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ชื่อวิทยานิพนธ์ เกมไบแอสโดมิเนชัน
ผู้เขียน นายธฤต เสรีเกียรติดิลก
สาขาวิชา คณิตศาสตร์
ปีการศึกษา 2564

บทคัดย่อ
เกมโดมิเนชัน (domination game) บนกราฟ G เป็นเกมที่ประกอบไปด้วยผู้

เล่น 2 คน ได้แก่ โดมิเนเตอร์ (Dominator) และสตอลเลอร์ (Staller) โดยแต่ละตาผู้เล่นจะ
ผลัดกันเลือกจุดหนึ่งจุดบนกราฟ G หลังจากนั้นจุดที่ถูกเลือกจะโดมิเนท (dominate) ย่านใกล้
เคียงปิด (closed neighborhood) ของจุดนั้น ในแต่ละตานั้นผู้เล่นจะต้องเลือกจุดที่โดมิเนท
จุดเพิ่มขึ้นอย่างน้อยหนึ่งจุดเสมอ เกมจะจบลงเมื่อทุกจุดบนกราฟถูกโดมิเนท โดมิเนเตอร์จะ
พยายามทำให้เกมจบด้วยการทำให้จำนวนครั้งในการเลือกจุดทั้งหมดน้อยที่สุด ในทางกลับกันส
ตอลเลอร์จะพยายามยืดเกมให้ยาวนานที่สุดเท่าที่เป็นไปได้ เราจะเรียกเกมโดมิเนชันว่า เกมที่ 1
เมื่อโดมิเนเตอร์เป็นผู้เริ่มเกมและ เกมที่ 2 เมื่อสตอลเลอร์เป็นผู้เริ่มเกม ถ้าผู้เล่นทั้งคู่เล่นเกมโดย
ใช้วิธีที่ดีที่สุดจนเกมจบแล้วจำนวนครั้งในการเลือกจุดทั้งหมดในเกมจะถูกเรียกว่า เลขเกมโดมิ
เนชัน (game domination number)

ในการศึกษาครั้งนี้ เราขอเสนอเกมไบแอสโดมิเนชัน (biased domination
game) ที่อยู่ในรูปแบบที่ถูกขยายขึ้นจากเกมโดมิเนชัน โดยแต่ละตาผู้เล่นสามารถเลือกจุดได้
มากกว่าหนึ่งจุด ในทำนองเดียวกัน ถ้าผู้เล่นทั้งคู่เล่นเกมโดยใช้วิธีที่ดีที่สุดจนเกมจบแล้วจำนวน
ครั้งในการเลือกจุดทั้งหมดในเกมจะถูกเรียกว่า เลขไบแอสเกมโดมิเนชัน (biased game domi-
nation number) เราศึกษาความสัมพันธ์ของเลขไบแอสเกมโดมิเนชันของเกมไบแอสโดมิเนชัน
ต่าง ๆ นอกจากนี้เรายังคำนวณเลขไบแแอสเกมโดมิเนชันบนบางกราฟ เช่น กราฟวัฏจักร (cy-
cle) และกราฟกำลังของกราฟวัฏจักร (power of cycle) ยิ่งไปกว่านั้นเราศึกษาวิธีการการ
เลือกจุดแบบพิเศษที่เรียกว่า การเลือกแบบมินิมอล (minimal move) และการเลือกแบบแมก
ซิมอล (maximal move) ซึ่งเราหาสมบัติบางประการของเลขไบแอสเกมโดมิเนชันบนกราฟ
ที่สามารถเลือกจุดเหล่านี้ได้ ท้ายที่สุดเราคำนวณค่าเลขไบแอสเกมโดมิเนชันบนกราฟกำลังของ
กราฟวัฏจักร (power of cycle) และหาการเล่นที่เหมาะสมที่สุดโดยใช้การเลือกจุดแบบพิเศษ
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ABSTRACT

A Domination game on a graph G is a game of two players, called
Dominator and Staller, on a graph. The players take turns to perform a move by
choosing a vertex in the graph. Vertices in the closed neighborhood of a chosen
vertex are said to be dominated. A move u is legal if it creates at least one
new dominated vertex. The game is ended when all vertices in the graph are
dominated. Dominator tries to end the game as soon as possible, while Staller
tries to prolong the game. In the domination game, if Dominator starts the game,
this game is said to be Game 1. Otherwise, it is said to be Game 2. If both players
play optimally in a domination game on a graph G, the number of moves when
the game is ended is called the game domination numbers.

In this research, we introduce an extended version of a domination
game on a graph, called a biased domination game, in which Dominator and Staller
play more than one move in each turn. Similarly, we define the biased game
domination number as the number of moves in an ended biased domination game
which both players play with optimal strategies. We study relations of biased game
domination numbers between various games. In addition, we study two special
types of moves, called minimal moves and maximal moves. Some properties of the
biased game domination numbers on a graph where the special moves are always
available is studied. Lastly, the biased game domination numbers of powers of
a cycle are explicitly computed, together with optimal strategies using a special
move.
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Chapter 1

Introduction

Domination games were introduced in [1] as a game of two players,
called Dominator and Staller, on a graph. The two players take turns to choose
a vertex (pick a move) in a graph. A move is legal if its closed neighborhood
is not contained in the closed neighborhood of vertices which have been chosen
before. That is, for a sequence of previuosly picked moves u1, u2, u3, . . . , un−1,
the player can pick a move un if and only if N [un] ⊈

∪n−1
i=1 N [ui]. Vertices in a

closed neighborhood of chosen vertices are then called dominated. Note that every
vertex v in N [u] is dominated by choosing a vertex u. The game is ended when all
vertices in a graph are dominated. In the domination game, if Dominator starts
the game, this game is said to be a Game 1. Otherwise, it is said to be a Game 2.
If both players play optimally in a domination game on a graph G, the number of
moves when the game is ended is called a domination number, denoted by γg(G)

and γ′
g(G) in a Game 1 and Game 2, respectively.

Many aspects of domination games have been studied. Game dom-
ination numbers on various graphs, such as trees [2], forests [3], paths and cycles
[4], powers of cycles [5], disjoint union of paths and cycles [6], have been computed.
Possible values of domination numbers of unions of graphs are studied [7]. Bound
on domination numbers have been studied, see [8, 9, 10, 11, 12, 13] for examples.

Some variations of the game have also been studied. The total
domination game has been introduced in [14], in which a move u will dominate its
open neighborhood N(u) instead of its closed neighborhood N [u]. So a move is
legal if and only if its open neighborhood is not contained in the open neighborhood
of all vertices chosen before. Similarly, bound on total domination numbers have
been studied in [15, 16, 17, 18], and total domination numbers themselves were
computed for some families of graphs, such as cycles and paths [19] and a family of
cyclic bipartite graphs [20]. Recently, some other variations based on the definition
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of legal moves have been proposed in [21].
Since players pick only one move per turn in the standard domina-

tion game, we study the term of biased positional games for domination games
that each player takes a different number of moves. In this thesis, we introduce a
variation of a domination game called a biased domination game or simply called
a biased game where Dominator and Staller can pick more than one move for each
turn. Similar to the definition of the game domination number, we define the
biased game domination number. For D,S ⊆ N, if in each turn Dominator and
Staller can pick m ∈ D and n ∈ S and play m and n legal moves, respectively,
then the game is called (D,S)-biased domination game or (D,S)-game. The biased
domination numbers are denoted by γ(D,S)(G) for Game 1 and γ′

(D,S)(G) for Game
2. We called (D,S) as the biased ordered pair. In the case of (D,S) = ({δ}, {σ}),
the game is called (δ, σ)-biased domination game or (δ, σ)-game. The biased dom-
ination numbers are denoted by γ(δ,σ)(G) for Game 1 and γ′

(δ,σ)(G) for Game 2.
Note that in a (D,S)-game, a player does not need to play the same number of
moves in every turn. For example, if D = {3, 5}, Dominator can play 3 moves in
the first turn and play 5 moves in the second turn.

Remark 1.1. The (1, 1)-game is the original domination game.

Example 1.2. Consider G = C5 ⊔ C3. We will show that γ({1,2},{1})(G) = 3.

We first notice that G has 8 vertices. Since each move can dominate at most 3

vertices, at least 3 moves are required to end the game. Hence, the biased game
domination number is at least 3.

Next, we can show that Dominator can force the game to end in 3 moves.
So we can conclude that γ({1,2},{1})(G) = 3. In the first turn, Dominator starts
the game by picking 1 or 2 moves. If Dominator decides to pick 1 move in C3,
as shown in the picture below, Staller then picks any move on C5 and Dominator
finishes the game in 3 moves.
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Note that if Dominator were to pick only one move on a graph C5 as the
first turn, Staller can pick a move on C5 that dominates exactly one new vertex
and forces the game to end in at least 4 moves. Hence this is not a move in
Dominator’s optimal strategy.

Similarly, Dominator can also decide to pick 2 move in his first turn. If
two moves are picked as in the following picture, Dominator can force the game
to end in 3 moves as well. (In the next turn, any move of Staller must ends the
game.) This is also another optimal strategy for Dominator.

The main goal of this thesis is to study the relation between biased
domination games having different biased ordered pairs. In Chapter 2, we review
some definitions and results related to domination games. We define two special
moves in Chapter 3 and show some properties of the biased game domination
numbers when such special moves are available. In Chapter 4, examples of graphs
with special moves are presented. We also explicitly compute the biased game
domination number of the power of a cycle, and give optimal strategies for both
players using the special moves.



Chapter 2

Preliminaries

In this chapter, we collect the definitions and theorems which will
be used later throughout the thesis.

2.1 Domination Games
In 2010, B. Brešar, S. Klavžar and D.F. Rall introduced the dom-

ination game. Moreover, they consider Game 1 in a domination game such that
Dominator (resp. Staller) is allowed, but not obligated, to skip exactly one move in
the game. That is, there is at most one turn such that Dominator (resp. Staller)
may decide to pass. After the game is ended, the number of moves in a game
where both players are playing optimally, is denoted by γdp

g (G) (resp. γsp
g (G)).

We call this game the Dominator-pass game (resp. Staller-pass game).

Lemma 2.1 ([1]). For any graph G,

γsp
g (G) ≤ γg(G) + 1, γ′

g(G) ≤ γsp
g (G) + 1 and γdp

g (G) ≥ γg(G)− 1.

This Lemma is applied to prove a relation of game domination num-
bers between Game 1 and Game 2.

Theorem 2.2 ([1]). For any graph G,

γg(G)− 1 ≤ γ′
g(G) ≤ γ(G) + 2.

Definition 2.3 ([1]). Let k and l be positive integers. We say the pair (k, l) is
realizable if there is a graph G such that γg(G) = k and γ′

g(G) = l.
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In 2013, W.B. Kinnersley. D.B. West and R. Zamani defined the
partially dominated graph for simplifying the proof of a domination game.

Definition 2.4 ([8]). Let G be a graph and S be a subset of V (G). A partially
dominated graph G|S is a graph G in which all vertices in S are already dominated.
Consider a partially dominated graph G|S, a vertex v is called saturated if all of
its closed neighborhood is dominated. If we delete all saturated vertex and all
edges which both of their endpoints are dominated in a partially dominated graph
G|S, we called this graph a residual graph ⌊G|S⌋.

Remark 2.5. A domination game on a partially dominated graph G|S is consid-
ered as same as a residual graph ⌊G|S⌋.

Theorem 2.6 (Continuation Principle, [8]). Let G be a graph and A,B ⊆ V (G).
If A ⊆ B, then γg(G|A) ≥ γg(G|B) and γ′

g(G|A) ≥ γ′
g(G|B).

Theorem 2.7 ([8]). For any graph G, we have |γ′
g(G)− γg(G)| ≤ 1.

We say that a graph G is a no-minus graph when γg(G|S) ≤ γ′
g(G|S)

for every subset S of V (G).

Theorem 2.8 ([8]). Forests are no-minus graphs.

In 2015, P. Dorbec, G. Košmrlj and G. Renault found bounds of
game domination numbers on unions of graphs.

Theorem 2.9 ([7]). Let G1|S1 and G1|S2 be partially dominated no-minus graphs.
If G1|S1 realizes (k, k) and G2|S2 realizes (l,m) where m ∈ {l, l + 1}, then the
disjoint union (G1 ⊔G2)|(S1 ⊔ S2) realizes (k + l, k +m).

Theorem 2.10 ([7]). Let G1|S1 and G1|S2 be partially dominated no-minus graphs
that realizes (k, k + 1) and (l, l + 1), respectively. Then

k + l ≤ γg((G1 ⊔G2)|(S1 ⊔ S2)) ≤ k + l + 1

k + l + 1 ≤ γ′
g((G1 ⊔G2)|(S1 ⊔ S2)) ≤ k + l + 2.
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2.2 Domination Games on Some Graphs
In 2017, G. Košmrlj studied the game domination number on paths

and cycles by considering some partially dominated graphs of paths and cycles
and classifying some families of a graph.

Definition 2.11 ([4]). We classify a graph G that realizes a pair (k, l) as follows:
1. a graph G is a plus graph if l = k + 1;
2. a graph G is a equal graph if l = k;
3. a graph G is a minus graph if l = k − 1.

To compute game domination numbers on paths and cycles, Košmrlj
defined some special partially dominated graph of paths.

Definition 2.12 ([4]). A partially dominated graph P ′′
n is a graph Pn+2 that both

leaves are already dominated. A partially dominated graph P ′
n is a graph Pn+1

that exactly one leaf is already dominated.

Figure 2.1 Partially dominated paths P ′′
n (top) and P ′

n (bottom).

Theorem 2.13 ([4]). For any nonnegative integer n, we have

γg(P
′′
n ) =


⌈n
2

⌉
− 1, n ≡ 3 mod 4,⌈n

2

⌉
, otherwise,

γ′
g(P

′′
n ) =


⌈n
2

⌉
+ 1, n ≡ 2 mod 4,⌈n

2

⌉
, otherwise.

In addition, letting ir = (i mod 4) and jr = (j mod 4) for any i+ j = n. Then

γg(P
′′
i ⊔ P ′′

j ) =

γg(P
′′
i ) + γg(P

′′
j ) + 1, (ir, jr) ∈ {2, 3} × {2, 3},

γg(P
′′
i ) + γg(P

′′
j ), otherwise,

γ′
g(P

′′
i ⊔ P ′′

j ) =


γg(P

′′
i ) + γg(P

′′
j ), (ir, jr) ∈ {0, 1} × {0, 1},

γg(P
′′
i ) + γg(P

′′
j ) + 2, (ir, jr) ∈ {(2, 3), (3, 2), (3, 3)},

γg(P
′′
i ) + γg(P

′′
j ) + 1, otherwise.
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Theorem 2.14 ([4]). For any nonnegative integer n, we have

γg(Cn) =


⌈n
2

⌉
− 1, n ≡ 3 mod 4,⌈n

2

⌉
, otherwise,

γ′
g(Cn) =


⌈
n− 1

2

⌉
− 1, n ≡ 2 mod 4,⌈

n− 1

2

⌉
, otherwise.

Theorem 2.15 ([4]). For any nonnegative integer m and n, we have

γg(P
′′
m ⊔ P ′′

n ) = γg(P
′′
m ⊔ P ′

n) = γg(P
′
m ⊔ P ′

n)

and
γ′
g(P

′′
m ⊔ P ′′

n ) = γ′
g(P

′′
m ⊔ P ′

n) = γ′
g(P

′
m ⊔ P ′

n).

Moreover, we have γg(P
′′
m) = γg(P

′
m) and γ′

g(P
′′
m) = γ′

g(P
′
m).

Theorem 2.16 ([4]). For any nonnegative integer n, we have

γg(Pn) =


⌈n
2

⌉
− 1, n ≡ 3 mod 4,⌈n

2

⌉
, otherwise,

γ′
g(Pn) =

⌈n
2

⌉
.

In 2020, N. Chantarachada and C. Worawannotai computed the for-
mula of game domination numbers on powers of cycles and found optimal strate-
gies of both players.

Definition 2.17. For positive integers p and n, the p-th power Cp
n of an n-cycle

Cn has the following vertex set and edge set,

V (Cp
n) = {0, 1, 2, . . . , n− 1},

E(Cp
n) = {{i, i± 1}, {i, i± 2}, . . . , {i, i± p} : i ∈ V (Cp

n)}

where the operations + and − are considered under modulo n.

Theorem 2.18 ([5]). Let G = Cp
n. If n = (2p+ 2)q + r where q, r ∈ N ∪ {0} and

0 ≤ r < 2p+ 2, then
1. γg(G) = 2q + [r ̸= 0],
2. γ′

g(G) = 2q + [r = 2p+ 1]
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Figure 2.2 The graph C2
10

where [x] = 1 if the statement x is true and [x] = 0 if x is false.
Moreover, an optimal strategy for Staller is when (s)he always makes a move that
dominates exactly one new vertex, while an optimal strategy for Dominator is when
(s)he always makes a move that dominates as many new vertices as possible without
creating a new dominated component (except the move that starts the game).

In 2015, C. Bujtás established the upper bounds of game domination
numbers on isolate-free forests, i.e., forests without isolated vertices by considering
the conjecture in [8].

Conjecture 2.19 ([8]). If G is an isolate-free forest of order n, then

γg(G) ≤ 3n

5
and γ′

g(G) ≤ 3n+ 2

5
.

Theorem 2.20 ([3]). If G is an isolate-free forest of order n in which no two
leaves have distance 4, then

γg(G) ≤ 3n

5
and γ′

g(G) ≤ 3n+ 1

5
.

Theorem 2.21 ([3]). If G is an isolate-free forest of order n, then

γg(G) ≤ 5n

8
and γ′

g(G) ≤ 5n+ 2

8
.



Chapter 3

Biased Domination Games

In this chapter, we show some relations between biased game dom-
ination numbers having different biased ordered pairs, under the condition that
some certain moves are always available. Those moves will be called minimal and
maximal moves.

3.1 Special Moves
In [4] and [5], we observed that some special moves are used in

optimal strategies in the domination games on paths and powers of cycles. So we
define a modification of these special moves in biased domination games.

Definition 3.1. For any biased domination games on G|C, we define as following.
1. Moves u and u′ are the same move with respect to C if their newly dominated

vertices set are the same set, i.e.,

N [u] \ C = N [u′] \ C.

2. If a move u dominates only one new vertex v, then it is a minimal move
with respect to C. In this case, a vertex v is minimally dominated by u and
denoted by mC [u]. It is easy to see that minimal moves u and u′ are same
if and only if mC [u] = mC [u

′].
3. A move u is a maximal move with respect to C if there is a newly dominated

vertex v such that for any move dominating v, its set of newly dominated
vertices must be contained in the set of newly dominated vertices of a move
u. That is, a maximal move u with respect to C has a vertex v ∈ N [u] \ C
such that for all u′ which v ∈ N [u′] \ C, we have

N [u′] \ C ⊆ N [u] \ C. (3.1)
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If we define NG|C [u] = NG[u]\C, a move u is a maximal move in G|C if there
is a newly dominated vertex v such that for any other move u′ dominating
v in G|C, we have

NG|C [u
′] ⊆ NG|C [u].

In other words, there is v ∈ NG|C [u] such that

if v ∈ NG|C [u
′], then NG|C [u

′] ⊆ NG|C [u].

In this case, we say that vertex v is maximally dominated by a maximal
move u, and a set of all maximally dominated vertices by a maximal move
u is denoted by MC [u].

Remark 3.2. If a maximal move u maximally dominates a vertex v, there is no
valid move dominating v after picking a move u.

Example 3.3. The following are examples of minimal and maximal moves in
partially dominated graphs. Minimal moves and maximal moves are indicated by
blue dashed lines and red dotted lines, respectively.

1. The following partially dominated graph has both minimal move and max-
imal move.

2. The following partially dominated graph has a minimal move but no maxi-
mal move.

3. The following partially dominated graph has a maximal move but no mini-
mal move.
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4. The following partially dominated graph has neither maximal move nor min-
imal move.

In this thesis, the condition “the player can always make a minimal
(resp. maximal) move” means the player can make such move at every of his turn
after the game has already started. This means we do not apply the condition to
the first move of the game.

Proposition 3.4. In a biased domination game on a graph G, if both players can
always make a minimal move, then G is connected or G is an edgeless graph (a
union of isolated vertices).

Proof. Assume that G is not connected and has at least one edge. Then there
is a component C that is not an isolated vertex. Thus for all vertices in this
component, their closed neighborhood has size at least 2, that is, if a vertex u is in
this component, then |N [u]| ≥ 2. Consider the game that the first move happened
at another component. So no players can make a minimal move at the component
C.

Proposition 3.5. Let G be a connected graph and D be a set of vertices in G.
In a biased domination game on a residual graph ⌊G|D⌋, a vertex u is a minimal
move if and only if u is a dominated leaf or all vertices v ∈ N(u) are already
dominated.

Proof. Assume that u is a a minimal move and there is a vertex v ∈ N(u) not
dominated on ⌊G|D⌋. Note that no two dominated vertices are adjacent in ⌊G|D⌋.
Since v is not dominated, u is already dominated. Since u dominates exactly one
new vertex, u minimally dominates a vertex v. So u must be a leaf on ⌊G|D⌋.
Hence u is a dominated leaf.

Conversely, it is easy to see that if a vertex u is a dominated leaf or all
vertices v ∈ N(u) are already dominated in ⌊G|D⌋, then u is a minimal move.
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Proposition 3.6. If a player can always make a minimal (resp. maximal) move
on a graph G, then a player can always make a minimal (resp. maximal) move
on a graph H where V (H) = V (G) ⊔ {u1, u2, . . . , un} and E(H) = E(G) ⊔ {uiv |
i ∈ [n], v ∈ V (G)}.

Proof. Suppose that a player can always make a minimal move on a graph G and
the game on a graph H has been started. If there is a move ui picked in a game,
then all vertices in V (G) are already dominated. So an undominated vertex v

must be in the set {u1, u2, . . . , un}. Since NH(v) = V (G) and all vertices in V (G)

are already dominated, a move v is a minimal move. If there is no move ui picked
in a game, then all picked moves are in V (G). This implies that u1, u2, . . . , un

are already dominated. Thus there is no newly dominated vertex from the set
{u1, . . . , un}. Since the player can always make a minimal move v in a graph G

and NH [v] = NG[v] ⊔ {u1, u2, . . . , un}, a move v is also a minimal on a graph H.
Similarly, this proof can be applied for a maximal move. If there is a move

ui picked in a game, any vertex in G is a maximal move in H. If there is no move
ui picked in a game, a maximal move in G is also a maximal move in H. Hence,
a maximal move in H always exists.

Lemma 3.7. Let u and u′ be maximal moves with respect to C. The following
are equivalent.

1. Moves u and u′ are the same moves with respect to C.
2. MC [u] = MC [u

′].
3. MC [u] ∩MC [u

′] ̸= ∅.

Proof. Let u and u′ be maximal moves with respect to C.
First, assume that the moves u and u′ are the same moves, i.e., N [u] \C =

N [u′]\C. Let v ∈ MC [u]. Since u is a maximal move, for any move w dominating
v,

N [w] \ C ⊆ N [u] \ C = N [u′] \ C.

Then v ∈ MC [u
′]. So MC [u] ⊆ MC [u

′]. Similarly, MC [u] ⊇ MC [u
′]. Hence

MC [u] = MC [u
′].
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Next, it is clear that MC [u] = MC [u
′] implies MC [u]∩MC [u

′] ̸= ∅ as u and
u′ are maximal moves.

Finally, suppose that MC [u]∩MC [u
′] ̸= ∅. We then let v ∈ MC [u]∩MC [u

′].
Then v is maximally dominated by u and u′. By the definition of maximal moves
u and u′, then we have

N [u] \ C ⊆ N [u′] \ C,

N [u] \ C ⊇ N [u′] \ C.

So N [u] \ C = N [u′] \ C. This means that moves u and u′ are the same moves
with respect to C.

Remark 3.8. We can say that maximal moves u and u′ are the same moves with
respect to C if and only if MC [u] = MC [u

′]. Moreover, for any distinct maximal
moves u and u′, MC [u] ∩MC [u

′] = ∅.

Lemma 3.9. For any distinct maximal moves u and u′ maximally dominating a
vertex v and v′, respectively, there is no move such that dominating v and v′.

Proof. Consider the game with the dominated vertex set C and maximal moves u
and u′ maximally dominating a vertex v and v′, respectively. Assume that there is
a move w which is not u nor u′ and dominating v and v′. Then v ∈ N [w]\C. Since
u maximally dominates v, we have N [w] \ C ⊆ N [u] \ C. But w also dominates
v′, so v′ ∈ N [w] \ C. Hence v′ ∈ N [u] \ C. Since u′ maximally dominates v′,
N [u] \ C ⊆ N [u′] \ C. Similarly, we have N [u′] \ C ⊆ N [u] \ C. This implies that
maximal moves u and u′ are the same moves, a contradiction.

Proposition 3.10. In a biased domination game on a graph G, if a move u is a
maximal move that maximally dominates a vertex v, then all vertices in N(v)\N [u]

are already dominated.

Proof. Let C is the set of previous moves and w ∈ N(v)\N [u]. Since u maximally
dominates a vertex v,

{w} \N [C] ⊆ N [w] \N [C] ⊆ N [u] \N [C].

Since w /∈ N [u],

{w} \N [C] = ({w} \N [u]) \N [C]

⊆ (N [w] \N [u]) \N [C]

⊆ (N [u] \N [u]) \N [C] = ∅.

Then {w} ⊆ N [C], i.e., w ∈ N [C]. This means that w is already dominated.
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Definition 3.11 ([1]). Let G and H be graphs. A corona G̃ with base G is the
graph obtained from adding a leaf as a neighbor to each vertex of G. We say H

is a generalized corona with base G if H is constructed from G by adding at least
one leaf as neighbor to each vertex of G.

Proposition 3.12. Let G be a graph. If a graph H is a generalized corona with
base G, then players can always make a maximal move on H.

Proof. Consider a game on a graph H that has been started but has not ended.
Let V = V (H) \ V (G), i.e., the set of leaves that are added to G to construct H.
Note that if all vertices in V are dominated, then the game has already ended.
Since a game on a graph H is not ended, there is an undominated leaf v ∈ V . Then
its unique neighbor u is a maximal move on a graph H since u newly dominates
v and the only moves that can dominate v are u and v.

3.2 Biased Domination Games
From Theorem 2.6, we can extend it to biased domination games,

using similar proof which is based on the imagination strategy [1]. The following
result follows from the observation in [1].

Lemma 3.13. Let G be a graph and D,S ⊆ N. Consider a Dominator-start
(resp. Staller-start) (D,S)-biased game.

1. If Dominator has a strategy to make the game end within k moves when
Staller plays optimally, then γ(D,S)(G) ≤ k (resp. γ′

(D,S)(G) ≤ k).
2. If Staller has a strategy to make the game end in at least k moves when

Dominator plays optimally, then γ(D,S)(G) ≥ k (resp. γ′
(D,S)(G) ≥ k).

Proof. The result follows from the definition of biased game domination numbers.

Theorem 3.14. For any graph G,

γ(G) ≤ γ(D,S)(G).

Proof. Since γ(G) is the number of the smallest dominating set, we know that
γ(G) is the smallest number of moves that can end the biased domination game
on a graph G. (If the number of moves is less than γ(G), the game still does not
end.) So γ(G) ≤ γ(D,S)(G).
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Theorem 3.15 (Continuation Principle of the Biased Domination Game). Let
G be a graph and A,B ⊆ V (G). If A ⊆ B, then γ(δ,σ)(G|A) ≥ γ(δ,σ)(G|B) and
γ′
(δ,σ)(G|A) ≥ γ′

(δ,σ)(G|B).

Proof. Assume that A ⊆ B ⊆ V (G). We will show that γ(δ,σ)(G|A) ≥ γ(δ,σ)(G|B)

and γ′
(δ,σ)(G|A) ≥ γ′

(δ,σ)(G|B).
To show γ(δ,σ)(G|A) ≥ γ(δ,σ)(G|B), we let the real game be a biased domina-

tion game on G|A where Dominator plays optimally, and let the imagined game be
a biased domination game on G|B imagined and optimally played by Staller. The
number of moves in the real game and the imagined game when the games ended
are denoted by R and I, respectively. Then γ(δ,σ)(G|A) ≥ R and I ≥ γ(δ,σ)(G|B).
Thus it is enough to show that R ≥ I.

In each turn, when Dominator plays moves in the real game, Staller copies
such moves to the imagined game. Staller then responds optimally in the imagined
game and copies the moves back to the real game. Note that every Staller’s move
in the imagined game is always legal in the real game, but a Dominator’s move in
the real game is not necessary legal in the imagined game as A ⊆ B.

If all Dominator’s moves in the real game are legal in the imagined game,
then both games may be ended at the same time or there is some undominated
vertices left in the real game. So R ≥ I.

If there exists a move of Dominator in the real game that cannot be copied
to the imagined game. This means that all vertices in the closed neighborhood
of such move are already dominated in the imagined game. Staller then imagined
that Dominator picks a random legal move in the imagined game and continues
the game. The game continues until the imagined game ends or there is another
move of Dominator in the real game which is not legal in the imagined game. In
the later case, Staller then imagines another random legal move for Dominator in
the imagined game.

We notice that at every turn in the game, the dominated vertices in the real
game are also dominated in the imagined game. This means the real game cannot
ends before the imagined game. Hence R ≥ I. Thus, γ(δ,σ)(G|A) ≥ γ(δ,σ)(G|B).

The proof above always works whether it is Dominator or Staller who plays
the first move. Thus the same proof can be directly applied to Game 2.

Using the same proof, we also obtain the continuation principle for
(D,S)-biased domination games.

Theorem 3.16. The continuation principle also holds for a version of (D,S)-
biased domination game.
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To prove the theorems in this section, we define a version of
Dominator-pass games and Staller-pass games for biased domination games as
follows.

Definition 3.17. In a (δ, σ)-game on a graph G, if Staller is allowed to pass
some moves in each turn (except the first move of each turn) in total of at most
n moves per game, then we define such game as an n-Staller-pass-(δ, σ)-game
or sp(n)-(δ, σ)-game. The number of moves in an sp(n)-(δ, σ)-game when both
players play optimally are denoted by γsp(n),(δ,σ)(G) in game 1 and γ′

sp(n),(δ,σ)(G) in
game 2. Similar notation, dp(n), is used for n-Dominator-pass games.

Remark 3.18. We note that a turn in a (δ, σ)-game is comprised of δ moves for
Dominator and σ moves for Staller. For pass games, since the order of moves in a
turn by the same player does not matter, we can assume that the player plays a
certain number of consecutive moves and then skip the rest. In order to prevent
an empty turn, we forbid skipping the first move as shown in Definition 3.17.

Note that Lemma 3.13 also holds for Staller-pass biased game and
Dominator-pass biased game.

Theorem 3.19. For any graph G and i ≥ 0,

γsp(i),(δ,σ)(G) ≤ γsp(i+1),(δ,σ)(G).

Proof. We can consider γsp(i),(δ,σ)(G) as the number of moves that Dominator plays
optimally and Staller skips at most i moves on an sp(i+1)-(δ, σ)-biased domination
game. By Lemma 3.13, γsp(i),(δ,σ)(G) ≤ γsp(i+1),(δ,σ)(G).

Theorem 3.20. For any graph G and i ≥ 0,

γdp(i+1),(δ,σ)(G) ≤ γdp(i),(δ,σ)(G).

Proof. We consider the biased game domination number γdp(i),(δ,σ)(G) as the num-
ber of moves that Staller plays optimally and Dominator skips at most i moves
on an dp(i+1)-(δ, σ)-biased domination game. By Lemma 3.13, γdp(i+1),(δ,σ)(G) ≤
γdp(i),(δ,σ)(G).
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3.2.1 Biased Games and Minimal Moves

Theorem 3.21. For any graph G, if Staller can always make a minimal move,
then

γsp(1),(δ,σ)(G) = γ(δ,σ)(G).

Proof. First,we will show that γsp(1),(δ,σ)(G) ≤ γ(δ,σ)(G) by using the imagination
strategy in [1], we consider a situation where Staller is playing Game 1 of an
sp(1)-(δ, σ)-biased domination game (Real Game: RG) with an optimal strategy
while Dominator imagines and plays Game 1 of a (δ, σ)-biased domination game
(Imagined Game: IG) optimally. Let the real game and the imagined game end in
R and I moves, respectively. By Lemma 3.13, R ≥ γsp(1),(δ,σ)(G) and I ≤ γ(δ,σ)(G).
So it is enough to prove that R ≤ I. In the real game, Staller has to play σ

moves at each turn, except possibly at one turn where either σ − 1 moves (a pass
of the last move) or σ moves is allowed. Whenever Staller plays σ moves at a turn,
Dominator copies each move of Staller to the imagined game, responds optimally
in the imagined game, and copies the moves back to the real game. If Staller does
not skip a move until the game ends, the sequences of moves are formed as the
following, where dji and sji denote the j-th move in the i-th turn of Dominator and
Staller, respectively.

RG: d11, d21, . . . , dδ1, s11, s21, . . . , sσ1 , d12 . . . , dδ2, s12, . . . , sσ2 , . . .

IG: d11, d21, . . . , dδ1, s11, s21, . . . , sσ1 , d12 . . . , dδ2, s12, . . . , sσ2 , . . .

This means that both games are played with the same sequence of moves. Thus
R = I.

If Staller decides to play only σ−1 moves at turn k, Dominator copies each
move of Staller up to such move to the imagined game. Then Dominator imagined
that Staller makes the σ-th move s∗k that dominates exactly one new vertex vk.
This is a minimal move, which is always available by the assumption. Now the
sequences of moves are formed as the following.

RG: d11, d21, . . . , dδ1, s11, s21, . . . , sσ1 , . . . , s1k, . . . , sσ−1
k ,×

IG: d11, d21, . . . , dδ1, s11, s21, . . . , sσ1 , . . . , s1k, . . . , sσ−1
k , s∗k

Dominator then responses optimally in the imagined game and copies the moves
back to the real game.

The game continues with Staller playing exactly σ moves at each turn.
Note that all moves by Dominator in the imagined game are always legal in the
real game. On the other hand, a move by Staller in the real game may not be
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legal in the imagined game.
If there is an illegal move at turn m > k in the imagined game, says sθm for

some 1 ≤ θ ≤ σ. First, we consider when the move is s1m. We have the following
sequences of moves.

RG: d11, . . . , dδ1, s11, . . . , sσ1 , . . . , s1k, . . . ,×, . . . , dδm, s
1
m

IG: d11, . . . , dδ1, s11, . . . , sσ1 , . . . , s1k, . . . , s∗k, . . . , dδm

Since s1m is not legal in the imagined game, we have

∅ ̸= N [s1m] \N [C] ⊆ N [s∗k] \N [C] = {vk}

where C is the set of all vertices played before s1m in the real game, i.e.,

C =

{
m−1∪
j=1

(
δ∪

i=1

{dij} ∪
σ∪

i=1

{sij}

)
∪

δ∪
i=1

{dim}

}
\ {sσk}.

Hence N [s1m] \N [C] = {vk}. That is s1m dominates only one new vertex vk. This
means both games now have the same set of dominated vertices.

When Staller picks the rest of the moves in the turn, Dominator skips s1m

and copies these moves to the imagined game, and also imagines that Staller picks
another minimal move s∗m (newly dominating a vertex vm) as the last move. Thus
the sequences of moves in the both games are as follows.

RG: d11, . . . , dδ1, s11, . . . , sσ1 , . . . , s1k, . . . ,×, . . . , dδm, s
1
m, s

2
m, s

3
m, . . . , s

σ−1
m , sσm

IG: d11, . . . , dδ1, s11, . . . , sσ1 , . . . , s1k, . . . , s∗k, . . . , dδm, s2m, s3m, s4m, . . . , sσm, s∗m

Note that s2m, s
3
m, s

4
m, . . . , s

σ
m are all legal in the imagined game since

N [s1m] \N [C] = N [s∗k] \N [C] = {vk}.

The same computation is applied when it is the move sθm for θ > 1 which is
not legal in the imagined game. The vertex vk is the only new vertex dominated
by sθm, and the set of all dominated vertices in both games are now the same.
Dominator then imagines a minimal move s∗m. So we get the following sequences
of moves.

RG: d11, . . . , dδ1, s11, . . . , sσ1 , . . . , s1k, . . . ,×, . . . , dδm, . . . , s
θ−1
m , sθm, s

θ+1
m , . . . , sσ−1

m , sσm

IG: d11, . . . , dδ1, s11, . . . , sσ1 , . . . , s1k, . . . , s∗k, . . . , dδm, . . . , sθ−1
m , sθ+1

m , sθ+2
m , . . . , sσm, s

∗
m

We can always repeat the same procedure if there is a move in the real
game that is not legal in the imagined game. At the end, both games end at the
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same move or the imagined game ends before the real game. In the first case, we
have R = I − 1. In the second case, since vm is the only vertex left undominated
by not playing s∗m, it is this unique vertex left undominated in the real game when
the imagined game has ended. So R = I.

From both cases, we have R ≤ I. Since γsp(1),(δ,σ)(G) ≤ R and I ≤ γ(δ,σ)(G),
we then have γsp(1),(δ,σ)(G) ≤ γ(δ,σ)(G). By Theorem 3.19, γsp(1),(δ,σ)(G) = γ(δ,σ)(G).

Theorem 3.22. For any graph G and i ≥ 0, if Staller can always make a minimal
move, then

γsp(i+1),(δ,σ)(G) = γsp(i),(δ,σ)(G).

Proof. Let the real game be the sp(i+ 1)-(δ, σ)-game with an optimal strategy of
Staller and the imagined game be the sp(i)-(δ, σ)-game imagined by Dominator
and played with his optimal strategy. Dominator copies all the moves of Staller
from the real game to the imagined game, up to the i-th time Staller skipped the
move. At the (i + 1)-th skip, Dominator imagines a random minimal move as in
the proof of Theorem 3.21. The same analysis can then be directly applied.

From Theorem 3.21 and Theorem 3.22, we immediately get the fol-
lowing corollary.

Corollary 3.23. For any graph G and i ≥ 0, if Staller can always make a minimal
move, then

γsp(i),(δ,σ)(G) = γ(δ,σ)(G).

Using Corollary 3.23, we can now compare the biased game domi-
nation numbers with different σ.

Theorem 3.24. For any graph G, if Staller can always make a minimal move,
then

γ(δ,j)(G) ≤ γ(δ,σ)(G)

for all 1 ≤ j ≤ σ.

Proof. Let j ≤ σ. We can consider a (δ, j)-biased game as a situation in a Staller-
pass (δ, σ)-game where Staller passes σ − j moves in every of his turn until the
game ends. Let k be a number a lot larger than the possible total number of all
passed moves by Staller in this game. Then γ(δ,j)(G) is a number of moves in the
sp(k)-(δ, σ)-game where Dominator plays optimally and Staller passes σ−j moves
for each turn until the game ends. This implies that γ(δ,j)(G) ≤ γsp(k),(δ,σ)(G). By
Corollary 3.23, we have γ(δ,j)(G) ≤ γ(δ,σ)(G).
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Theorem 3.25. Let G be a graph and D,S, S ′ ⊆ N. If Staller can always make
a minimal move and max(S) ≤ max(S ′), then

γ(D,S)(G) ≤ γ(D,S′)(G).

Proof. We can prove this theorem in the same manner as Theorem 3.24. How-
ever, we present another proof of this theorem by using some properties of minimal
moves and the imagination strategy.

While Dominator is playing a (D,S)-game (real game) where Staller plays
optimally, Dominator imagines a (D,S ′)-game (imagined game) where Staller al-
ways picks max(S ′) moves until the game ends. Dominator copies Staller’s moves
in the real game to the imagined game, imagines some additional Staller’s moves,
responds with optimal moves and copies them to the real game. For each turn
of the real game, if Staller picks the number of moves less than max(S ′) moves,
then Dominator imagines Staller picks extra minimal moves until the number of
moves is max(S ′). Note that a Dominator’s move in the imagined game is always
legal in the real game but a Staller’s move in the real game may be illegal in the
imagined game. If there is an illegal move, then Dominator imagines Staller picks
a minimal move instead of copying.

Let R and I be numbers of moves when real game and imagined game end,
respectively. Since Staller plays optimally in the real game, then R ≥ γ(D,S)(G).
Similarly, I ≤ γ(D,S′)(G) since Dominator plays optimally in the imagined game.
So we will show that R ≤ I.

Let p be the total numbers of extra minimal moves in the imagined game
when Staller picks less than max(S ′) moves in all turns of the real game, and
let q be the number of minimal moves imagined instead of illegal copying to the
imagined game. We have 3 cases for consideration.

1. If p = 0, then Staller always picks max(S ′) moves in the real game. This
means that the imagined game is played exactly the same real game. So
R = I.

2. If p > 0 and q = 0, then there has been I − p moves in the real game when
the imagined game ends. Since the extra moves in the imagined game are
minimal moves, there are at most p undominated vertices in the real game.
When the imagined game ends, the real game will end within at most p

additional moves. This implies that R ≤ (I − p) + p = I.
3. If p > 0 and q > 0, then there has been I − p moves in the real game when

the imagined game ends. There are I − p− q moves that are in both games,
p extra minimal moves in the imagined game, and q minimal moves in the
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imagined game which are imagined instead of q moves in the real game.
From only the I−p− q moves, there are at most p+ q undominated vertices
in the real game. The q moves dominate at least q addtional vertices in
the real game, hence we are left with at most p vertices in the real game.
So when the imagined game ends, the real game will end within at most p

additional moves. This implies that R ≤ (I − p) + p = I.
Hence R ≤ I. Therefore γ(D,S)(G) ≤ γ(D,S′)(G).

Corollary 3.26. Let G be a graph and D,S, S ′ ⊆ N. If Staller can always make
a minimal move and max(S) = max(S ′), then

γ(D,S)(G) = γ(D,S′)(G).

3.2.2 Biased Games and Maximal Moves

Similar to the previous section, we want to compare biased game
domination numbers on biased games with different δ. We first consider
Dominator-pass games.

Theorem 3.27. For any graph G, if Dominator can always make a maximal move
(except possibly at the first move of the game), then

γdp(1),(δ,σ)(G) = γ(δ,σ)(G).

Proof. Let the real game (RG) be a dp(1)-(δ, σ)-game with an optimal strategy
of Dominator and the (δ, σ)-game be a game imagined by Staller (IG) and played
with an optimal strategy of Staller. The number of moves in the real game and
the imagined game when the games end are denoted by R and I, respectively.
Then γdp(1),(δ,σ)(G) ≥ R and I ≥ γ(δ,σ)(G). We claim that R ≥ I.

If Dominator decides not to pass a move in the real game, then Staller
copies all of Dominator’s moves from the real game to the imagined game, responds
optimally and copies the moves back to the real game. Since the two games are
identical, we have R = I.

If Dominator decides to pass a move at turn k in the real game, Staller
imagines that Dominator picks a maximal move d∗k in the imagined game. So it
dominates a vertex wk such that all legal moves dominating wk in the real game
are illegal in the imagined game, see Equation (3.1). The sequences of moves are
formed as the following:

RG: d11, d21, . . . , dδ1, s11, s21, . . . , sσ1 , . . . , d1k, . . . , dδ−1
k ,×

IG: d11, d21, . . . , dδ1, s11, s21, . . . , sσ1 , . . . , d1k, . . . , dδ−1
k , d∗k
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The game continues by Staller playing optimally in the imagined game then
copying the moves back to the real game. Note that all moves by Staller in the
imagined game are always legal in the real game. However, a move by Dominator
in the real game may not be legal in the imagined game.

If there is no illegal move until one of the games ends, we know that the
vertex wk still remains undominated in the real game. (All legal moves dominating
wk in the real game are illegal in the imagined game.) So the imagined game ends,
while the real game has at least one vertex wk remaining. Thus the real game
needs at least one extra move, the vertex wk itself, to finish the game. Including
the move d∗k imagined by Staller, we have R ≥ I.

Whenever there is an illegal copying from the real game to the imagined
game, Staller imagines that Dominator picks a new maximal move instead of such
illegal move. Assume that in the last illegal copying, Staller imagined a maximal
move which dominates w such that all legal moves moves dominating w in the real
game are illegal in the imagined game.

We know when the imagined game ends, the real game must have at least
one undominated vertex w. Thus the real game needs at least an extra move, the
vertex w itself, to finish the game. Excluding the skip, we have R ≥ I.

Hence R ≥ I in every case. Since γdp(1),(δ,σ)(G) ≥ R and I ≥ γ(δ,σ)(G), we
have γdp(1),(δ,σ)(G) ≥ γ(δ,σ)(G). By Theorem 3.20, γdp(1),(δ,σ)(G) = γ(δ,σ)(G).

Theorem 3.28. For any graph G and i ≥ 0, if Dominator can always make a
maximal move (except the first move of a game), then

γdp(i+1),(δ,σ)(G) = γdp(i),(δ,σ)(G).

Proof. Let the dp(i + 1)-(δ, σ)-game be the real game with an optimal strategy
of Dominator and the dp(i)-(δ, σ)-game be the imagined game by Staller with an
optimal strategy. Staller copies all the moves of Dominator from the real game to
the imagined game, up to the i-th time Dominator skipped the move. The rest of
the proof is similar to Theorem 3.28.

Corollary 3.29. For any graph G and i ≥ 0, if Dominator can always make a
maximal move (except the first move of a game), then

γdp(i),(δ,σ)(G) = γ(δ,σ)(G).
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Theorem 3.30. For any graph G, if Dominator can always make a maximal move
(except the first move of a game), then

γ(j,σ)(G) ≥ γ(δ,σ)(G)

for all 1 ≤ j ≤ δ.

Proof. Let j ≤ δ. We can consider a (j, σ)-biased game as a situation in a
Dominator-pass game where Dominator passes δ − j moves at every turn until
the game ends. Let k be a number a lot larger than the possible total num-
ber of all passed moves by Dominator in this game. Then γ(j,σ)(G) is a num-
ber of moves in the dp(k)-(δ, σ)-game where Staller plays optimally and Domi-
nator passes σ − j moves for each turn until the game ends. This implies that
γ(j,σ)(G) ≥ γdp(k),(δ,σ)(G). By Corollary 3.29, we have γ(j,σ)(G) ≥ γ(δ,σ)(G).

Theorem 3.31. Let G be a graph and D,D′, S ⊆ N. If Dominator can always
make a maximal move and max(D) ≤ max(D′), then

γ(D,S)(G) ≥ γ(D′,S)(G).

Proof. While Staller is playing a (D,S)-game (real game) where Dominator plays
optimally, Staller imagines a (D′, S)-game (imagined game) where Dominator al-
ways picks max(D′) moves for each turn until the game ends. Staller copies
Dominator’s moves in the real game to the imagined game, imagines some addi-
tional Dominator’s moves, responds with optimal moves and copies them to the
real game. If for each turn of the real game, Dominator picks the number of moves
less than max(D′), then Staller imagines Dominator picks maximal moves until
the number of moves is max(D′). Note that a Staller’s move in the imagined game
is always legal in the real game but a Dominator’s move in the real game may be
illegal in the imagined game. If there is an illegal move for copying, then Staller
imagines Dominator picks a maximal move instead of copying.

Let R and I be numbers of moves when real game and imagined game end,
respectively. Then R ≤ γ(D,S)(G) and I ≥ γ(D′,S)(G). So we will show that R ≥ I.

Let p be the total number of extra maximal moves in the imagined game
when Dominator picks the number of moves less than max(D′) over all turns of
the real game and let q be the number of maximal moves imagined instead of
illegal copying to the imagined game. We consider 3 cases as following.

1. If p = 0, then Dominator always picks max(D′) moves in the real game.
This means that the imagined game is played as same as the real game. So
R = I.
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2. If p > 0 and q = 0, then there has been I − p moves in the real game when
the imagined game ends. Since there are p distinct maximal moves played
in the imagined game, then there are at least p undominated vertices (which
are maximally dominated by those maximal moves in the imagined game)
in the real game. By Lemma 3.7, these vertices are distinct, so we need at
least p moves for dominating these undominated vertices in the real game.
This means at least p moves are required for ending the real game after the
imagined game ends. This implies that R ≥ (I − p) + p = I.

3. If p > 0 and q > 0, then there has been I − p moves in the real game
when the imagined game ends. There are I − p− q moves that are in both
games, p extra maximal moves in the imagined game, and q maximal moves
in the imagined game which are imagined instead of q moves in the real
game. From only the I − p − q moves, there are at least p + q distinct
undominated vertices (which are maximally dominated by those maximal
moves in the imagined game) in the real game since there are p+ q distinct
maximal moves played in the imagined game and by Lemma 3.7. From the
p+ q distinct undominated vertices in the real game, the q moves dominate
at most q additional vertices in the real game, and hence we are left with at
least p undominated vertices in the real game. So when the imagined game
ends, at least p moves are required for ending the real game. This implies
that there are at least p undominated vertices remaining in the real game.
This implies that R ≥ (I − p) + p = I.

Hence R ≥ I. Therefore γ(D,S)(G) ≥ γ(D′,S)(G).

Corollary 3.32. Let G be a graph and D,D′, S, S ′ ⊆ N. If Dominator can pick a
maximal move for all turns (except the first move in Game 1), Staller can pick a
minimal move for all turns (except the first move in Game 2), max(D) ≤ max(D′)

and max(S) ≤ max(S ′), then

γ(D′,S)(G) ≤ γ(D,S)(G) ≤ γ(D,S′)(G) and γ(D′,S)(G) ≤ γ(D′,S′)(G) ≤ γ(D,S′)(G).

From sections 3.2 and 3.3, we have results as follows.

Corollary 3.33. Let G be a graph and D,D′, S, S ′ ⊆ N. If Dominator can pick a
maximal move for all turns (except the first move in Game 1), Staller can pick a
minimal move for all turns (except the first move in Game 2), max(D) = max(D′)

and max(S) = max(S ′), then

γ(D′,S)(G) = γ(D,S)(G) = γ(D′,S′)(G) = γ(D,S′)(G) = γ(max(D),max(S))(G).

Remark 3.34. All theorems in this thesis hold for Game 2 of a biased domination
game.



Chapter 4

Examples of Special Moves

In this chapter, we give examples of graphs that a special move is
always available and explicitly compute the biased game domination numbers on
the powers of a cycle.

4.1 Examples of Minimal Moves

4.1.1 Edgeless Graph and Complete Bipartite Graph

It is obvious that the players can always make a minimal move on an
edgeless graph.

n vertices m vertices

If we have n isolated vertices that there is always a minimal move on the
graph and we add the m vertices and construct edges as in Proposition 3.6, then
we obtain a complete bipartite graph Km,n. Moreover, the players can always
make a minimal move on a complete bipartite graph Km,n.



26

4.1.2 Powers of a Cycle and Powers of a Path

For positive integers p and n, the p-th power Cp
n of a cycle Cn has the

following vertex set and edge set,

V (Cp
n) = {0, 1, 2, . . . , n− 1},

E(Cp
n) = {{i, i± 1}, {i, i± 2}, . . . , {i, i± p} : i ∈ V (Cp

n)}

where the operations + and − are considered under modulo n.

0
1

2

3

4
5

6

7

8

9

Figure 4.1 A power of a cycle C2
10

We consider a moment during a game on a graph Cp
n that is already started

but still not ended. WLOG, we can assume that there are dominated vertices
0, 1, 2, . . . , 2p and undominated vertex 2p+1. Consider the move p+1. The move
p + 1 dominates vertices 1, 2, 3, . . . , 2p + 1 but vertices 1, 2, 3, . . . , 2p are already
dominated. Then the move p + 1 newly dominated only a vertex 2p + 1. So the
move p+1 is a minimal move. Hence the players can always make a minimal move
on a power of a cycle.

Similarly, we can apply this proof that a player can always make a minimal
move on cycles, paths and powers of a path.

4.2 Examples of Maximal Moves

4.2.1 Edgeless Graph and Complete Bipartite Graph

It is obvious that the players can always make a maximal move (the move
that maximally dominates itself) on an edgeless graph.

If we have n isolated vertices that there is always a maximal move on the
graph and we add the m vertices and construct edges as in Proposition 3.6, then
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we obtain a complete bipartite graph Km,n. Moreover, the players can always
make a maximal move on a complete bipartite graph Km,n.

4.2.2 Powers of a Cycle and Powers of a Path

We consider the started but not ended game on a graph Cp
n. WLOG, there

are dominated vertices 0, 1, 2, . . . , 2p and undominated vertex 2p + 1. We will
show that the move 3p + 1 is a maximal move that maximally dominates the
vertex 2p+ 1. Notice that there are only vertices p+ 1, p+ 2, . . . , 3p+ 1 that can
newly dominate the vertex 2p+ 1 and for i = p+ 1, p+ 2, . . . , 3p+ 1, the move i

newly dominates 2p + 1, . . . , i + p. Then the set of newly dominated vertices by
the move i ̸= 3p + 1 is a proper subset of the set of newly dominated vertices by
the move 3p+1. So the move 3p+1 is a maximal move maximally that dominates
the vertex 2p+1. Hence the players can always make a maximal move on a power
of a cycle.

Similarly, we can apply this proof that a player can always make a maximal
move on cycles, paths and powers of a path.

4.2.3 Trees and Forests

We consider the started but not ended game on a tree. We consider a
domination game on a partially dominated tree. Conside two cases as follows.

1. If there is an undominated leaf on a tree, its unique neighbor is a maximal
move maximally dominating this leaf since the other move that dominates
the leaf itself.

2. If there is no undominated leaf, we repeatedly delete all dominated leaves
until there exists an undominated leaf whose unique neighbor is a maximal
move as described in Case 1. Notice that a tree that all leaves are deleted
is also a tree.
Hence there always is a maximal move on a tree. Similarly, we can apply

this proof to show that a player can always make a maximal moves on forests.

4.2.4 Sunlet Graphs

The n-sunlet graph is a corona with a cycle Cn as the base. By Proposi-
tion 3.12, the players can always make a maximal move on the n-sunlet graph.
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Figure 4.2 A 10-sunlet obtained by a cycle C10

4.3 Biased Domination Numbers on Powers of
Cycles

We will explicitly compute the biased game domination number of
powers of cycles and give optimal strategies of both players on powers of cycles.
The results are based on [5].

Theorem 4.1. Let p, n, δ, σ ∈ N and G = Cp
n. If n = ((2p+ 1)δ + σ)q + r where

q, r ∈ N ∪ {0} and 0 ≤ r < (2p+ 1)δ + σ, then

γ(δ,σ)(G) = (δ+ σ)q+ [r ≤ (2p+1)δ]

⌈
r

2p+ 1

⌉
+ [r > (2p+1)δ](δ+ r− (2p+1)δ)

where [x] = 1 if the statement x is true and [x] = 0 if x is false.
Moreover, an optimal strategy for Staller is when (s)he always makes a move that
dominates exactly one new vertex, while an optimal strategy for Dominator is when
(s)he always makes a move that dominates as many new vertices as possible without
creating a new dominated component (except the move that starts the game).

Proof. For the lower bound of γ(δ,σ)(G), we consider the situation when Staller
always picks a move that dominates exactly one new vertex. The lower bound
of γ(δ,σ)(G) will be obtained from Lemma 3.13. We know that on a graph Cp

n, a
single move dominates at most 2p+1 new vertices. Since a move by Staller always
dominates exactly one new vertex, Dominator picks δ moves and Staller picks σ

moves per round, we see that both players can dominate at most (2p+1)δ+σ new
vertices per round. Thus the first (δ+ σ)q moves (the first q rounds) dominate at
most ((2p+ 1)δ + σ)q vertices.

If r = 0, then n = ((2p+1)δ+σ)q. Thus it requires at least (δ+σ)q moves
to end the game.
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If 0 < r ≤ (2p + 1)δ, there are at least r undominated vertices after q

rounds. We need at least
⌈

r

2p+ 1

⌉
additional moves. By Lemma 3.13, we have

γ(δ,σ)(G) ≥ (δ + σ)q + [r ≤ (2p+ 1)δ]

⌈
r

2p+ 1

⌉
If r > (2p + 1)δ, then the first (δ + σ)q + δ moves (the first q rounds and

the (q + 1)-th turn of Dominator) dominate at most ((2p+ 1)δ + σ)q + (2p+ 1)δ

vertices. Thus there exist at least r − (2p + 1)δ undominated vertices at the
beginning of the (q + 1)-th turn of Staller. Since Staller plays with the proposed
strategy, it requires at least r − (2p + 1)δ additional moves. So we need at least
(δ + σ)q + δ + r − (2p+ 1)δ moves in total. By Lemma 3.13, we have

γ(δ,σ)(G) ≥ (δ + σ)q + [r > (2p+ 1)δ](δ + r − (2p+ 1)δ).

From three cases, we get

γ(δ,σ)(G) ≥ (δ+σ)q+[r ≤ (2p+1)δ]

⌈
r

2p+ 1

⌉
+[r > (2p+1)δ](δ+ r− (2p+1)δ).

For the upper bound, we consider the situation when Dominator always
dominates as many new vertices as possible without creating a new dominated
component (except the first move). Let M be the number of moves when the

game is ended and let k =

⌊
M

δ + σ

⌋
. We consider the following sequence of moves

from the begining to the end of the game.

d11, d
2
1, . . . , d

δ
1, s

1
1, s

2
1, . . . , s

σ
1 , . . . , d

1
k, . . . , s

σ
k(, d

1
k+1, . . . , s

σ−1
k+1) (4.1)

where dji and sji are the j-th move at the i-th round of Dominator and Staller,
respectively. The moves in parenthesis indicate that the game may end at either
the move sσk (full k rounds), or d1k+1, d

2
k+1, . . . , d

δ
k+1, s

1
k+1, . . . , s

σ−2
k+1 , s

σ−1
k+1 (in the

(k+1)-th round). Let f(v) denote the number of new dominated vertices when a
player choose a vertex v. By the current Dominator’s strategy, it is clear that

f(d11) = f(d21) = · · · = f(dδ1) = 2p+ 1.

Now we consider three cases depending on the last move.
Case 1: The last move is sσk . Consider new dominated vertices from start

to end (the move d11 to the move sσk in (4.1)). Since the game ends in full k

rounds, Dominator and Staller play exactly δk and σk moves, respectively, during
the game. If Staller picks α moves that create new dominated components, then
Staller can force Dominator to dominate less than 2p + 1 new vertices for β ≤ α
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times. Thus Staller dominates 2p+ 1 new vertices for α moves and dominates at
least one new vertex for the other σk − α moves. Hence the number of vertices
dominated by Staller is

k∑
j=1

σ∑
i=1

f(sij) ≥ α(2p+ 1) + (σk − α). (4.2)

On the other hand, Dominator dominates at least one new vertex for β moves
and dominates 2p + 1 vertices for the other δk − β moves. Hence the number of
vertices that newly dominated by Dominator is

k∑
j=1

δ∑
i=1

f(dij) ≥ β + (δk − β)(2p+ 1). (4.3)

From (4.2) and (4.3), we have

n =
k∑

j=1

(
δ∑

i=1

f(dij) +
σ∑

i=1

f(sij)

)
≥ β + (δk − β)(2p+ 1) + α(2p+ 1) + (σk − α)

= δk(2p+ 1)− β(2p) + σk + α(2p)

= δk(2p+ 1) + σk + (α− β)(2p)

≥ ((2p+ 1)δ + σ)k.

This implies that k ≤
⌊

n

(2p+ 1)δ + σ

⌋
as k is an integer. Thus

M = (δ + σ)k

≤ (δ + σ)

⌊
n

(2p+ 1)δ + σ

⌋
≤ (δ + σ)

⌊
n

(2p+ 1)δ + σ

⌋
+ [r ≤ (2p+ 1)δ]

⌈
r

2p+ 1

⌉
+ [r > (2p+ 1)δ](δ + r − (2p+ 1)δ)

= (δ + σ)q + [r ≤ (2p+ 1)δ]

⌈
r

2p+ 1

⌉
+ [r > (2p+ 1)δ](δ + r − (2p+ 1)δ)

by the assumption n = (δ + σ)q + r where q =

⌊
n

(2p+ 1) + σ

⌋
.

Case 2: The last move is dθk+1 where 1 ≤ θ ≤ δ. Consider new dominated
vertices from start to end (the move d11 to the move dθk+1 in (4.1)). This means
Dominator makes a total number of δk+θ moves while Staller makes a total num-
ber of σk moves. If Staller picks α moves that create new dominated components,



31

then Staller can force Dominator to dominate less than 2p + 1 new vertices for
β ≤ α + 1 times. Thus Staller dominates 2p + 1 new vertices for α moves and
dominates at least one new vertex for the other σk−α moves. Hence the number
of vertices that newly dominated by Staller is

k∑
j=1

σ∑
i=1

f(sij) ≥ α(2p+ 1) + (σk − α). (4.4)

Dominator dominates at least one new vertex for β moves and dominates 2p + 1

vertices for the other δk + θ − β moves. Hence the number of vertices that newly
dominated by Dominator is

k∑
j=1

δ∑
i=1

f(dij) +
θ∑

i=1

f(dik+1) ≥ β + (δk + θ − β)(2p+ 1). (4.5)

From (4.4) and (4.5), we have

n =
k∑

j=1

(
δ∑

i=1

f(dij) +
σ∑

i=1

f(sij)

)
+

θ∑
i=1

f(dik+1)

≥ β + (δk + θ − β)(2p+ 1) + α(2p+ 1) + (σk − α)

= δk(2p+ 1) + θ(2p+ 1)− β(2p) + σk + α(2p)

= δk(2p+ 1) + θ(2p+ 1) + σk + (α− β)(2p)

≥ ((2p+ 1)δ + σ)k + θ(2p+ 1)− 2p

= ((2p+ 1)δ + σ)k + (θ − 1)(2p+ 1) + 1.

This implies that
k ≤

⌊
n− ((θ − 1)(2p+ 1) + 1)

(2p+ 1)δ + σ

⌋
since k is an integer. We then have

M = (δ + σ)k + θ

≤ (δ + σ)

⌊
n− ((θ − 1)(2p+ 1) + 1)

(2p+ 1)δ + σ

⌋
+ θ.

From the assumption, we have n = ((2p+1)δ+σ)q+r where q =
⌊

n

(2p+ 1)δ + σ

⌋
.

Also note that (θ − 1)(2p+ 1) + 1 ≤ (2p+ 1)δ + σ as θ ≤ δ. Thus⌊
n− ((θ − 1)(2p+ 1) + 1)

(2p+ 1)δ + σ

⌋
=

q − 1 if r < (θ − 1)(2p+ 1) + 1

q if r ≥ (θ − 1)(2p+ 1) + 1.

Hence,

M ≤

(δ + σ)(q − 1) + θ if r < (θ − 1)(2p+ 1) + 1

(δ + σ)q + θ if r ≥ (θ − 1)(2p+ 1) + 1.
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When r < (θ − 1)(2p+ 1) + 1, we see that

M ≤ (δ + σ)(q − 1) + θ

= (δ + σ)q − δ − σ + θ

≤ (δ + σ)q − δ − σ + δ

≤ (δ + σ)q

≤ (δ + σ)q + [r ≤ (2p+ 1)δ]

⌈
r

2p+ 1

⌉
+ [r > (2p+ 1)δ](δ + r − (2p+ 1)δ).

The last inequality holds since
⌈

r

2p+ 1

⌉
and δ + r − (2p+ 1)δ are nonnegative.

When r ≥ (θ − 1)(2p+ 1) + 1, we have r

2p+ 1
≥ θ − 1 +

1

2p+ 1
and⌈

r

2p+ 1

⌉
≥ θ − 1 +

⌈
1

2p+ 1

⌉
= θ − 1 + 1 = θ.

Hence

M ≤ (δ + σ)q + θ

≤ (δ + σ)q +

⌈
r

2p+ 1

⌉
≤ (δ + σ)q + [r ≤ (2p+ 1)δ]

⌈
r

2p+ 1

⌉
+ [r > (2p+ 1)δ](δ + r − (2p+ 1)δ).

The last inequality holds since for r > (2p+ 1)δ, we have⌈
r

2p+ 1

⌉
= δ +

⌈
r − (2p+ 1)δ

2p+ 1

⌉
≤ δ + r − (2p+ 1)δ.

From two cases, we have

M ≤ (δ + σ)q + [r ≤ (2p+ 1)δ]

⌈
r

2p+ 1

⌉
+ [r > (2p+ 1)δ](δ + (r − (2p+ 1)δ).

Case 3: The last move is sθk+1 where 1 ≤ θ ≤ σ − 1. Consider new
dominated vertices from start to end (the move d11 to the move sθk+1 in (4.1)). If
Staller picks α moves that create new dominated components, then Staller can
force Dominator to dominate less than 2p+ 1 new vertices for β ≤ α times. Thus
Staller dominates 2p+1 new vertices for α moves and dominates at least one new
vertex for σk+ θ− α moves. Hence the number of vertices that newly dominated
by Staller is

k∑
j=1

σ∑
i=1

f(sij) +
θ∑

i=1

f(sik+1) ≥ α(2p+ 1) + (σk + θ − α). (4.6)
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Dominator dominates at least one new vertex for β moves and dominates 2p + 1

vertices for the other δ(k+1)−β moves. Hence the number of vertices that newly
dominated by Dominator is

k+1∑
j=1

δ∑
i=1

f(dij) ≥ β + (δ(k + 1)− β)(2p+ 1). (4.7)

From (4.6) and (4.7), we have

n =
k+1∑
j=1

δ∑
i=1

f(dij) +
k∑

j=1

σ∑
i=1

f(sij) +
θ∑

i=1

f(dik+1)

≥ β + (δ(k + 1)− β)(2p+ 1) + α(2p+ 1) + (σk + θ − α)

= δ(k + 1)(2p+ 1)− β(2p) + α(2p) + σk + θ

= ((2p+ 1)δ + σ)k + δ(2p+ 1) + θ + (α− β)(2p)

≥ ((2p+ 1)δ + σ)k + (2p+ 1)δ + θ.

This implies that
k ≤

⌊
n− ((2p+ 1)δ + θ)

(2p+ 1)δ + σ

⌋
since k is an integer. We then have

M = (δ + σ)k + δ + θ

≤ (δ + σ)

⌊
n− ((2p+ 1)δ + θ)

(2p+ 1)δ + σ

⌋
+ δ + θ

By the assumption, we have n = ((2p+ 1)δ + σ) + r where q =

⌊
n

(2p+ 1)δ + σ

⌋
.

Also note that (2p+ 1)δ + θ ≤ (2p+ 1)δ + σ as θ < σ. Thus⌊
n− ((2p+ 1)δ + θ)

(2p+ 1)δ + σ

⌋
=

q − 1 if r < (2p+ 1)δ + θ

q if r ≥ (2p+ 1)δ + θ.

Hence,

M ≤

(δ + σ)(q − 1) + δ + θ if r < (2p+ 1)δ + θ

(δ + σ)q + δ + θ if r ≥ (2p+ 1)δ + θ.

When r < (2p+ 1)δ + θ, we see that

M ≤ (δ + σ)(q − 1) + δ + θ

= (δ + σ)q − δ − σ + δ + θ

≤ (δ + σ)q − δ − σ + δ + σ

= (δ + σ)q

≤ (δ + σ)q + [r ≤ (2p+ 1)δ]

⌈
r

2p+ 1

⌉
+ [r > (2p+ 1)δ](δ + r − (2p+ 1)δ).
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The last inequality holds since
⌈

r

2p+ 1

⌉
and δ + r − (2p+ 1)δ are nonnegative.

When r ≥ (2p+1)δ+ θ, we have r > (2p+1)δ and θ ≤ r− (2p+1)δ as 1 ≤ θ < σ.
Then

M ≤ (δ + σ)q + δ + θ

≤ (δ + σ)q + δ + r − (2p+ 1)δ

= (δ + σ)q + [r > (2p+ 1)δ](δ + r − (2p+ 1)δ)

≤ (δ + σ)q + [r ≤ (2p+ 1)δ]

⌈
r

2p+ 1

⌉
+ [r > (2p+ 1)δ](δ + r − (2p+ 1)δ).

From two cases, we have

M ≤ (δ + σ)q + [r ≤ (2p+ 1)δ]

⌈
r

2p+ 1

⌉
+ [r > (2p+ 1)δ](δ + r − (2p+ 1)δ).

By Lemma 3.13, we have γ(δ,σ)(G) ≤ M and then

γ(δ,σ)(G) ≤ (δ+σ)q+[r ≤ (2p+1)δ]

⌈
r

2p+ 1

⌉
+[r > (2p+1)δ](δ+ r− (2p+1)δ).

Since the lower bound and the upper bound match, we can conclude that

γ(δ,σ)(G) = (δ+ σ)q+ [r ≤ (2p+1)δ]

⌈
r

2p+ 1

⌉
+ [r > (2p+1)δ](δ+ r− (2p+1)δ)

as desired.

Remark 4.2. The optimal strategies for Dominator and Staller in Theorem 4.1
are indeed to always play a maximal move and a minimal move, respectively.
However, the property of the maximal move is not directly used in the proof. So
it is interesting to see whether we can interpret the proof in a new angle by using
the property of the maximal move.

Corollary 4.3. For n ∈ N,

γ(δ,σ)(C
p
n+δ(2p+1)+1) = γ′

(δ,σ)(C
p
n+2p+1) + δ.

Moreover, optimal strategies are
1. Staller always make a move that dominates exactly one new vertex (except

the move that starts the game),
2. Dominator always make a move that dominates as many new vertices as

possible without creating a new dominated component (except the move that
starts the game).
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Proof. Let A = {d11, d21, . . . , dδ1} be a set of the first δ Dominator’s moves and s11

be the first Staller’s move of Game 1 on a graph Cp
n+δ(2p+1)+1 using the optimal

strategies obtained from Theorem 4.1. On the other hand, we let u be any first
move of Game 2 on a graph Cp

n+2p+1. We see that both games are now equivalent.
Hence

γ(δ,σ)(C
p
n+δ(2p+1)+1) = δ + γ′

(δ,σ)(C
p
n+2p+1).

It is also clear that the same set of optimal strategies can be applied to Game 2

on Cp
n+2p+1.

Corollary 4.4. For n ∈ N,

γ′
(δ,σ)(C

p
n+2p+σ) = γ(δ,σ)(C

p
n) + σ.

Proof. The proof is similar to Corollary 4.3 by comparing Game 2 on a graph
Cp

n+2p+σ at the move right after the first turn of Staller following the first move of
Dominator (with optimal strategies of both players) and Game 1 on a graph Cp

n

at the move right after any first move of Dominator.

Corollary 4.5. Let p, n ∈ N, D,S ⊆ N, maxD = δ, maxS = σ and G = Cp
n. If

n = ((2p+ 1)δ + σ)q + r where q, r ∈ N ∪ {0} and 0 ≤ r < (2p+ 1)δ + σ, then

γ(D,S)(G) = (δ+σ)q+[r ≤ (2p+1)δ]

⌈
r

2p+ 1

⌉
+[r > (2p+1)δ](δ+ r− (2p+1)δ)

where [x] = 1 if the statement x is true and [x] = 0 if x is false.
Moreover, an optimal strategy for Staller is when he always makes σ moves that
dominates exactly one new vertex for each turn, while an optimal strategy for
Dominator is when he always makes δ moves that dominates as many new vertices
as possible without creating a new dominated component (except the move that
starts the game) for each turn.



Chapter 5

Conclusions

In this thesis, we have introduced a biased version of domination
games. Under the condition that a minimal move (resp. a maximal move) is
always available, we can compare the biased game domination number of two
biased games with different number of moves for Staller (resp. Dominator) in each
turn. The property that a graph always has a minimal move or a maximal move
available is still rather strong. So it is interesting to know what other collections
of graphs have this property, or what other conditions give the same results as in
Theorem 3.24 and Theorem 3.30. We found the explicit formula of biased game
domination numbers of powers of a cycle.

Moreover, in the case of powers of a cycle, we found very simple
optimal strategies for both players using the special moves. It is interesting to see
whether such special moves can be also used in other graphs, or whether there are
other optimal strategies for the game on powers of a cycle.
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