement from the

system, many optical elements were varied and switched throughout each step of the

experiments. Lenses, filters, laser sources, and detectors were the main components that

influenced the amount of photon pairs output. We could increase the efficiency and number of

2

photon pairs output by adjusting their properties and position in the experimental setup, which

is a crucial factor in any optical quantum experiment.

Additionally, we did an experiment with photon loop structure. By guiding one of

entangled paths into a beam splitter with a 50-50 chance of looping back to the beam splitter or

being detected by the photon detector, the resulting delay histogram shows multiple peaks of

looped signal. The system can be implemented with various kinds of algorithms. One of which

is the iteration of an operator, where instead of having multiple copies of the same operator to

do the iteration, we could use only one operator and loop the qubits into it multiple times.

This research experiment heavily relies on coincident photon counters. They can count

the number of photons that enter two detectors in a fixed time interval. However, the existing

program that comes along with the counter contains some restrictions and lacks a few

applications. Therefore, we coded new programs to be used for the general purpose of the

experiment, which involves measuring output from these counters. Using the exported data of

the time at which the photon incident on the detector and the detector number that triggered,

the program can calculate and plot the following values: histogram of the number of photons

incident in each different time between two ports, number of coincident photons in a chosen

period, and coincident count variation by time (Appendix B).It can also be expanded into

specific calculations, such as density matrices (Appendix C) or CHSH.

One of the important components in quantum photonic circuits is the multi-qubit gate,

which can be constructed from the foundation of an entangled qubit like the one created in this

experiment. However, expecting higher efficiency in photon pair generation and photon

detection in future technology and experimentation, we proposed an alternative method for

constructing the multi-qubit gates where the scheme results in a low probability of success, but

has multiple advantages over the standard one.

The standard method [8,33] for constructing an N-qubit unitary gate is based on the

Reck et al. scheme, where an arbitrary unitary matrix U(N) is factorized into a product of block

matrices, where successive U (2) transformations can be performed on two dimensional

subspaces of the full N-dimensional Hilbert space. This architecture can adequately fulfill the

functions of a programmable quantum gate, where the required circuit will need to be

decomposed by the optical elements into the functions of reflectivity and phase shift to provide

the programming input, and has been realized experimentally with good fidelity [8]. Moreover,

the algorithm is recursive, similar to the Gaussian elimination process, and can increase the

complexity of realizing an arbitrary quantum gate. More importantly, such a standard scheme

is limited to unitary operation where the operator is known, hence can be decomposed into

single- and two-qubit gates. However, in the emergence of quantum technology, a fundamental

tool in quantum metrology may require a phase estimation where the estimation algorithm U is

an unknown black box, that may not be decomposed at all [5, 38], particularly when the

quantum phase estimation requires a conditional gate of the operator U. Therefore, the current

standard method of realizing quantum gates based on the decomposition into elementary gates

may not apply for these applications.

In the theoretical section, we propose a more versatile class of polarization-encoded

qubit processors. We employ the Hilbert-space expansion technique in linear optical circuits,

in which the linear combination of operations on the polarization states is available. This

capability was already reported in previous experiments [32, 38] for a small number of path-

encoding qubits. In this work, we adapt such a technique for polarization qubits and simplify

3

the circuit by designing some operators to make it suitable for possibly the lowest complexity

realization of programmable multi-qubit gates. The concept starts with the superposition state

of photon pairs from separate nonlinear elements such as BBO to produce two pairs of photons

in four spatial paths. When recombining two photons from separate nonlinearities, assuming

that they have undergone different linear transformations, the signal at the detector will be a

combination of those transformations. By post-selecting appropriate outputs where only one

photon leaves each path, all entries of the operator can be obtained.

This schematic design is different from the standard decomposition of an operation,

which mostly relies on the products of operators. Using this alternative technique, instead of

combining several single-qubit and two-qubit gates to produce a universal quantum gate, we

directly program every entry of the matrix representing the operation. The manipulation of a

quantum gate is also possible for all kinds of quantum operations, possibly represented by

complex matrices, including non-unitary ones. The detail of the technique is reviewed in

Chapter 6.1, where we also describe an improved procedure for constructing an optical

programmable two-qubit gate. In Chapter 6.2, we explain how to realize optical programmable

multi-qubit gates by this alternative approach, and in Chapter 6.3, we discuss their advantages

and technical requirements for practical implementation.

4

CHAPTER 2

Literature review

Spontaneous parametric down conversion

 According to the study by David C. Burnham and Donald L. Weinberg [7], in the

experiment, the optical photon pairs were created by emitting a pumped laser beam into an

ammonium dihydrogen phosphate crystal. The coincidence between the split photons could be

observed with photon multipliers when the phase matching conditions were satisfied. The

experiment was set up to achieve the highest coincident count rate possible by using optical

alignment, wavelength filtering, and time delay between two channels. The theory regarding

type-I spontaneous parametric down conversion is described in detail by L. Caspani, E.

Brambilla, and A. Gatti [9]. The literature showed the cone-shape of coincidence photon pairs,

where two points on the contour can be selected to optimize the coincident count rate. Their

work also shows the photon pairs' cross-correlation with different crystal structures.

 There are countless factors that account for the number of photon pairs generated by

SPDC processes. One of them is how the pump beam is focused before splitting into daughter

photons. In the experiment by H. Di Lorenzo Pires, F. M. G. J. Coppens, and M. P. van Exter

[13], the pump laser beam was strongly focused into a nonlinear crystal, and then the near and

far field intensity profiles were studied. The results demonstrate the variance properties of

SPDC emission under a strong focusing laser pump, as well as potential applications.

 The spectral properties of entangled photon pairs are studied in the work by So-Young

Baek and Yoon-Ho Kim [4]. The results show that the two-photon pair spectrum can be

particularly broad, and that experimenters should exercise caution when experimenting with

bandwidth properties such as Hong-Ou-Mandel interference.

 Christophe Couteau's article [11] compares the classical and quantum explanations of

the SPDC process and shows some practical setups for producing efficient photon pairs.The

work also presents some applications of SPDC photon pairs and their experimental setups, such

as entangled photons and quantum computers.

Hong-Ou-Mandel interference

 The next phase of creating entangled photons is making the photon pairs generated by

SPDC interfere on a beam splitter. In the experiment by C. K. Hong, Z. Y. Ou, and L. Mandel

[18], by adjusting the distance of one incoming photon before the interference, its time interval

could be corrected, and the indistinguishable photon pairs were formed. The paper displays and

theoretically explains the relationship between the coincident count rate and the adjusted

displacement.

Similar work was done by T.B. Pittman, B.C. Jacobs, and J.D. Franson [30], where

photon pairs produced by SPDC were interfered with in an optical single-mode fiber and the

effect of wavelength filters used in front of the detectors was studied. The work shows that to

increase the visibility of the interference, the appropriate bandpass filters should be carefully

selected in the experiment. The effect of filters and other variables in Hong-Ou-Mandel

interference is thoroughly explained in the article by Agata M. Bra´nczyk [15], where several

types of filters were used in a mathematical model to explore the possible outcomes of Hong-

Ou-Mandel dip.

5

CHSH inequality

 One way to prove that the quantum system is not just a usual classical state is by

measuring some states to exceed the CHSH inequality. Literature by Mnacho Echenim and

Mehdi Mhalla9 detailly explain how to classify the quantum system by using few measurement

results, then calculate the output value S in the region which cannot be obtained in classical

mechanic. In the experimental work by Alain Aspect, Philippe Grangier, and Gérard Roger

[2,3], the systems were measured in multiple projected measurements. By choosing the valid

sets of the results, the computed values successfully violated the inequality and proved the

experimental setup to be quantum system.

 Sets of measurements to achieve this result can be selected before the experiment by

analyzing the state of the system. Work by K. Muhammed Shafi, R. S. Gayatri, A. Padhye, and

C. M. Chandrashekar [35] shows a mathematical method to compute the S value from different

quantum state inputs and varied projective measurements. Their work also demonstrates the

effect of mixed states on result measurements, which can cause the S value to differ

significantly from the pure state case.

Polarization density matrix

 After the quantum system is set in the desired state, it needs to be measured to prove

that the state is correct and valid for use in future applications. J. B. Altepeter, D. F. V. James,

and P. G. Kwiat's article [1] describes the procedures for obtaining the density matrix, which

represents the quantum state of the system, by measuring multiple qubits in projective state, as

well as numerical processes for computing the physical density matrix, which is a better

representative of the system state because it satisfies all the properties of being real and

physically possible.Work by Daniel F. V. James, Paul G. Kwiat, William J. Munro, and Andrew

G. White [21] shows some important parameter calculations that are useful quantities to

comprehend the state and valuable for future usages.

 In the experimental work by S. Barz, G. Cronenberg, A.Zeilinger, and P. Walther [6],

the quantum state was measured, and high fidelity between the measured state and the desired

state could be achieved. showing that the experiment has the potential to be a foundation setup

for more complicated optical quantum systems.

Optical multi-qubit gate

 Qubit(s) gates in quantum computers play a similar role as the logic gates in classical

computers; they manipulate the state of qubits and are arranged together to perform algorithms.

Work by A. Barenco et al. [5] shows multiple quantum gates, which are fundamental in

quantum computation, and shows that the universal gate, which performs on many qubits, can

be expressed as a composition of these one- and two-qubit gates. In an optical quantum system,

the properties of a HWP and a QWP can be used as a single qubit gate operator, as represented

by N. Peters, J. Altepeter, E. Jeffrey, D.Branning, and P. Kwiat [29]. They showed that the

polarization state of the system can be manipulated in a variety of ways, such as unitary,

decohering, and polarizing operations. And in the article by E. Knill, R. Laflamme, and G.J.

Milburn [22], two-qubit gates can be realized using nonlinear optics and post-selection.

 The experiment by X-Q. Zhou et al. [37] shows an example of the linear combination

of single qubit operators to perform a two-qubit gate called the control-U gate. They

demonstrate various types of CU gates practically in an optical quantum system using the same

6

photon-pair and post-selection principle, with high fidelity between experimental and expected

results. The work also shows the possibility of universal multi-qubit gates with a greater number

of entangled qubits by adapting the same circuit design.

7

CHAPTER 3

Theory in the experiment

3.1 Spontaneous parametric down conversion

The spontaneous parametric down conversion (SPDC) process is one of several ways

to create the photon pair sources for optical quantum algorithms. It is the mechanism where one

photon can be split into two with half the frequency (thus, half the energy) after interacting

within a nonlinear crystal. The phenomenon is described by the dielectric polarization vector P,

which can be written as a power series of the electric field vector E as in Eq. 3.1.1.

P = ε0 (χ(1)E + χ(2)E2 + χ(3)E3 +…) 3.1.1

where χ(n) is the n-th order electric susceptibility. For an ordinary linear optical material, χ(1)

term is large and the linear behaviors take place. But when the electric field and χ(2) is sizable,

the wave mixing effect such as SPDC or SHG (second-harmonic generation) can occur. By

using special material designed with χ(2) term, two photons can be produced from one pump

photon with conserved momentum and energy. There are two categories of SPDC separated by

the phase matching condition. For Type I SPDC, the two daughter photons have polarization

orthogonal to the source. Whereas for Type II, they are orthogonal to each other.

 Birefringence crystal are designed with a different refractive index depending on the

polarization of a pump laser beam. The crystal has the principle plane which the wave vector

K and the optic axis Z are in plane with as shown in Fig. 3.1.1. Eq. 3.1.2 represents the refractive

indices for ordinary direction (no), where the pump polarization is vertical to the principle plane,

and Eq. 3.1.3 represents the refractive indices for extraordinary direction (ne), where the pump

polarization is in the principle plane and the beam propagation direction is perpendicular to the

optical axis.

Fig. 3.1.1 The diagram depicts the optical axis defined in a nonlinear crystal

θ

Ordinary direction

Optical axis

K

Extraordinary

direction

8

𝑛0
2 = A+

𝐵

λ2−𝐶
− Dλ2 3.1.2

𝑛e
2 = 𝐴′ +

𝐵′

λ2−𝐶′
− 𝐷′λ

2
 3.1.3

where the capital letters in the equation are constant values depending on the material, and λ is

the pump wavelength. The refractive index in the ordinary direction is independent of the

direction of propagation, whereas the refractive index in the principle plane ne (θ) is depends

on the angle (θ) between the direction of propagation and the optic axis given by Eq. 3.1.4.

𝑛𝑒(𝜃) = 𝑛o√
1+tan2 𝜃

1+𝑛o
2 𝑛𝑒

2⁄ tan2 𝜃
 3.1.4

 For type I phase matching, a photon in ordinary polarization with wave vector K0 and

frequency ω0 is split into two photons with extraordinary polarization, wave vectors K1, K2 and

frequencies ω1, ω2. Using these definitions, the conservation of energy is shown in Eq. 3.1.5

and the conservation of momentum are shown in Eq. 3.1.6 and Eq. 3.1.7.

ω1 + ω2 = ω0 3.1.5

K0 = K1 cos θ1 + K2 cos θ2 3.1.6

0 = K1 sin θ1 – K2 sin θ2 3.1.7

with θ1 and θ2 are the half opening angles as shown in Fig. 3.1.2

9

For phase matching conditions where ω1 = ω2, the phase matching angle θ can be

calculated by Eq. 3.1.8

tan2 𝜃 =
𝐾ⅆ
2 [𝑛0

2(𝜔0)𝐾0
2]⁄ −1

1−𝐾𝑑
2[𝑛𝑒

2(𝜔0)𝐾0
2]

 3.1.8

where Kd is the daughter photons’s wave number. With this equation, the nonlinear crystal can

be cut at the angle that is applicable to generate photon pairs at the designated opening angle.

And by detecting daughter photons at both ends, the coincidence count from the photon pairs

can be detected and modified.

Fig 3.1.2 Defined angles between wave vectors K0, K1 and K2

Z

θ Θ1

Θ2

K1,

ω1

K2, ω2

K0 , ω0

10

3.2 Hong-Ou-Mandel interference

When photons enter a 50:50 beam-splitter as shown in Fig. 3.1.2, by using �̂�𝐴
†
 and �̂�𝐵

†

as the creation operators to represent the input ports and �̂�𝐴′
†

, �̂�𝐵′
†

 for the output ports, the output

operators can be written in terms of the input ports as shown in Eqs. 3.2.1 and 3.2.2

�̂�𝐵′
† =

1

√2
(𝑖�̂�𝐴

† + �̂�𝐵
†) 3.2.1

 �̂�𝐴′
† =

1

√2
(𝑖�̂�𝐵

† + �̂�𝐴
†) 3.2.2

 Here the i factors are the phase shifts resulting from the conservation of energy. If two

input photons are indistigusable, which means they have the same polarization and all other

properties are eqaul, such as spectrum, arrival time, and transverse spatial mode. The output

state, written in the number of photon states in the ports, can be calculated as in Eq. 3.2.3

|1⟩𝐴|1⟩𝐵 = �̂�𝐴
†�̂�𝐵
† |0⟩𝐴|0⟩𝐵

𝐵𝑆
→

1

2
(𝑖�̂�𝐴′

† + �̂�𝐵′
†)(𝑖�̂�𝐵′

† + �̂�𝐴′
†)|0⟩𝐴′|0⟩𝐵′ =

i

2
 [|2⟩𝐴′|0⟩𝐵′ +

|0⟩𝐴′|2⟩𝐵′] 3.2.3

 The result state shows that there is no probability where photons are detected as "both

reflected" or "both transmitted" because their amplitudes cancel out in the process.

 In the Hong-Ou-Mandel experimental setup, the photons in the input ports are produced

from a down conversion source, and the path lengths are varied with respect to each other to

control the arrival time delay (𝛿𝜏) between the photons on the beam splitter and therefore adjust

their level of distinguishability. Then the coincident count rate is measured by the rate at which

photons are detected in both output ports in a fixed window time. This means the number of

coincidences is higher when the two photons are more distinguishable and equal to zero (dip)

when they are completely indistinguishable. The number of coincidences (NC) is given by

equation Eq. 3.2.4 when the photons have Gaussian spectral amplitude with bandwidth Δ𝜔.

Fig. 3.2.1 simple HOM experimental setup where two photons interfere in the beam splitter and

are then measured by the detectors

Laser coupler

Laser coupler

Laser coupler

Beam splitter
Laser coupler

A

B

B’

A

11

𝑁𝐶 = 𝐶(𝑇
2 + 𝑅2) [1 −

2𝑅𝑇

𝑅2+𝑇2
ⅇ−(Δ𝜔𝛿𝜏)

2
] 3.2.4

where T and R mean the transmitted and refracted coefficients of the beam splitter, respectively.

And C is a constant that is related to the coincident counts when two photons are totally

distinguishable. From the graph plotted by Eq. 3.2.4 as a function of number of coincidences

varied by time delay, the full width at half maximum (FWHM) is the coherence length of the

photon. The visibility (V), which in this case is equal to the photon purity, can be calculated

from the maximum and minimum of the coincident counts (Nmax and Nmin) given by Eq. 3.2.5.

𝑉 =
𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥+ 𝑁𝑚𝑖𝑛
 3.2.5

12

3.3 CHSH inequality

 The statement that in quantum systems, the outcome is only determined after the

measurement and has not pre-existed in some form of hidden value was one of the most

controversial topics in quantum mechanics. Because when the entangled state is measured on

one side, the other end will receive the information immediately and collapse into a single state.

Here, the information about the state seems to be traveling faster than light speed, breaking the

classical rule. According to one theory, there are some hidden variables in which the states are

determined prior to measurement. which was later proven false by Bell's inequality,

demonstrating a difference between quantum mechanics and the hidden variable theory. The

CHSH (Clause, Horne, Shimony, and Holt) inequality is similar to the Bell’s and can also be

used to demonstrate the classical mechanics violation. The simple experimental setup is shown

in Fig. 3.3.1. The polarization state of the input photon pairs can be assigned by HWPs on A

and B paths. And the measurement state can be set using HWPs and PBSs at the output ends.

 Then, a series of coincidence counts are measured as a function of HWP angles on A’

(a) and B’ (b), and the E (a, b) is calculated using Eq. 3.3.1

𝐸(a, b) =
𝑁++− 𝑁+−− 𝑁−++𝑁−−

𝑁+++ 𝑁+−+ 𝑁−++𝑁−−
 3.3.1

 N represents the coincident counts where + and – sign designate the normal

measurement and orthogonal measurement respectively. For instance, 𝑁+−(0,0) is the

measurement with HWP angle of 0 degree on A’ and 45 degrees on B’. The S value is then

calculated from four sets of the E value as shown in Eq. 3.3.2

𝑆 = 𝐸(a, b) − 𝐸(a, b′) + 𝐸(a′, b) + 𝐸(a′, b′) 3.3.2

Fig 3.3.1 CHSH inequality measurement setup where the state of the input qubit is set and then

measured in multiple projective states using HWPs and PBSs

Laser coupler

Laser coupler

Laser coupler

BS

Laser coupler

A

B

B’

A

PBS

PBS

HWP

HWP

HWP

HWP

13

where a’ and b’ are another set of angles in A’ and B’ paths, respectively. In classical mechanics,

the maximum S value is 2, which is different from quantum mechanics, where the value can

reach 2√2 and exceed the classical boundary.

 If the input polarization state is |𝐻⟩𝐴′|𝑉⟩𝐵′ + |𝑉⟩𝐴′|𝐻⟩𝐵′ by using a = -22.5 degree

and a’ = 0 degree, the S value can be calculated as a function of b and b’ angles, as shown in

Fig. 3.3.2

 From the contour graph, an appropriate set of angles can be selected to demonstrate

the inequality in the experiment setup.

Fig. 3.3.2 S value computed by using input state |𝐻⟩𝐴′|𝑉⟩𝐵′ + |𝑉⟩𝐴′|𝐻⟩𝐵′, a = −22.5° and

a’ = 0°

14

3.4 Polarization density matrix

ธhe procedures for obtaining the density matrix, which represents the quantum state

of the system, are described in the work by J. B. Altepeter, D. F. V. James, and P. G. Kwiat's

[1].

Single qubit tomography

 The density matrix of a single qubit (�̂�) can be represented by Eq. 3.4.1 where A, B,

and C are real and non-negative constants, A+B = 1 and 𝐶 ≤ √𝐴𝐵 . The matrix can also be

written in terms of the sum of pure states with probabilities Pi for each orthogonal state |𝜑𝑖⟩.

�̂� = ∑ 𝑃𝑖𝑖 |𝜑𝑖⟩⟨𝜑𝑖| = [
𝐴 𝐶𝑒𝑖∅

𝐶𝑒−𝑖∅ 𝐵
] 3.4.1

 The density matrix has four important properties that are required to be physically and

theoretically correct. First, it has the probability of conservation, which means Tr (�̂�) = 1.

Secondly, the matrix is Hermitian (�̂� = �̂�’). The third and last requirements come from the

positive semi-definiteness property, which implies that all the eigenvalues are zeroes, one, or

between and the sum is 1, which causes 0 ≤ Tr(�̂� 2) ≤ 1 .

The definition of each polarization pure state in this thesis is defined as in equation Eq.

3.4.2, where H, V, D, A, R, and L are horizontal, vertical, diagonal, anti-diagonal, right-hand,

and left-hand polarizations, respectively. and their mixed state forms can be determined by

using �̂� = |𝜌⟩⟨𝜌|

|𝐻⟩ = [1
0
] , |𝑉⟩ = [0

1
] , |𝐷⟩ =

1

√2
[1
1
] , |𝐴⟩ =

1

√2
[1
−1

]

|𝑅⟩ =
1

√2
[1
−𝑖
] , |𝐿⟩ = 1

√2
[1
𝑖
] 3.4.2

To measure the single state in the form of a density matrix, also known as single qubit

tomography, the process can be performed using stoke parameters that are defined from the set

of measurements shown in Eq. 3.4.3 and Eq. 3.4.4

𝑛0 =
𝑁
2
(⟨𝐻|�̂�|𝐻⟩ + ⟨𝑉|�̂�|𝑉⟩), 𝑛1 =𝑁(⟨𝐻|�̂�|𝐻⟩),

 𝑛2 =𝑁 (⟨𝐷|�̂�|𝐷⟩), 𝑛3 =𝑁 (⟨𝑅|�̂�|𝑅⟩) 3.4.3

𝑆0 = 2𝑛0, 𝑆1 = 2(𝑛1 − 𝑛0),

𝑆2 = 2(𝑛2 − 𝑛0) , 𝑆3 = 2(𝑛3 − 𝑛0) 3.4.4

where N is a constant implied to the amplitude of photons count. ni refer to the numbers of

photons counted (or count rate) in each projective measurement, where n0 refers to the

measurement when half of the intensity of light is detected regardless of the polarization. n1,

15

n2 and 𝑛3 are the measurements with horizontal, diagonal, and right circular projection. The

density matrix can be calculated from the stoke parameters with Eq. 3.4.5.

�̂� =
1
2
∑

𝑆𝑖

𝑆0

3
𝑖 = 0 �̂�𝑖 3.4.5

where �̂�𝑖 are Pauli spin operators defined by Eq. 3.4.6

�̂�0 = [
1 0
0 1

] , �̂�1 = [
0 1
1 0

] , �̂�2 = [
0 −𝑖
𝑖 0

] , �̂�3 = [
1 0
0 −1

] 3.4.6

,

Two qubits density matrix and tomography

 For a two-qubit state, the density matrix can be written as in Eq. 3.4.7. It still has the

same four properties to follow as in a single qubit state.

�̂� =

[

𝑨𝟏 𝐵1𝑒
𝑖∅1

𝐵1𝑒
−𝑖∅1 𝑨𝟐

𝐵2𝑒
𝑖∅2 𝐵3𝑒

𝑖∅3

𝐵4𝑒
𝑖∅4 𝐵5𝑒

𝑖∅5

𝐵2𝑒
−𝑖∅2 𝐵4𝑒

−𝑖∅4

𝐵3𝑒
−𝑖∅3 𝐵5𝑒

−𝑖∅5

𝑨𝟑 𝐵6𝑒
𝑖∅6

𝐵6𝑒
−𝑖∅6 𝑨𝟒]

 3.4.7

 The projective states of the matrix can be measured to perform qubit tomography.

HWPs, QWPs, and PBSs on the transmitted path are used as a projective operator, as shown in

Eq. 3.4.8.

U ̂𝐻𝑊𝑃(𝜃) = [
𝑐𝑜𝑠(2𝜃) 𝑠𝑖𝑛(2𝜃)
𝑠𝑖𝑛(2𝜃) − 𝑐𝑜𝑠(2𝜃)

],

U ̂𝑄𝑊𝑃(𝜃) = [
𝑐𝑜𝑠2 𝜃 + 𝑖 𝑠𝑖𝑛2 𝜃 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑖 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑖 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃 + 𝑖 𝑐𝑜𝑠2 𝜃
],

U ̂𝑃𝐵𝑆𝑡= [
1 0
0 0

] 3.4.8

 Using the experiment setup with the HWPs, QWPs and PBSs in order before the

detector on both ends of the measurement, return the projection state as shown in Eq. 3.4.9.

|ψ𝑝𝑟𝑜𝑗
(2) (ℎ1, ℎ2, 𝑞1, 𝑞2)⟩ = (U ̂𝐻𝑊𝑃(ℎ1) ∙ U ̂𝑄𝑊𝑃(𝑞1) ∙ U ̂𝑃𝐵𝑆𝑡)

⨂(U ̂𝐻𝑊𝑃(ℎ2) ∙ U ̂𝑄𝑊𝑃(𝑞2) ∙ U ̂𝑃𝐵𝑆𝑡) 3.4.9

where h1, h2, q1 and q2 are waveplate angles in path 1 and 2. The average coincident counts

measured in the given state can be shown as in Eq. 3.4.10

𝑛𝜈 = 𝑁 ⟨ψ𝜈|�̂�|ψ𝜈⟩ 3.4.10

 Full sets of tomography states require at least 16 projective states to be measured. By

using the simplest state projection for 𝑛1to n16 as HH, HV, VV, VH, RH, RV, DV, DH, DR,

16

DD, RD, HD, VD, VL, HL, and RL, a density matrix of 2 polarization qubits can be constructed

using Eq. 3.4.11.

�̂� = (∑ �̂�𝜈𝑛𝜈
16
𝜈 = 1) (∑ 𝑛𝜈

4
𝜈 = 1)⁄ 3.4.11

 Here �̂�𝜈 matrices (see Appendix A) are created to allow the density matrix to be

constructed linearly. However, density matrix created by equation (2.26) still lag the properties

of the positive semi-definiteness. In order to construct the density matrix where all the

requirements are met, the physical density matrix �̂�𝑃 is defined by the formula in Eqs. 3.4.12

and 3.4.13.

T̂(t) = [

t1 0
t5 + it6 t2

0 0
0 0

t11 + it12 t7 + it8
t15 + it16 t13 + it14

t3 0
t9 + it10 t4

] 3.4.12

�̂�𝑃(𝑡) = �̂�
†(𝒕) �̂�(𝒕) 𝑇𝑟(�̂�†(𝒕) �̂�(𝒕)) ⁄ 3.4.13

where ti are parameters in real numbers. The physical density matrix is constructed as a function

of t in such a way that �̂�𝑃 has all the constraint properties. Then the parameters are adjusted

numerically by the program to ensure the maximum likelihood between the physical and

measured density matrices. Which leads to the challenge of finding the minimum value of the

function in Eq. 3.4.14.

𝑳(t1, t2, t3, . . . , t16) = ∑
(𝑁 ⟨ψ𝜈|�̂�𝑃(𝑡)|ψ𝜈⟩ − 𝑛𝜈)

2

2𝑁 ⟨ψ𝜈|�̂�𝑃(𝑡)|ψ𝜈⟩
 16

𝜈 = 1 3.4.14

 Quantities derived from density matrix

 The von Neumann entropy (S) of the quantum state is defined by Eq. 3.4.15, the value

of entropy is minimum at zero if �̂� is a pure state and maximizes to ln(NH) for the maximally

mixed state, where NH is the dimension of the Hilbert space. In the equation, pa refers to an

eigenvalue of �̂�.

S = −Tr {�̂�log2 (�̂�)} = −∑ 𝑝𝑎𝑙𝑜𝑔2(𝑝𝑎)
4
𝑎 = 1 3.4.15

 The linear entropy (P) is a quantity representing the degree of mixture of quantum states

in a normalized form (maximum at 1). For two qubits state, the linear entropy is defined as in

Eq. 3.4.16.

P =
4

3
(1 − Tr {�̂�2}) =

4

3
(1 − ∑ 𝑝𝑎

2 4
𝑎 = 1) 3.4.16

 The quantities concurrence (C), entanglement of formation (E) and tangle (T)

correspond to the coherence properties of a mixed state and can be calculated by Eq. 3.4.17.

𝐶 = 𝑀𝑎𝑥{0,√𝑟1 − √𝑟2 −√𝑟3 −√𝑟4}

𝑇 = 𝐶2

𝐸 = ℎ (
1+√1 − 𝐶2

2
) 3.4.17

17

where ra are the eigenvalues of �̂� = �̂�Σ̂�̂�𝑇Σ̂ in decreasing order (𝑟1 ≥ 𝑟2 ≥ 𝑟3 ≥ 𝑟4). Σ̂ here is

the spin flip matrix defined by Eq. 3.4.18 and h(x) is a function defined by Eq. 3.4.19.

Σ̂ = [

0 0
0 0

0 −1
1 0

0 1
−1 0

0 0
0 0

] 3.4.18

ℎ(𝑥) = −𝑥𝑙𝑜𝑔2𝑥 − (1 − 𝑥)𝑙𝑜𝑔2(1 − 𝑥) 3.4.19

3.5 Accidental count rate

 When measuring coincident counts on two detectors receiving two photon paths, there

are some probabilities where the count gets triggered by non-pair photons depending on the

rate of the photon counts detected on a single port and the types of laser source used. For

continuous laser, the accidental coincident count rate (Racc) is shown in Eq. 3.5.1. RA and RB

are single count rates on ports A and B, and Tw is the window time of a coincident count.

Racc = RA × RB × Tw 3.5.1

 For pulse lasers, the computation is split into two cases: when the window time is larger

or equal to the laser pulse period, the accidental coincident count rate is defined by Eq. 3.5.2,

and for the opposite, it is shown in Eq. 3.5.3.

Racc = RA × RB/ frep + Rd
2 × Tw 3.5.2

Racc = (RA × RB/ frep) * (Tw/Tpulse) + Rd
2 × Tw 3.5.3

where Tpulse = laser pulse width, frep = laser pulse frequency and Rd = dark count rate.

18

Type I

BBO

crystal

Laser coupler

Single mode fiber

Single mode fiber

Mirror prism

Mirror prism

Laser coupler

CHAPTER 4

Methodology

4.1 Photon pairs from type-I BBO using a CW laser pump

Fig. 4.1.1 shows the experimental setup for generating photon pairs using type-I BBO with

a CW laser pump (see Appendix D). Two mirrors are used to help with laser beam alignment

from a 404-nm CW laser source. The laser couplers are mounted on 3-dimensional translation

stages together with single mode fiber heads to locate the 808-nm wavelength beams produced

by the SPDC process from type-I BBO crystal. The other ends of the fibers are plugged into

coincidence photon counters, which can detect coincident photons that enter the receiver with

time resolution in picosecond order. Time and port where the photons trigger the counters are

recorded in a file, which is later processed by a program into a coincidence count histogram.

(See Appendix B)

Fig. 4.1.1 Experimental setup for photon pair creation

CW laser

coincidence

photons counter

mirror

mirror
Beam dump

19

Mirror prism

Mirror prism

Laser coupler

PM fiber

Laser coupler

HWP

QWP

Laser coupler

Single mode fiber

PM fiber

Single mode fiber

Laser coupler

Laser coupler

Beam splitter

PM fiber

4.2 Hong-Oa Mandel dip

Fig. 4.2.1 shows the setup for the Hong-Ou-Mandel experiment. The polarization maintain

(PM) fibers are used to guide two photon pairs from part 1 into two laser couplers, which lead

to two outgoing beams from another set of couplers instead of entering the photon counter. The

two beam paths go through HWPs and QWPs before crossing each other in the 50-50 beam

splitter. The waveplates are set to adjust the beams' polarization to horizontal in both paths.

Whereas in the second part, all four couplers are mounted to the translation stages and arranged

so that two outgoing beams cross perpendicularly to each other and to the beam splitter surface,

as well as aligning with two receiver ends. The distance between one output coupler and the

beam splitter is set to be varied in micrometer order by the translation stage along the

displacement axis. The number of coincident counts per second where two photons enter both

detectors by delay within three nanoseconds is recorded along with the displacement of the

translation stage and then plotted into the Hong-Ou-Mandel dip fitting with Eq. 3.2.4.

Fig. 4.2.1 Setup for the HOM dip experiment

coincidence

photons counter

20

Laser coupler

Laser coupler

Laser coupler Single mode fiber
PM fiber

Mirror prism
Laser coupler

Mirror prism

Single mode fiber

Laser coupler

HWP

QWP

Laser coupler

PM fiber

4.3 CHSH inequality

CHSH inequality and Bell’s state experiment can be operated using the same optical

compositions. Fig. 4.3.1 shows the experiment setup for both studies. The distance between

two laser couplers with an outgoing beam to the beam splitter is set to be equal in the second

experiment. HWPs and QWPs are set after the beam emitted from the couplers to rotate one of

the photon beams to vertical polarization, while another path is still horizontal polarization. By

adding HWPs, QWPs, and PBSs in front of the laser couplers that sent the photons to the photon

counters, two outgoing beams from the beam splitter can be measured on any polarization basis.

For each experiment, there are sixteen waveplate angle sets of measurements.

The CHSH experiment needs specific sets of measurements to achieve the inequality

boundary as shown in Fig. 3.3.2. The angles of the HWPs in paths A’ and B’ are as shown in

Table 4.3.1. Note that the angles are measured counterclockwise from the x-axis, looking in the

same direction as beam propagation. Here both QWPs are set to 0 degrees from the x-axis.

Fig. 4.3.1 Experimental setup for CHSH and state tomography

coincidence

photons counter

PBS

50-50 BS

PBS

21

Measurement number HWP A’ (degrees) HWP B’ (degrees)

1 -22.5 -12

2 -22.5 33

3 22.5 -12

4 22.5 33

5 -22.5 12.5

6 -22.5 57.5

7 22.5 12.5

8 22.5 57.5

9 0 -12

10 0 33

11 45 -12

12 45 33

13 0 12.5

14 0 57.5

15 45 12.5

16 45 57.5

The number of coincident counts per second that both counters triggered within three

nanoseconds is recorded along with the experiment setup for each measurement in the

experiments. Then the S value can be calculated for the CHSH experiment using Eq. 3.3.2.

4.4 Bell’s state experiment

 In Bell’s state experiment, waveplate angles are selected to calculate the polarization

density matrix. In Eq. 3.4.10, each waveplate set is used to measure the simple polarization

basis for each path. Given that H is horizontal, V is vertical, D is diagonal, A is anti-diagonal,

R is right-hand, and L is left-hand polarization. The sixteen basis measurements are HH, HV,

VV, VH, RH, RV, DV, DH, DR, DD, RD, HD, VD, VL, HL, and RL, where the first and

second letters correspond to A' and B' path measurements, respectively.

 For each measurement in the experiments, the coincident counts rate is recorded in the

same manner as in the CHSH experiment, and then the polarization density matrix and its

valuable quantities can be computed using Eqs. 3.4.13–3.4.19 with the help of MATLAB

programming in numerical computation (Appendix C).

Table. 4.3.1 HWP angles used in 16 measurements to calculate the S value in the

CHSH experiment

22

Single mode fiber

Laser coupler

Type I

BBO

crystal

Single mode fiber

Mirror prism

Mirror prism

Laser coupler

Focusing and

collimating lens

4.5 Photon pairs from type-I BBO using an 80 MHz pulse laser pump

The experimental setup for photon pairs generated using a pulse laser pump (Appendix

D) is similar to the CW pump setup as shown in Fig. 4.5.1 Due to the difference between beam

profiles, the laser beam from the pulse laser source must pass through a focusing and

collimating lens in order to be more efficient in generating photon pairs. The pulse laser

frequency is set to its maximum at 80 MHz to achieve the highest photon pair count. The port

and time bin where any photons trigger in the counter are then computed to generate the delay

histogram.

Fig 4.5.1 Setup for creating photon pairs with a pulse laser

Pulse laser

coincidence

photons counter

mirror

mirror Beam dump

23

Single mode fiber

Laser coupler

Mirror prism
Laser coupler

Mirror prism PM fiber 50-50 BS

Single mode fiber

Laser coupler

Laser coupler

HWP

QWP

Photon pair paths

4.6 Loop using 50/50 Beam splitter

Fig. 4.6.1 shows the experimental setup for photon loop using a beam splitter. One path

of the photon pairs from experiment 4 is directly entering the photon counter. Whereas another

path goes through a 50/50 beam splitter, which results in a 50% chance to enter the counter and

a 50% chance to enter the 5-meter polarization maintenance fiber, where delay time is added

when it triggers into the second port in the counter. The outgoing beam from the PM fiber also

enters the beam splitter and therefore has a 50/50 chance of entering the port or adding more

delay. Here, HWPs, QWPs, and PBSs are used to maintain the beam polarization and reduce

noise from the laser source, which has perpendicular polarization compared to photon pairs.

The delay histogram calculated from the recorded values of the photon counter is then analyzed

to determine how many photon loops can be measured by the experimental setup.

Fig. 4.6.1 Experiment setup for creating a photon loop using a 50/50 beam splitter

coincidence

photons counter

PBS

24

Mirror prism

Mirror prism

Single mode fiber

Single mode fiber

PM fiber

Laser coupler

Laser coupler

Laser coupler

Laser coupler

HWP

QWP

50-50 BS

Lens

Type I

BBO

crystal

Laser beam incident

4.7 Improve loop setup with lens and reduce laser pulse frequency

The collimated lens is added behind the BBO crystal in experiment five, as shown in

Fig. 4.7.1, to reduce the loss over long distances for the photon beam in the B path. And the

laser pulse frequency is reduced to 2.5 MHz to improve visibility in the delay histogram. Then

the photon counter can record the result of the counter port and time bin trigger, which can be

calculated to delay histogram and analyze the photon loop visibility afterward.

.

Fig 4.7.1 Experiment setup for creating a photon loop using a 50/50 beam splitter

coincidence

photons counter

PBS

25

a. b.

CHAPTER 5

Result and discussion

5.1 Photon pairs from type-I BBO using a CW laser pump

 From Fig. 5.1.1, the result shows the delay histogram between two ports with a FWHM

of the histogram peak around 3 nanoseconds. There are two noise peaks that appeared in the

histogram that might occur if one port of the counter gets triggered by a laser source instead of

the photon pairs. The average photon counts per second from ports 1 and 2 are 4,140 and 4,194,

respectively, according to the single count graph. Using a window time of 6 nanoseconds, a

coincident count rate of 361.2 counts per second can be calculated from the delay histogram.

 Eq. 3.5.1 can be used to calculate the accidental coincident count. Using the window

time of 6 nanoseconds, its value is 0.1042 count per second, which, when compared to the

actual coincident count, allows us to calculate a signal-to-noise ratio of 3,468. The results show

that the SPDC process successfully generates photon pairs with a delay in nanosecond order

between pairs when using this experimental setup, and the number of pairs generated is

noticeably higher than the number of non-pair photons.

Additionally, the accidental counts occurred consistently and appear as the baseline in

the histogram plot at around 2x10-3 counts per time bin per second. Which is a normal

phenomenon considering that with continuous laser the photons are generated continuously and

can trigger the counter at any time.

Fig. 5.1.1 (a). single count rate on ports A’ and B’ as a function of time. (b). delay histogram

showing the number of counts triggered in port B’ after a varied time delay from when port A’

gets triggered.

26

5.2 Hong-Oa Mandel dip

 Fig. 5.2.1 shows the result from the Hon-Ou-Mandel experiment. The dots represent a

coincident count per second at various translation stage displacements on one side. The red line

represents the fitted graph by equation Eq. 3.2.4. Here the displacement values are shifted to

zero at the lowest fitted value of coincident count to simplify the data. The fitted constant values

are shown in Table. 5.2.1, and the visibility can be calculated from Eq. 3.2.5 to be about 0.89.

constant value

C 1325 cps

T 0.51

R 0.49

w 0.060 μm

d0 0.55 μm

 From the measurement, there are peaks on both sides of the dip, which are possibly the

result of the rectangular spectrum bandpass filter used in the setup. However, the overall result

shows that there are interferences between the photon pairs generated and propagated in two

perpendicular paths. And the setup can be improved for more complex experiments requiring

the interference process.

Fig 5.2.1 Measurement result and fitting plot of the HOM dip experiment

Table. 5.2.1 Result values from plot fitting of the HOM dip experiment

27

5.3 CHSH experiment

HWP1 HWP2 cc net (cps) cc std (cps)

-22.5 -12 150 14

 33 60 7

22.5 -12 49 8

 33 136 13

-22.5 12.5 44 8

 57.5 156 12

22.5 12.5 153 15

 57.5 35 7

0 -12 24 5

 33 166 15

45 -12 163 13

 33 26 5

0 12.5 43 7

 57.5 141 14

45 12.5 149 13

 57.5 43 7

The result of the CHSH experiment is shown in Table. 5.3.1, where the first two

columns are the angles of the HWPs used on paths A’ and B’ respectively. And the third and

fourth columns are the coincident count per second and the standard deviation of its value.

From Eqs. 3.3.1 and 3.3.2, E and S values can be calculated using the first four rows as a setup

for E(a,b), the next four rows are for E(a,b') , the ninth to the twelfth rows are for E(a',b), and

the last four rows are for E(a',b').

 avg std

E(a,b) 0.45 0.06

E(a,b') -0.59 0.06

E(a',b) -0.74 0.07

E(a',b') -0.54 0.07

S 2.32 0.13

Table. 5.3.1 Coincident count rate and its standard deviation for each projective measurement in

the CHSH experiment

28

The calculated E and S values are shown in Table 5.3.2. The S value is 2.3 ± 0.2, which

is greater than 2 and therefore violates the inequality, meaning that the experimental setup

cannot be described by classical mechanics or by local hidden-variable theories.

5.4 Density matrix experiment

 From the experiment setup, the coincident count per second on each basis measurement

is shown in Table 5.4.1, where the first and second letter in the first column refer to the basis

measured in path A’ and path B’, respectively. By using Eq. 3.4.13, the density matrix of the

polarization state can be estimated numerically (Appendix C) and shown in Table. 5.4.2 and

Fig. 5.4.1.

Table. 5.3.2 Calculated E and S values in the CHSH experiment

29

a. b.

<ψ∣
∣ψ>

<ψ∣
∣ψ>

Basis measurement Coincident count per second

HH 2.13

HV 180.30

VV 1.52

VH 173.03

RH 97.87

RV 73.84

DV 78.09

DH 96.79

DR 60.25

DD 157.17

RD 109.01

HD 93.34

VD 73.59

VL 69.47

HL 67.95

RL 16.03

 HH HV VH VV

HH 0.01 0.01 0.01 0.00

HV 0.01 0.49 0.37 -0.03

VH 0.01 0.37 0.49 -0.03

VV 0.00 -0.03 -0.03 0.01

 HH HV VH VV

HH 0.00 0.04 0.02 0.00

HV -0.04 0.00 0.16 -0.01

VH -0.02 -0.16 0.00 0.01

VV 0.00 0.01 -0.01 0.00

Table. 5.4.1 Coincidence count rate for each basis measurement in the density matrix tomography

experiment

Table. 5.4.2 Computed physical density matrix in (a) real part and (b) imaginary part

30

a. b.

a. b.

 The result shows that the polarization state is close to the Bell state 𝜓+ in this

experiment setup with a fidelity of 0.8685. From Eq. 3.4.13 to Eq. 3.4.19, the derived quantities

are S = 0.431, P = 0.2134, C = 0.7449, T = 0.5549, and E = 0.6494. S and P values show that

the polarization state has some degree of mixture and is not completely in a pure state. Whereas

the last three values show that the entanglement state is successfully produced in this

experimental setup.

5.5 Photon pairs from type-I BBO using a 80MHz pulse laser pump

 Fig. 5.5.1 shows the result of the experimental setup for photon pairs generated by

using a pulse laser pump into a type-I BBO. From the single count graph, the average photon

counts per second in ports 1 and 2 are 2,863 and 3,800, respectively. The delay histogram shows

a coincident peak with FWHM around 3 nanoseconds, and the coincident count can be

calculated at 51.24 counts per second with a window time of 6 nanoseconds. Using Eq. 3.5.2,

the accidental coincident is 0.136, which yields the signal-to-noise ratio at 376.8.

Fig. 5.4.1 Real part (a) and imaginary part (b) of the density matrix plotted in 3D columns

Fig. 5.5.1 The results of an experiment using a pulse laser as a photon pair source. (a) single count

rate on ports A’ (bottom line) and B’ (top line). (b). Delay histogram between two ports.

31

From the delay histogram, there are repeating noise peaks every 12.5 nanoseconds.

These peaks are accidental coincidences where two ports are triggered by two different pulses

instead of the same pulse that generated pairs of photons. Additionally, there are peaks at -20

and +20 nanoseconds that might be caused by errors in system signal processing or the detector

deadtime.

 From the result, the photon pairs generated by using pulse lasers have a lower signal-

to-noise ratio compared to the experiment using a continuous laser source. The main reason

here is the difference in laser power that the pump can generate. However, by using a pulse

laser, the delay histogram can show better visibility and be easier to distinguish between a real

coincidence count and an accidental coincident count peak. This shows that the pulse source is

a better choice in the experiment where the delay peaks need to be analyzed carefully or there

are low signal counts that need to be examined and the baseline noise is undesirable.

5.6 Loop using a 50-50 Beam splitter

Fig 5.6.1 A delay histogram between two ports in the experiment that guides one path of photon

pairs into an optical loop

32

Peak Index Center Max(ns) Max Height (cps) FWHM (nm)

1 -9.43 3.5E-03 2.03

2 2.43 1.5E+00 2.08

3 15.31 2.1E-03 2.37

4 29.66 7.2E-01 2.11

5 40.62 3.1E-03 2.00

6 56.92 1.5E-01 2.12

7 65.63 2.6E-03 1.90

8 78.76 2.5E-03 2.74

9 84.14 2.7E-02 1.86

10 89.59 4.4E-03 0.28

11 103.01 5.4E-03 0.22

12 111.44 3.4E-03 1.31

13 115.28 3.1E-03 1.68

14 128.07 3.4E-03 2.01

15 140.45 2.8E-03 1.92

16 152.93 3.0E-03 1.65

17 165.48 3.2E-03 1.78

18 178.34 4.7E-03 0.25

19 190.22 2.6E-03 1.55

 Fig. 5.6.1 and Table 5.6.1 show the result delay histogram from photon loop setup and

peak properties for each peak index. The accidental peak noises repeat every 12.5 nanoseconds

with a maximum height of around 0.003 counts per second and can be easily recognized from

their time delay. Peak index 2,4,6 and 9 can be identified as signals with the first one accounting

for photon that trigger without entering the fiber loop, and those after are for 1,2 and 3 times in

the loop respectively. The histogram peak, which accounted for the fourth and higher loop, is

not distinguishable from other noise peaks due to its low signal and overlap between peaks.

 From the result, it appears that each loop delays the photon signal time by around 27

nanoseconds and lowers the peak height by about 80%, compared to 50% in theory. The large

power loss could be a result of multiple reasons, such as loss in fiber, imperfect mirrors, an

imperfect beam splitter, and inaccurate alignment.

Table. 5.6.1 Peak indices and their properties from the histogram in Fig. 5.6.1

33

5.7 Improve loop setup with lens and reduce laser pulse frequency

Peak Index Center Max (ns) Max Height (cps) FWHM (ns)

2 9.13 1.6E+00 1.92

5 72.39 5.0E-01 1.96

8 135.66 6.4E-02 1.95

14 198.91 6.5E-03 1.94

18 262.03 2.8E-04 0.69

20 317.67 1.2E-04 0.04

21 409.36 6.4E-03 1.83

 By lowering the pulse frequency, accidental coincident peaks are separated with a

longer time delay and the signals can be analyzed more accurately, but in return, the laser power

is lower and results in small signal counts. Therefore, in this setup, lens is added to help with

photon pair beam alignment and focusing. The resulting delay histogram from the experimental

setup is shown in Fig. 5.7.1, and the peak properties from the graph are shown in Table 5.7.1.

With a 2.5 MHz pulse laser, the accidental coincident peaks repeat every 400 nanoseconds and

appear only once at peak number 21 in the graph. Here peak numbers 5, 8, 14, 18, and 20 are

accounted for signal from photons traveling in loop fiber 1, 2, 3, 4, and 5 times before entering

the counter, respectively. Peak 2 shows the signal where photons trigger the counter without

entering a loop.

 The results show that each time photons enter the fiber loop, a delay of about 63

nanoseconds is added, with a 90% reduction in peak height. The larger power loss might come

from the longer fiber used in the experiment or from more inaccurate alignment. Nonetheless,

Fig. 5.7.1 Delay histogram between two ports in the improved experiment with lens

Table. 5.7.1 Peak indices and their properties from the histogram in Fig. 5.7.1

34

the histogram peak can be analyzed up to the fifth loop, which is a huge improvement from the

previous experiment setup.

 There are some noise peaks around the main peak; these can be caused by a variety of

factors but were most likely caused by the additional path that some photon pairs can take to

add constant time to their delay before entering the main path and triggering the counter. For

example, if one of the pair reflected back and forth inside the 5-meter fiber before entering the

same path, it will add approximately 20 nanoseconds to the delay histogram and shift the peak

to the left or right side depending on which port that photon triggers.

35

CHAPTER 6

An alternative scheme of universal optical programmable

multi-qubit gates for polarization qubits

6.1 Hilbert-space expansion technique for two polarization qubits

Universal quantum computers need single-qubit and two-qubit gates realized by

particular physical systems [5]. The single-qubit gate of the polarization state of light is simply

given by a cascade of birefringent materials, such as half-waveplates (HWP) and quarter-

waveplates (QWP). Peters et al. [29] demonstrated that single-qubit gates comprising two

HWPs and a QWP had great versatility, yielding all possible unitary single-qubit gates. In

addition, non-unitary single-qubit gates were also possible with the use of an interferometer to

introduce decoherence into the optical circuit. Two-qubit gates are also of primary interest, as

they are far more difficult to achieve with photon qubits. Here, we develop optical

decomposition to realize any possible two-qubit gate. First of all, any two-qubit gate can be

expressed as a linear combination of tensor products of single-qubit gates, which can be written

as ∑ �̂�𝟏𝒊⊗ �̂�𝟐𝒊𝒊 . Using four separate single-qubit gates γ̂00 , γ̂01 , γ̂10 , γ̂11 , which were

realized experimentally in [29], a two-qubit gate can be mathematically decomposed as

|0⟩ ⟨0| ⊗ γ̂

00
+ |0⟩ ⟨1| ⊗ γ̂

01
+ |1⟩ ⟨0| ⊗ γ̂

10
+ |1⟩ ⟨1| ⊗ γ̂

11
 6.1.1

which implies that once programmable single qubit gates are realized, programmable two-qubit

gates will be as well.

To realize such two-qubit gates using photons, we started from previous works that

dealt with the linear combination of quantum operators [32, 38]. The approach requires two

pairs of type-I spontaneous parametric down-conversion (SPDC) processes (Fig. 6.1.1a) and

two symmetrical beam splitters (BS) to merge four spatial modes of photons resulting from the

SPDCs (Fig. 6.1.1b). Once a laser beam is pumped to two nonlinear crystals, as presented in

Fig. 6.1.1a, two pairs of identical photons are produced, whose states can be written in the

polarization states as
1

√2
(|𝜓⟩𝑎1|𝜓⟩𝑎2 + |𝜓′⟩𝑏1|𝜓′⟩𝑏2) 6.1.2

Fig. 6.1.1 (a)
SPDC source to produce two pairs of

entangled photons resulting as Eq. 6.1.2

(b) Experimental scheme to realize the

two-qubit operation

�̂�1 ⊗ �̂�2 + �̂�1 ⊗ �̂�2 according to the input

state (Eq. 6.1.3), which is derived from the

source (Eq. 6.1.2)

36

where a1, a2, b1, and b2 denote the spatial paths of the photons, and ψ and ψ’ are the polarization

states of each photon pair. After the SPDCs, by priorly knowing of the possible states from

SPDCs, we can transform the output states to

1

√2
(|𝜓1⟩𝑎1|𝜓2⟩𝑎2 + |𝜓1⟩𝑏1|𝜓2⟩𝑏2) 6.1.3

using waveplates. The polarization states ψ1 on the paths a1 and b1 are set identically and

constitute the states of the first qubit. Similarly, the states ψ2 on the paths a2 and b2 constitute

the states of the second qubit. Afterward, the photon on each spatial path is operated by the

single-qubit gates �̂�1, �̂�2, �̂�1, �̂�2, and then the paths are merged by two BSs. Since each state is

actually the hyper-entanglement of paths and polarization qubits, a beam splitter produces

separate paths of photons but conserves their polarization. Consequently, two BSs (Fig. 6.1.1b)

transform the states in Eq. 6.1.3 as follows:

|𝜓1⟩𝑎1 →
1

√2
(�̂�1|𝜓1⟩𝑎1 + �̂�1|𝜓1⟩𝑏1) 6.1.4

|𝜓1⟩𝑏1 →
1

√2
(�̂�1|𝜓1⟩𝑎1 − �̂�1|𝜓1⟩𝑏1) 6.1.5

|𝜓2⟩𝑎2 →
1

√2
(�̂�2|𝜓1⟩𝑎1 + �̂�2|𝜓2⟩𝑏2) 6.1.6

|𝜓2⟩𝑏2 →
1

√2
(�̂�2|𝜓1⟩𝑎2 − �̂�2|𝜓2⟩𝑏2) 6.1.7

As a result of post-selecting photons in the paths a1, a2 or b1, b2, the final state of photons

becomes

1

√2
(�̂�1⊗ �̂�2 + �̂�1⊗ �̂�2)|𝜓1⟩|𝜓2⟩ 6.1.8

Fig. 6.1.2 (a) A nonlinear single-photon source gives the superposition of photon states (Eq.

6.1.10). (b) A linear optical circuit to perform the linear combination of four tensor products of

single-qubit gates in Eq. 6.1.12. The photons in the circuit are delivered from eight paths in Fig.

6.1.2a. Before entering the circuit, all photons are initialized as the superposition of the identical

input polarization states on different spatial paths in Eq. 6.1.10

37

The quantum operator �̂�1⊗ �̂�2 + �̂�1⊗ �̂�2 is realized with a probability of
1

4

 In order to achieve Eq. 6.1.1, the construct of four SPDCs, eight spatial paths, and eight

BSs is presented in Fig. 6.1.2. The circuit is indeed a scaled-up version of Fig. 6.1.1. Similar to

Eq. 6.1.2, we can expect the state

1

2
(|𝜓𝑎⟩𝑎1|𝜓𝑎⟩𝑎2 + |𝜓𝑏⟩𝑏1|𝜓𝑏⟩𝑏2 + |𝜓𝑐⟩𝑐1|𝜓𝑐⟩𝑐2 + |𝜓𝑑⟩𝑑1|𝜓𝑑⟩𝑑2) 6.1.9

from four SPDCs (Fig. 6.1.2a). If we assume that the polarization states in (Eq. 6.1.9) are known,

we can generate an output state for the two qubits before entering the circuit of Fig. 6.1.2b

as

1

2
(|𝜓1⟩𝑎1|𝜓2⟩𝑎2 + |𝜓1⟩𝑏1|𝜓2⟩𝑏2 + |𝜓1⟩𝑐1|𝜓2⟩𝑐2 + |𝜓1⟩𝑑1|𝜓2⟩𝑑2) 6.1.10

In the first stage of the circuit, by using �̂�1 = |0⟩⟨0|, �̂�1 = |0⟩⟨1|, �̂�1 = |1⟩⟨0|, �̂�1 = |1⟩⟨1|,
�̂�2 = γ̂00, �̂�2 = γ̂01, �̂�2 = γ̂10, �̂�2 = γ̂11 , functioning as the programmable apparatus, (Eq.

6.1.10) leads to

1

2
[(|0⟩⟨0||𝜓1⟩𝑎1)⊗ (γ̂00|𝜓2⟩𝑎2) + (|0⟩⟨1||𝜓1⟩𝑏1)⊗ (γ̂01|𝜓2⟩𝑏2) + (|1⟩⟨0||𝜓1⟩𝑐1)⊗

(γ̂10|𝜓2⟩𝑐2) + (|1⟩⟨1||𝜓1⟩𝑑1)⊗ (γ̂11|𝜓2⟩𝑎𝑑2)] 6.1.11

Finally, using the relation between inputs and outputs expressed in Eqs. 6.1.4 - 6.1.7 together

with the post-selection measurement of photon coincidences in the paths (a1, a2),

(b1, b2), (c1, c2) or (d1, d2), the final state becomes

1

2
(|0⟩⟨0| ⊗ γ̂

00
+ |0⟩⟨1| ⊗ γ̂

01
+ |1⟩⟨0| ⊗ γ̂

10
+ |1⟩⟨1| ⊗ γ̂

11) 6.1.12

with a probability of 1/4. In particular, this yields a two-qubit operation, namely

[
γ̂
00

γ̂
01

γ̂
10

γ̂
11

] |𝜓1⟩|𝜓2⟩ 6.1.13

where all the entries of the 4 × 4 matrix are programmable

38

6.2 Universal optical programmable multi-qubit gates

The recent experimental creation of three photon polarization GHZ states from SPDC

[17] suggests that we can expect to access more photonic quantum processing with polarization-

entangled photons in the coming years. Apart from other sophisticated approaches to photon

entanglement, SPDC from nonlinear crystals in bulk optics setups, as presented here, can play

a role as the simplest possible source of entangled photons. Suppose that the n-photon entangled

state

1

√2
(|𝜓1⟩𝑜11|𝜓2⟩𝑜12⋯|𝜓𝑛⟩𝑜1𝑛 + |𝜓1⟩𝑜21|𝜓2⟩𝑜22⋯|𝜓𝑛⟩𝑜2𝑛) 6.2.1

is accessible from the source depicted in Fig. 6.2.1 and that the n-photon coincidence counting

operates with high efficiency, our architecture is able to accommodate programmable n-qubit

gates. The scheme in Fig. 6.2.1 is actually the n-photon version of the paired-photon source in

Fig. 6.1.1a, in which the paths a1, a2, b1, and b2 are replaced, respectively, by O11, O12, O21, and

O22 for generalization; and ES represents the entanglement source. For clarity in notation, two

indices, say m and p of the path Omp, indicate photons from the pth source (ESp) and the mth qubit,

which will be later encoded into the polarization state |𝜓𝑚⟩.

Fig. 6.2.1 Two coupled notional single-photon sources (ES1 and ES2) provide n entangled

photons. The sources give the polarization states as Eq. 6.2.1

39

In order to generalize all operations in the previous section to the n-qubit case, we

introduce a combination block (Ckl); see Fig. 6.2.2. Here, the Ckl block consists of BSs, where

each BS fuses the two paths sharing the second index, e.g., from sources ESk and ESl in this case.

When the single-qubit gate Omp operates on each of its corresponding paths Omp, the Ckl block

transforms the initial state

1

√2
(|𝜓1⟩𝑜𝑘1|𝜓2⟩𝑜𝑘2⋯|𝜓𝑛⟩𝑜𝑘𝑛 + |𝜓1⟩𝑜𝑙1|𝜓2⟩𝑜𝑙2⋯|𝜓𝑛⟩𝑜𝑙𝑛) 6.2.2

to

1

(√2)
𝑛+1 [(�̂�𝑘1|𝜓1⟩𝑜𝑘1 + �̂�𝑘1|𝜓1⟩𝑜𝑙1)⊗ (�̂�𝑘2|𝜓2⟩𝑜𝑘2 + �̂�𝑘2|𝜓2⟩𝑜𝑙2)⊗⋯⊗ (�̂�𝑘𝑛|𝜓𝑛⟩𝑜𝑘𝑛 +

�̂�𝑘𝑛|𝜓𝑛⟩𝑜𝑙𝑛) + (�̂�𝑙1|𝜓1⟩𝑜𝑘1 − �̂�𝑙1|𝜓1⟩𝑜𝑙1)⊗ (�̂�𝑙2|𝜓2⟩𝑜𝑘2 − �̂�𝑙2|𝜓2⟩𝑜𝑙2)⊗⋯⊗

(�̂�𝑙𝑛|𝜓𝑛⟩𝑜𝑘𝑛 − �̂�𝑙𝑛|𝜓𝑛⟩𝑜𝑙𝑛)] 6.2.3

 Thereafter, by post-selecting the case where only one photon leaves each path of Ok1 -

Okn simultaneously, we will obtain the final state

(�̂�𝑘1⊗ �̂�𝑘2⊗⋯⊗ �̂�𝑘𝑛 + �̂�𝑙1⊗ �̂�𝑙2⊗⋯⊗ �̂�𝑙𝑛) × |𝜓1⟩𝑜𝑘1|𝜓2⟩𝑜𝑘2⋯|𝜓𝑛⟩𝑜𝑘𝑛

 6.2.4

Fig. 6.2.2 A combination block (Ckl), a series of beam splitters combining photons from ESk and

ESl, supposing each ES produces n distinguishable single photons

40

with a success probability of (1/√2)𝑛+1. Likewise, by post-selection on all l-paths, we obtain

(�̂�𝑘1⊗ �̂�𝑘2⊗⋯⊗ �̂�𝑘𝑛 − �̂�𝑙1⊗ �̂�𝑙2⊗⋯⊗ �̂�𝑙𝑛) × |𝜓1⟩𝑜𝑙1|𝜓2⟩𝑜𝑙2⋯|𝜓𝑛⟩𝑜𝑙𝑛

 6.2.5

with a success probability of (1/√2)𝑛+1. The realization of Eq. 6.2.4 is a cornerstone of the

complete realization of the n-qubit programmable operation.

First of all, any n-qubit operation is represented by a 2n × 2n matrix and can be

decomposed into a linear combination of tensor products written as

∑ ∑ 𝛾(𝑖. 𝑗) ⊗2𝑛−1

𝑗=1
2𝑛−1

𝑖=1 |𝑖⟩⟨𝑗| 6.2.6

where 𝛾(𝑖. 𝑗) is a 2 × 2 operator as defined in Eq. 6.1.1, and all of its matrix elements are

programmed by the programmable single-qubit gates. Here, |𝑖⟩⟨𝑗| represents a basis for each

matrix element of the 2n-1 × 2n-1 all-ones matrix.

As the initial state in Eq. 6.2.1 from the source in Fig. 6.2.1 is necessary to realize the

summation of two terms of tensor products of n single-qubit gates, we will, at least, need the

kind of source illustrated in Fig. 6.2.3 to complete the summation of n’ = (2n-1)2 terms following

Eq. 6.2.6. The quantum state is then written as

1

√𝑛′
∑

𝑛
⊗
𝑙 = 1

𝑛′
𝑘=1 |𝜓𝑙⟩𝑜𝑘𝑙 6.2.7

Fig. 6.2.3 A cascade of n ESs, where each ES produces n entangled single photons in separate

paths, resulting the initial state as expressed in Eq. 6.2.7

41

From this stage of the scheme, photons from each ES play a role as each term in Eq.

6.2.6 arising from applying the local operator (Fig. 6.2.4). The local operators applied on paths

Ol,1, Ol,2, …, Ol,n-1 are the members of {|0⟩⟨0|, |0⟩⟨1|, |1⟩⟨0|, |1⟩⟨1|}. A tensor product of n - 1

terms from this set of operators results in a (2n-1) × (2n-1) matrix with all zero entries except the

element (i, j). The relation between the tensor product and (i, j) follows the relation

|0⟩⟨1| ⊗ |1⟩⟨0| ⊗⋯⊗ |1⟩⟨0| ≡ |01⋯1⟩⟨10⋯0| = |𝑖⟩⟨𝑗| 6.2.8

where i and j correspond to decimal equivalents of the binary representations 01⋯1 and 10⋯0,

respectively. The summation of two separate terms building from two ESs and the state

preparation schemes in Fig. 6.2.4 is presented in Fig. 6.2.5. Finally, using the combination

blocks to merge all paths (Fig. 6.2.6) and post-selecting only photons in path O’’(1, n), the

operation in Eq. 6.2.6 is realized, obtaining the n-qubit operation represented by the matrix

[

𝛾(1,1) 𝛾(1,2) 𝛾(1,3) ⋯ 𝛾(1,2𝑛−1)
𝛾(2,1) 𝛾(2,2) 𝛾(2,3) ⋯ 𝛾(2,2𝑛−1)

⋮ ⋮ ⋮̂ ⋱ ⋮
𝛾(2𝑛−1,1) 𝛾(2𝑛−1,2) 𝛾(2𝑛−1,3) ⋯ 𝛾(2𝑛−1,2𝑛−1)]

 6.2.9

with a success probability of (1/√2)n

Fig. 6.2.4 The example of the local operations applied to

the photon state after being initialized to the state in Eq.

6.2.7 on each ES output (ESl for this example). This

example represents just one term in Eq. 6.2.6. In order to

assign the position (i, j) of the single-qubit operation 𝛾 (i,

j) on the (2n-1) × (2n-1) all-ones

matrix, the local operations representing the position are

applied on the paths O(l,1), O(l,2), …, O(l,n’-1). In this

example, the operators relating to entries on the all-ones

matrix follow from Eq. 6.2.8

42

Fig. 6.2.5 A modified combination block. Paths O(p,m) sharing p are grouped as a composite path

o’(p,n’) with a set of local operations in Fig. 6.2.4, where m = 1, 2, …, n’. In this case, the composite

paths o’l,n’ and o’k ,n’ are combined by the modified combination block Cl,k,n’ , resulting in the

composite path O’’l,n’ . This output composite path is the post-selection of the photons leaving at

the output paths O(l,1), O(l,2), …, O(l, n -1)

Fig. 6.2.6 The application of the modified combination blocks to combine entire composite paths

O’1,n, O’2,n, . . . , O’n’-1,n, O’n’,n, resulting in the post-selection of only one composite path as the

output

43

6.3 Discussion
We have presented an alternative optical circuit design that can achieve complete

versatility in a programmable multi-qubit gate. By directly programming the entries of the

matrix with a single-qubit gate, our proposed scheme circumvents the need to decompose the

required gates into elementary single- and two-qubit gates in the standard method of realizing

any unitary quantum operator. Accordingly, this alternative approach has the potential to

accelerate quantum simulation and information processing because it does not require iteration

as does the standard method. Due to the increased feasibility of controlling every entry of the

matrix independently by linear optics, it also provides great capacity to generate whole sets of

operations, including complex and non-unitary operations.

However, the demonstrated quantum gate based on this scheme is probabilistic and will

undergo an exponentially small probability of success. In this sense, we can regard this

alternative scheme as a way of trading the decoherence for the power of generating any operator.

One can argue that ideally the alternative scheme can be used to probe noise or decoherence

since the matrix entries are independently programmed and can be complex; in particular, the

off-diagonal terms can be probed systematically. This arguably can yield great benefits in

decoherence suppression and noise spectroscopy in metrology, and possibly in errors correction

in quantum communication. Furthermore, gate-based computation using a small number of

qubits is rather possible, and such a class of computation can shed some light on problems in

the fundamental concepts of quantum information requiring an arbitrary quantum gate.

Examples of such scenarios, such as controlling operation of an unknown U (2), the complete

quantum phase estimation algorithm via the semiclassical Fourier transform, entanglement

filters, the quantum approximate optimization algorithm, and Szegedy quantum walks, have

been demonstrated already [32, 37, 38].

Perhaps, it is more insightful and useful to compare our proposed scheme to the

standard method [8, 33], which relies on a decomposition of an N × N unitary matrix into a

product of 2 × 2 matrices, which can then be determined by using successive 2 × 2

transformations. Both approaches require linear optical devices to program a multi-qubit gate;

the standard method uses phase shifters and beam splitters on two-dimensional subspaces, and

iteratively expands to the full N-dimensional Hilbert space, while our scheme uses

entanglement photon sources and beam splitters to create all possible linear combinations of

tensor products in the entire Hilbert space and employs post-selection to program the operator.

To quantitatively analyze the complexity of the two approaches, we firstly note that, in order

to realize a U(2m), for m ≥ 2, it will need to be factorized into a multiplication of 2𝑚(2𝑚 −
1)/2 of U (4):

𝑈(2𝑚) = [∏ 𝑈𝑖(4)
2𝑚(2𝑚−1)

2

𝑖=1
] 𝐷 6.3.1

where D is a diagonal matrix with elements of modulus 1. There are several classical algorithms

to perform this type of factorization. However, preparing any arbitrary N × N gates could endure

exponential growth complexity as a result of this requirement. Compared to our scheme, which

is built from the summation of matrices U (4) given in Eq. 6.3.2, the number of required U (4)

operations is 4m-1 which is just a slight improvement.

𝑈(2𝑚) = ∑ 𝑈′̂𝑖(4)
4𝑚−1

𝑖=1 6.3.2

44

or equivalently

U(2𝑚) =

[

�̂�1(4) �̂�2(4) … �̂�(2𝑚−1)(4)

�̂�(2𝑚−1+1)(4) �̂�(2𝑚−1+2)(4) ⋯ �̂�(2𝑚)(4)

⋮ ⋮ ⋱ ⋮
�̂�(4𝑚−1−2𝑚−1)(4) �̂�(4𝑚−1−2𝑚−1+1)(4) ⋯ �̂�(4𝑚−1)(4)]

 =

 [

�̂�1(4) 0 … 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

] + [

0 �̂�2(4) … 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

] +⋯+ [

0 0 … 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ �̂�(4𝑚−1)(4)

]

 6.3.3

However, with no requirement for factorization of the matrix, our scheme can avoid a large

growth in complexity. The linear combination is the main strength of gate structure based on

X. Qiang et al.’s scheme in Ref. [32], like our scheme. The prepared U’(4)s can be simply

placed directly in the circuit as shown in Figs. 6.2.4 and 6.2.5 to realize a whole matrix of U(2m).

Clearly, there is a trade-off between iteration, which can increase complexity, and post-

selection, which yields low probability. For a small number of qubits, both approaches have

been realized experimentally with good fidelity [32, 37]. In particular, a similar linear

expansion technique for arbitrary two-qubit processing has been demonstrated [32] on a silicon

photonics chip that could generate two photonic qubits, on which it could perform arbitrary

two-qubit unitary operations, including arbitrary entanglement operations. As emphasized, our

proposed scheme circumvents the decomposition issue by directly programming matrix

elements of the operator, which can be applied to non-unitary matrices or the operation that is

governed by an unknown matrix, such as the phase estimation algorithm. For the latter, there is

no operator to decompose; hence, our method can have an advantage over the standard method.

Concerning the unknown quantum operation, our work can be regarded as the theoretical

extension of the work by Zhou et al. [38], where only 4 × 4 matrix was concerned. In some

sense, our analysis is similar to that of Reck et al. [33] but emphasizes the alternative approach

to their decomposition method. To our best knowledge, neither has been realized

experimentally for arbitrary N × N operators.

To further remark on the experimental realization of this architecture, our proposed

scheme demands extremely strong nonlinearity and highly efficient single-photon detection.

Unfortunately, the demonstration of these entirely programmable two-qubit gates is perhaps

beyond the capabilities of existing nonlinear optics technology. However, some previous

studies using the smallest possible configuration have proven the advantages of this approach

[37, 38]. In fact, photon pairs from the process of spontaneous four-wave mixing in strip

waveguides on a photonic chip could also produce polarization-entangled pairs [24]. In addition

to polarization-encoded qubits, micro-ring resonators for a path entangled two-qubit state also

have their potential. The Bell’s state of multi-photon pairs was realized in photonics-integrated

circuits [36]. Regardless of relying on the nonlinear optics as the single-photon source, the

future potential of a semiconductor quantum dots platform is currently envisaged [1, 10, 14, 19,

25].

45

Finally, we comment that, like the standard method, this alternative scheme is valid to

realize discrete operations. Once all N × N matrices can be implemented, it is possible to

measure the continuous observable. This can be done by truncating Fourier transforms into an

arbitrary large but discrete operator. In the context of quantum simulation, this can be very

beneficial for time-evolution operators of some physical systems, especially with random

interaction with the environment or fluctuation.

46

CHAPTER 7

Conclusion

In the experiment section, several experiments are used to measure the properties of the

system, and multiple optical elements are adjusted in each step to ensure the maximum outcome.

As a result, the photonic qubit is successfully created starting from the foundation concept of

photon pairs generated by a nonlinear process. The qubits created in the experiment can be used

as an entangle source in several quantum photonic experiments, such as teleportation or phase

estimation. However, because the qubits are created continuously by a continuous laser source,

they lose the possibility of being used in the algorithm, which relies on altering the extensive

time delay between the pairs.

In the experiment with the photon loop, there are still some issues with noise and signal

losses that need to be considered before adding more components to the system. The setup gave

the highest identifiable loop at the fifth one, which is insufficient considering that the planned

experiment includes more path splitting and therefore inevitably reduces more signal. In the

future study, it is of the utmost importance to identify the sources of system noise and signal

loss and then improve the signal-to-noise ratio to some degree before progressing to the next

experiment.

In the theoretical section, the alternative scheme for polarization qubit gates, which adopted

the Hilbert-space expansion technique, has multiple advantages over the standard scheme,

which relies on matrix decomposing. Those advantages are:

- The process of decomposing the required gates into elementary single- and two-qubit

gates can be avoided.

- The scheme has the potential to accelerate quantum simulation and information

processing due to the lack of iteration required.

- A non-unitary matrix, or unknown matrix, can be programmed into the operator.

- By using linear combination, the circuit structure can avoid a large growth in

complexity with a larger matrix operator.

- The scheme can be used to probe noise or decoherence, which makes it potentially

useful in decoherence suppression, noise spectroscopy, and error correction.

The disadvantages of the alternative scheme are:

- As a result of post-selection, the probability of success decreases exponentially with a

larger matrix operator.

- The system requires strong nonlinearity and highly efficient single-photon detection.

A large operator is unlikely to be built successfully with current technology.

With these advantages, the demonstrated scheme is a convenient method to construct

numerous quantum algorithms, which is not possible or impractical for the standard scheme,

and the disadvantage part could be weak with advancing technologies in nonlinear optics such

as photonics-integrated circuits or higher efficiency photon pairs sources.

47

BIBLIOGRAPHY

1 Altepeter, J. B., E. R. Jeffrey, and P. G. Kwiat. “Photonic State Tomography.” In

Advances In Atomic, Molecular, and Optical Physics, edited by P. R. Berman and

C. C. Lin, 52:105–59. Academic Press, 2005.

2 Aspect, Alain, Philippe Grangier, and Gérard Roger. “Experimental Realization of

Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s

Inequalities.” Phys. Rev. Lett. 49 (July 1, 1982): 91–94.

3 Aspect, Alain, Philippe Grangier, and Gérard Roger. “Experimental Tests of

Realistic Local Theories via Bell’s Theorem.” Physical Review Letters 47, no. 7

(August 17, 1981): 460–63.

4 Baek, So-Young, and Yoon-Ho Kim. “Spectral Properties of Entangled Photon

Pairs Generated via Frequency-Degenerate Type-I Spontaneous Parametric down-

Conversion.” Physical Review A 77, no. 4 (April 4, 2008): 043807.

5 Barenco, Adriano, Charles Bennett, Richard Cleve, David DiVincenzo, Norman

Margolus, Peter Shor, Tycho Sleator, John Smolin, and Harald Weinfurter.

“Elementary Gates for Quantum Computation.” Physical Review A 52 (March 23,

1995).

6 Barz, Stefanie, Gunther Cronenberg, Anton Zeilinger, and Philip Walther.

“Heralded Generation of Entangled Photon Pairs.” Nature Photonics - NAT

PHOTONICS 4 (July 16, 2010).

7 Burnham, David C., and Donald L. Weinberg. “Observation of Simultaneity in

Parametric Production of Optical Photon Pairs.” Physical Review Letters 25, no. 2

(July 13, 1970): 84–87.

8 Carolan, Jacques, Christopher Harrold, Chris Sparrow, Enrique Martín-López,

Nicholas J. Russell, Joshua W. Silverstone, Peter J. Shadbolt, et al. “Universal

Linear Optics.” Science 349, no. 6249 (August 14, 2015): 711–16.

9 Caspani, L., E. Brambilla, and A. Gatti. “Tailoring the Spatiotemporal Structure of

Biphoton Entanglement in Type-I Parametric down-Conversion.” Physical Review

A 81, no. 3 (March 8, 2010): 033808.

10 Claudon, Julien, Joël Bleuse, Nitin Singh Malik, Maela Bazin, Périne Jaffrennou,

Niels Gregersen, Christophe Sauvan, Philippe Lalanne, and Jean-Michel Gérard.

“A Highly Efficient Single-Photon Source Based on a Quantum Dot in a Photonic

Nanowire.” Nature Photonics 4, no. 3 (March 2010): 174–77.

11 Couteau, Christophe. “Spontaneous Parametric Down-Conversion.” Contemporary

Physics 59, no. 3 (July 3, 2018): 291–304.

12 Deutsch, David, and Roger Penrose. “Quantum Theory, the Church–Turing

Principle and the Universal Quantum Computer.” Proceedings of the Royal Society

of London. A. Mathematical and Physical Sciences 400, no. 1818 (July 8, 1985):

97–117.

13 Di Lorenzo Pires, H., F. M. G. J. Coppens, and M. P. van Exter. “Type-I

Spontaneous Parametric down-Conversion with a Strongly Focused Pump.”

Physical Review A 83, no. 3 (March 31, 2011): 033837.

48

14 Dousse, Adrien, Jan Suffczyński, Alexios Beveratos, Olivier Krebs, Aristide

Lemaître, Isabelle Sagnes, Jacqueline Bloch, Paul Voisin, and Pascale Senellart.

“Ultrabright Source of Entangled Photon Pairs.” Nature 466, no. 7303 (July 2010):

217–20.

15 Echenim, Mnacho, and Mehdi Mhalla. Quantum Projective Measurements and the

CHSH Inequality in Isabelle/HOL, 2021.

16 Geller, Michael R., John M. Martinis, Andrew T. Sornborger, Phillip C. Stancil,

Emily J. Pritchett, Hao You, and Andrei Galiautdinov. “Universal Quantum

Simulation with Prethreshold Superconducting Qubits: Single-Excitation Subspace

Method.” Physical Review A 91, no. 6 (June 8, 2015): 062309.

17 Hamel, Deny R., Lynden K. Shalm, Hannes Hübel, Aaron J. Miller, Francesco

Marsili, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Kevin J. Resch, and

Thomas Jennewein. “Direct Generation of Three-Photon Polarization

Entanglement.” Nature Photonics 8, no. 10 (October 2014): 801–7.

18 Hong, C. K., Z. Y. Ou, and L. Mandel. “Measurement of Subpicosecond Time

Intervals between Two Photons by Interference.” Physical Review Letters 59, no.

18 (November 2, 1987): 2044–46.

19 Hudson, A. J., R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie,

and A. J. Shields. “Biphoton Interference with a Quantum Dot Source of Entangled

Light.” Physica E: Low-Dimensional Systems and Nanostructures 40, no. 6 (April

1, 2008): 1888–90.

20 James, Daniel, Paul Kwiat, William Munro, and Andrew White. “Measurement of

Qubits.” Phys. Rev. A 64 (October 15, 2001): 052312.

21 Kane, B. E. “A Silicon-Based Nuclear Spin Quantum Computer.” Nature 393, no.

6681 (May 1998): 133–37.

22 Knill, E., R. Laflamme, and G. J. Milburn. “A Scheme for Efficient Quantum

Computation with Linear Optics.” Nature 409, no. 6816 (January 2001): 46–52.

23 Leibfried, D., B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano,

et al. “Experimental Demonstration of a Robust, High-Fidelity Geometric Two Ion-

Qubit Phase Gate.” Nature 422, no. 6930 (March 2003): 412–15.

24 Matsuda, Nobuyuki, Hanna Le Jeannic, Hiroshi Fukuda, Tai Tsuchizawa, William

John Munro, Kaoru Shimizu, Koji Yamada, Yasuhiro Tokura, and Hiroki Takesue.

“A Monolithically Integrated Polarization Entangled Photon Pair Source on a

Silicon Chip.” Scientific Reports 2, no. 1 (November 12, 2012): 817.

25 Miller, David. “Self-Configuring Universal Linear Optical Component [Invited].”

Photonics Research 1 (June 1, 2013): 1–15.

26 Monroe, C., D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland.

“Demonstration of a Fundamental Quantum Logic Gate.” Physical Review Letters

75, no. 25 (December 18, 1995): 4714–17.

27 Müller, M., H. Vural, C. Schneider, A. Rastelli, O. G. Schmidt, S. Höfling, and P.

Michler. “Quantum-Dot Single-Photon Sources for Entanglement Enhanced

Interferometry.” Physical Review Letters 118, no. 25 (June 22, 2017): 257402.

49

28 O’Brien, J. L., G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning.

“Demonstration of an All-Optical Quantum Controlled-NOT Gate.” Nature 426,

no. 6964 (November 2003): 264–67.

29 Peters, Nicholas, Joseph Altepeter, Evan Jeffrey, David Branning, and Paul Kwiat.

“Precise Creation, Characterization, and Manipulation of Single Optical Qubits.”

Quantum Information & Computation 3, no. 7 (October 1, 2003): 503–17.

30 Pittman, T. B., B. C. Jacobs, and J. D. Franson. “Heralding Single Photons from

Pulsed Parametric Down-Conversion.” Optics Communications 246, no. 4

(February 15, 2005): 545–50.

31 Politi, Alberto, Martin J. Cryan, John G. Rarity, Siyuan Yu, and Jeremy L. O’Brien.

“Silica-on-Silicon Waveguide Quantum Circuits.” Science 320, no. 5876 (May 2,

2008): 646–49.

32 Qiang, Xiaogang, Xiaoqi Zhou, Jianwei Wang, Callum M. Wilkes, Thomas Loke,

Sean O’Gara, Laurent Kling, et al. “Large-Scale Silicon Quantum Photonics

Implementing Arbitrary Two-Qubit Processing.” Nature Photonics 12, no. 9

(September 2018): 534–39.

33 Reck, Michael, Anton Zeilinger, Herbert J. Bernstein, and Philip Bertani.

“Experimental Realization of Any Discrete Unitary Operator.” Physical Review

Letters 73, no. 1 (July 4, 1994): 58–61.

34 Schmidt-Kaler, Ferdinand, Hartmut Häffner, Mark Riebe, Stephan Gulde, Gavin P.

T. Lancaster, Thomas Deuschle, Christoph Becher, Christian F. Roos, Jürgen

Eschner, and Rainer Blatt. “Realization of the Cirac–Zoller Controlled-NOT

Quantum Gate.” Nature 422, no. 6930 (March 2003): 408–11.

35 Shafi, K. Muhammed, R. S. Gayatri, A. Padhye, and C. M. Chandrashekar. “Bell-

Inequality in Path-Entangled Single Photon and Purity Test,” December 2021.

36 Wang, Jianwei, Stefano Paesani, Yunhong Ding, Raffaele Santagati, Paul

Skrzypczyk, Alexia Salavrakos, Jordi Tura, et al. “Multidimensional Quantum

Entanglement with Large-Scale Integrated Optics.” Science 360, no. 6386 (April

20, 2018): 285–91.

37 Zhou, Xiao-Qi, Pruet Kalasuwan, Timothy C. Ralph, and Jeremy L. O’Brien.

“Calculating Unknown Eigenvalues with a Quantum Algorithm.” Nature Photonics

7, no. 3 (March 2013): 223–28.

38 Zhou, Xiao-Qi, Timothy C. Ralph, Pruet Kalasuwan, Mian Zhang, Alberto Peruzzo,

Benjamin P. Lanyon, and Jeremy L. O’Brien. “Adding Control to Arbitrary

Unknown Quantum Operations.” Nature Communications 2, no. 1 (August 2,

2011): 413.

50

APPENDIX

51

APPENDIX A

52

M matrices

�̂�1 =
𝟏

𝟐
[

2 −1 + 1i
 −1 − 1i 0

1 − 1i 1
1i 0

−1 + 1i −1i
1 𝟎

0 0
0 𝟎

]

�̂�2 =
𝟏

𝟐
[

0 −1 + 1i
 −1 − 1i 2

0 1
1i −1 − 1i

0 −1i
1 −1 + 1i

0 0
0 𝟎

]

�̂�3 =
𝟏

𝟐
[

0 0
0 0

0 1
1i 0

0 −1i
1 𝟎

0 −1 + 1i
0 𝟎

]

�̂�4 =
𝟏

𝟐
[

0 0
0 0

−1 − 1i 1
1i 0

−1 + 1i −1i
1 𝟎

𝟐 −1 + 1i
1 − 1i 𝟎

]

�̂�5 =
𝟏

𝟐
[

0 0
 0 0

2i −1 − 1i
1 − 1i 0

−2i 1 + 1i
−1 + 1𝑖 𝟎

0 0
0 𝟎

]

�̂�6 =
𝟏

𝟐
[

0 0
 0 0

0 −1 − 1i
1 − 1i 2i

0 1 + 1i
−1 + 1𝑖 −𝟐𝒊

0 0
0 𝟎

]

�̂�7 =
𝟏

𝟐
[

0 0
 0 0

0 −1 − 1i
−1 + 1i 2

𝟎 −1 − 1i
−1 + 1𝑖 𝟐

0 0
0 𝟎

]

�̂�8 =
𝟏

𝟐
[

𝟎 𝟎
𝟎 𝟎

𝟐 −𝟏 − 𝟏𝒊
−𝟏 + 𝟏𝒊 𝟐

𝟐 −𝟏 − 𝟏𝒊
−𝟏 + 𝟏𝒊 𝟎

𝟎 𝟎
𝟎 𝟎

]

�̂�9 = [

𝟎 𝟎
𝟎 𝟎

𝟎 𝟏𝒊
−𝟏𝒊 𝟎

𝟎 𝟏𝒊
−𝟏𝒊 𝟎

𝟎 𝟎
𝟎 𝟎

]

�̂�10 = [

𝟎 𝟎
𝟎 𝟎

𝟎 𝟏
𝟏 𝟎

𝟎 𝟏
𝟏 𝟎

𝟎 𝟎
𝟎 𝟎

]

53

�̂�11 = [

𝟎 𝟎
𝟎 𝟎

𝟎 𝟏𝒊
𝟏𝒊 𝟎

𝟎 −𝟏𝒊
−𝟏𝒊 𝟎

𝟎 𝟎
𝟎 𝟎

]

�̂�12 =
𝟏

𝟐
[

𝟎 𝟐
𝟐 𝟎

𝟎 −𝟏 − 𝟏𝒊
−𝟏 − 𝟏𝒊 𝟎

𝟎 −𝟏 + 𝟏𝒊
−𝟏 + 𝟏𝒊 𝟎

𝟎 𝟎
𝟎 𝟎

]

�̂�13 =
𝟏

𝟐
[

𝟎 𝟎
𝟎 𝟎

𝟎 −𝟏 − 𝟏𝒊
−𝟏 − 𝟏𝒊 𝟎

𝟎 −𝟏 + 𝟏𝒊
−𝟏 + 𝟏𝒊 𝟎

𝟎 𝟐
𝟐𝒊 𝟎

]

�̂�14 =
𝟏

𝟐
[

𝟎 𝟎
𝟎 𝟎

𝟎 −𝟏 + 𝟏𝒊
𝟏 − 𝟏𝒊 𝟎

𝟎 𝟏 + 𝟏𝒊
−𝟏 − 𝟏𝒊 𝟎

𝟎 −𝟐𝒊
𝟐𝒊 𝟎

]

�̂�15 =
𝟏

𝟐
[

𝟎 −𝟐𝒊
𝟐𝒊 𝟎

𝟎 −𝟏 + 𝟏𝒊
𝟏 − 𝟏𝒊 𝟎

𝟎 𝟏 + 𝟏𝒊
−𝟏 − 𝟏𝒊 𝟎

𝟎 𝟎
𝟎 𝟎

]

�̂�16 = [

𝟎 𝟎
𝟎 𝟎

𝟎 𝟏
−𝟏 𝟎

𝟎 −𝟏
𝟏 𝟎

𝟎 𝟎
𝟎 𝟎

]

54

APPENDIX B

55

Programing for coincident count

- Program first interface

- Coding for initial value

% Code that executes after component creation

 function startupFcn(app)

 %initial value

 app.delayx = zeros(1,16);

 app.arraysinglecount =[];

 app.filename = '';

 app.filepath = '';

 app.timebinsingle = 1;

 app.singletimediv = 1;

 app.delaychange =0;

 app.currentgraph = 0;

 app.cctimediv = 1;

 end

- File import and edit

% Button pushed function: selectButton

 function selectButtonPushed(app, event)

 %file name and filepath select

 [filenamehandle,filepathhandle] = uigetfile('*.*');

 %the handle will be 0 if cancle or exit ,else we get text value

 if filenamehandle ~= 0

 app.filename = filenamehandle;

 end

 if filepathhandle ~=0

 app.filepath = erase(filepathhandle,filenamehandle);

56

 end

 app.exportpath = app.filepath;

 %this cause bug that defocus the app

 %refocus with next two commands

 drawnow;

 figure(app.UIFigure)

 app.filenameEditField.Value = app.filename;

 app.ReadyLamp_Import.Color = 'red';

 end

 % Value changed function: filenameEditField

 function filenameEditFieldValueChanged(app, event)

 app.filename = app.filenameEditField.Value;

 app.ReadyLamp_Import.Color = 'red';

 end

 % Button pushed function: importButton

 function importButtonPushed(app, event)

 %import command

 if strcmp('Qutag',app.filetypeDropDown.Value) == true

 %complier

 fileID = fopen(join([app.filepath,app.filename]));

 C = textscan(fileID,'%f %f ','Delimiter',';','headerlines', 5);

 fclose(fileID);

 app.A=C{1}; %bin where the count triggered

 %in case timetag overflow

 overflowtimetag = 2^52; %if bin go over this it'll reset to 0

 difneg = find(diff(app.A)<0) ; %find where time tag overflow and reset

 if numel(difneg) > 0

 for i = 1:numel(difneg)

 app.A((difneg(i)+1):end) = app.A((difneg(i)+1):end)+overflowtimetag;

 end

 end

 app.A=app.A-app.A(1); %set initial time to 0

 app.B=C{2}; %port where the count triggered

 app.Asave = app.A;

 app.Bsave = app.B;

 app.nA = numel(app.A);

 app.binwidth = 1; %for qutag

 app.mergebinEditField.Value = 100; %for qutag

 elseif strcmp('Qutool',app.filetypeDropDown.Value) == true

 %complier

 fileID = fopen(join([app.filepath,app.filename]));

 C = textscan(fileID,'%f %f ','Delimiter',',');

57

 fclose(fileID);

 app.A=C{1}; %bin where the count triggered

 app.B=C{2}; %port where the count triggered

 app.Bsave = app.B;

 app.A=app.A-app.A(1); %set initial time to 0

 app.Asave = app.A;

 app.nA = numel(app.A);

 app.binwidth = 81; %for qutool

 app.mergebinEditField.Value = 2; %for qutool

 end

 %reset all value

 app.timebinsingle = 1;

 app.singletimediv = 1;

 app.delaychange =0;

 app.delayx = zeros(1,16);

 %reset in singlecount

 app.arraysinglecount =[];

 %%%calculate value

 app.alltimerec = app.A(end)*app.binwidth*1e-12;

 app.captimerec = app.alltimerec;

 for i = 1:16

 app.xport(i) = numel(find(app.Bsave == i))/app.captimerec; %set port count

 app.(join(['port',num2str(i),'EditField'])).Value = app.xport(i); %show on display

 end

 app.FilenameEditField.Value = app.filename;

 app.timecolectedhour.Value = floor(app.alltimerec/3600);

 app.timecolectedmin.Value = floor(rem(app.alltimerec,3600)/60);

 app.timecolectedsec.Value = rem(app.alltimerec,60);

 app.nport = find(app.xport ~=0); %array of which port triggered

 for i = 1:numel(app.nport)

 nporthandle(i) = {num2str(app.nport(i))}; %convert to list

 end

 %set the dropdown

 app.StopportDropDown.Items = nporthandle;

 app.StartportDropDown.Items = nporthandle;

 app.StartportDropDown.Value = app.StartportDropDown.Items(1);

 app.StopportDropDown.Value = app.StopportDropDown.Items(2);

 app.Portshift.Items = nporthandle;

 %lamp unready

 app.ReadyLamp_CC.Color = 'red';

58

 app.ReadyLamp_Delay.Color = 'red';

 app.ReadyLamp_Single.Color = 'red';

 app.ReadyLamp_FileEdit.Color = 'white';

 app.CCDataLamp.Color = 'white';

 %Clear File Edit

 app.SelecttimeCheckBox.Value = 0;

 app.toEditField.Value = app.alltimerec;

 app.fromEditField.Value = 0;

 app.ShiftportCheckBox.Value = 0;

 app.PortShiftEditField.Value = 0;

 app.SelecttimeDropDown.Value = app.SelecttimeDropDown.Items(1);

 app.selecttimediv = 1;

 %lamp ready

 app.ReadyLamp_Import.Color = 'green';

 app.SingleDataLamp.Color = 'green';

 end

 % Callback function

 function test2ButtonPushed(app, event)

 app.txttestEditField.Value = app.exportpath;

 end

 % Value changed function: SelecttimeDropDown

 function SelecttimeDropDownValueChanged(app, event)

 %remember timediv b4 change

 timedivb4 = app.selecttimediv;

 %set timediv according to dropdown value

 if strcmp('sec',app.SelecttimeDropDown.Value) == true

 app.selecttimediv = 1;

 elseif strcmp('min',app.SelecttimeDropDown.Value) == true

 app.selecttimediv = 60;

 elseif strcmp('hour',app.SelecttimeDropDown.Value) == true

 app.selecttimediv = 60*60;

 end

 %change number in time box

 app.fromEditField.Value = app.fromEditField.Value*timedivb4/app.selecttimediv;

 app.toEditField.Value = app.toEditField.Value*timedivb4/app.selecttimediv;

 end

 % Value changed function: PortShiftEditField

 function PortShiftEditFieldValueChanged(app, event)

 port2shift = str2num(app.Portshift.Value);

 app.delayx(port2shift) = app.PortShiftEditField.Value; %change delay value from input

 end

59

 % Value changed function: Portshift

 function PortshiftValueChanged(app, event)

 port2shift = str2num(app.Portshift.Value);

 app.PortShiftEditField.Value = app.delayx(port2shift) ; %change input box according to

drop down pick

 end

 % Button pushed function: ApplyButton

 function ApplyButtonPushed(app, event)

 app.ReadyLamp_FileEdit.Color = 'red';

 drawnow

 %timeEdit

 app.A = app.Asave;

 app.B = app.Bsave;

 if app.SelecttimeCheckBox.Value == 1

 cutfrom = find(app.A >=

app.fromEditField.Value*app.selecttimediv*1e12/app.binwidth,1);

 if or(cutfrom == [],cutfrom == [1])

 cutfrom = [1];

 end

 cutto = find(app.A <=

app.toEditField.Value*app.selecttimediv*1e12/app.binwidth,1,'last');

 app.A = app.Asave(cutfrom:cutto);

 app.B = app.Bsave(cutfrom:cutto);

 end

 %delayEdit

 if app.ShiftportCheckBox.Value == 1

 for i =1:16

 locate = [];

 if app.delayx(i) ~= 0

 locate = find(app.Bsave == i);

 app.Asave(locate) = app.Asave(locate) + app.delayx(i)*1000/app.binwidth;

 end

 end

 end

 %%%calculate value

 app.captimerec = app.A(end)*app.binwidth*1e-12;

 for i = 1:16

 app.xport(i) = numel(find(app.B== i))/app.captimerec; %set port count

 app.(join(['port',num2str(i),'EditField'])).Value = app.xport(i); %show on display

 end

 %lamp unready

 app.ReadyLamp_CC.Color = 'red';

60

 app.ReadyLamp_Delay.Color = 'red';

 app.ReadyLamp_Single.Color = 'red';

 %lamp ready

 app.ReadyLamp_FileEdit.Color = 'green';

 end

- Interface single count vs time computed and plot.

61

- Coding for single count vs time

% Button pushed function: ComputeButton_Single

 function ComputeButton_SinglePushed(app, event)

 hissecnum = zeros(16 ,floor(((app.A(end)-app.A(1))*app.binwidth*(10^(-

12)))/app.timebinsingle+1)); %row = port and colum = amount of that port trigger in that sec

 for t = 1:numel(app.A)

 seccount = floor(((app.A(t)-app.A(1))*app.binwidth*(10^(-12)))/app.timebinsingle+1);

 hissecnum(app.B(t),seccount) = hissecnum(app.B(t),seccount)+1;

 end

 hissecnum(:,end) = [];

 app.arraysinglecount =[];

 for i =1:numel(app.nport)

 app.arraysinglecount(i,:) = hissecnum(app.nport(i),:); %this will only save the triggered

port

 end

 %reset value seting

 app.timebinsingle = 1;

 app.timebinwidthEditField.Value = app.timebinsingle;

 app.x1single.Value = 0;

 app.x2single.Value = app.captimerec;

 app.singletimediv = 1;

 app.DropDown_xlimsingle.Value = 'sec';

 app.y1single.Value = 0;

 app.y2single.Value = max(max(app.arraysinglecount))*1.2;

62

 %reset the rate

 app.rxvstime = app.arraysinglecount;

 app.ratetime = 0:size(app.arraysinglecount,2)-1 ;

 %lamp on

 app.ReadyLamp_Single.Color = 'green';

 end

 % Value changed function: DropDown_xlimsingle

 function DropDown_xlimsingleValueChanged(app, event)

 %remember timediv b4 change

 timedivb4 = app.singletimediv;

 %set timediv according to dropdown value

 if strcmp('sec',app.DropDown_xlimsingle.Value) == true

 app.singletimediv = 1;

 elseif strcmp('min',app.DropDown_xlimsingle.Value) == true

 app.singletimediv = 60;

 elseif strcmp('hour',app.DropDown_xlimsingle.Value) == true

 app.singletimediv = 60*60;

 end

 %change number in time box

 app.x1single.Value = app.x1single.Value*timedivb4/app.singletimediv;

 app.x2single.Value = app.x2single.Value*timedivb4/app.singletimediv;

 end

 % Button pushed function: plotButton

 function plotButtonPushed(app, event)

 app.rxvstime =[];

 %caculate x y data

 if app.timebinwidthEditField.Value ==1

 app.timebinsingle = 1;

 app.rxvstime = app.arraysinglecount;

 app.ratetime = 0:size(app.arraysinglecount,2)-1 ;

 else

 app.timebinsingle = app.timebinwidthEditField.Value;

 %the folowing code cal mean for every time bin

 numadd = app.timebinsingle-mod(size(app.arraysinglecount,2),app.timebinsingle);

 A2 = app.arraysinglecount;

 if numadd ~= 0

 A2(:,end+1:end+numadd)=missing; %add nan to fill b4 reshape

 end

 for i = 1:size(A2,1)

 S = reshape(A2(i,:),app.timebinsingle,[]);

63

 app.rxvstime(i,:) = mean(S,'omitnan'); %here we get the mean

 end

 app.ratetime = 0:app.timebinsingle:(size(app.rxvstime,2)-1)*app.timebinsingle;

 end

 %ploting

 for i =1:numel(app.nport)

 plot(app.UIAxes,app.ratetime/app.singletimediv,app.rxvstime(i,:))

 hold(app.UIAxes,'on')

 end

 hold(app.UIAxes,'off')

 %plot detail

 app.UIAxes.XLim = [app.x1single.Value,app.x2single.Value];

 app.UIAxes.YLim = [app.y1single.Value,app.y2single.Value];

 app.UIAxes.Title.String = 'singlecount vs time';

 app.UIAxes.Title.FontWeight = 'normal';

 if app.singletimediv == 1

 app.UIAxes.XLabel.String = 'time (sec)';

 elseif app.singletimediv ==60

 app.UIAxes.XLabel.String = 'time (min)';

 elseif app.singletimediv == 3600

 app.UIAxes.XLabel.String = 'time (hour)';

 end

 app.UIAxes.YScale = 'linear';

 app.UIAxes.YLabel.String = 'counts per sec';

 %add legend

 for i = 1:numel(app.nport)

 nporthandle(i) = {num2str(app.nport(i))}; %convert to list

 end

 legend(app.UIAxes,nporthandle);

 %change tab to graph

 app.TabGroup2.SelectedTab = app.GraphTab;

 %change graph name

 if app.autographnameCheckBox.Value ==1

 filenamenodot = erase(app.filename,'.txt');

 app.ExportgraphnameEditField.Value = join([filenamenodot,'_singlecount_vs_time']);

 end

 app.currentgraph = 1;

 end

 % Button pushed function: copytoclipboardButton

 function copytoclipboardButtonPushed(app, event)

 %arraytocoppy = [app.ratetime/app.singletimediv;app.rxvstime]; %this will copy all data

 %instead we want only data in plot range

64

 xfirst = find(app.ratetime >= app.x1single.Value*app.singletimediv,1);

 xlast = find(app.ratetime <= app.x2single.Value*app.singletimediv,1,'last');

 arraytocoppy = [app.ratetime(xfirst:xlast)/app.singletimediv;app.rxvstime(:,(xfirst:xlast))];

 num2clip(app,transpose(arraytocoppy));

 end

- Interface with delay histogram plotted.

- Coding for delay histogram

% Button pushed function: ComputeButton_Delay

 function ComputeButton_DelayPushed(app, event)

 %lamp unready

 app.ReadyLamp_Delay.Color ='red';

 drawnow

 %computation

 hw = app.HistogramwidthEditField.Value*1000/app.binwidth;

 diffA=diff(app.A); %dif of time in adjecenct tile

 difflo = find(diffA < hw+1); %find tile where dif < width

 nlo = numel(difflo); %number of tiles in such condition

 startp = str2num(app.StartportDropDown.Value);

 stopp = str2num(app.StopportDropDown.Value);

65

 %cal. ccdif = bindif(bin) which is in range of histogram

 p=1;

 for i =1:nlo

 j=1; %tile seperation

 while app.A(difflo(i)+j)-app.A(difflo(i)) < hw+1

 if and(app.B(difflo(i)+j) == stopp,app.B(difflo(i)) == startp)

 ccdif(p)= (app.A(difflo(i)+j)-app.A(difflo(i))); %if start -> stop, collect delay

 p = p+1;

 elseif and(app.B(difflo(i)+j) == startp,app.B(difflo(i)) == stopp)

 ccdif(p)= (app.A(difflo(i)+j)-app.A(difflo(i)))*(-1); %if stop -> start, collect -delay

 p = p+1;

 end

 j=j+1;

 if difflo(i)+j > numel(app.nA)

 break

 end

 end

 end

 %histogram cal

 hw_m = app.mergebinEditField.Value ; %merge histogram width

 edges = -1*hw-0.1:hw_m:hw-0.1; %(bin)

 xdata = -1*hw+hw_m/2:hw_m:hw-hw_m/2; %(bin)

 app.timedata = xdata*app.binwidth/1000; %ns

 Nhis = histcounts(ccdif,edges);

 app.ccps = Nhis./app.captimerec; %photon per sec that trigger in stop port in range ~[start

time +delay-hw_m/2:start time +delay+hw_m/2]

 %set graph limit value

 app.x1delay.Value = -1*app.HistogramwidthEditField.Value;

 app.x2delay.Value = app.HistogramwidthEditField.Value;

 if startp == stopp

 app.x1delay.Value =0; %set xlim left to 0 when compute the self trigger

 end

 app.y1delay.Value = (1./app.captimerec)*0.5;

 app.y2delay.Value = max(app.ccps)*1.2;

 %lamp ready

 app.ReadyLamp_Delay.Color ='green';

 end

 % Button pushed function: plotButton_Delay

 function plotButton_DelayPushed(app, event)

66

 plot(app.UIAxes,app.timedata,app.ccps)

 if app.yaxislogscaleCheckBox.Value == 1

 app.UIAxes.YScale = 'log';

 elseif app.yaxislogscaleCheckBox.Value == 0

 app.UIAxes.YScale = 'linear';

 end

 app.UIAxes.XLim = [app.x1delay.Value,app.x2delay.Value];

 app.UIAxes.YLim = [app.y1delay.Value,app.y2delay.Value];

 app.UIAxes.Title.String = 'Delay Histogram';

 app.UIAxes.Title.FontWeight = 'normal';

 app.UIAxes.XLabel.String = 'time (ns)';

 app.UIAxes.YLabel.String = 'coincidence counts per sec';

 %remove legend

 legend(app.UIAxes,'off');

 %change tab to graph

 app.TabGroup2.SelectedTab = app.GraphTab;

 %change graph name

 if app.autographnameCheckBox.Value ==1

 filenamenodot = erase(app.filename,'.txt');

 app.ExportgraphnameEditField.Value = join([filenamenodot,'_delay_histogram']);

 end

 %change cc cal plot

 app.ShowingraphDelay.Value = 0;

 app.ShowingraphWt.Value = 0;

 app.currentgraph = 2;

 end

 % Value changed function: HistogramwidthEditField

 function HistogramwidthEditFieldValueChanged(app, event)

 %lamp unready

 app.ReadyLamp_Delay.Color ='red';

 end

 % Value changed function: mergebinEditField

 function mergebinEditFieldValueChanged(app, event)

 %lamp unready

 app.ReadyLamp_Delay.Color ='red';

 end

 % Value changed function: StartportDropDown

 function StartportDropDownValueChanged(app, event)

67

 %lamp unready

 app.ReadyLamp_Delay.Color ='red';

 end

 % Value changed function: StopportDropDown

 function StopportDropDownValueChanged(app, event)

 %lamp unready

 app.ReadyLamp_Delay.Color ='red';

 end

 % Button pushed function: copytoclipboardButton_Delay

 function copytoclipboardButton_DelayPushed(app, event)

 xfirst = find(app.timedata >= app.x1delay.Value,1);

 xlast = find(app.timedata <= app.x2delay.Value,1,'last');

 arraytocoppy = [app.timedata(xfirst:xlast);app.ccps(xfirst:xlast)];

 num2clip(app,transpose(arraytocoppy));

 end

 % Value changed function: ShowingraphDelay

 function ShowingraphDelayValueChanged(app, event)

 %vertical line for middle cc calculate

 delete(app.showmidcc);

 if app.currentgraph == 2

 if app.ShowingraphDelay.Value == 1

 hold(app.UIAxes,'on')

 xdata = [app.delayEditField.Value app.delayEditField.Value];

 ydata = [app.y1delay.Value app.y2delay.Value];

 app.showmidcc = plot(app.UIAxes,xdata,ydata,'--');

 hold(app.UIAxes,'off')

 end

 end

 end

 % Value changed function: delayEditField

 function delayEditFieldValueChanged(app, event)

 %vertical line for middle cc calculate

 delete(app.showmidcc);

 if app.currentgraph == 2

 if app.ShowingraphDelay.Value == 1

 hold(app.UIAxes,'on')

 xdata = [app.delayEditField.Value app.delayEditField.Value];

 ydata = [app.y1delay.Value app.y2delay.Value];

 app.showmidcc = plot(app.UIAxes,xdata,ydata,'--');

 hold(app.UIAxes,'off')

 end

 end

 %vertical line for cc edge

 delete(app.showleftcc);

68

 delete(app.showrightcc);

 if app.currentgraph == 2

 if app.ShowingraphWt.Value == 1

 hold(app.UIAxes,'on')

 xdata1 = [app.delayEditField.Value-app.WindowtimeEditField.Value/2

app.delayEditField.Value-app.WindowtimeEditField.Value/2];

 xdata2 = [app.delayEditField.Value+app.WindowtimeEditField.Value/2

app.delayEditField.Value+app.WindowtimeEditField.Value/2];

 ydata = [app.y1delay.Value app.y2delay.Value];

 app.showleftcc = plot(app.UIAxes,xdata1,ydata,':r');

 app.showrightcc = plot(app.UIAxes,xdata2,ydata,':r');

 hold(app.UIAxes,'off')

 end

 end

 end

 % Value changed function: ShowingraphWt

 function ShowingraphWtValueChanged(app, event)

 %vertical line for cc edge

 delete(app.showleftcc);

 delete(app.showrightcc);

 if app.currentgraph == 2

 if app.ShowingraphWt.Value == 1

 hold(app.UIAxes,'on')

 xdata1 = [app.delayEditField.Value-app.WindowtimeEditField.Value/2

app.delayEditField.Value-app.WindowtimeEditField.Value/2];

 xdata2 = [app.delayEditField.Value+app.WindowtimeEditField.Value/2

app.delayEditField.Value+app.WindowtimeEditField.Value/2];

 ydata = [app.y1delay.Value app.y2delay.Value];

 app.showleftcc = plot(app.UIAxes,xdata1,ydata,':r');

 app.showrightcc = plot(app.UIAxes,xdata2,ydata,':r');

 hold(app.UIAxes,'off')

 end

 end

 end

 % Value changed function: WindowtimeEditField

 function WindowtimeEditFieldValueChanged(app, event)

 %vertical line for cc edge

 delete(app.showleftcc);

 delete(app.showrightcc);

 if app.currentgraph == 2

 if app.ShowingraphWt.Value == 1

 hold(app.UIAxes,'on')

 xdata1 = [app.delayEditField.Value-app.WindowtimeEditField.Value/2

app.delayEditField.Value-app.WindowtimeEditField.Value/2];

 xdata2 = [app.delayEditField.Value+app.WindowtimeEditField.Value/2

app.delayEditField.Value+app.WindowtimeEditField.Value/2];

69

 ydata = [app.y1delay.Value app.y2delay.Value];

 app.showleftcc = plot(app.UIAxes,xdata1,ydata,':r');

 app.showrightcc = plot(app.UIAxes,xdata2,ydata,':r');

 hold(app.UIAxes,'off')

 end

 end

 end

 % Button pushed function: calculateButton

- Interface with coincident count computed by selecting windows time range from the

histogram

70

- Coding for CC computation

% Button pushed function: calculateButton

 function calculateButtonPushed(app, event)

 %change tab to Data

 app.TabGroup2.SelectedTab = app.DataTab;

 ccleft = find(app.timedata < app.delayEditField.Value-

app.WindowtimeEditField.Value/2,1,'last')+ 1 ;

 ccright = find(app.timedata >

app.delayEditField.Value+app.WindowtimeEditField.Value/2,1)- 1;

 sumcc = sum(app.ccps(ccleft:ccright));

 app.ccEditField.Value = sumcc;

 %calculate accidental cc

 startp = str2num(app.StartportDropDown.Value);

 stopp = str2num(app.StopportDropDown.Value);

 n1 = app.xport(startp);

 n2 = app.xport(stopp);

 if strcmp('CW',app.LasertypeDropDown.Value) == true

 app.accidentalccEditField.Value = n1*n2*app.WindowtimeEditField.Value*1e-9;

 elseif strcmp('Pulse',app.LasertypeDropDown.Value) == true

 if app.WindowtimeEditField.Value>= app.PulsewidthEditField.Value

 app.accidentalccEditField.Value = (n1*n2/(app.PulsefreqEditField.Value*1e6));

 else

71

 app.accidentalccEditField.Value =

(n1*n2/(app.PulsefreqEditField.Value*1e6))*(app.WindowtimeEditField.Value/app.PulsewidthE

ditField.Value);

 end

 end

 app.SNREditField.Value = app.ccEditField.Value/app.accidentalccEditField.Value;

 %lamp

 app.CCDataLamp.Color = 'green';

 end

 % Value changed function: LasertypeDropDown

 function LasertypeDropDownValueChanged(app, event)

 %calculate accidental cc

 startp = str2num(app.StartportDropDown.Value);

 stopp = str2num(app.StopportDropDown.Value);

 n1 = app.xport(startp);

 n2 = app.xport(stopp);

 if strcmp('CW',app.LasertypeDropDown.Value) == true

 app.accidentalccEditField.Value = n1*n2*app.WindowtimeEditField.Value*1e-9;

 elseif strcmp('Pulse',app.LasertypeDropDown.Value) == true

 if app.WindowtimeEditField.Value>= app.PulsewidthEditField.Value

 app.accidentalccEditField.Value = (n1*n2/(app.PulsefreqEditField.Value*1e6));

 else

 app.accidentalccEditField.Value =

(n1*n2/(app.PulsefreqEditField.Value*1e6))*(app.WindowtimeEditField.Value/app.PulsewidthE

ditField.Value);

 end

 end

 app.SNREditField.Value = app.ccEditField.Value/app.accidentalccEditField.Value;

 end

 % Value changed function: PulsefreqEditField

 function PulsefreqEditFieldValueChanged(app, event)

 %calculate accidental cc

 startp = str2num(app.StartportDropDown.Value);

 stopp = str2num(app.StopportDropDown.Value);

 n1 = app.xport(startp);

 n2 = app.xport(stopp);

 if strcmp('CW',app.LasertypeDropDown.Value) == true

 app.accidentalccEditField.Value = n1*n2*app.WindowtimeEditField.Value*1e-9;

 elseif strcmp('Pulse',app.LasertypeDropDown.Value) == true

 if app.WindowtimeEditField.Value>= app.PulsewidthEditField.Value

72

 app.accidentalccEditField.Value = (n1*n2/(app.PulsefreqEditField.Value*1e6));

 else

 app.accidentalccEditField.Value =

(n1*n2/(app.PulsefreqEditField.Value*1e6))*(app.WindowtimeEditField.Value/app.PulsewidthE

ditField.Value);

 end

 end

 app.SNREditField.Value = app.ccEditField.Value/app.accidentalccEditField.Value;

 end

 % Value changed function: PulsewidthEditField

 function PulsewidthEditFieldValueChanged(app, event)

 %calculate accidental cc

 startp = str2num(app.StartportDropDown.Value);

 stopp = str2num(app.StopportDropDown.Value);

 n1 = app.xport(startp);

 n2 = app.xport(stopp);

 if strcmp('CW',app.LasertypeDropDown.Value) == true

 app.accidentalccEditField.Value = n1*n2*app.WindowtimeEditField.Value*1e-9;

 elseif strcmp('Pulse',app.LasertypeDropDown.Value) == true

 if app.WindowtimeEditField.Value>= app.PulsewidthEditField.Value

 app.accidentalccEditField.Value = (n1*n2/(app.PulsefreqEditField.Value*1e6));

 else

 app.accidentalccEditField.Value =

(n1*n2/(app.PulsefreqEditField.Value*1e6))*(app.WindowtimeEditField.Value/app.PulsewidthE

ditField.Value);

 end

 end

 app.SNREditField.Value = app.ccEditField.Value/app.accidentalccEditField.Value;

 end

-

-

73

Interface in CC vs time plot

- Coding for cc vs time

% Button pushed function: ComputeButton_CC

 function ComputeButton_CCPushed(app, event)

 hw = app.HistogramwidthEditField.Value*1000/app.binwidth;

 diffA=diff(app.A); %dif of time in adjecenct tile

 difflo = find(diffA < hw+1); %find tile where dif < width

 nlo = numel(difflo); %number of tiles in such condition

 startp = str2num(app.StartportDropDown.Value);

 stopp = str2num(app.StopportDropDown.Value);

 app.hisseccc = zeros(1 ,floor((app.A(end)-app.A(1))*app.binwidth*(10^(-12))+1));

 p=1;

 ccdif =[];

 for i =1:nlo

 j=1; %tile seperation

 while app.A(difflo(i)+j)-app.A(difflo(i)) < hw+1

 if and(app.B(difflo(i)+j) == stopp,app.B(difflo(i)) == startp)

 ccdif(p)= (app.A(difflo(i)+j)-app.A(difflo(i)))*app.binwidth*(10^(-3)); %here

ccdif cal in unit of ns instead of bin

 if abs(ccdif(p)-app.delayEditField.Value) <= app.WindowtimeEditField.Value/2

 seccc = floor((app.A(difflo(i)+j)-app.A(1))*app.binwidth*(10^(-12)))+1;

 app.hisseccc(seccc) = app.hisseccc(seccc) +1;

 end

 p = p+1;

 elseif and(app.B(difflo(i)+j) == startp,app.B(difflo(i)) == stopp)

74

 ccdif(p)= (app.A(difflo(i)+j)-app.A(difflo(i)))*app.binwidth*(10^(-3));

 if abs(ccdif(p)+app.delayEditField.Value) <= app.WindowtimeEditField.Value/2

 seccc = floor((app.A(difflo(i)+j)-app.A(1))*app.binwidth*(10^(-12)))+1;

 app.hisseccc(seccc) = app.hisseccc(seccc) +1;

 end

 p = p+1;

 end

 j=j+1;

 end

 end

 %Lamp on

 app.ReadyLamp_CC.Color = 'green';

 %set the Value

 app.timebinwidthCCplot.Value = 1;

 app.x1cc.Value = 0;

 app.x2cc.Value = numel(app.hisseccc)-1;

 app.y1cc.Value = 0;

 app.y2cc.Value = max(app.hisseccc)*1.2;

 app.ccxDropDown.Value = 'sec';

 end

 % Value changed function: ccxDropDown

 function ccxDropDownValueChanged(app, event)

 %remember timediv b4 change

 timedivb4 = app.cctimediv;

 %set timediv according to dropdown value

 if strcmp('sec',app.ccxDropDown.Value) == true

 app.cctimediv = 1;

 elseif strcmp('min',app.ccxDropDown.Value) == true

 app.cctimediv = 60;

 elseif strcmp('hour',app.ccxDropDown.Value) == true

 app.cctimediv = 60*60;

 end

 %change number in time box

 app.x1cc.Value = app.x1cc.Value*timedivb4/app.cctimediv;

 app.x2cc.Value = app.x2cc.Value*timedivb4/app.cctimediv;

 end

 % Button pushed function: plotccvstimeButton

 function plotccvstimeButtonPushed(app, event)

 app.ccvstime =[];

 %caculate x y data

 if app.timebinwidthCCplot.Value ==1

75

 app.ccvstime = app.hisseccc;

 app.cctime = 0:numel(app.hisseccc)-1 ;

 else

 timebin = app.timebinwidthCCplot.Value;

 %the folowing code cal mean for every time bin

 numadd = timebin-mod(numel(app.hisseccc),timebin);

 A2 = app.hisseccc;

 if numadd ~= 0

 A2(end+1:end+numadd)=missing; %add nan to fill b4 reshape

 end

 S=reshape(A2,timebin,[]);

 app.ccvstime = mean(S,'omitnan');

 app.cctime = 0:timebin:(numel(app.ccvstime)-1)*timebin;

 end

 %ploting

 plot(app.UIAxes,app.cctime/app.cctimediv,app.ccvstime)

 %plot detail

 app.UIAxes.XLim = [app.x1cc.Value,app.x2cc.Value];

 app.UIAxes.YLim = [app.y1cc.Value,app.y2cc.Value];

 app.UIAxes.Title.String = 'coincidence count vs time';

 app.UIAxes.Title.FontWeight = 'normal';

 if app.cctimediv == 1

 app.UIAxes.XLabel.String = 'time (sec)';

 elseif app.cctimediv ==60

 app.UIAxes.XLabel.String = 'time (min)';

 elseif app.cctimediv == 3600

 app.UIAxes.XLabel.String = 'time (hour)';

 end

 app.UIAxes.YScale = 'linear';

 app.UIAxes.YLabel.String = 'coincidence counts per sec';

 legend(app.UIAxes,'off');

 %change tab to graph

 app.TabGroup2.SelectedTab = app.GraphTab;

 %change graph name

 if app.autographnameCheckBox.Value ==1

 filenamenodot = erase(app.filename,'.txt');

 app.ExportgraphnameEditField.Value = join([filenamenodot,'_cc_vs_time']);

 end

 app.currentgraph = 3;

 end

 % Button pushed function: copytoclipboardCC

 function copytoclipboardCCButtonPushed(app, event)

76

 % data in plot range

 xfirst = find(app.cctime >= app.x1cc.Value*app.cctimediv,1);

 xlast = find(app.cctime <= app.x2cc.Value*app.cctimediv,1,'last');

 arraytocoppy = [app.cctime(xfirst:xlast)/app.cctimediv;app.ccvstime(:,(xfirst:xlast))];

 num2clip(app,transpose(arraytocoppy));

 end

- Coding in exporting part

% Button pushed function: selectfolderButton

 function selectfolderButtonPushed(app, event)

 pathhandle = uigetdir(app.exportpath);

 if pathhandle ~= 0

 app.exportpath = pathhandle;

 end

 %this cause bug that defocus the app

 %refocus with next two commands

 drawnow;

 figure(app.UIFigure)

 end

 % Button pushed function: ExportButton

 function ExportButtonPushed(app, event)

 % Create a temporary figure with axes.

 fig = figure;

 fig.Visible = 'off';

 figAxes = axes(fig);

 % Copy all UIAxes children, take over axes limits and aspect ratio.

 allChildren = app.UIAxes.XAxis.Parent.Children;

 copyobj(allChildren, figAxes)

 figAxes.XLim = app.UIAxes.XLim;

 figAxes.YLim = app.UIAxes.YLim;

 figAxes.Title.String = app.UIAxes.Title.String;

 figAxes.Title.FontWeight = app.UIAxes.Title.FontWeight;

 figAxes.XLabel.String = app.UIAxes.XLabel.String;

 figAxes.YLabel.String = app.UIAxes.YLabel.String;

 figAxes.DataAspectRatio = app.UIAxes.DataAspectRatio;

 figAxes.XGrid = app.UIAxes.XGrid;

 figAxes.YGrid = app.UIAxes.YGrid;

 figAxes.YScale = app.UIAxes.YScale;

 app.graphname = app.ExportgraphnameEditField.Value;

 % Save as jpg files.

 saveas(fig, fullfile(app.exportpath, app.graphname), 'jpg');

 % Delete the temporary figure.

 delete(fig);

 end

77

APPENDIX C

78

MATLAB coding for density matrix

clear

%input

filename = 'sixteen_states_density_matrix';

hw = 100; %histogram_width

hw_m = 2; %merge hw

tau2 = 6; %delay correction

wt = 39; %windows time (bin)

timecollectcc = [0 340 675 1020 1360 1695 2070 2400 2755 3130 3470 3820 4170 4525 4880

5310];

ccbinwidth = 300;

%complier

fileID = fopen(filename);

C = textscan(fileID,'%f %f ','Delimiter',',');

fclose(fileID);

A=C{1}; %bin where the count triggered

B=C{2}; %port where the count triggered

nA = numel(A);

A=A-A(1); %set initial time to 0

%delay correction

for k = 1:nA

 if B(k) == 2

 A(k) = A(k)+tau2;

 end

end

diffA=diff(A); %dif of time in adjecenct tile

difflo = find(diffA < hw+1); %find tile where dif < width

nlo = numel(difflo); %number of tiles in such condition

hisseccc = zeros(1 ,floor((A(end)-A(1))*81*(10^(-12))+1));

p=1;

for i =1:nlo

 j=1; %tile seperation

 while A(difflo(i)+j)-A(difflo(i)) < hw+1

 if B(difflo(i)+j) ~= B(difflo(i))

 ccdif(p)= (A(difflo(i)+j)-A(difflo(i)))*(B(difflo(i)+j) - B(difflo(i)));

 if abs(ccdif(p)) <= wt

 seccc = floor((A(difflo(i)+j)-A(1))*81*(10^(-12)))+1;

 hisseccc(seccc) = hisseccc(seccc) +1;

 end

 p = p+1;

 end

 j=j+1;

 end

79

end

%calculate cc/sec

cc = nlo/((A(end)-A(1))*81*(10^(-12)));

cc12 = numel(find(abs(ccdif) <= wt))/((A(end)-A(1))*81*(10^(-12)));

%histogram(ccdif,100)

edges = -1*hw:hw_m:hw;

xdata = -1*hw+hw_m/2:hw_m:hw-hw_m/2;

timedata = xdata*0.081;

Nhis = histcounts(ccdif,edges);

r1 = sum(B(:) == 1);

r2 = sum(B(:) == 2);

div = r1*r2;

gtwo = Nhis./(div*81*10^-12);

ccps = Nhis./((A(end)-A(1))*81*(10^(-12)));

%plot(timedata,ccps)

%xlabel('tau(ns)')

%ylabel('cc/sec')

%title('cc per sec vs time delay between port 1 and 2')

%text(max(timedata)*0.6,max(gtwo)*0.6,join([num2str(cc), ' cc/sec']))

%text(max(timedata)*0.6,max(ccps)*0.6,join([num2str(cc12), ' cc12/sec']))

%calculate single count

p1c = numel(find(B ==1))/((A(end)-A(1))*81*(10^(-12)));

p2c = numel(find(B ==2))/((A(end)-A(1))*81*(10^(-12)));

hisseccc(end) = [];

hisminutecc = zeros(1 ,floor((A(end)-A(1))*81*(10^(-12))/60));

for m = 1:floor((seccc-1)/60)

 for n = 1:60

 hisminutecc(m) = hisminutecc(m) + hisseccc(((m-1)*60)+n);

 end

end

%plot(hisseccc)

%plot(hisminutecc)

%calculate cc bin

ncollecbin = numel(timecollectcc);

for l =1:ncollecbin

 ccavg(l) = mean(hisseccc(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth));

 ccstd(l) = std(hisseccc(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth));

end

%calculate singlecount vs time

hissecnum1 = zeros(1 ,floor((A(end)-A(1))*81*(10^(-12))+1));

hissecnum2 = zeros(1 ,floor((A(end)-A(1))*81*(10^(-12))+1));

for t = 1:numel(A)

80

 seccount = floor((A(t)-A(1))*81*(10^(-12))+1);

 if B(t) == 1

 hissecnum1(seccount) = hissecnum1(seccount)+1;

 elseif B(t) == 2

 hissecnum2(seccount) = hissecnum2(seccount)+1;

 end

end

hissecnum1(end)=[];

hissecnum2(end)=[];

for l =1:ncollecbin

 single1(l) = mean(hissecnum1(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth));

 single1std(l) = std(hissecnum1(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth));

 single2(l) = mean(hissecnum2(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth));

 single2std(l) = std(hissecnum2(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth));

end

netcc = hisseccc-hissecnum1.*hissecnum2*wt*81e-12;

for q = 1:numel(netcc)

 if or(or(hissecnum1(q) < 3500,hissecnum1(q) > 5000),or(hissecnum2(q) < 3500,hissecnum2(q)

> 5000))

 netcc(q) = 0;

 hissecnum1(q) = 0;

 hissecnum2(q) = 0;

 end

end

%plot(nonzeros(netcc))

%plot(nonzeros(hissecnum1))

%plot(nonzeros(hissecnum2))

for l =1:ncollecbin

 netccavg(l) = mean(nonzeros(netcc(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth)));

 netccstd(l) = std(nonzeros(netcc(timecollectcc(l)+1:timecollectcc(l)+ccbinwidth)));

end

%%%%density matrix calculation

n = netccavg;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%defination

part%%%

%%%%%%%%

%define polarization matrix

H = [1 0;0 0]; Hp = [1 ; 0];

V = [0 0;0 1]; Vp = [0;1];

D = (1/2)*[1 1;1 1]; Dp = (1/sqrt(2))*[1;1];

A = (1/2)*[1 -1;-1 1]; Ap = (1/sqrt(2))*[1;-1];

R = (1/2)*[1 1i;-1i 1]; Rp = (1/sqrt(2))*[1;-1i];

L = (1/2)*[1 -1i;1i 1]; Lp = (1/sqrt(2))*[1;1i];

81

phi(:,1) = kron(Hp,Hp);phi(:,2) = kron(Hp,Vp);phi(:,3) = kron(Vp,Vp);phi(:,4) = kron(Vp,Hp);

phi(:,5) = kron(Rp,Hp);phi(:,6) = kron(Rp,Vp);phi(:,7) = kron(Dp,Vp);phi(:,8) = kron(Dp,Hp);

phi(:,9) = kron(Dp,Rp);phi(:,10) = kron(Dp,Dp);phi(:,11) = kron(Rp,Dp);phi(:,12) =

kron(Hp,Dp);

phi(:,13) = kron(Vp,Dp);phi(:,14) = kron(Vp,Lp);phi(:,15) = kron(Hp,Lp);phi(:,16) =

kron(Rp,Lp);

%define M matrix (density matrix = sum ni*Mi)

M = (1/2)*[2 -1+1i -1-1i 1;-1-1i 0 1i 0;-1+1i -1i 0 0;1 0 0 0];

M(:,:,2) = (1/2)*[0 -1+1i 0 1; -1-1i 2 1i -1-1i; 0 -1i 0 0; 1 -1+1i 0 0];

M(:,:,3) = (1/2)*[0 0 0 1; 0 0 1i -1-1i; 0 -1i 0 -1+1i; 1 -1+1i -1-1i 2];

M(:,:,4) = (1/2)*[0 0 -1-1i 1;0 0 1i 0; -1+1i -1i 2 -1+1i;1 0 -1-1i 0];

M(:,:,5) = (1/2)*[0 0 2i -1-1i;0 0 1-1i 0;-2i 1+1i 0 0; -1+1i 0 0 0];

M(:,:,6) = (1/2)*[0 0 0 -1-1i;0 0 1-1i 2i; 0 1+1i 0 0;-1+1i -2i 0 0];

M(:,:,7) = (1/2)*[0 0 0 -1-1i;0 0 -1+1i 2;0 -1-1i 0 0;-1+1i 2 0 0];

M(:,:,8) = (1/2)*[0 0 2 -1-1i;0 0 -1+1i 0;2 -1-1i 0 0;-1+1i 0 0 0];

M(:,:,9) = [0 0 0 1i; 0 0 -1i 0;0 1i 0 0;-1i 0 0 0];

M(:,:,10) = [0 0 0 1; 0 0 1 0; 0 1 0 0; 1 0 0 0];

M(:,:,11) = [0 0 0 1i; 0 0 1i 0;0 -1i 0 0; -1i 0 0 0];

M(:,:,12) = (1/2)*[0 2 0 -1-1i; 2 0 -1-1i 0; 0 -1+1i 0 0; -1+1i 0 0 0];

M(:,:,13) = (1/2)*[0 0 0 -1-1i;0 0 -1-1i 0; 0 -1+1i 0 2; -1+1i 0 2 0];

M(:,:,14) = (1/2)*[0 0 0 -1+1i;0 0 1-1i 0;0 1+1i 0 -2i;-1-1i 0 2i 0];

M(:,:,15) = (1/2)*[0 -2i 0 -1+1i;2i 0 1-1i 0;0 1+1i 0 0;-1-1i 0 0 0];

M(:,:,16) = [0 0 0 1;0 0 -1 0;0 -1 0 0; 1 0 0 0];

%define measurement operator (measurment to get ni) %kron = tensor product

O = kron(Hp,Hp);

O(:,2) = kron(Hp,Vp);

O(:,3) = kron(Vp,Vp);

O(:,4) = kron(Vp,Hp);

O(:,5) = kron(Rp,Hp);

O(:,6) = kron(Rp,Vp);

O(:,7) = kron(Dp,Vp);

O(:,8) = kron(Dp,Hp);

O(:,9) = kron(Dp,Rp);

O(:,10) = kron(Dp,Dp);

O(:,11) = kron(Rp,Dp);

O(:,12) = kron(Hp,Dp);

O(:,13) = kron(Vp,Dp);

O(:,14) = kron(Vp,Lp);

O(:,15) = kron(Hp,Lp);

O(:,16) = kron(Rp,Lp);

%define fvui (for error calculation) for more info see error_003 file

fvui(:,:,1) = ...

[-2.0, 0, 0, -2.0, 0, 0, 0, 4.0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, -2.0, -2.0, 0, 0, 0, 4.0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 2.0, 2.0, 0, 0, 0, -4.0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 2.0, 0, 0, 2.0, 0, 0, 0, -4.0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

82

 0, -2.0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 -2.0, 0, 0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 -2.0, -2.0, 2.0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2.0, 2.0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2.0, 2.0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.0, 0, -2.0, -2.0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, -4.0, 0, 2.0, 2.0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, -4.0, -4.0, 4.0, 0, 0, 0, 0, 2.0, 2.0, 0;...

 0, 0, 0, 0, 0, 0, 4.0, 4.0, -4.0, 0, 0, 0, 0, -2.0, -2.0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

fvui(:,:,2) = ...

[0, 0, 0, 0, 2.0, 0, 0, -2.0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 2.0, -2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, -2.0, -2.0, 0, 0, 2.0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 -2.0, 0, 0, -2.0, 2.0, 0, 0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0;...

 -1.0, 0, 0, -1.0, 0, 0, 0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, -1.0, -1.0, 0, 0, 0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, -2.0, 0, 0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, -2.0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, -2.0, -2.0, 2.0, 2.0, 0, 0, 0, 0, 0, 0, 0, 2.0, 0, -2.0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.0, 0, -2.0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.0, 0, -1.0, -1.0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, -2.0, 2.0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.0, 2.0, -2.0, -2.0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 2.0, 2.0, -2.0, 0, 0, 0, 0, -2.0, -2.0, 2.0;...

 0, 0, 0, 0, 0, 0, -2.0, -2.0, 2.0, 0, 0, 0, 0, 0, 0, 2.0;...

 0, 0, 0, 0, 0, 0, 2.0, 2.0, -2.0, 0, 0, 0, 0, -1.0, -1.0, 0];

fvui(:,:,3) = ...

[-2.0, -2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.0, 0, 0, 0, 0;...

 2.0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4.0, 0, 0, 0, 0;...

 0, 0, 2.0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, -4.0, 0, 0, 0;...

 0, 0, -2.0, -2.0, 0, 0, 0, 0, 0, 0, 0, 0, 4.0, 0, 0, 0;...

 0, 0, 0, 0, -2.0, -2.0, 0, 0, 0, 0, 4.0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 2.0, 2.0, 0, 0, 0, 0, -4.0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 2.0, 2.0, 0, -4.0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, -2.0, -2.0, 0, 4.0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 2.0, -2.0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, -2.0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 -2.0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 2.0, -2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

fvui(:,:,4) = ...

83

[2.0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2.0, 0, 0, -2.0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.0, 0, 0, -2.0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.0, -2.0, 0, 0;...

 0, 0, 2.0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, -2.0, -2.0, 0, 0;...

 0, 0, 0, 0, 2.0, 2.0, 0, 0, 0, 0, -2.0, 0, 0, 0, 0, -2.0;...

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.0, 0, 0, 0, 0, -2.0;...

 0, 0, 0, 0, 0, 0, -2.0, -2.0, 2.0, 2.0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, 0, 0, 2.0, -2.0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, -1.0, -1.0, 0, 2.0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 0, 0, -2.0, 0, 2.0, 0, 0, 0, 0, 0, 0, 0;...

 0, 0, 0, 0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2.0;...

 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2.0, 0;...

 0, 0, 0, 2.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2.0, 0, 0;...

 0, 0, -1.0, -1.0, 0, 0, 0, 0, 0, 0, 0, 0, 2.0, 0, 0, 0;...

 -1.0, -1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.0, 0, 0, 0, 0;...

 0, 0, 0, 0, -1.0, -1.0, 0, 0, 0, 0, 2.0, 0, 0, 0, 0, 0];

sumop = [0 0 0 -1; 0 0 1 0; 0 1 0 0; -1 0 0 0];

%%%%%%%%%%%%%%%%%%%end of defination

part%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%Calculation

part%%

%calculate (experimentally) density matrix

for i=1:16

 nM(:,:,i) = n(i)*M(:,:,i);

end

N = sum(n(1:4));

den = sum(nM,3)/N;

%create T0(T_zero)

T0(1,1) = sqrt(det(den)/minor(den,1,1));

T0(2,1) = minor(den,1,2)/sqrt(minor(den,1,1)*minor2(den,1,1,2,2));

T0(2,2) = sqrt(minor(den,1,1)/minor2(den,1,1,2,2));

T0(3,1) = minor2(den,1,2,2,3)/(sqrt(den(4,4))*sqrt(minor2(den,1,1,2,2)));

T0(3,2) = minor2(den,1,1,2,3)/(sqrt(den(4,4))*sqrt(minor2(den,1,1,2,2)));

T0(3,3) = sqrt(minor2(den,1,1,2,2)/den(4,4));

T0(4,1) = den(4,1)/sqrt(den(4,4));

T0(4,2) = den(4,2)/sqrt(den(4,4));

T0(4,3) = den(4,3)/sqrt(den(4,4));

T0(4,4) = sqrt(den(4,4));

%t0Cal

t0(1) = real(T0(1,1));

t0(2) = real(T0(2,2));

t0(3) = real(T0(3,3));

t0(4) = real(T0(4,4));

t0(5) = real(T0(2,1));

84

t0(6) = imag(T0(2,1));

t0(7) = real(T0(3,2));

t0(8) = imag(T0(3,2));

t0(9) = real(T0(4,3));

t0(10) = imag(T0(4,3));

t0(11) = real(T0(3,1));

t0(12) = imag(T0(3,1));

t0(13) = real(T0(4,2));

t0(14) = imag(T0(4,2));

t0(15) = real(T0(4,1));

t0(16) = imag(T0(4,1));

%fine the minimum of L function with t0 initial

options = optimset('PlotFcns',@optimplotfval,'TolFun',1.e-

13,'MaxFunEvals',10000000,'MaxIter',5e5);

tans = fminsearch(@(t)genL(t,O,n), t0, options);

%create physically density matrix

Tans = [tans(1) 0 0 0;tans(5)+tans(6)*1i tans(2) 0 0;tans(11)+tans(12)*1i ...

 tans(7)+tans(8)*1i tans(3) 0;tans(15)+tans(16)*1i tans(13)+tans(14)*1i ...

 tans(9)+tans(10)*1i tans(4)];

den_p = (Tans'*Tans)/trace(Tans'*Tans)

%calSv

for i = 1:16

 Sv(i) = real(phi(:,i)'*den_p*phi(:,i));

end

%error calculation

for v = 1:16

 sumu1u2i =0;

 for ir = 1:4

 sumu1u2 = 0;

 sumfortest(v,ir) = 0;

 for u1 = 1:16

 for u2 = 1:16

 sumu1u2 = sumu1u2 + (0.5*pi/180)^2*fvui(v,u1,ir)*fvui(v,u2,ir)*n(u1)*n(u2)/(N^2);

 sumfortest(v,ir) = sumfortest(v,ir) +

(0.5*pi/180)^2*fvui(v,u1,ir)*fvui(v,u2,ir)*n(u1)*n(u2)/(N^2);

 end

 end

 sumu1u2i = sumu1u2i + sumu1u2;

 end

 lamV(v) = (n(v)/(N^2))+sumu1u2i;

end

%density matrix error

for i =1:4

 for j=1:4

 deldensqr(i,j) = 0;

 for v = 1:16

85

 deldensqr(i,j) = deldensqr(i,j)+ (M(i,j,v))^2*lamV(v);

 end

 end

end

delden = sqrt(deldensqr);

[evec,eval] = eig(den_p);

%Von Newmann Entropy

S = 0;

for a=1:4

 S = S-eval(a,a)*log2(eval(a,a));

end

delSsqr = 0;

for v = 1:16

 sumphiM = 0;

 for a = 1:4

 sumphiM = sumphiM + (evec(:,a)'*M(:,:,v)*evec(:,a)*(1+log(eval(a,a)))/log(2));

 end

 delSsqr = delSsqr + lamV(v)*sumphiM^2;

end

delS = sqrt(delSsqr);

%linear entropy

P = 0;

for a = 1:4

 P = P + (eval(a,a))^2;

end

P = (4/3)*(1-P);

delPsqr = 0;

for v = 1:16

 sumtrS = 0;

 for u = 1:16

 sumtrS = sumtrS + trace(M(:,:,v)*M(:,:,u))*n(u)/N;

 end

 delPsqr = delPsqr + (sumtrS*(8/3))^2*lamV(v);

end

delP = sqrt(delPsqr);

%concurence

Rmat = zeros(4);

for u = 1:16

 for v =1:16

 qmat(:,:,u,v) = M(:,:,u)*sumop*transpose(M(:,:,v))*sumop...

 + M(:,:,v)*sumop*transpose(M(:,:,u))*sumop;

 Rmat = Rmat + qmat(:,:,u,v)*Sv(u)*Sv(v);

 end

end

Rmat = Rmat/2;

86

[revec,reval] = eig(Rmat);

[r,ind] = sort(diag(reval),'descend');

c = max([0 ,sqrt(r(1))-sqrt(r(2))-sqrt(r(2))-sqrt(r(3))]);

T = c^2; %tangle

E = h((1+sqrt(1-c^2))/2); %entangle

%HVpVH = [0 0 0 0; 0 0.5 0.5 0; 0 0.5 0.5 0; 0 0 0 0];

%fidelity = (trace(sqrtm(sqrtm(HVpVH)*den_p*sqrtm(HVpVH))))^2;

%%%%%%%%%%%%%%%%%End of calculation

part%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%underneath here are function

defination%%%%%%%%%%%%%%%%

%define likelihood fuction L(t1,t2,...,t16)

function L = genL(t,O,n)

T = [t(1) 0 0 0;t(5)+t(6)*1i t(2) 0 0;t(11)+t(12)*1i t(7)+t(8)*1i t(3) ...

 0;t(15)+t(16)*1i t(13)+t(14)*1i t(9)+t(10)*1i t(4)];

den_p = (T'*T)/trace(T'*T);

N = sum(n(1:4));

for j = 1:16

 den_p_measure(j) = real(O(:,j)'*den_p*O(:,j));

 L_mat(j) = ((N*den_p_measure(j)-n(j))^2)/(2*N*den_p_measure(j));

end

L = sum(L_mat);

end

%define minor function

function Det_minor=minor(x,p,q) %det of x matrix without p-row and q columm

x0= x;

x0(p,:) = [];

x0(:,q) = [];

Det_minor = det(x0);

end

%define minor2 function

function Det_minor2=minor2(x,p,q,r,s) %without p,r row and q,s columm

x0= x;

x0([p r],:) = [];

x0(:,[q s]) = [];

Det_minor2 = det(x0);

end

function hcal = h(x)

hcal = -x*log2(x)-(1-x)*log2(1-x);

end

87

APPENDIX D

88

Laser source specifications

CW laser spectrum

Pulse laser spectrum

89

APPENDIX E

90

Paper : Pewkhom, P., S. Suwanna, and Pruet Kalasuwan. “Alternative Scheme of

Universal Optical Programmable Multi-Qubit Gates for Polarization Qubits.” Quantum

Information Processing 19 (June 8, 2020).

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

VITAE

Name Mr. Paphon Phewkhom

Student ID 6110220133

Educational Attainment

Degree Name of Institution Year of Graduation

Bacherlor of Science

(Physics)

Prince of Songkla university

2017

List of Publication and Proceeding

1. Pewkhom, P., S. Suwanna, and Pruet Kalasuwan. “Alternative Scheme of Universal

Optical Programmable Multi-Qubit Gates for Polarization Qubits.” Quantum Information

Processing 19 (June 8, 2020).

-

