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ของเซลล์มะเร็งกระเพาะปัสสาวะชนิดรุกเข้าชั้ นกล้ามเน้ือในรูปแบบ transcriptome analysis ได้แก่ GATA3, CK20, 

CK5/6 และ CK14  

 

วิธีการศึกษา: 
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ดว้ยการเก็บช้ืนเน้ือชนิด Fresh frozen tissue และส่งตรวจหาการแสดงออกของยีนระดบั RNA ทั้งแยกแบ่งกลุ่มย่อยระดบัโมเลกุล

ในมะเร็งกระเพาะปัสสาวะที่รุกเขา้ชั้นกลา้มเน้ือ (molecular subtypings of MIBC) โดยการจดักลุ่มระดบัการแสดงออกของยีน

ต่อการท านายการรอดชีพ และการตอบสนองต่อการรักษา 

 

ผลการศึกษา: 

โดยผลการศึกษาพบว่า จากจ านวนช้ินเน้ือที่ใช้ยอ้ม IHC จ านวน 132 ตัวอย่าง อายุเฉลี่ยของผูป่้วยคือ 65.6 ปี อัตราการ

แสดงออกของ IHC ที่เป็นบวกของ GATA3, CK20, CK5/6 และ CK14 คือ 80.3%, 50.8%, 42.4% และ 28.0% 

ตามล าดับ มีเพียง GATA3 และ CK5/6 เท่าน้ันที่มีความสัมพนัธ์อย่างมีนัยส าคัญกับผลลัพธ์การรอดชีวิต (ค่า log-rank p-

values = 0.004 และ 0.02) จากน้ัน GATA3 และ CK5/6 ถูกใชเ้พ่ือสร้างชนิดย่อย ซ่ึงไดแ้ก ่กลุ่ม luminal (GATA+ 

และ CK5/6−, 38.6%) กลุ่ม basal (GATA− และ CK5/6+, 12.9%) กลุ่มผสม (GATA+ และ CK5/6+, 

37.9%) และกลุ่ม double negative (GATA− และ CK5/6−, 10.6%) ผูป่้วยที่เป็นชนิดย่อยแบบผสมมีอตัราการรอดชีวิต

ที่ 5 ปีที่ดีข้ึนอย่างมีนัยส าคญัที่ 42.8% ในขณะที่ผูป่้วยที่เป็นชนิดย่อยแบบ double-negative มีการพยากรณ์โรคที่แย่ที่สุดในส่ีกลุ่ม

มีอตัราการรอดชีวิตที่ 5 ปี 7.14%  
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ผลการศึกษาเบื้องต้นของช้ินเน้ือมะเร็งกระเพาะปัสสาวะที่มีการรุกเข้าชั้นกล้ามเน้ือจ านวน 30 ตัวอย่าง การแบ่งกลุ่มย่อย 

mRNA เป็น unsupervised clustering ออกเป็น 3 กลุ่มคือ cluster 1 ถึง 3 ซ่ึงแต่ละกลุ่มมีการแสดงออกของยีนที่มีความ

แตกต่างกนั และทางผูว้ิจยัไดใ้ชข้อ้มูลผูป่้วยจากฐานขอ้มูล TCGA เขา้ไปเพ่ิมเติม ซ่ึงพบว่าการจดักลุ่ม transcriptome ในรูปแบบน้ีมี

ความสัมพนัธ์กบัอตัราการรอดชีวิตในผูป่้วยมะเร็งกระเพาะปัสสาวะแบบรุกเขา้กลา้มเน้ือ 

  

สรุปผลการศึกษา: 

การแบ่งกลุ่มย่อยโดยใช้ GATA3 และ CK5/6 ใช้ได้กับ MIBCs และผู ้ป่วยที่มี subtype แบบ double-

negative มีความเส่ียงสูงสุด ส่วนการแบ่งกลุ่มย่อยของ mRNA จากการวิเคราะห์โดยใช้ขอ้มูลจากตวัอย่างที่ศึกษาแบ่งออกกลุ่มใหม่ได้

เป็น 3 กลุ่มย่อมที่มีนัยส าคญัและประยุกต์ใชก้บัขอ้มูลผูป่้วยจากฐานขอ้มูลอื่น สามารถพบรูปแบบความสัมพนัธ์กบัอตัราการรอดชีพไดอ้ย่างมี

นัยส าคญัทางสถิติ  
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ABSTRACT 

Abstract  

 Purpose 

Recently discovered molecular classifications for urothelial bladder cancer appeared to 

be promising prognostic and predictive biomarkers. It is a major challenge for clinical work to 

study the molecular subtypes of BC. Outcome of bladder cancer (BC) treatment still need 

establish and explored the molecular subtypes of bladder cancer and potential clusters. The 

present study was conducted to evaluate the prognostic impact of molecular subtypes assessed 

by mRNA expression in a consecutively collected, mono-institutional muscle-invasive bladder 

cancer (MIBC) cohort, performed by unsupervised clustering and validate subtypes of our 

institutional cohort with data from The Cancer Genome Atlas (TCGA) and possible to correlate 

the mRNA expression with tumor molecular subtype membership. Our overall goal was to 

determine whether mRNA expression have shown significant difference in specific molecular 

subtypes and correlation with clinical outcomes. Molecular subtyping of muscle-invasive 

bladder cancer (MIBC) predicts disease progression and treatment response. However, present 

subtyping techniques are based primarily on transcriptomic analysis, which is relatively 

expensive. Subtype classification of protein levels by immunohistochemistry (IHC) are more 

affordable and feasible to perform in a general pathology laboratory. Recent data demonstrated 

that GATA3, CK20, CK5/6, and CK14 protein levels were correlated with MIBC molecular 

subtypes. We aimed to evaluate the correlation of those IHC markers with survival outcomes 

after radical cystectomy in Thai patients. Moreover, we aim to evaluate molecular subtypings 

by mRNA expression analysis. 
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Method 

30 MIBC were pathologically re-evaluated and molecular subtypes were assessed on 

mRNA. Fresh-frozen primary tumor samples from a single cohort in Songklanagarind hospital 

who underwent radical cystectomy between 2015 and 2020. First, we screened the expression 

profiles of differentially genes expression and of BC by comparing DEG and principle 

component analysis with K-mean clustering. Moreover, external validation set from the Cancer 

Genome Atlas (TCGA) database was done by using significant gene expression. We used the 

complete TCGA dataset with our subtype gene expression and assign TCGA’s bladder cancers 

to molecular subtypes. Taken together, we explored the molecular subtypes and their outcome 

treatment of BC. Institutional cohort (n= 30 MIBC) and The Cancer Genome Atlas (TCGA)-

dataset (n=231 MIBC) were subtyped using unsupervised genes and analyzed for predicting of 

survival, cancer-specific survival (CSS), overall-survival (OS), and recurrence–free survival 

(RFS).  Moreover, we evaluated the IHC-based subtypes in MIBC, as classified by GATA3, 

CK20, CK5/6, and CK14 expression in 132 MIBC patients who underwent radical cystectomy 

followed by adjuvant chemotherapy (2008–2016). All individual markers and 

clinicopathological parameters were analyzed against treatment outcomes after radical 

cystectomy and some selected tissues were sent for whole transcriptome sequencing and 

clustering from mRNA expression. 

Result  

Unsupervised consensus hierarchical clustering applied to gene expression data and 

identified 3 molecular subtypes. These subtypes were associated with distinct 

clinicopathological characteristics and molecular expression. The clustering was validated in 

the TCGA dataset. We identified different clinical characteristics and identified 3 molecular 

subtypes MIBC specimens from cohort dataset successfully. In multivariable analyses, N-

stage, T-stage, M-stage and/or age predicted CSS/OS and/or cisplatin- based adjuvant-

chemotherapy response. In the TCGA-dataset, publications report that subtypes risk-stratify 

patients for OS. For IHC study section, the result showed that the mean patient age was 65.6 

years, and the male to female ratio was 6.8:1. Positive IHC expression rates of GATA3, CK20, 

CK5/6, and CK14 were 80.3%, 50.8%, 42.4%, and 28.0%, respectively. The 5-year overall 

survival (OS) was 27.0% (95% confidence interval (CI) 19.6%–35.0%). Only GATA3 and 

CK5/6 were significantly associated with survival outcome (log-rank p-values = 0.004 and 

0.02). GATA3 and CK5/6 were then used to establish subtypes, which were luminal (GATA+ 
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and CK5/6−, 38.6%), basal (GATA− and CK5/6+, 12.9%), mixed (GATA+ and CK5/6+, 

37.9%), and double-negative (GATA− and CK5/6−, 10.6%). Patients with the mixed subtype 

had a significantly better 5-year OS at 42.8%, whereas patients with the double-negative 

subtype had the worst prognosis among the four groups (5-year OS 7.14%). In the multivariable 

analysis, lymph node status and subtype independently predicted survival probability. The 

double-negative subtype had a hazard ratio of 3.29 (95% CI 1.71–6.32). 

Conclusion 

The results further reinforce the conclusion that the molecular subtypes of bladder 

cancer are distinct disease entities with specific molecular subtype. In our cohorts/subtyping-

classifications, clinical and novel molecular subtypes for predicting outcome of treatment. For 

immunohistochemistry subtyping using GATA3 and CK5/6 was applicable in MIBCs, and 

patients with the double-negative subtype were at the highest risk and may require more 

intensive therapy and mRNA subtyping by mRNA expression must showed the significant 

relationship with survival rate.  
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CHAPTER 1 

 

Introduction 

 

1.1 Background and Rationale  

The new cases of bladder cancer (BCa) increase by more than 500,000 per year and the 

deaths caused by BCa increase by approximately 200,000 per year (1,2). Traditionally, based 

on the degree of invasion in the bladder muscle wall, BC can be classified into either non-

muscle invasive (NMIBC) or muscle invasive (MIBC) and also be divided pathologically into 

high-grade (HG) or low-grade (LG) tumors. HG tumors are poorly differentiated and LG 

tumors are usually well-differentiated, Urothelial carcinoma (UC) is a cancer that arises from 

the epithelial lining of the bladder wall. Basal stem cells at the stromal interface self-renew and 

make intermediate and superficial/umbrella cells to maintain and regenerate functioning 

urothelium, according to well-established differentiation research. Although the majority of 

urothelial cancers do not reach the submucosal stroma (lamina propria) or bladder wall 

(muscularis propria), those that do can have a wide range of histologic features, clinical 

outcomes, and molecular profiles (8). 

The treatment outcomes are diverse for different BCa patients, especially muscle-

invasive BCa (MIBC) (3). Result of treatment in our published radical cystectomy cohort 

included 111 MIBC patients reported the 5-year cancer-specific survival rate was only 36%. 

Of several factors examined, univariate analysis identified tumor stage, nodal status, 

metastasis, margin positive and lymphovascular invasion (LVI) as significant predictors of OS, 

of which tumor stage and nodal status appeared to be independently related to overall survival 

on multivariate analysis (4). However, personalized treatment of each patient need 
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development for improve survival of patient. Molecular subtyping has been purposed for 

classified and specified treatment option in each subtype.  

Predicting response to available peri-operative treatment and developing novel methods 

of targeting invasive bladder cancers are two areas of intense research where molecular 

profiling is thought to be useful. The availability of diagnostic trans-urethral resection of 

bladder tumor (TURBT) specimens before radical surgery allows molecular profiling to 

potentially assist patient decisions about surgery and neoadjuvant treatment (8). 

There were previously five major subtyping classification systems: LUND, UROMOL, 

The Cancer Genome Atlas (TCGA), The University of North Carolina (UNC), and the MD 

Anderson Cancer Center (MDACC). These five subtyping classification systems not only 

evolved independently, but each taxonomy's nomenclature differs from the others (5-10). Until 

now, there is no consistent risk stratification for BCa. Before having radical cystectomy, 

patients with MIBC are usually treated with neoadjuvant chemotherapy (NAC) (11). Immune 

checkpoint inhibitors (ICI) or other novel drugs guided by biomarkers, such as targeted 

treatments, are commonly used to treat locally progressed and metastatic illness (12-21). 

The genetic categorization of urothelial carcinoma tumors may provide important 

information for stratifying prognostically significant groups or determining the best treatment 

for a specific patient (15,22). The development of a molecular taxonomy for bladder cancer is 

possibly the most exciting and major therapeutic discovery in decades. MIBC was also 

separated into two primary molecular subgroups, luminal and basal, utilizing advanced 

approaches comparable to those used in breast cancer research (5,7,9,23-27). According to 

reports, there are considerable differences in prognosis and responsiveness to current therapy 

between these two broad categories, with the basal subtype being more aggressive than the 

luminal subtype (5,9,26,28,29). Many molecularly defined groups are now accessible due to 
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differences in approach and interpretation of previous findings (7,8,10,15,22,30-35). Figure 1 

shows how bladder cancer molecular classifications have changed over time. 

 

Figure 1. Evolving schemes of molecular classification of urothelial carcinoma of the 

bladder.  

Despite recent agreement on several molecular subtypes, molecular categorization 

remains a complicated, expensive, and infrequently available technology (10,36–39). 

However, the recent introduction of gene expression analysis offers an alternative method for 

molecular subtyping, with the potential benefit of decreased analysis costs and the production 

of accurate gene classifiers with clinical relevance (33,40). Thus, a study examining novel 

subtypes in the context of urothelial carcinoma's molecular taxonomy using mRNA and 

immunohistochemistry (IHC) would be relevant and beneficial in terms of developing less 

expensive and repeatable tools for investigating the molecular classification of urothelial 

bladder carcinoma. As a result, molecular subtypes provide a context that connects tumor 

biology to the ability to affect and stratify patients in order to improve oncological outcomes. 

The goal of this study was to see how far molecular profiling had progressed in muscle-invasive 

bladder cancer. We hope to present a description of molecular subtypes, an enumeration of 
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promising targeted therapeutics, and a vision of how molecular subtypes could be incorporated 

in routine pathology for the healthcare professional who diagnoses or treats bladder cancer. We 

also want to learn more about fundamental molecular pathology studies and how to interpret 

molecular subtypes in tissue samples with the cellular diversity of invasive bladder tumors. 

1.2 Research Questions  

   1.2.1 Can we perform molecular subtyping of muscle invasive bladder cancer by mRNA 

expression and immunohistochemistry?  

   1.2.2 What is the impact of molecular subtyping in muscle invasive bladder cancer on 

predicting survival and response of treatment? 

1.3 Hypotheses  

   1.3.1 Molecular subtypes of the muscle-invasive bladder have different expressions in 

mRNA and protein level. 

   1.3.2 Molecular subtypes of bladder cancer can predict the outcome and survival of 

treatment. 

Our study aimed to study NGS-genomic/transcriptomic profiling used to generate 

molecular data in bladder cancer and provide clinically meaningful datasets for the molecular 

classification of bladder cancer. For IHC, our study generated a four-gene classifier, 

incorporating GATA3 and CK20 (typically related to luminal molecular subtype) and CK5/6 

and CK14 (typically related to basal molecular subtype). This methodology allowed us to 

explore differences in clinicopathological parameters and potential sensitivities to treatment in 

urothelial carcinomas of bladder patients. The purpose of this study was to use IHC to identify 

molecular subgroups in four distinct MIBC cohorts and to investigate their link to prognosis 
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and treatment results. We expected that IHC will uncover significant groups of tumors that 

mimic known molecular subtypes and have relevant clinical relationships, with patients with 

Basal or double negative subtypes having worse outcomes than patients with the other subtype. 

Moreover, we performed a transcriptomic study of MIBC to perform the unsupervised 

clustering of the novel molecular subtypes and validate with TCGA, different molecular 

subtypes impact survival. 

1.4 Objectives 

   1.4.1 Primary objective  

❖ To cluster the novel molecular subtypes by transcriptomic profiling and evaluate 

clinically significant of data of MIBC 

❖  To validate the subtypes with TCGA dataset 

   1.4.2 Secondary objective  

❖ To use the 4 markers (GATA3, CK5/6, CK14 and CK20) classified into molecular 

subtypes and evaluate the clinically significant of MIBC patients 

1.5 Literature review 

   1.5.1 Gene expression profiling of bladder cancer  

A significant difficulty in molecular oncology is interpreting the cumulative biological 

effect of the many genetic abnormalities and dysregulated cellular processes observed in each 

given tumor. The RNA transcriptome serves as a link between the molecular foundations and 

the cellular phenotype, and as such, global gene expression profiling is one of the most 

powerful methods available for biological characterization. Early research in bladder cancer 
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demonstrated that low-grade NMIBC and MIBC could be separated by their gene expression 

patterns. Numerous studies provided mRNA expression profiles with purported clinical 

prognostic value, such as predicting overall survival, disease-free survival, or progression; 

nevertheless, these signatures are difficult to test in independent datasets, frequently 

performing no better than chance. Perou and Srlie pioneered the use of hierarchical clustering 

to deduce unique molecular subgroups exhibiting distinct gene expression patterns associated 

with a range of biological activities and pathways, exhibited a correlation with pathogenic 

factors such as ERBB2 and ESR1 expression and shown survival differences (41). 

   1.5.2 Molecular classification of MIBC  

The molecular characterisation of MIBC has been a major focus of recent bladder 

cancer research. Internal subtypes with intriguing prognostic and predictive capabilities have 

been discovered by large-scale mRNA profiling studies (5,6,9). These subgroups are analogous 

to those observed in breast cancer, for which a basal-luminal molecular categorization scheme 

identifying five subtypes has been devised (41–43). These subgroups have been defined as key 

components of breast cancer treatment stratification due to their prognostic and predictive 

relationships. University of North Carolina (UNC) researchers discovered basal-luminal 

differentiation of tumors as a critical axis that contributes to the formation of two separate main 

subtypes of MIBC (44). Following this, genomic and proteomic tumor profiling have resulted 

in the development of a succession of revised and overlapping subtyping taxonomies for 

bladder cancer subtyping, with UNC, MD Anderson University (MDA), The Cancer Genome 

Atlas (TCGA), and Lund University pioneering these efforts. All of these subtyping approaches 

have in common the identification of luminal-like and non-luminal-like (basal-like) subtypes 

at the highest hierarchical level, corresponding to differential paths of urothelial differentiation 

(45). Thus, while the various taxonomies for subtyping were devised independently, they all 
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agree on the identification of basal and luminal subtypes that can be divided from three to seven 

groupings. Notably, these subtypes have exhibited disparities in clinical outcomes, with basal 

subtype cancers being more aggressive and having a poor prognosis, whereas patients with 

luminal subtype tumors had an improved overall survival (5,6,45). Each taxonomy's 

subcategories also have specific prognostic connections. While each of these classifications 

gives valuable insight into the genetic variety and clinical behavior of these malignancies, 

discrepancies in these taxonomies due to methodological variances in subtyping have limited 

the impact of this work. The varied nomenclatures, definitions, and distinctions in subtyping 

taxonomies, as well as their clinical importance, have hampered the interpretation of this data. 

Thus, in 2019, key leaders from each of these groups collaborated to develop a consensus 

methodology and taxonomy for subtyping, pooling transcriptomic data from 1750 patients to 

delineate six consensus subtypes: luminal-papillary, luminal-unstable, luminal-unspecified, 

basal-squamous, and stroma-rich. (10). (Fig. 2) 
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Figure 2. Comparative analysis of urothelial cancer molecular subtyping schemes. UNC = 

Univesity of North Carolina group; MDA = MD Anderson group, TCGA = The Cancer 

Genome Atlas; Lund, The Lund Bladder Cancer Research group. URO = Urothilial-like; GU 

= Genomically Unstable; Ing. = Infiltrated; Mes = Mesenchymal-like; Basal/SCCL = 

Basal/Squamous Cell Carcinoma-like; NE-like = Small-cell/Neuroendocrine-like; LumP = 

luminal papillary; LumU = luminal unstable; LumNS = luminal non-specified (10,26). 

The substantial effort necessary to classify MIBCs into distinct categories is 

unsurprising, given their high biological heterogeneity, which may be a result of their high 

mutation rates - one of the highest of all human malignancies (44). In general, UC develops 

via one of two mutually exclusive genetic pathways: the Fibroblast Growth Factor Receptor 3 

(FGFR3)/Cyclin D1 (CCND1) system or the E2F Transcription Factor 3 

(E2F3)/Retinoblastoma (RB1) pathway (47,48). Lower stage and grade tumors have been 

linked to mutations in the FGFR3/CCND1 pathway. These tumors are defined by 

hyperactivation of FGFR3, overexpression of CCND1, and deletions of genes on 9p and 9q, 

including the cyclin-dependent kinase inhibitor (CDKN2A) gene, which produces the p16 

protein (47). Tumors with a higher stage or grade have been documented to have mutations in 

the E2F2/RB1 pathway, as well as increased CDKN2A expression. Whichever of these two 

routes is disrupted contributes to a tumor's molecular landscape, with changes in either pathway 

determining molecular subtypes. Across all categorization schemes, widely classified luminal 

MIBC tumors are enriched for mutations in FGFR3, uroplakins, KRT20, ERBB2, and CCND1, 
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as well as differentiation markers forkhead box A1 (FOXA1) and GATA-binding protein 3 

(GATA3) (5,6,9). Whereas basal cancers exhibit basal differentiation-associated cytokeratins 

such as KRT5, KRT6, and KRT14, as well as CD44 and CDH3. Enrichment of Epidermal 

Growth Factor Receptor (EGFR) mutations further characterizes basal cancers (10,49).  

 1.5.3 Transcriptional regulation of bladder cancer subtypes  

Divergent differentiation is a well-known characteristic of urothelial malignancies, as 

seen by the range of subtypes reported. Corruption of the normal urothelial stratification and 

differentiation regulatory pathways appears to be at the root of various molecular subtypes. 

PPARG, FOXA1, and GATA3, as well as other key transcription factors involved in the 

development and differentiation of normal urothelium, have been repeatedly demonstrated to 

be defining factors in tumor subtypes that retain some degree of normal urothelial 

differentiation or expression of urothelial markers, whereas their loss is strongly associated 

with non-urothelial-like subtypes. Similarly, retinoic acid (RA) signaling is a critical 

component of urothelial development, and dysregulations of this signaling have been observed 

in bladder cancer proliferator-activated receptor (PPAR) proteins from heterodimers with 

retinoid X receptor (RXR) proteins, as well as the expression pattern of several genes involved 

in ligand shuttling to these nuclear hormone receptor dimers (e.g. FABP4, FABP5, and 

CRABP2) EGFR, in future research, in BaSq-like cancers. Both retinoic acid receptors (RAR) 

and peroxisome, STAT3, and Np63 appear to be significant drivers of the observed expression 

patterns that exhibit subtype-specific expression. The interaction of hedgehog proteins (SHH, 

IHH, and DHH), fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), 

WNTs, GLIs, HOX, and TBF-signaling is well researched in embryonic biology, where 

gradient expression and feedback loops are crucial for organ formation. When studying 

components of these pathways, one cannot rely merely on gene expression from a tumor 
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biopsy, since the spatial arrangement of signaling gradients and interaction between stratified 

urothelium and stroma is critical and must be taken into account. Each of the regulatory 

components listed in this section has been thoroughly investigated in both normal and cancer 

environments; nevertheless, a comprehensive understanding of how they each contribute to the 

molecular biology of bladder cancer is still lacking. It will be critical to appropriately evaluate 

the dysregulation seen in cancer. Numerous components of the hedgehog indicate that 

knowledge of the bladder's natural embryonic biology has been included (41). 

  1.5.4 Prognostic and predictive associations of MIBC subtypes  

The connections between molecular subtypes and prognosis and response to therapy 

suggest that subtyping has a wide range of clinical uses (5,6,13,22,26,50). Several 

therapeutically meaningful correlations have been postulated by various organizations based 

on these various taxonomies; however, these need to be validated further. As a result, 

determining a uniform, high-throughput subtyping process would speed up the identification 

and confirmation of these applications. In the end, this simplified process would make 

molecular subtyping for patient stratification more realistic for doctors. 

The first of these potential uses is the use of systemic medicines such as NACT, which 

should ideally be prioritized for patients who are at high risk. Molecular subtypes of the Lund 

taxonomy, as well as other subtyping methods, have been shown to have strong predictive 

value. In terms of prognosis, luminal cancers have a better overall survival rate than their more 

aggressive basal counterparts (5,6,44). One of the most appealing uses of bladder cancer 

subtyping is the development of a predictive biomarker for treatment response (6,22,25,26,50). 

A number of studies have found that patients with the Basal/SCCL subtype benefit more from 

treatment (6,22,25,26,50). Notably, Seiler et al. demonstrated that NACT treatment improves 

the prognosis of basal malignancies from the worst to the best, but patients with luminal 
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tumours experienced no change in survival (26). In a clinical trial conducted in 2016, 

McConkey and colleagues found that 90 percent of patients with bladder cancer of the basal 

subtype received a 5-year survival benefit from NACT, compared to 70 percent of patients with 

bladder cancer of the luminal subtype (22). Numerous studies have now corroborated these 

findings in relation to NACT, demonstrating benefits for the basal subtype in terms of survival 

or pathologic response (10,50). However, a new multi-omics study by Taber and colleagues 

has found that the basal subtype is linked to poor NAC response as measured by pathologic 

response, directly contradicting previous research (51). Taber et al. show that immunological 

infiltration and genomic instability caused by a large number of chromosomal abnormalities 

and/or BRCA2 mutations are linked to treatment response in this study (51). Although 

basal/luminal subtyping has been linked to NACT response and survival outcomes, recent 

contradictory data suggest that more research is needed to fully understand these interactions. 

Another potentially intriguing application of these molecular groupings is the 

occurrence of targetable mutations in specific subtypes, which suggests the possibility of 

stratifying patients for targeted therapy based on their subtype. Uro malignancies, which are 

enriched for FGFR3 activating mutations, and Basal/SCCL cancers, which are enriched for 

EGFR mutations, could be appealing targets for targeted FGFR3 and EGFR inhibitors, 

respectively (10,25). Furthermore, recent research has revealed that certain MIBC subtypes are 

linked to immune checkpoint blockade response or response biomarkers (13,32,52). 

Mariathasan et al. discovered an enrichment in the GU subtype for patients responding to the 

anti-PD-L1 (programmed death-ligand 1) drug atezolizumab (52). Following anti-PD1 

treatment with pembrolizumab, Necchi et al. discovered that basal tumors with high 

immunological scores have the highest 2-year progression-free survival (13).  
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Overall, MIBC subgroups have shown a multitude of connections with prognosis, 

targetable changes, and medication responsiveness, providing a viable route for improving 

patient treatment stratification. Despite their importance in stratifying patients for NACT, 

targeted treatment, and ICB, these findings need to be validated in retrospective and clinical 

trial research. Importantly, a consistent, clinically practical, and robust methodology for 

identifying these MIBC subtypes is required to both determine these relationships and ease 

their clinical adoption. 

   1.5.5 Immunohistochemistry-based profiling  

Despite advancements in bladder cancer categorization, large-scale transcriptome 

investigations and insights from genetic subtyping have proven minimal benefit to patients. 

Biomarkers of prognosis or chemotherapeutic response, as well as basal/luminal profiling of 

bladder cancer, have yet to be used in clinical practice and play no role in treatment decision-

making. The intricacy of RNA-based profiling approaches, which are expensive and time-

consuming, has hampered implementation. This has made it difficult to construct a single, 

consistent, and straightforward methodology for determining the clinical consequences of 

various subtypes. Furthermore, infiltrative signals from benign stromal and immunological 

cells have caused confusion and discordance among subtyping systems that use this 

methodology. As a result, a number of studies have demonstrated the efficacy of IHC in 

identifying tumor intrinsic molecular subgroups (5,24,25,30,53). IHC has the limitation of 

often only looking at one gene product (protein) per sample, which pales in comparison to 

transcriptome profiling, which may look at up to 40,000 transcripts per sample. IHC, on the 

other hand, has the advantage of being a simple, clinically available instrument that 

pathologists utilize on a regular basis, and it is now widely employed in the clinical diagnosis 

and prognosis of a range of malignancies. IHC also avoids the drawbacks of transcriptome 
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profiling, which does not distinguish between cancer cells and non-cancer cells. IHC allows 

pathologists to distinguish and analyse signals from only the tumor cells of interest when 

evaluating protein expression. 

As a result, recent research has focused on confirming IHC-based bladder cancer 

subtypes by identifying putative proteome characteristics that distinguish subtype. Several of 

these studies use basal-luminal transcriptome profiling of MIBCs and IHC to confirm 

subtyping. Many of the luminal markers FOXA1, GATA3, and KRT20, as well as basal 

markers KRT5 and KRT14 for defining basal-luminal subtypes, are recapitulated in the Lund 

group's tumor cell phenotypic classifications (30,32,34,54). GATA3 and KRT5 

immunohistochemistry have been discovered as the two best indicators for distinguishing 

between basal and luminal cancers with over 90% accuracy (30,34), and p16 expression as a 

marker for identifying GU cancers by distinguishing between luminal subtypes (55).  

However, none of these studies employing IHC to validate subtype identification define 

luminal tumor subtypes, such as the GU subtype reported by the Lund taxonomy. Furthermore, 

many of these address the links between transcriptome and IHC phenotypes, highlighting 

significant aspects, but do not provide a step-by-step approach for using these stains to identify 

subtypes (25).  

In our cohort translated these findings and methods into a 4-antibody, which uses 

antibodies against GATA3, CK5/6, CK 14 and CK 20 to identify intrinsic molecular subtypes 

of MIBC (Figure 3). This method focuses on key MIBC subtype characteristics and uses 

antibodies commonly found in clinical pathology labs to speed up research and clinical 

application of molecular subtyping. 
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Figure 3. Immunohistochemical staining of MIBC tissues for GATA3, CK20, CK5/6, and 

CK14. (A) Luminal type, (B) Basal type.  

 

The study discussed here aims to decrease the complexity of tumor intrinsic subtyping 

to a manageable number of antibodies, making IHC a viable alternative to transcriptome 

profiling. Our goal is to show that a simplified IHC subtyping assay preserves critical 

prognostic correlations established with more complicated profiling approaches. Future views 

for bladder cancer molecular classification Although different organizations now utilize 

different classification approaches, they all capture essential characteristics of bladder cancer 

biology. Clinical trials and other research investigations are increasingly using RNA and DNA 

sequencing and molecular categorization systems to get new insights. The reanalysis of this 

plethora of created data will definitely yield a much improved understanding of bladder cancer 

and how to treat it. Remember that existing classification systems are still evolving. More work 
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is needed on categorization algorithm, accounting for tumor microenvironment, multi-level 

data integration, and clinical usefulness. 
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CHAPTER 2 

Research methodology 

2.1 Methodology: Part I 

   2.1.1 Study design and targeted population  

A prospective study was performed. The inclusion criteria were patients, who were 

diagnosed with muscle invasive bladder cancer, were admitted to the university hospital in 

Thailand between January 2015 and December 2020 were included. Additionally, the patients 

had a histologically-confirmed diagnosis by a pathologist. The patients were excluded as 

follows: 1) unavailable and inaccessible medical record, or 2) unavailable tissue specimens for 

RNA sequencing.  

   2.1.2 Sample selection  

We studied 30 MIBC cases, collected fresh frozen tissues from consecutive patients 

who underwent radical cystectomy in Songklanagarind hospitals, Thailand from 2015 until 

2020. All tumor specimens reviewed by an experienced pathologist in bladder cancer 

diagnosis. Fresh-frozen tissues were collected at the time of surgical resection, and samples 

with size 0.5 cm were snap frozen with RNA later and kept in tube kept at -80 C for long term 

storage or liquid nitrogen until RNA extraction. These samples were used as quality controls, 

since they are a source of high-quality RNA. Seven samples of non-tumorous urinary bladder 

obtained during a cystectomy were used as controls. Informed consent was obtained from all 

patients, and the study was approved by the Ethical Committee of Songklanagarind hospital, 

Prince of Songkla University, in accordance with the Helsinki Declaration. (REC 61-222-10-

1).  
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   2.1.3 RNA isolation  

All fresh frozen tissues were used for isolation. RNA was isolated with DNA/RNA 

AllPrep kit (QIAGEN). RNA was measured with Qubit® fluorometer or NanoDropTM 

spectrophotometer. Digital quality control (QC) analysis for mRNA was performed using the 

NanoStringTM PanCancer Progression Panel. The samples were loaded (10–35 ng RNA in a 

total of 30 μl loading mixture) on a cartridge and proceeded according to the manufacturers’ 

instructions. RNA extracted from fresh-frozen tissues was assessed for quantity using 

Nanodrop 1000 (Nanodrop), and for quality using the 2100 Bioanalyzer (Agilent Technologies, 

Canada). (Figure 4) 

 

Figure 4.  Sample of bladder tumor preparation for mRNA sequencing 

 

   2.1.4 Data acquisition 

 Our cohort: RNA-Seq data on MIBC specimens was accessed through our institutional 

cohort included 30 MIBC specimens. Additionally, we further confirmed the results by 

analyzing the 231 MIBC specimens from the TCGA was accessed. The mRNA-seq data 
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(counts format), clinical data of 30 MIBC patients and 231 data were downloaded from the 

TCGA database (https://cancergenome.nih. gov/).  

   2.1.5 Gene expression analysis  

 From each RNA sample, 3 ug of total RNA was used for strand-specific library 

preparation. Illumina Stranded mRNA preparation kit (Illumina) was used to generate the 

sequencing libraries, according to the manufacturer’s protocol. cDNA was prepared with 

random hexamer primer. The Illumina NovaSeq 6000 platform was used for transcriptome 

sequencing following the manufacturer’s instructions. 

 Paired-end raw data in FASTQ format from the sequencing machine was checked for 

read quality, size and GC content using FASTQC program. The pipeline began with alignment 

step that can be done and reads were aligned to the reference genome using STAR version 

2.7.8. Total mapping rate and mapped read number were analyzed using HTSeq version 0.13.5. 

After we re-build full mRNA sequence, the number of mRNA of each gene will be counted 

and the number of mRNA of each gene will represent gene expression level. Finally, the gene 

expression level from two group of samples will be compared using differential gene 

expression analysis by DESeq2 software (R package) then will get the differently expressed 

gene that can be candidate gene marker for bladder cancer. 
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Figure 5. Transcriptomic pipeline after mRNA sequencing 

Total number of mapped reads and fragement per Kilobase of exon model per million 

mapped reads (FPKM) were calculated for each annotated gene. The differentially expressed 

genes (DEGs) for 30 BC samples, 7 non-tumorous bladder tissue and 231 samples from TCGA 

were analyzed with the DESeq2 package, and |log2FC| >2 and p < 0.05 were set as the cutoff 

for DEGs. Venn algorithm was performed on the obtained DEGs and obtained differentially 

expressed genes in BC. The top 30 up-regulated genes in each subtype were selected and 

subjected to heatmap analysis and three-dimensional principal component analysis (PCA) to 

distinguish different molecular subtypes. The false discovery rate (FDR) measures the 

proportion of false discoveries among a set of hypothesis tests called significant. This quantity 

is typically estimated based on p-values or test statistics. In some scenarios, there is additional 

information available that may be used to more accurately estimate the FDR.  

For further investigation, the gene expression value from mRNA-seq was log2-

transformed. (Figure 6-8) 
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Figure 6. library preparation 

 

 

 

Figure 7.  Massive parallel sequencing 
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Figure 8.  Alignment and transcript count 

 

 

Log2 fold change (logFC) expression and normalized mean counts are shown in the 

MA-plot for each gene in comparison to the control group. Depending on the logFC threshold 

the user specifies and the expression directionality, different colors are utilized to denote 

distinct characteristics (UP or DOWN). Volcano plots, which stress both rate of expression 

(logFC) and statistical significance, are widely used and maybe the most instructive (p-value). 

Gene-specific tests (y-axis) versus logFC have negative log10-transformed p-values (y-axis) 

(on the x-axis). There is a distinct clustering of data points with low p-values at the top of the 

graph. Equidistant points' direction shift (up and down) is calculated using logFC values. 

Features that are more prominent than others are highlighted in red according to the selected 

cut-off values (83). 
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  2.1.6 Principle component analysis (PCA)  

 

Principal Component Analysis (PCA) is one of the techniques in unsupervised learning 

that is used to reduce the dimensions of the data with minimum loss of information. PCA is 

usually used for data that has many features.   

Generally, the Principal Component Analysis (PCA) steps are: 1) Scaling our data. This 

is important because PCA is an algorithm that is strongly influenced by the size of each column, 

2) Calculate Covariance Matrix, 3) Calculate Eigenvalues and Eigenvector, 4) Sort Eigenvalues 

and Eigenvector, 5) Pick top-2 or top-3 (or any amount of Principal Components that you want) 

eigenvalues and 6) Transform the original data.   

PCA plots are a great way to display the combined effect of experimental variables and 

batch effects. PCA depicts groups of samples that, in an ideal world, would correspond to each 

of the RNA-Seq conditions. First, the most important group is clustered, followed by groupings 

that are less important. It is advisable to remove a repetition from the analysis if there are 

enough other samples from different situations to do so (at least two). It could also demonstrate 

if there is a batch effect problem, where samples in the same condition are spread out over a 

large area of a plot. To determine which samples are from a different batch in this circumstance, 

the user can simply rerun the analysis. Double-checking with data from the wet lab sample 

preparation is still recommended (83). 

 

The K-Means Clustering is the process of dividing the entire data into groups (also 

known as clusters) based on the patterns in the data. K-means clustering is an unsupervised 

learning technique to group data by considering the centroid of each data group. In other words, 

the data will be grouped by the nearest centroid. 

The stages of K-means are 1) Determine the number of clusters (k), 2) The algorithm 

will choose ‘k’ objects randomly from the data as the center of the cluster, 3) The rest of the 
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data will be entered into the cluster. It will belong to the cluster whose center is closest, 4) After 

cluster ‘k’ is created, the algorithm will select a new center by calculating the average value of 

all data in the cluster, 5) Then, the rest of the data will be iteratively updated again (because the 

centers are now different — there may be data points closer to the center of the new cluster than 

the center of the original cluster). This step is carried out until no more members have moved 

clusters and determine the value of k using the elbow method. 

 

2.1.7 External validate TCGA cohort  

The Cancer Genome Atlas provided data for the muscle invasive bladder cancer 

(MIBC) cohort used in this study, which was used in previous research. The 

clinicopathological and mRNA data from the cohort were downloaded using the open access 

site cBioPortal (https://www.cbioportal.org), leaving a total of 231 patients in the study for 

further analysis. 

 

2.1.8 Statistical analysis 

 Statistical analyses were performed using R software version 4.1.10. Subtypes’ 

association with clinical outcome was analyzed by univariate (single parameter logistic 

regression) analysis. ROC curves were used to compute sensitivity and specificity. Mean, 

median, and 95% CI of sensitivity and specificity were calculated. Hosmer-Lemeshow test was 

performed to confirm the model's goodness of fit. The Cox proportional hazard model with 

stepwise selection was used to assess subtypes' correlation OS. One of the most popular 

regression techniques for survival outcomes is Cox proportional hazards regression analysis. 

There are several important assumptions for appropriate use of the Cox proportional hazards 

regression model, including independence of survival times between distinct individuals in the 
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sample, a multiplicative relationship between the predictors and the hazard (as opposed to a 

linear one as was the case with multiple linear regression analysis, discussed in more detail 

below), and a constant hazard ratio over time. Tests of hypothesis are used to assess whether 

there are statistically significant associations between predictors and time to event. 

The Cox proportional hazards model is called a semi-parametric model, because there 

are no assumptions about the shape of the baseline hazard function. There are other regression 

models used in survival analysis that assume specific distributions for the survival times such 

as the exponential, Weibull, Gompertz and log-normal distributions. The exponential 

regression survival model, for example, assumes that the hazard function is constant. Other 

distributions assume that the hazard is increasing over time, decreasing over time, or increasing 

initially and then decreasing.  

Kaplan-Meier plots with log-rank statistics categorized MIBC patients into outcome 

risk categories. Molecular subtypes and age were compared. The Bonferroni adjustment was 

employed to correct for multiple testing. The significance of univariable Kaplan-Meier 

regressions was assessed using the log-rank and Wilcoxon tests. Multivariable analyses using 

Cox proportional hazard regression. For results from the univariable analysis a p value cut-off 

of <0.2 was chosen to include relevant clinical or pathologic parameters that would have been 

missed with a more restrictive p value of <0.05. Contingency analyses of nominal variables 

were performed with Pearson’s chi-squared test. Variables for the multivariable analysis 

included significant (p<0.2) clinicopathological characteristics on univariable analysis (pT-

Stage, pN-Stage, age, gender,) and genes (Statistical analyses of numeric continuous variables 

were performed with non-parametric tests (Wilcoxon rank-sum test, Kruskal-Wallis test).  
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2.2 Methodology: Part II  

   2.2.1 Cohort composition  

Criteria for patient inclusion was diagnosis of MIBC (Stage T2+) at radical cystectomy. 

Patients included in this study underwent radical cystectomy following a diagnosis of muscle 

invasive bladder cancer (stage pT2+) or high risk NMIBC (high grade, recurrent tumors with 

aggressive features). Specimens were collected from formalin-fixed paraffin-embedded 

(FFPE) tissue obtained from TURBT and cystectomy procedures. MIBC tumour samples were 

obtained from archived tissue samples from Songklanagarind hospital (cystectomies). All 

samples of our cohorts were obtained from cystectomy procedures performed at 

Songklanagarind hospital. Clinical and pathologic information for all patients and samples was 

compiled into a research database. Hematoxylin and Eosin (H&E) samples underwent 

pathologic review and were annotated by pathologists to select regions of interest for tissue 

coring and tissue microarray construction. High grade muscle-invasive tumor regions were 

selected, with samples excluded on the basis of lack of muscle-invasive disease, insufficient 

amount of tissue or sample unavailability. 

   2.2.2 Study design and targeted population  

  This study included 132 patients with urinary bladder cancer who underwent radical 

cystectomy and who received standard adjuvant chemotherapy at Songklanagarind Hospital, 

Thailand from 2008 to 2016. Inclusion criteria were patients with bladder cancer aged older 

than 15 years who underwent surgery primarily at our institute and who completed adjuvant 

treatment according to the standard of the Thai Urological Association. All eligible cases were 

reviewed for clinical stage, and their histopathology was confirmed by a pathologist. Staging 

was performed according to the TNM classification, whereas stage grouping was performed 

according to the eighth version of the American Joint Committee on Cancer Staging Manual. 
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Cases without muscularis propria invasion and those with subtypes other than non-urothelial 

carcinoma were excluded. Clinical data were extracted from the electronic medical records of 

the hospital (HIS system). Data on survival status combined with the clinical follow-up records 

and death registry data from the Thai citizen registration system were analyzed and archived 

by the Cancer Unit, Songklanagarind Hospital. Cases with operative mortality were excluded 

from the survival analysis. The study protocol was approved by the Human Research Ethic 

Committee of the Faculty of Medicine, Prince of Songkla University (REC61-222-10-1). All 

methods were carried out in accordance with the World Medical Association Declaration of 

Helsinki. Informed consent was obtained from all patients or legally authorized representatives 

included in the study.  

   2.2.3 IHC study by tissue microarray 

Sampling of the tumor part for this pilot study was performed by a collaborative work 

between the attending surgeon who know the orientation of the specimen and the pathologist 

who examined the histopathology. Bladder carcinoma in situ and flat lesions were excluded in 

this study. Several areas of tumor in the same patients for the pathological morphology and 

selected the representative areas that have both richness in tumor cells and the morphology was 

like other areas in the same cases were selected for examination. Archived pathological 

specimens from all included cases were retrieved as formalin-fixed paraffin- embedded tissue 

blocks, which were then selected and prepared as 5-μm sections for a tissue microarray (TMA) 

using a tissue arrayer (Quick-Ray, UT06; UNITMA, Seoul, Korea). Immunostaining 

procedures were conducted with 3 (triplicate) TMA cores per section by a pathology technician 

who specializes in this technique. In cases of multiple foci, all foci were selected for 

examinations. Subtype-specific primary antibodies used here are as follows: GATA3 

(UMAB218, 1:100 dilution; OriGene, MD, USA), CK5/6 (D5/16, 1:50 dilution; Dako, 

Glostrup, Denmark), CK14 (OIT4A7, 1:100 dilution; OriGene), and CK20 (OTI4A, 21:50 
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dilution; OriGene). These antibodies were used to identify potential markers to establish 

molecular subtypes in the tissue sections contained in the TMA. A pathologist (Kanet 

Kanjanapradit) blinded to the clinical outcomes examined the results using a light microscope 

and scored all TMA sections. For mixed and/or borderline cases, the positive immunostains 

were interpreted 2 times with the consensus of a pathologist. The positivity and intensity of 

tumor cell nuclei stained for GATA3 and membranous or cytoplasmic staining for CK20, 

CK5/6, and CK14 were recorded. Staining intensity was assessed as 0 (negative; 0–10%) or 1 

(positive; 10–100%).  

   2.2.4 Statistical analysis 

Categorical and continuous parameters were compared using the Chi-square test and 

were analyzed using the Spearman rank correlation test. The median differences between 

groups for non- normally distributed variables were evaluated by independent sample Kruskal–

Wallis test. Differences in the percentages of IHC staining between or among comparable 

groups were analyzed using the Student’s t test and one-way analysis of variance. The hazard 

ratios (HRs) and 95% confidence intervals (CIs) were also calculated. In all patients who 

underwent radical cystectomy with perioperative chemotherapy, the OS after radical 

cystectomy was calculated using the Kaplan–Meier method. Survival probabilities were 

estimated using the Kaplan–Meier method, whereas the log-rank test was adopted to compare 

survival probabilities between each variable. All variables with p ≤ 0.1 in the univariable 

analyses were entered into the multivariable regression analysis. Multivariable analyses were 

also performed using Cox regression as described in section 2.1.8. Two-sided p values < 0.05 

were considered statistically significant. The R program (version 4.0.1) was used for statistical 

analyses.  
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 2.2.5 Sample size calculation 

The DEPTh model is approaches categorized clinical research questions into the four 

types. In detail, D stands for Diagnosis, E for Etiology, P for Prognosis, and or Therapy (or 

intervention). For objective studied the survival of each subtype as therapy research in the 

DEPTh model. Sample size calculation was performed using Schoenfeld’s formula  

Schoenfeld’s formula as follows:  

 

Where Z 1-α equals 1.96 (confidence level 95%), Z 1-β equals 0.84 (power 80%), and θ 

denotes the hazard ratio  
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CHAPTER 3 

 

Results 

 

3.1 Results: Part I 

   3.1.1 Clinical characteristics  

 All tissue samples were from patients recruited at the Songklanagarind Hospital, 

Songkhla, Thailand (Table 1). These included tumor tissue from 26 males and 4 females with 

ages between 52-92 years old. The data of 231 MIBC cohorts retrieved from The Cancer 

Genome Atlas (TCGA) was also shown in Table 1 that included the clinical information from 

304 males and 108 females between the age of 32-90 years old. It should be noted that there is 

a quite difference in the proportion of T stages and N stages between data from tissue samples 

and TCGA cohort. Moreover, no metastasis was found in all Thai MIBC patients.     

 

Table 1. Clinical data summary of studied MIBC datasets 

 

  Thai patient 

dataset 

Percentage  TCGA dataset Percentage 

Samples 30   231   

Average of age 

(range) 

67.5 (52- 92)   69 (46-90)   

Gender 

     Male 

     Female 

  

26 

4 

  

86.2 

13.8 

  

169 

62 

  

73.16 

26.64 

ECOG 

     0 

     1 

  

21 

9 

  

70 

30 

  

158 

73 

  

68.5 

31.5 

T stage 

     T 2 

     T 3  

  

24 

6 

  

80 

20 

  

75 

123 

  

32.47 

53.25 



 

 

 

30 

     T 4 0 0 33 14.28 

N stage 

     N 0 

     N 1 

     N 2 

     N 3 

      

     N x 

  

22 

7 

1 

0 

 

0 

  

73.3 

23.3 

3.3 

0 

 

0 

  

143 

28 

42 

4 

 

14 

  

58.01 

10.68 

18.2 

1.94 

 

6.06 

M stage 

    M 0 

    M 1 

Not available 

  

30 

 

0 

 

0 

  

100 

 

0 

 

0 

  

116 

5 

110 

  

50.22 

2.16 

47.62 

  

   3.1.2 Transcriptome profiling and classification of Thai MIBC 

  

 The transcriptome sequencing of all tissue samples was performed based on the strand-

specific library preparation to identify the expression levels of all genes. Figure 9 presents the 

boxplots which provide an easy way to visualize the count distribution in each sample.  

 

Figure 9.  Boxplot with normalized counts. The frequency distribution and some statistics 

like mean, median and outliers are represented in these plots of log2 normalized counts 
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 MA and Volcano plot analysis demonstrated more than a hundred of genes were found 

to be up-regulated and downregulated in MIBC compared to normal bladder tissue (Fig. 10 

and 11).  

 

Figure. 10 MA plot analysis demonstrated more than a hundred of genes were found to be up-

regulated and downregulated in MIBC 
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Figure 11. Volcano plot analysis demonstrated more than a hundred of genes were found to 

be up-regulated and downregulated in MIBC 

 

 The thirty most significantly changed genes included PI3K-Akt signaling 

molecules (FN1, COL6A2, and COL1A2), MAPK pathway related molecules (TGFB1 and 

MECOM), mitochondrial biogenesis regulators (MT1A and MT2A), exosomal proteins 

(TUBB6, TUBB3, LGALS1 and IFITM3), biomolecules metabolism (CDA, SPHK1, MAOA and 

MGST1), and others. To identify the optimal number of clusters based on transcriptomic 

classification, Elbow plot analysis was applied for Thai MIBC transcriptome data. The result 

showed that the three clusters were found to be optimal as demonstrated in Fig. 12.  
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Figure 12. Elbow plot analysis was applied for Thai MIBC transcriptome data. The result 

showed that the three clusters were found to be optimal 

 

 

 The transcriptomic data of all MIBC tissue samples were then subjected to the 

classification of the MIBC groups by using principal component analysis by K-mean clustering 

(Fig. 13).  

 

Figure 13. The transcriptomic data of all MIBC tissue samples were then subjected to the 

classification of the MIBC groups by using principal component analysis by K-mean clustering 
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Heatmap analysis of gene expression derived from the thirty most significantly changed 

genes revealed the obvious unique pattern of each MIBC cluster confirming the specific 

character of each group of MIBC patients (Fig. 14). 

 

Figure 14. Heatmap analysis of 30 gene expression derived from the thirty most significantly 

changed genes revealed the obvious unique pattern of each MIBC cluster confirming the 

specific character of each group of MIBC patients. The genes were ranked following by adjust 

p-value. 

 Example of each gene expression in difference 3 clusters were shown in Fig. 15 

 

Figure 15. Boxplot of examples gene expression in 3 clusters 
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   3.1.3 Differential gene expression (DEG) analysis revealed 37 genes expressed with the 

different levels among clusters  

 

 In addition to the enrichment study, the data from differential gene expression 

(DEG) analysis also revealed the number of genes that expressed differently between two 

clusters, as displayed in the Venn diagram (Fig. 16).  

 

Figure 16. The data from differential gene expression (DEG) analysis also revealed the number 

of genes that expressed differently between two clusters, as displayed in the Venn diagram 

 

 Importantly, 37 genes were observed to be expressed differently in all clusters. 

These included the genes related to calcium signaling pathway (BDKRB1, EDNRA, AVPR1A, 

PTGER3, PTGFR, NTRK3, P2RX1, etc.), PI3K-Akt signaling pathway (COL6A2, COL1A2, 

ITGA8, CREB5, COL6A3), MAPK signaling pathway (FGF7, NGF, HGF, ANGPT1), or 

cGMP-PKG signaling pathway (KCNMB1, KCNMA1, ADRA2A, ATP1B2, ADORA1, PRKG1). 

The expression levels of each gene were demonstrated as Volcano plots for each cluster (Fig. 

17, 18, and 19). Interestingly, all 37 genes were significantly up-regulated in clusters A and C, 

but down-regulated in cluster B. The most significantly expressed genes in cluster A included 
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BDKRB1, EDNRA, AVPR1A, PDGFRB, and TNC, while COL6A3, COL1A1, COL6A2, 

PDGFRB, and PRKG1 were found to be the top 5 genes highly expressed in cluster C. For 

cluster B, the collagen-related genes (COL6A3, COL1A2, COL6A2), tenascin C (TNC), and 

fibroblast growth factor 2 (FGF2) were the transcripts statistically suppressed. 

 

 

Figure 17. The expression levels of each gene were demonstrated as Volcano plots for cluster 

A 

 

Figure 18. The expression levels of each gene were demonstrated as Volcano plots for cluster 

B 
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Figure 19. The expression levels of each gene were demonstrated as Volcano plots for 

cluster C 

   3.1.4 ROC analysis of 37 differentially expressed genes found in MIBC tissues 

 

 To evaluate the specificity and sensitivity of the genes expressed differently for 

each MIBC cluster, ROC curve analysis was performed for all 37 genes and all cluster. 

Interestingly, the corresponding areas under the ROC curve (AUCs) with the value more than 

0.8, 0.9, and 0.95 were found in 33, 25, and 14 genes from 37 genes for cluster B (Table 2 and 

Fig. 20). While the AUC values above 0.9 were observed only in 5 genes for cluster C, no one 

could be found for cluster A. The highest AUC value of cluster B was 0.988 for PDGFRB and 

COL6A2 genes meanwhile the lowest AUC was 0.72 from ITGA8 gene (Table 2 and Fig. 20). 

KCNMB1 is the gene presented the highest AUC with the value of 0.936 in cluster C while 

ITGA11 showed the lowest AUC with 0.67. Cluster A displayed the lowest value of mean 

AUC, the range of AUC values of differential expressed genes in this cluster were between 

0.52-0.869 which RYR3 gene showed the lowest and COL1A1 are the highest AUC. 
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Table 2. The area under the curve (AUC) from specificity and sensitivity of the genes 

expressed differently for each MIBC cluster 

Genes cluster A cluster B cluster C 
CCL2 0.7680 0.941 0.859 
FGF2 0.6940 0.947 0.886 
RYR3 0.5200 0.721 0.735 
MYLK 0.8040 0.955 0.914 
EDNRA 0.8110 0.951 0.833 

FGF7 0.7890 0.976 0.927 
BDKRB1 0.7030 0.872 0.727 
PDGFRB 0.8380 0.988 0.838 

HGF 0.7310 0.945 0.867 
AVPR1A 0.6200 0.774 0.708 

NGF 0.6650 0.893 0.783 
PTGFR 0.7230 0.947 0.912 
PDE1A 0.6170 0.916 0.86 

PTGER3 0.7790 0.951 0.821 
CAMK2A 0.8200 0.971 0.862 
NTRK3 0.5380 0.828 0.831 
P2RX1 0.7710 0.96 0.907 
TNC 0.8530 0.947 0.746 

COL4A4 0.5890 0.852 0.785 
COL6A2 0.8640 0.988 0.886 
ITGA8 0.6030 0.72 0.799 

COL6A3 0.8430 0.979 0.849 
CREB5 0.8200 0.946 0.79 
TNXB 0.6460 0.875 0.815 

ANGPT1 0.6820 0.826 0.686 

IGF1 0.689 0.919 0.879 

COL1A1 0.869 0.95 0.736 

COL1A2 0.857 0.967 0.787 

ITGA11 0.824 0.915 0.67 

NPR1 0.628 0.885 0.808 

KCNMB1 0.749 0.957 0.936 

ADORA1 0.761 0.89 0.762 

PRKG1 0.777 0.964 0.889 

ATP1B2 0.542 0.743 0.751 

ADRA2A 0.582 0.915 0.845 

KCNMA1 0.799 0.954 0.88 

GNAO1 0.739 0.939 0.85 

 



 

 

 

39 

 

 

 

Figure 20. ROC curve analysis was performed for all 37 genes and all cluster. Interestingly, 

the corresponding areas under the ROC curve (AUCs) with the value more than 0.8, 0.9, and 

0.95 were found in 33, 25, and 14 genes from 37 genes for cluster B  
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   3.1.5 Clinical characteristic of MIBC in our cohort associated with treatment outcome 

  To identify factors associated with MIBC, logistic regression analysis was performed, 

including prognostic scores, patient characteristics and tumour characteristics (Table 1). 

Univariate analysis identified tumour stage and nodal status as significant predictors of overall 

suvival. The multivariate logistic regression model identified tumour stage (HR, 25.64; 95% 

CI, 2.31-284.04; p=0.006) as independent predictor of overall survival. For cluster C exhibited 

showed higher hazard ratio without statistically significant. (HR, 2.63; 95% CI, 0.44-15.79; 

p=0.291) (Table 3)   

Table 3 Univariate and multivariate logistic regression analyses of clinical data of MIBC 

patients 

Variables Univariate analysis  Multivariate analysis 

 HR 95% Cl P 

value 

 HR 95% Cl P value 

T stage        

2 Ref       

3-4 6.62 1.09–40.1 0.041  25.64 2.31-284.04 0.006 

N stage        

0 Ref  0.036     

1 4.05 0.45–5.46      

2 6.46 0.35–6.86      

Age  (yrs)         

   <=65 Ref       

   >65 2.42 0.27–

21.67 

0.392     

Lymph node 

metastasis  

       

 negative Ref       

 positive 2.39 1.29–4.41  0.01     

LVI        

 negative Ref        

 positive 1.08 0.18-6.5 0.929     

Ureteric margin        

 negative Ref       

 positive 5.32 0.59–

48.17 

0.212     

Cluster        

  Cluster A  Ref       

  Cluster B 0 1.6–4.94 0.108     

  Cluster C  2.63 0.44-15.79 0.291     
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Univariate analysis showed no significant differences in survival between the 

molecular subtypes (p =0.108). Pairwise comparisons using log-rank tests also showed that 

survival not differed significantly between each molecular subtype, with patients with the 

cluster B subtype experiencing the longest survival, followed by those with the cluster A. The 

poorest survival was observed among patients with cluster C (Figure 21). 

 

Figure 21. The Kaplan-Meier analysis demonstrated that cluster B displayed the highest 

probability of survival within 48 months of follow-up while cluster C showed the lowest value 

 

3.1.6 Molecular subtypes of MIBC are associated with response of perioperative 

chemotherapy 

We applied molecular subtype classification to tumors from 30 patients treated with 

preoperative chemotherapy. We henceforth analyzed response in the neoadjuvant 

chemotherapy. Among these patients, cluster B had better pathologic response to neoadjuvant 

chemotherapy (40%). (Fig. 22) 
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Figure 22. RNA-based molecular subtypes are associated with pathological response to 

neoadjuvant chemotherapy  

Moreover, MIBC in cluster B also exhibited better outcome after adjuvant 

chemotherapy for progression or metastatic free survival. (Fig. 23)  

 

Figure 23. RNA-based molecular subtypes are associated with pathological response to 

adjuvant chemotherapy 
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   3.1.7 The transcriptomic classification using PCA analysis of tissue sample with the 

TCGA data provided the significant prognostic value of MIBC overall survival  

 To increase the number of samples used in this study, we included 231 

transcriptomic data from TCGA database for classification by using PCA analysis and 

unsupervised K-mean clustering. We decided to apply the centroid derived from MIBC tissue 

samples to separate PCA coordinates of TCGA cohort into three clusters according to MIBC 

tissues (Fig. 24).  

 

Figure 24. The centroid derived from MIBC tissue samples to separate PCA coordinates of 

TCGA cohort into three clusters according to MIBC tissues 

   

MA and Volcano plot analysis demonstrated up-regulated and downregulated in MIBC 

comparing between non-TCGA and TCGA group (Fig. 25 and 26).  
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Figure 25. MA plot analysis demonstrated more than a hundred of genes were found to be up-

regulated and downregulated in MIBC comparing between non-TCGA and TCGA group 

 

Figure 26. The expression levels of each gene were demonstrated as Volcano plots 

comparing between non-TCGA and TCGA group 

 We also determined the relationship between each cluster and survival data. The 

Kaplan-Meier analysis demonstrated that cluster B displayed the highest probability of survival 

within 1,800 days of follow-up while cluster C showed the lowest value (p = 0.028; Fig. 27).   
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Figure 27. The Kaplan-Meier analysis demonstrated that cluster B displayed the highest 

probability of survival within 1,800 days of follow-up while cluster C showed the lowest 

value 

 However, we found some overlaps of gene expressions which classified by TCGA 

that clustering in 3 clusters. (Fig. 28)  

 

Figure 28. Cumulative MIBC cases by K-mean clustering that classified by mRNA with 

TCGA classification 
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   3.1.8 Identification of differentially expressed genes of each cluster of MIBC 

We compared the differentially expressed genes in the 3 subtypes and found that 15 

differentially expressed genes were unique to the cluster A, 78 were unique to cluster B, and 

106 were unique to cluster B muscle invasive bladder cancer samples using Filtered by 

log2normalized count > 15. (Fig. 29 and Table 4)  

 

Figure 29. Unique and common enriched genes of each cluster 
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Table 4. Unique significant differential expression 

C

lu

st

e

r 

Genes 

 

A 

CPSF7,ALYREF,PABPC1L,ITGA2,EFNA1,KRT23,KRT16,F3,CCL5,SIK1B,G6PD,IR

F1,S100A8,CD36,ACSL1 

 

B 

PPP2R2A,HK2,IGF1R,EP300,VHL,CAMK2G,EGLN3,SLC9A1,TSC2,NCOR1,TP53,A

TF6B,KRT20,CREB3L2,PRKCD,HSPA1A,IRS1,CRKL,MAP3K5,RBL2,COL4A6,COL

4A5,MET,IFNAR1,PRKAA1,GNG5,COL9A2,GNA15,MMP1,CAB39L,ADIPOR1,ELA

VL1,ULK1,PATJ,TEAD3,FZD6,FRMD6,CAT,PGM2,PGLS,XIAP,NLRP1,ERBIN,EH

MT2,SOD1,EIF4EBP2,TELO2,GNA11,GTF2I,EML4,VAV2,ELK4,MECOM,DUSP4,D

USP2,TAOK2,NF1,SGPL1,SPTLC2,ACER2,CCNG1,DBI,ACSL3,FABP4,SCP2,FABP

5,ACOX1,UBC,PLIN2,HMGCS2,ACAA1,PLTP,SKIL,ZFHX3,PCGF3,TBX3,ID3,TCF3 

 

C 

ITGB5,TNC,FGF7,MYC,PDGFRB,VWF,ITGA1,COL6A3,ITGA7,ITGA5,CSF1R,LAM

A4,THBS2,PPP2CB,FGFR1,CASC3,ICAM1,CCL2,STAT5B,CYBB,SELE,IL1B,BAX,P

FKFB3,HMOX1,NOTCH2,PLN,PRKACA,RCAN1,ROCK1,ROCK2,SRF,MYLK,RGS2

,MEF2D,PPP1R12A,IRAG1,GNAQ,MYL9,MMP9,HBEGF,STMN1,MAP2K3,DUSP5,

DUSP3,IL1R1,CACNA1H,RAP1A,MAP3K20,CD14,FLNC,MAP4K4,GADD45B,GAD

D45A,NFKB2,ABL1,RAPGEF1,ITGB2,ENAH,PPP1R12B,ACTA2,SORBS1,RHOQ,C

CN2,WWTR1,KLF2,APLNR,TNFAIP3,CXCL2,JUNB,DAB2IP,CFLAR,TNFRSF1B,B

CL3,ANTXR2,ANTXR1,FOSL1,EGR3,LSP1,CXCL14,GRK2,CXCL12,UBE2I,PARP1,

PLAU,RAB5B,RAB5C,ETS1,ETS2,RALBP1,PLA2G2A,RGL2,ARF6,DEGS1,LTBP1,

DCN,GREM1,NBL1,SKP1,FBN1,CAB39,RBPJ,FHL1,STAT6,IL13RA1,IL6ST 

 

   3.1.9 The certain signaling pathways were associated with each type of MIBC cluster 

 To identify the signaling pathways enriched in each cluster, the transcriptomic data 

was used with KEGG (Kyoto Encyclopedia of Genes and Genomes) term enrichment analysis. 

The metabolic pathways or signal transduction pathways associated with differentially 

expressed genes, comparing the whole genome background with the KEGG terms and padj < 

0.05 are justified as significant enrichment. The top 10 significantly enriched terms in the 

KEGG enrichment analysis are displayed for each cluster (Fig. 30-32).  
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Figure 30. The top 10 significantly enriched terms in the KEGG enrichment analysis are 

displayed for cluster A 

 

 

 

Figure 31. The top 10 significantly enriched terms in the KEGG enrichment analysis are 

displayed for cluster B 
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Figure 32. The top 10 significantly enriched terms in the KEGG enrichment analysis are 

displayed for cluster C 

  

 

 The calcium signaling pathway was found to be a general significant process in all 

clusters. However, the chemokine signaling pathway was observed significantly only in 

clusters 1 and 2. Interestingly, the immune signal transduction pathways, including JAK-

STAT, B cell receptor signaling, and T cell receptor signaling pathways, were marked to be 

the key mechanism in cluster A of MIBC specifically, while AGE-RAGE and Rap1 signaling 

pathways were found as significantly enriched molecular processes in cluster B. For cluster C, 

cGMP-PKG, oxytocin, MAPK, and Relaxin signaling pathways were observed to be unique in 

this cluster. GO Enrichment analyses of the differentially expressed genes in each cluster (Fig. 

33-35) 
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Figure 33. GO Enrichment analyses of the differentially expressed genes in cluster A  

 

 

Figure 34. GO Enrichment analyses of the differentially expressed genes in cluster B  
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Figure 35. GO Enrichment analyses of the differentially expressed genes in cluster C 

 Number of differential gene expressions among different cluster after achieved by 

pathway enrichment were shown. (Fig. 36) 

 

Figure 36. Number of differential gene expressions among different cluster after achieved by 

pathway enrichment 
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3.2 Results: Part II 

 

   3.2.1 Demographic and clinicopathological data 

This study included 132 patients with MIBC who underwent radical cystectomy during 

the study period. Their mean age was 65.6 years, and the male to female ratio was 6.8:1. The 

demographic characteristics of the patients and immunoreactivity for each IHC marker are 

summarized in Table 5.  

Table 5. The demographic characteristics of the patients and immunoreactivity for each IHC 

marker 

Variable  Value (N;%) 5-year OS (95% CI)* Log-rank p-value 

Age (year)     

 Mean(SD) 65.6 (9.3) -  

Sex    0.56 

    Male 115 (87.1%) 25.7 (17.9-34.2)  

    Female 17 (12.9%) 35.3 (14.5-57.0)  

ECOG status    0.18 

 0 29 (22.0%) 39.2 (21.6-56.5)  

 1 103 (78.0%) 23.7 (15.9-32.6)  

T stage    < 0.01 

 T1/2 44 (33.3%) 57.4 (40.8-70.9)  

 T3 41 (31.1%) 18.0 (7.9-31.3)  

 T4 47 (35.6%) 6.4 (1.7-15.8)  

N stage     

 N0 90 (68.2%) 33.7 (23.8-43.8) < 0.01 

 N1 24 (18.2%) 12.2 (4.5-24.1)  

 N2 15 (11.4%)  

 N3 3 (2.3%)  

M stage    NA 

 M0 128 (97.7%) 26.9 (19.4-34.9)  

 M1 3 (2.3%) NA  

Tumor grade    0.04 

 Low 7 (5.30%) 85.7 (33.4-97.9)  

 High 125 (94.7%) 23.7 (16.5-31.7)  

Chemotherapy    0.80 

 No 106 (80.3%) 27.9 (19.5-37.0)  

 Yes 26 (19.7%) 23.1 (9.4-40.3)  

Diversion    0.03 

    ileal conduit 123 (93.2%) 24.0 (16.6-32.1)  

    neobladder 9 (6.8%) 66.7 (28.2-87.8)  

LVI    < 0.01 

 Negative 52 (39.4%) 40.0 (26.3-53.3)  
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 Positive 80 (60.6%) 18.8 (11.1-28.2)  

CK20    0.45 

    Negative 76 (57.6%) 25.3 (16.2-35.5)  

    Positive 56 (42.4%) 29.7 (18.0-42.4)  

CK5/6    0.02 

    Negative 65 (49.2%) 16.2 (8.3-26.5)  

    Positive 67 (50.8%) 37.8 (26.2-49.3)  

CK14    0.63 

    Negative 95 (72.0%) 26.0 (17.5-35.4)  

    Positive 37 (28.0%) 30.6 (16.6-45.7)  

GATA3    < 0.01 

    Negative 26 (19.7%) 16.1 (5.9-30.9)  

    Positive 106 (80.3%) 30.5 (21.6-39.9)  

*: excluding 2 operative deaths; 5-Year OS (95% CI): 5-year overall survival (95% confidence interval); 

ECOG status:  Eastern Cooperative Oncology Group performance status 

Two patients who died at 3 and 7 days after surgery were considered to have operative 

mortality and were excluded from the survival analysis. As of January 2021, the median follow-

up duration was 125 months (interquartile range 103–154 months). The median OS time was 

12.2 months (interquartile range 4.7, 46.4 months), and the 5-year OS was 27.0% (95% CI 

19.6%–35.0%). IHC showed positivity for GATA3, CK5/6, CK20, and CK14 with kappa value 

between 0.799–0.908 (93.2–96.2% agreement) (Table 6).  

Table 6. Immunopositivity of the 4 markers studied and their correlation with clinic-

pathological parameters 

 
All GATA3 CK5/6 CK20 CK14 

Positive staining (%) 132 101 (76.5%) 67 (50.8%) 56 (42.4%) 37 (28.0%) 

Mean age in positive 

cases (SD) 

 64.7 (9.3) 64.7 (9.1) 64.8 (8.7) 65.7 (9.3) 

Gender      

   Male (%)  115 (87.1%) 91 (90.1%) 56 (83.6%) 50 (89.3%) 30 (81.1%) 

   Female (%)  17 (12.9%) 10 (9.9%) 11 (16.4%) 6 (10.7%) 7 (18.9%) 

ECOG status, n (%)      

 0 29 (22.0%) 25 (24.7%) 13 (19.4%) 13 (23.1%) 8 (21.6%) 

 1 103 (78.0%) 76 (75.3%) 54 (80.6%) 43(76.8%) 29 (78.3%) 

T stage, n (%)      

pT1 21 (15.9%) 20 (19.8%)* 12 (17.9%) 14 (25.0%)* 0 (0.0%)* 
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pT2 23 (17.4%) 20 (19.8%) 14 (20.9%) 13 (23.2%) 8 (21.6%) 

pT3 41 (31.1%) 28 (27.7%) 20 (29.9%) 10 (17.9%) 18 (48.7%) 

pT4 47 (35.6%) 33 (32.6%) 21 (31.3%) 19 (33.9%) 11 (29.7%) 

N stage, n (%)      

N0 90 (68.2%) 69 (68.3%) 47 (70.2%) 41 (73.2%) 27 (73.0%) 

N1 24 (18.2%) 19 (18.8%) 12 (17.9%) 7 (12.5%) 7 (18.9%) 

N2 15 (11.4%) 11 (10.9%) 7 (10.5%) 6 (10.7%) 2 (5.4%) 

N3 3 (2.3%) 2 (2.0%) 1 (1.5%) 2 (3.6%) 1 (2.3%) 

M stage, n (%)      

M0 128 (97.7%) 98 (98.0%) 65 (98.5%) 54 (98.2%) 35 (97.2%) 

M1 3 (2.3%) 2 (2.0%) 1 (1.5%) 1 (1.8%) 1 (2.8%) 

Tumor grade, n (%)      

Low 7 (5.30%) 6 (5.9%) 6 (9.0%) 3 (5.4%) 0 (0.0%) 

High 125 (94.7%) 95 (94.1%) 61 (91.0%) 53 (94.6%) 37 (100.0%) 

LVI, n (%)      

   Neg 52 (39.4%) 41 (40.6%) 26 (38.8%) 25 (44.6%) 11 (29.7%) 

   Pos 80 (60.6%) 60 (59.4%) 41 (61.1%) 31 (55.4%) 26 (70.3%) 

*p-value < 0.05 when comparing distribution between positive cases and all cases 

The immunostains for GATA3, CK5/6, CK20, and CK14 showed positive results with 

80.3%, 50.8%, 42.4%, and 28.0% of cases, respectively. GATA3 and CK5/6 immunopositivity 

was significantly associated with OS by log-rank analysis (Table 4). Twenty-six cases received 

a median of 3 cycles of adjuvant chemotherapy. GATA3 expression was significantly inversely 

correlated with pT stage progression. Some mixed and/or borderline cases, the positive 

immunostains were interpreted 2 times with the consensus of a pathologist found 5 of 132 cases 

(3.8%) 

According to the Kaplan–Meier survival analysis, significant differences in outcomes 

with respect to OS were demonstrated among cases with positive GATA3 staining (p = 0.008) 

and in cases with positive CK5/6 staining (p = 0.038). The other markers did not show 
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significant prognostication value for survival. The Kaplan–Meier survival curves for GATA3, 

CK5/6, CK14, and CK20 are depicted in Fig. 37  

 

Figure 37. Kaplan-Meier curves demonstrating survival probability in 132 MIBC patients 

according to IHC markers expression; GATA3 (A), CK5/6 (B), CK14 (C) and CK 20 (D). 

The correlation between each individual marker was evaluated by Pearson correlation 

test. The significant association of GATA3, CK5/6, and CK20 was found only in pathological 

stage 1 of patients. When the correlation between markers in the basal and luminal subtypes 

was assessed, moderate correlation was observed between GATA3 and CK20 expression, 

which indicated that the basal-like subtype was demonstrated by Pearson correlation at 0.46 (p 

= 0.022). The analysis showed small correlation between the luminal-like subtype markers, 

CK5/6 and CK14; 0.31 (p = 0.048) (Fig. 38).  
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Figure 38. Correlation heatmap of immunohistochemistry markers expression among GATA3, 

CK20 (basal-like markers), CK5/6 and CK14 (luminal-like markers) 

As GATA3 and CK5/6 were the only two markers representing different subtypes that 

were significantly associated with survival, we elected to categorize our cases into four groups 

according to those two markers: luminal-like (GATA3+ and CK5/6−), basal-like (GATA3− 

and CK5/6+), mixed (GATA3+ and CK5/6+), and double-negative (GATA3− and CK5/6−) 

subtypes. By this definition, the luminal-like, basal-like, mixed, and double-negative subtypes 

were observed in 38.6%, 12.9%, 37.9%, and 10.6% of cases, respectively. Associations 

between each subtype and clinicopathological factors including survival outcomes are 

displayed in Table 7. The double-negative subtype was significantly associated with higher 

incidence of pT4 disease.         

Table 7. Patient’s characteristic classified by IHC subtypes categorized by GATA3 and CK5/6  

 
Double-neg Luminal-like Basal-like Mixed p-value** 

Total (%) 14(10.6) 51(38.6) 17(12.9) 50(37.9) - 

Mean age (SD) 70.2(6.0) 65.3(10.1) 66.6(10.7) 64.1(8.6) 0.18 

Gender, n (%)      

   Male   12 (85.7) 47 (92.2) 12 (70.6) 44 (88.0) 0.15 

   Female   2 (14.3) 4 (7.8) 5 (29.4) 6 (12.0)  

ECOG status, n (%)     0.29 

 0 1 (7.1) 15 (29.4) 3 (17.7) 10 (20.0)  
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 1 13 (92.9) 36 (70.6) 14 (82.3) 40 (80.0)  

Urinary Diversion type     0.98 

  Ileal conduit 13 (92.9) 47 (92.2) 16 (94.1) 47 (94.0)  

  Neobladder 1 (7.1) 4 (7.8) 1 (5.9) 3 (6.0)  

T stage, n (%)     0.048 

T1/2 0 (0.0) 18 (35.3) 4 (23.5) 22 (44.0)  

T3 6 (42.9) 15 (29.4) 7 (41.2) 13 (26.0)  

T4 8 (57.1) 18 (35.3) 6 (35.3) 15 (30.0)  

N stage, n (%)     0.71 

N0 11 (78.6)  32 (62.8) 10 (58.8) 37 (74.0)  

N1 1 (7.1) 11 (21.6) 4 (23.5) 8 (16.0)   

N2 1 (7.1) 7 (13.7) 3 (17.7) 4 (8.0)  

N3 1 (7.1) 1 (2.0) 0 (0.0) 1 (2.0)  

M stage, n (%)     0.55 

M0 13 (92.9) 50 (98.0) 17 (100.0) 48 (98.0)  

M1 1 (7.1) 1 (2.0) 0 (0.0) 1 (2.0)  

Tumor grade, n (%)     0.25 

Low 0 (0.0) 1 (2.0) 1 (5.9) 5 (10.0)  

High 14 (100.0) 50 (98.0) 16 (94.1) 45 (90.0)  

Margin, n (%)     0.57 

   Neg 11 (78.6) 46 (90.2) 16 (94.1) 43 (86.0)  

   Pos 3 (21.4) 5 (9.8) 1 (5.9) 7 (14.0)  

LVI, n (%)     0.97 

   Neg 5 (35.7) 21 (41.2) 6 (35.3) 20 (40.0)  

   Pos 9 (64.3) 30 (58.8) 11 (64.7) 30 (60.0)  

CK20, n (%)     <0.01 

Neg 12 (85.7) 17 (33.3) 16 (94.1) 31 (62.0)  

Pos 2 (14.3) 34 (66.7) 1 (5.9) 19 (38.0)  

CK14, n (%)     <0.01 

Neg 12 (85.7) 48 (94.1) 4 (23.5) 31 (62.0)  

Pos 2 (14.3) 3 (5.9) 13 (76.5) 19 (38.0)  

5-year OS (%) 

(95% confidence 

interval) 

7.14 

(0.4-27.5) 

18.9  

(9.2-31.1) 

23.5 

(7.3-24.9) 

42.8 

(28.9-56.1) 

<0.01 

*: p-value by chi-square or Fisher’s exact test, ECOG status:  Eastern Cooperative Oncology Group 

performance status; LVI: Lymph Vascular Invasion; OS: overall survival 
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CK20 immunopositivity, a marker of the luminal molecular subtype, was significantly 

associated with the GATA3-defined luminal subtype (p < 0.01), whereas CK14 positivity was 

significantly associated with the CK5/6-defined basal subtype (p < 0.01). In the 50 mixed 

subtype (GATA3+ and CK2/5+) cases in this study, an equal number of cases with CK20 and 

CK5/6 positivity was found (Table 7).  

When clinicopathological parameters and IHC subtypes were analyzed against survival 

in a univariable Cox hazard model, tumor stage (pT and N), lymphovascular invasion, 

pathologic grade, loss of GATA3 immunoreactivity, and loss of CK5/6 immunoreactivity were 

significantly associated with poorer survival outcomes. Considering subtyping, while patients 

with the mixed subtype had the lowest risk, which was followed by patients with the luminal-

like and basal-like subtypes, those with the double-negative subtype had the highest crude HR. 

In the multivariable analysis by stepwise Cox hazard regression, N stage (N > 0) and the 

double-negative subtype were significantly associated with higher risk (model p = 0.0001) 

(Table 8).  

Table 8. Univariable and multivariable regression analysis of clinical outcomes in 132 MIBC 

patients 

 Univariable analysis Multivariable analysis 

Factor crude HR (95%CI) p-value adj. HR (95%CI) p-value 

T-stage:                     pT1  

pT2     

pT3            

pT4            

1.00 (reference) 

1.61 (0.65, 3.95) 

5.15 (2.36, 11.19)        

6.50 (3.01, 14.02) 

< 0.01   

N-stage:                       N0  

N1 

N2            

N3            

1.00 (reference) 

1.78 (1.07, 2.96)  

2.58 (1.43, 4.66) 

5.34 (1.63, 16.58)                                

< 0.01 1.00 (reference) 

1.84 (1.09-3.13) 

2.63 (1.44-4.78) 

4.45 (1.35-14.68) 

 

 

0.02 

<0.01 

0.01 
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LVI (positive)  1.94 (1.27, 2.96) < 0.01   

Grading (high grade)  3.16 (1.00, 10.00) 0.02     

GATA3 (negative) 1.87 (1.20-2.90) < 0.01   

CK5/6 (negative) 1.57 (1.06-1.35) 0.03   

CK20 (negative) 1.16 (0.78-1.75) 0.45   

CK14 (negative) 0.89 (0.58-1.39) 0.63   

Mixed subtype 0.52 (0.34-0.81) < 0.01   

Basal subtype 1.39 (0.79-2.46) 0.25   

Luminal subtype 1.18 (0.79-1.76) 0.43   

Double negative 2.24 (1.27-3.96) < 0.01   

Subtypes 

Mixed 

Luminal-like 

Basal-like 

Double negative 

 

1 (reference) 

1.66 (1.03-2.68) 

2.01 (1.06-3.81) 

3.12 (1.63-5.92) 

< 0.01  

(reference) 

1.66 (0.86-3.21) 

1.60 (0.99-2.60) 

3.29 (1.71-6.31) 

 

1 

0.13 

0.05 

< 0.01 

crude HR: crude hazard ratio; adj.HR: adjusted hazard ratio; 95%CI: 95% confidence interval, 

LN: lymph node, LVI: lymphovascular invasion 

 

3.2.2 Association between molecular subtypes and survival outcomes 

 Kaplan–Meier curves compare the survival probability of 132 patients with MIBC 

following radical surgery (Fig.39). The 5-year OS rates of patients with the mixed, basal, 

luminal, and double-negative subtypes were 42.5% (95% CI 28.9–56.1%), 23.5% (7.3–44.9%), 

18.9% (9.2–31.1%), and 7.1% (0.4–27.5%), respectively.  

In the 50 MIBCs of mixed subtype (GATA3+ and CK5/6+), if CK20 and CK14 were 

added to the subcategorization criteria, which means that mixed subtype cases with positive 

CK20 were reclassified as luminal, whereas mixed subtype cases with positive CK14 were 

reclassified as basal. The univariable hazard model did not improve. Using the mixed subtype 
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as a reference, the HRs (and 95% CIs) for the luminal, basal, and double-negative subtypes 

were 1.17 (95% CI 0.62–2.20), 1.54 (0.76–3.10), and 2.64 (1.22–5.73) respectively.  

 
Figure 39.  Kaplan-Meier survival curves of molecular subtypes of muscle invasive bladder 

cancer according to their immunohistological subtypes 
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3.3 Results: Part III 

 3.3.1 Integrative result of molecular subtyping from mRNA expressions using 4 

markers from immunohistochemistry in our MIBC cohort 

Each gene expressions were selected from IHC part (GATA3, CK 5/6, CK14 and CK 

20) and compared between cluster from K-mean clustering in 3 cluster A-C. Furthermore, our 

interesting 4 markers mRNA expression were shown in violin plot. (Fig.40-43) 

 

Figure 40. Violin plot of GATA3 expression in 3 clusters  
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Figure 41. Violin plot of CK14 expression in 3 clusters  

 

 

Figure 42. Violin plot of CK5/6 expression in 3 clusters 
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Figure 43. Violin plot of CK20 expression in 3 cluster  

 

 3.3.2 Validate each signature gene expression in TCGA data 

 Gene expression level of signature markers in our study were validated in TCGA data 

that exhibited the same fashion with our cohort (Fig. 44-47) 

 

Figure 44. Violin plot of GATA3 expression in 3 cluster from TCGA data 
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Figure 45. Violin plot of CK 14 expression in 3 cluster from TCGA data 

 

Figure 46. Violin plot of CK 5/6 expression in 3 cluster from TCGA data 
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Figure 47. Violin plot of CK 20 expression in 3 cluster from TCGA data 

 

3.3.3 AUC score of selected signature genes of molecular subtypes 

    We explored the significant genes that classified each clusters and AUC score were shown 

in Table 9 and sensitivity, specificity and cut point of selected signature genes. (Fig. 48) 

 Table 9 AUC score of selected signature genes classified clusters 

 Cluster A-B Cluster B-C Cluster A-C 

GATA3 0.763 0.916 0.614 

CD274 0.722 0.623 0.590 

SNCA 0.640 0.608 0.547 

KRT20 0.658 0.708 0.546 

KRT5 0.627 0.813 0.723 

KRT14 0.776 0.835 0.458 

 



 

 

 

66 

 

Figure 48.  Sensitivity, specificity and cut point of selected signature genes 

 

The most highest power of significant genes in cluster differentiation found in between 

cluster B-C were GATA 3, KRT 5 and KRT 14 (Table 10), in ROC curve of each gene are 

shown in Fig. 

Table 10. Sensitivity, specificity and cut point of selected signature genes between cluster B-

C 

 Sensitivity Specificity cut point  

GATA3 0.8636 0.8514 13.2592 

KRT5 0.8378 0.6591  8.2409 

KRT14 0.6351 1 6.3685 
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Figure 49. Cut point and ROC of GATA3 genes between cluster B-C 

 

Figure 50. Cut point and ROC of KRT14(CK14) genes between cluster B-C  
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Figure 51. Cut point and ROC of KRT5 (CK5/6) genes between cluster B-C  

 

  3.3.4 Optimal cutpoint, accuracy, sensitivity, specificity and AUC of 37 difference gene 

in each cluster 

 We have concluded the limited gened of each cluster that have high accuracy, 

sensitivity, specificity and AUC and also optimal cutpoint if each gene. (Table 11) 

Table 11 Optimal cutpoint, accuracy, sensitivity, specificity and AUC of 37 difference 

gene in each cluster 

optimal_cutpoint accuracy sensitivity specificity AUC pos_class neg_class gene.name gene.id  

15.13054314 0.949152542 0.909090909 0.972972973 0.988022113 cluster3 cluster2 COL6A2 ENSG00000142173 

11.97505214 0.940677966 0.954545455 0.932432432 0.988022113 cluster3 cluster2 PDGFRB ENSG00000113721 

14.87228319 0.93220339 0.886363636 0.959459459 0.979115479 cluster3 cluster2 COL6A3 ENSG00000163359 

16.60303405 0.93220339 0.909090909 0.945945946 0.967137592 cluster3 cluster2 COL1A2 ENSG00000164692 

9.359841457 0.923728814 0.886363636 0.945945946 0.975737101 cluster3 cluster2 FGF7 ENSG00000140285 

6.002827133 0.923728814 0.863636364 0.959459459 0.970515971 cluster3 cluster2 CAMK2A ENSG00000070808 

7.516355782 0.923728814 0.954545455 0.905405405 0.960380835 cluster3 cluster2 P2RX1 ENSG00000108405 

8.392888585 0.923728814 1 0.878378378 0.956695332 cluster3 cluster2 KCNMB1 ENSG00000145936 

7.611806926 0.915254237 0.931818182 0.905405405 0.947174447 cluster3 cluster2 FGF2 ENSG00000138685 

11.93492692 0.915254237 0.977272727 0.878378378 0.955159705 cluster3 cluster2 MYLK ENSG00000065534 

9.786311303 0.906779661 0.931818182 0.891891892 0.941031941 cluster3 cluster2 CCL2 ENSG00000108691 

http://gene.id/
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9.394808887 0.906779661 0.863636364 0.932432432 0.950552826 cluster3 cluster2 EDNRA ENSG00000151617 

8.124055003 0.906779661 0.931818182 0.891891892 0.964373464 cluster3 cluster2 PRKG1 ENSG00000185532 

7.600736771 0.898305085 0.886363636 0.905405405 0.944717445 cluster3 cluster2 HGF ENSG00000019991 

7.246230903 0.898305085 0.909090909 0.891891892 0.946253071 cluster3 cluster2 CREB5 ENSG00000146592 

17.17557014 0.898305085 0.840909091 0.932432432 0.949938575 cluster3 cluster2 COL1A1 ENSG00000108821 

8.864905314 0.898305085 0.886363636 0.905405405 0.953931204 cluster3 cluster2 KCNMA1 ENSG00000156113 

11.65133272 0.889830508 0.931818182 0.864864865 0.946560197 cluster3 cluster2 TNC ENSG00000041982 

9.995064583 0.885350318 0.75 0.938053097 0.926588898 cluster3 cluster1 FGF7 ENSG00000140285 

6.445600088 0.881355932 0.954545455 0.837837838 0.947174447 cluster3 cluster2 PTGFR ENSG00000122420 

8.278331858 0.881355932 0.772727273 0.945945946 0.915233415 cluster3 cluster2 ADRA2A ENSG00000150594 

12.83410809 0.878980892 0.795454545 0.911504425 0.913716814 cluster3 cluster1 MYLK ENSG00000065534 

7.320245712 0.872881356 0.863636364 0.878378378 0.938882064 cluster3 cluster2 GNAO1 ENSG00000087258 

9.518218658 0.872611465 0.772727273 0.911504425 0.936041834 cluster3 cluster1 KCNMB1 ENSG00000145936 

7.595931955 0.866242038 0.704545455 0.92920354 0.912107804 cluster3 cluster1 PTGFR ENSG00000122420 

7.26381242 0.866242038 0.659090909 0.946902655 0.879123089 cluster3 cluster1 IGF1 ENSG00000017427 

7.00558066 0.86440678 0.886363636 0.851351351 0.950859951 cluster3 cluster2 PTGER3 ENSG00000050628 

9.696381429 0.86440678 0.863636364 0.864864865 0.915233415 cluster3 cluster2 ITGA11 ENSG00000137809 

6.923456429 0.86440678 0.818181818 0.891891892 0.889742015 cluster3 cluster2 ADORA1 ENSG00000163485 

9.080415118 0.859872611 0.613636364 0.955752212 0.907079646 cluster3 cluster1 P2RX1 ENSG00000108405 

15.97275163 0.859872611 0.659090909 0.938053097 0.885559131 cluster3 cluster1 COL6A2 ENSG00000142173 

8.942791723 0.859872611 0.659090909 0.938053097 0.889179405 cluster3 cluster1 PRKG1 ENSG00000185532 

9.614988721 0.853503185 0.704545455 0.911504425 0.879525342 cluster3 cluster1 KCNMA1 ENSG00000156113 

7.970822028 0.847457627 0.704545455 0.932432432 0.915540541 cluster3 cluster2 PDE1A ENSG00000115252 

8.897935146 0.847457627 0.704545455 0.932432432 0.88544226 cluster3 cluster2 NPR 1.00 ENSG00000169418 

10.89526475 0.840764331 0.613636364 0.92920354 0.859412711 cluster3 cluster1 CCL2 ENSG00000108691 

8.529875041 0.840764331 0.636363636 0.920353982 0.885961384 cluster3 cluster1 FGF2 ENSG00000138685 

7.89679706 0.840764331 0.75 0.876106195 0.859814964 cluster3 cluster1 PDE1A ENSG00000115252 

5.58740235 0.838983051 0.886363636 0.810810811 0.892813268 cluster3 cluster2 NGF ENSG00000134259 

10.08890118 0.834394904 0.568181818 0.938053097 0.833065165 cluster3 cluster1 EDNRA ENSG00000151617 

9.025286608 0.834394904 0.704545455 0.884955752 0.808125503 cluster3 cluster1 NPR 1.00 ENSG00000169418 

8.795996736 0.834394904 0.681818182 0.89380531 0.845132743 cluster3 cluster1 ADRA2A ENSG00000150594 

6.622162229 0.830508475 0.772727273 0.864864865 0.872235872 cluster3 cluster2 BDKRB1 ENSG00000100739 

9.741937824 0.830508475 0.636363636 0.945945946 0.875307125 cluster3 cluster2 TNXB ENSG00000168477 

12.97372033 0.828877005 0.92920354 0.675675676 0.863668979 cluster1 cluster2 COL6A2 ENSG00000142173 

8.418409883 0.828025478 0.590909091 0.920353982 0.866854385 cluster3 cluster1 HGF ENSG00000019991 

6.144844467 0.821656051 0.818181818 0.82300885 0.862027353 cluster3 cluster1 CAMK2A ENSG00000070808 

15.51959587 0.818181818 0.902654867 0.689189189 0.868811289 cluster1 cluster2 COL1A1 ENSG00000108821 

15.66478501 0.815286624 0.568181818 0.911504425 0.849356396 cluster3 cluster1 COL6A3 ENSG00000163359 

10.3105166 0.815286624 0.522727273 0.92920354 0.814963797 cluster3 cluster1 TNXB ENSG00000168477 

8.918644275 0.815286624 0.5 0.938053097 0.850160901 cluster3 cluster1 GNAO1 ENSG00000087258 

6.226280889 0.813559322 0.795454545 0.824324324 0.919226044 cluster3 cluster2 IGF1 ENSG00000017427 

9.887559279 0.812834225 0.946902655 0.608108108 0.853384358 cluster1 cluster2 TNC ENSG00000041982 

14.67695898 0.812834225 0.911504425 0.662162162 0.856852428 cluster1 cluster2 COL1A2 ENSG00000164692 

13.48829213 0.808917197 0.363636364 0.982300885 0.838495575 cluster3 cluster1 PDGFRB ENSG00000113721 

6.645688678 0.802547771 0.522727273 0.911504425 0.831255028 cluster3 cluster1 NTRK3 ENSG00000140538 
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9.636916223 0.802547771 0.477272727 0.92920354 0.799477072 cluster3 cluster1 ITGA8 ENSG00000077943 

10.49857997 0.796791444 0.840707965 0.72972973 0.80399426 cluster1 cluster2 MYLK ENSG00000065534 

4.245436954 0.796791444 0.911504425 0.621621622 0.820318106 cluster1 cluster2 CAMK2A ENSG00000070808 

13.06476358 0.796791444 0.840707965 0.72972973 0.842621382 cluster1 cluster2 COL6A3 ENSG00000163359 

6.208464543 0.796791444 0.849557522 0.716216216 0.820138723 cluster1 cluster2 CREB5 ENSG00000146592 

7.616307314 0.789808917 0.295454545 0.982300885 0.734714401 cluster3 cluster1 RYR3 ENSG00000198838 

8.342644928 0.789808917 0.568181818 0.876106195 0.784593725 cluster3 cluster1 COL4A4 ENSG00000081052 

7.498288647 0.789808917 0.454545455 0.920353982 0.750804505 cluster3 cluster1 ATP1B2 ENSG00000129244 

8.196355693 0.788135593 0.590909091 0.905405405 0.851658477 cluster3 cluster2 COL4A4 ENSG00000081052 

18.59786455 0.78343949 0.454545455 0.911504425 0.735518906 cluster3 cluster1 COL1A1 ENSG00000108821 

17.61894538 0.78343949 0.522727273 0.884955752 0.787208367 cluster3 cluster1 COL1A2 ENSG00000164692 

5.785646207 0.780748663 0.920353982 0.567567568 0.789165271 cluster1 cluster2 FGF7 ENSG00000140285 

6.755978322 0.780748663 0.902654867 0.594594595 0.798971538 cluster1 cluster2 KCNMA1 ENSG00000156113 

6.295458069 0.779661017 0.590909091 0.891891892 0.828316953 cluster3 cluster2 NTRK3 ENSG00000140538 

8.135940071 0.777070064 0.613636364 0.840707965 0.820997586 cluster3 cluster1 PTGER3 ENSG00000050628 

9.027323188 0.77540107 0.752212389 0.810810811 0.824204736 cluster1 cluster2 ITGA11 ENSG00000137809 

7.080592053 0.771186441 0.590909091 0.878378378 0.742628993 cluster3 cluster2 ATP1B2 ENSG00000129244 

14.76613388 0.770700637 0.318181818 0.946902655 0.745776348 cluster3 cluster1 TNC ENSG00000041982 

7.344674719 0.770700637 0.613636364 0.831858407 0.762469831 cluster3 cluster1 ADORA1 ENSG00000163485 

11.32377996 0.770053476 0.734513274 0.824324324 0.837598661 cluster1 cluster2 PDGFRB ENSG00000113721 

8.168522118 0.764705882 0.82300885 0.675675676 0.811169577 cluster1 cluster2 EDNRA ENSG00000151617 

8.312934396 0.757961783 0.386363636 0.902654867 0.727473854 cluster3 cluster1 BDKRB1 ENSG00000100739 

7.077832763 0.754237288 0.863636364 0.689189189 0.774262899 cluster3 cluster2 AVPR1A ENSG00000166148 

6.559483816 0.754237288 0.931818182 0.648648649 0.825859951 cluster3 cluster2 ANGPT1 ENSG00000154188 

8.217513355 0.754010695 0.89380531 0.540540541 0.768476441 cluster1 cluster2 CCL2 ENSG00000108691 

5.566831178 0.754010695 0.82300885 0.648648649 0.770748625 cluster1 cluster2 P2RX1 ENSG00000108405 

7.086393598 0.748663102 0.787610619 0.689189189 0.748505142 cluster1 cluster2 KCNMB1 ENSG00000145936 

9.617669535 0.745762712 0.5 0.891891892 0.719594595 cluster3 cluster2 ITGA8 ENSG00000077943 

6.876902256 0.74522293 0.340909091 0.902654867 0.783185841 cluster3 cluster1 NGF ENSG00000134259 

8.040385391 0.74522293 0.659090909 0.778761062 0.790426388 cluster3 cluster1 CREB5 ENSG00000146592 

7.277550694 0.743315508 0.734513274 0.756756757 0.777445587 cluster1 cluster2 PRKG1 ENSG00000185532 

5.15983813 0.737967914 0.814159292 0.621621622 0.723152356 cluster1 cluster2 PTGFR ENSG00000122420 

5.035757385 0.737967914 0.938053097 0.432432432 0.778880651 cluster1 cluster2 PTGER3 ENSG00000050628 

5.932093438 0.737967914 0.805309735 0.635135135 0.761420713 cluster1 cluster2 ADORA1 ENSG00000163485 

5.40067901 0.732620321 0.911504425 0.459459459 0.73056685 cluster1 cluster2 HGF ENSG00000019991 

10.53198408 0.732484076 0.045454545 1 0.686242961 cluster3 cluster1 ANGPT1 ENSG00000154188 

11.65910541 0.732484076 0.272727273 0.911504425 0.669750603 cluster3 cluster1 ITGA11 ENSG00000137809 

8.169702747 0.72611465 0.477272727 0.82300885 0.707562349 cluster3 cluster1 AVPR1A ENSG00000166148 

5.508098753 0.721925134 0.902654867 0.445945946 0.738698876 cluster1 cluster2 GNAO1 ENSG00000087258 

6.639627253 0.703389831 0.568181818 0.783783784 0.721437346 cluster3 cluster2 RYR3 ENSG00000198838 

4.589351842 0.700534759 0.82300885 0.513513514 0.688591246 cluster1 cluster2 IGF1 ENSG00000017427 

5.95628405 0.689839572 0.82300885 0.486486486 0.681655106 cluster1 cluster2 ANGPT1 ENSG00000154188 

5.696923613 0.684491979 0.805309735 0.5 0.703061469 cluster1 cluster2 BDKRB1 ENSG00000100739 

4.764814732 0.684491979 0.752212389 0.581081081 0.665271466 cluster1 cluster2 NGF ENSG00000134259 

6.455683628 0.673796791 0.681415929 0.662162162 0.693853145 cluster1 cluster2 FGF2 ENSG00000138685 



 

 

 

71 

5.773886663 0.657754011 0.902654867 0.283783784 0.619588615 cluster1 cluster2 AVPR1A ENSG00000166148 

6.775991666 0.657754011 0.752212389 0.513513514 0.646496054 cluster1 cluster2 TNXB ENSG00000168477 

8.599869878 0.64171123 0.391891892 0.805309735 0.603204975 cluster2 cluster1 ITGA8 ENSG00000077943 

5.891807142 0.636363636 0.796460177 0.391891892 0.617077254 cluster1 cluster2 PDE1A ENSG00000115252 

7.548315019 0.625668449 0.094594595 0.973451327 0.520090887 cluster2 cluster1 RYR3 ENSG00000198838 

3.713780217 0.620320856 0.991150442 0.054054054 0.538387945 cluster1 cluster2 NTRK3 ENSG00000140538 

7.497294766 0.614973262 0.646017699 0.567567568 0.628318584 cluster1 cluster2 NPR 1.00 ENSG00000169418 

5.792872806 0.609625668 0.690265487 0.486486486 0.588854341 cluster1 cluster2 COL4A4 ENSG00000081052 

9.094951437 0.609625668 0.013513514 1 0.542095193 cluster2 cluster1 ATP1B2 ENSG00000129244 

4.230722549 0.604278075 1 0 0.582276967 cluster1 cluster2 ADRA2A ENSG00000150594 
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CHAPTER 4 

Discussion 

   

 This is the first report of our institutional MIBC cohort subtyping using an unsupervised 

clustering based on transcriptomic data in Thailand. The primary finding of this study is that 

the locations of MIBC cluster on the principal components identified from transcriptome data 

can be predicted from an understanding of the average coalescent differential genes for tissue 

samples. This analysis transformed the high-dimensional data into an orthogonal basis which 

represent the variant of mRNA expression profile in each sample. Unsupervised clustering 

revealed the three clusters of MIBC with the 37 genes expressed differently in all clusters. 

Interestingly, all signaling pathway was found to be increased in colon cancer (56), breast 

cancers (57), and liver cancer (58). The PI3K-Akt activation was also found in breast cancer 

(59), gastric cancer (60), and thyroid carcinoma (61). The ubiquitous signal transduction 

MAPK pathway also associated to cancer cell proliferation and survival, and inflammatory 

environment (62). Although all these signal transductions are in cancers, the dominant pathway 

in cancer cell is depend on the genetic background, the mutation status, or type of cancer (63) 

determining the aggressive behavior, the progression rate, and drug response of cancer.  

 Surprisingly, most of the genes are not related to the markers used for subtyping in the 

previous reports (6,7,9,10,22,45,64). This may be due to drug response study was not included 

for marker selection. Moreover, other studies performed the association of other biological 

factors such as lncRNA, miRNA, protein expression, or DNA methylation (6,7,9,10,22,45,64). 

We determined the sensitivity and specificity of the genes instead. ROC curve analysis revealed 

most of the genes showed high correlation of the sensitivity and specificity only for cluster B 

which may be used as expression markers for Thai MIBC patient. Our transcriptomic clustering 
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provided three clusters of MIBC tissue which expressed the specific pattern of mRNA 

profiling. In addition to our MIBC transcriptomic study from patient tissue, we included the 

information from TCGA dataset for validation. However, PCA analysis with the comparison 

between two cohorts demonstrated the obviously different PC coordinates between data from 

our MIBC tissue samples and TCGA dataset. The variation of genetic background of the 

different population studied may be the factors that caused the difference of PCA data plot 

(65). By using the initial cluster centroids of the MIBC tissue data, we applied the distance of 

tissue PCA coordinated with mRNA expression profile to TCGA data for transcriptomic 

clustering of TCGA cohort. This gives us the influence of various expression scenarios on the 

relationships between MIBC patients identified from PCA and how to apply this PCA for data 

inference in other population. The three clusters obtained from this method were related to the 

significant difference of the overall survival of MIBC patients meaning that the classification 

based on transcriptomic data of MIBC tissue may be alternative way to predict the survival 

outcome.    

The nature of disease heterogeneity is represented by bladder cancer molecular 

subtyping. MIBCs can be classified into at least three intrinsic subtypes, including luminal, 

basal, and double negative, according to previous gene expression analysis (34). High 

expression of terminal urothelial differentiation markers (GATA3, CK20, and uroplakin 2), 

often known as umbrella cells, is a feature of luminal malignancies (7). Because umbrella cells 

have a shorter lifespan than basal cells, they are less sensitive to genetic mutations, but their 

chromatin landscape changes more often. The tumor tissue of the basal-like bladder cancer 

expressed mesenchymal stem cell biomarkers (CK5/6 and CK14), as well as squamous and 

sarcomatous characteristics (23). According to recent research, GATA3 and CK5/6 can detect 

molecular subtypes in 80-90 percent of instances (30,34). GATA3 and CK5/6 were shown to 

be linked with survival result in 62 percent of cases in our analysis, and only these two markers 
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could unambiguously divide cases into luminal, basal, or double-negative subtypes. Loss of 

expression in one of these two markers was linked to a lower chance of survival, and loss of 

both markers was a strong predictor of poor outcome. Adding CK20 and CK14 to the criteria 

to identify the subtypes did not seem to improve survival prediction, despite substantial 

associations between CK20 and GATA3 expression and CK14 and CK5/6 expression. 

MIBCs that expressed GATA3 were found to be less aggressive and to have a higher 

chance of survival. GATA3, also known as GATA3 binding protein, is a transcription factor 

that controls the expression of genes involved in breast and urothelial epithelial luminal 

differentiation (68,69). GATA3 is also found in T-lymphocytes, the central nervous system, 

and erythrocytes (70). The triple negative subtype of breast cancer has been found to have 

lower GATA3 expression (71). Loss of GATA3 expression increased tumor cell motility and 

invasion in urothelial cell line models by upregulating oncogenes (72,73). GATA3 has been 

studied in bladder cancer in a number of clinical trials (74-76). GATA3 expression loss has 

been linked to high-grade malignancy (76). Furthermore, in most investigations, GATA3-

negative bladder cancer patients had a poorer prognosis. (74,75,77). When those reports are 

combined with our findings, GATA3 appears to be a potential biomarker in MIBCs. CK20, 

another luminal marker investigated in this work, has been linked to greater tumor grade and 

stage in papillary urothelial carcinoma (78). However, no significant link was found between 

CK20 and any clinicopathological condition or survival result in our investigation. 

CK5/6 is a cytokeratin that is expressed in the squamous epithelial lineage and is 

commonly utilized as a squamous differentiation marker that distinguishes the basal subtype 

(79).  In multiple studies, CK5/6 expression in urothelial cancer was linked to a poorer 

prognosis (79,80). On the other hand, studies have shown that reduction of CK5/6 expression 

is linked to a lower survival rate in transitional cell carcinoma of the upper urinary tract (80,81). 
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Loss of CK5/6 expression was linked to a considerably lower survival outcome in our study. 

CK14 is another basal subtype marker whose expression has been shown to have a negative 

connection with MIBC survival. 

Although molecular subtyping has been shown to be associated with disease 

progression and treatment outcomes in MIBCs, RNA expression profiling is not a routinely 

used technique. Several research have looked into the idea of evaluating an 

immunohistochemical panel to be utilized for intrinsic subtype categorization in MIBCs 

(74,80,82). Apart from GATA3, the predictive usefulness of other IHC markers remained a 

mystery. The gap in results could be explained in part by differences in staining techniques and 

interpretation. Because GATA3 and CK5/6 were found to have a substantial survival 

correlation in our investigation, these markers were combined into a simple subgroup 

categorization as luminal when the tumor had exclusive GATA3 expression and basal when 

the tumor had exclusive CK5/6 expression. The study discovered that the double-negative 

subtype, which means that both markers were negative, predicted the worst outcome. Other 

previously reported combinations, such as CK20 with CK5/6 or CK20 with CK14, were 

explored but yielded no intriguing results. 

However, mRNA expression clustering that exhibited 3 clusters and KRT expressions 

in mRNA level as same as in IHC study found the important correlations of CK20, CK5/6, 

GATA3 and CK14 in each cluster.   

The modest sample size of our investigation, as well as the lack of gene expression 

profiling to confirm concordance between molecular subtypes and IHC marker expression, 

were also limitations. Furthermore, only 20% of our patients underwent chemotherapy 

following a radical cystectomy since their physical condition prevented them from doing so. 

Because neoadjuvant chemotherapy is becoming more popular in the treatment of MIBC, the 
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findings of our study may aid in identifying patients at high risk of treatment failure who should 

get chemotherapy before undergoing definitive surgery. The presented study's high core 

agreement, as well as earlier studies comparing TMA core expression to whole slides, suggests 

that core regions are typical of expression in the entire sample. Tissue microarrays, on the other 

hand, have clear limitations in terms of capturing tumor heterogeneity. To validate the efficacy 

of this methodology, full slide analysis comparing expression and subtype assignment of a core 

to complete sections will be necessary. Validation on complete slides is especially important 

since pathologists evaluate larger samples in real practice. Staining patterns would have to be 

assessable in ordinary workflow if subtyping was to be employed effectively in the clinical 

context. 

❖ Small sample size 

❖ Validating and refining subtype classification 

❖ require prospective studies 

❖ molecular subtyping of MIBC has mainly focused on stratifying global mRNA 

expression, which comprises less than 2% of total transcription, due to the majority of 

transcribed genes: ribosomal RNAs and non-coding RNAs 

 

While IHC is a reliable and reasonable method for clinical subtyping and avoiding the 

difficulties of transcriptome profiling, it may be subject to artifacts of its own due to 

variances in antigen storage. The discovery of double negative subtypes and possible 

challenges with antigen preservation in this study emphasizes the importance of giving 

careful thought to these concerns about IHC staining repeatability. These concerns about 

antigen storage and staining intensities make it difficult to create a repeatable, therapeutically 

effective assay. Finally, the transcriptome profiles of these tumors should be evaluated in 
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tandem with IHC in order to ensure that the two approaches produce identical results. In 

order to confirm if the same subtypes have been identified. 
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CHAPTER 5 

 

 

Conclusion 
 

 

 

 Molecular subtyping classifications have provided insight into the biology of bladder 

tumors, especially regarding tumor heterogeneity. New genomic techniques provide insight 

into the marked genetic complexity of MIBC. Over the last decade, RNA- based molecular 

subtyping has identified distinct or partially overlapping molecular classifications of MIBC. 

Our studies show that molecular stratification of MIBC is of clinical importance into 3 clusters 

with validate these subtypes in TCGA dataset, suggesting that responses to chemotherapy and 

immunotherapy may be increased for specific MIBC subtypes.  Further investigation is needed 

into the clinical applicability of molecular subtypes before their incorporation into the 

personalized care of MIBC patients. Moreover, GATA3, CK20, CK5/6, and CK14 staining 

was selected to be tested against clinical outcomes with respect to survival after a radical 

cystectomy. While subtype proportions and staining patterns differed by sample type, we 

believe this was primarily due to poor antigen preservation in cystectomy samples. In addition 

to the fact that TURBT samples are obtained at an earlier and perhaps more prognostically 

relevant timepoint prior to NACT treatment, this points to the utility of TURBT samples for 

MIBC subtyping, and potential limitations of IHC-based subtyping using cystectomy samples. 

The study evaluated 4 immunohistochemical markers that mark luminal subtype (GATA3 and 

CK20) and basal subtype (CK5/6 and CK14) in MIBC, focusing on their association with 

survival outcome after a radical cystectomy. GATA3 and CK5/6 were significantly associated 

with survival probability. When the 2 markers were combined, the double-negative subtype 

had the poorest prognosis.   
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We believe that altogether, this work demonstrates that a much simpler, IHC-based 

assay for subtyping retains key biologic and clinical associations seen previously with more 

complex profiling methods. Future work will validate the prognostic associations in larger 

cohorts of patients, as well as investigate the predictive utility of IHC-based subtypes and also 

new molecular subtyping of our study. 

❖ RNA expression-based subtypes in muscle-invasive bladder cancer: unique and offer 

insights to biology and subtype specific treatment  

❖  novel molecular subtypes of MIBC: 3 clusters   

❖  Neoadjuvant chemotherapy and immunotherapy response: associated with each 

subtype and may provide insights into the mechanisms of treatment response >> further 

evaluation 

❖ Clinical trials validating predictive biomarkers: essential for precision medicine  

❖ a simplified four-gene signature: a practical, cost-effective platform to translational 

research  

❖  identifying 4 molecular subtypes (luminal, basal, mixed and double negative) 

❖  double negative molecular subtypes: worse bladder cancer-related mortality 
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     Appendix C 

 

Shell command:  Alignment and transcript count 

 

## STAR 1 PASS ## 

/home/user/software/STAR-2.7.8a/source/STAR \ 

--genomeDir ${reference_tcga}/human_grch38_star2.7.8 \ 

--readFilesIn ${out_trim}/${sample_name}_1_pair.fastq.gz 

${out_trim}/${sample_name}_2_pair.fastq.gz \ 

--runThreadN $NSLOTS \ 

--outFilterMultimapScoreRange 1 \ 

--outFilterMultimapNmax 20 \ 

--outFilterMismatchNmax 10 \ 

--alignIntronMax 500000 \ 

--alignMatesGapMax 1000000 \ 

--sjdbScore 2 \ 

--alignSJDBoverhangMin 1 \ 

--genomeLoad NoSharedMemory \ 

--readFilesCommand zcat \ 

--outFilterMatchNminOverLread 0.33 \ 

--outFilterScoreMinOverLread 0.33 \ 

--sjdbOverhang 100 \ 

--outSAMstrandField intronMotif \ 

--outSAMtype None \ 

--outSAMmode None \ 

--outFileNamePrefix ${out_align}/${sample_name}. 

 

 

## STAR GENOME GENERATE 

/home/user/software/STAR-2.7.8a/source/STAR \ 

--runMode genomeGenerate \ 

--genomeDir ${out_align}/genome \ 

--genomeFastaFiles ${reference_tcga}/GRCh38.d1.vd1.fa \ 

--sjdbOverhang 100 \ 

--runThreadN $NSLOTS \ 

--sjdbFileChrStartEnd ${out_align}/${sample_name}.SJ.out.tab \ 

--outFileNamePrefix ${out_align}/${sample_name}. 

 

 

## STAR 2 PASS  

/home/user/software/STAR-2.7.8a/source/STAR \ 

--genomeDir ${out_align}/genome \ 

--readFilesIn ${out_trim}/${sample_name}_1_pair.fastq.gz 

${out_trim}/${sample_name}_2_pair.fastq.gz \ 

--runThreadN $NSLOTS \ 

--outFilterMultimapScoreRange 1 \ 

--outFilterMultimapNmax 20 \ 

--outFilterMismatchNmax 10 \ 

--alignIntronMax 500000 \ 
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--alignMatesGapMax 1000000 \ 

--sjdbScore 2 \ 

--alignSJDBoverhangMin 1 \ 

--genomeLoad NoSharedMemory \ 

--limitBAMsortRAM 0 \ 

--readFilesCommand zcat \ 

--outFilterMatchNminOverLread 0.33 \ 

--outFilterScoreMinOverLread 0.33 \ 

--sjdbOverhang 100 \ 

--outSAMstrandField intronMotif \ 

--outSAMattributes NH HI NM MD AS XS \ 

--outSAMunmapped Within \ 

--outSAMtype BAM SortedByCoordinate \ 

--outSAMheaderHD @HD VN:1.4 \ 

--outSAMattrRGline ID:MIBC \ 

--outFileNamePrefix ${out_align}/${sample_name}. 

 

## HTseq count 

htseq-count \ 

-f bam \ 

-r name \ 

-s no \ 

-a 10 \ 

-t exon \ 

-i gene_id \ 

-m intersection-nonempty \ 

${out_align}/${sample_name}.Aligned.sortedByCoord.out.bam \ 

${reference_tcga}/gencode.v22.annotation.gtf > \ 

${out_count}/${sample_name}_htseq.count 
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R code for analysis 
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Appendix D 

 

R code for analysis 

##Load library 

library(data.table) 

library(DESeq2) 

 

library(ggplot2) 

 

library(dplyr) 

library(tidyverse) 

 

library(biomaRt) 

library(httr) 

 

library(ggvenn) 

 

library(enrichR) 

 

library(NMF) 

library(grid) 

library(gridExtra) 

library(ggrepel) 

 

library(ClusterR) 

 

library(survival) 

library(survminer) 

 

library(TCGAbiolinks) 

library(DT) 

library(TCGAutils) 

#BiocManager::install("") 

#install.packages("") 

library(pROC) 

###########################################################################

########################################### 

##Set directory 

setwd("~/bladder/DEG_2pass/use") 

##Load data 

list.files <- list.files(path = ".") 

##Get file name 

file_name <- NULL 

for (i in list.files) { 

  file_name <- c(file_name,gsub('*_htseq.count','\\1',i)) 

} 

rm(i) 

##Loop create data frame 
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i <- 1 

for (j in list.files ) { 

  if (i == 1) { 

    file <- fread(j,header = FALSE) 

    file <- file[-c(60484,60485,60486,60487,60488),] 

    gsub('*_htseq.count','\\1',j) 

    ## Add first sample 

    #read.counts <- data.frame(file$expected_count,row.names = file$gene_id) 

    read.counts <- data.frame(file$V2,row.names = file$V1) 

    colnames(read.counts) <- gsub('*_htseq.count','\\1',j) 

    ## Set condition 

    #sample.info <- data.frame(gsub('*_htseq.count','\\1',j),"normal") 

    sample.info <- data.frame(gsub('*_htseq.count','\\1',j),"cancer") 

    colnames(sample.info) <- c("name","condition") 

  } else { 

    ## Add another sample ## 

    file <- fread(j, header = FALSE) 

    file <- file[-c(60484,60485,60486,60487,60488),] 

    ## Set sample name ## 

    sample <- gsub('*_htseq.count','\\1',j) 

    ## Set condition 

    condition <- "cancer" 

    ## Insert sample to sample.info and read.counts ## 

    count <- data.frame(file$V2) 

    colnames(count) <- sample 

    info <- data.frame(sample,condition) 

    colnames(info) <- c("name","condition") 

    read.counts <- cbind(read.counts,count) 

    sample.info <- rbind(sample.info,info) 

  } 

  i <- i + 1 

} 

rm(count) 

rm(sample) 

rm(info) 

rm(condition) 

rm(i) 

rm(j) 

rm(file) 

###########################################################################

########################################### 

read.counts$gene_id <- rownames(read.counts) 

## Annotate with Ensemble gene symbol 

list <- NULL 

for (i in 1:nrow(read.counts) ) { 

  list <- c(list, unlist(strsplit(read.counts[i,"gene_id"], split = "[.]"))[1]) 

} 

read.counts$gene_id_new <- list 

##Annotate gene 

httr::set_config(httr::config(ssl_cipher_list = "DEFAULT@SECLEVEL=1")) 
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httr::set_config(httr::config(ssl_verifypeer = FALSE)) 

## Annotate gene name ## 

ensembl = useEnsembl(biomart = "ensembl", dataset = "hsapiens_gene_ensembl", 

mirror="uswest") 

genemap <- getBM( attributes = c("ensembl_gene_id", "entrezgene_id", 

                                 "hgnc_symbol", "external_gene_name", 

                                 "description", "chromosome_name", 

                                 "strand"), 

                  filters = "ensembl_gene_id", 

                  values = read.counts$gene_id_new, 

                  mart = ensembl) 

##Create gene filter data frame 

gene_filter <- genemap %>% filter(str_detect(genemap$description, "pseudogene") |  

                                    str_detect(genemap$description, "antisense")  | 

                                    str_detect(genemap$description, "long intergenic") ) 

##Remove column 

read.counts <- read.counts %>% dplyr::select(-c(gene_id,gene_id_new)) 

###########################################################################

########################################### 

##FILTER none mRNA gene 

read.counts.test <- read.counts 

colnames(read.counts.test) 

read.counts.test$gene_id <- rownames(read.counts.test) 

list <- NULL 

for (i in 1:nrow(read.counts.test) ) { 

  list <- c(list, unlist(strsplit(read.counts.test[i,"gene_id"], split = "[.]"))[1]) 

} 

read.counts.test$gene_id_new <- list 

genemap.test <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol"), 

                       filters = "ensembl_gene_id", 

                       values = read.counts.test$gene_id_new, 

                       mart = ensembl) 

read.counts.test <- read.counts.test %>% left_join(genemap.test, by = c("gene_id_new" = 

"ensembl_gene_id")) 

read.counts.test <- read.counts.test %>% filter( !(read.counts.test$gene_id_new %in% 

gene_filter$ensembl_gene_id) ) 

read.counts.test <- read.counts.test[!(is.na(read.counts.test$hgnc_symbol) | 

read.counts.test$hgnc_symbol==""), ] 

read.counts.test <- distinct_at(read.counts.test, vars(gene_id), .keep_all = TRUE) 

rownames(read.counts.test) <- read.counts.test$gene_id 

read.counts.test <- read.counts.test %>% dplyr::select(-

c(gene_id,gene_id_new,hgnc_symbol)) 

###########################################################################

########################################### 

## UNSUPERVISE CLUSTERING ## 

# With no condition # 

DESeq.ds.test <- DESeqDataSetFromMatrix(read.counts.test ,colData = sample.info,~ 1) 

## Include gene which counts more than 0 ##  

DESeq.ds.test <- DESeq.ds.test[ rowSums(counts(DESeq.ds.test)) > 10, ] #10 

## Calculate size factor of normalization counts ## 
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DESeq.ds.test <- estimateSizeFactors(DESeq.ds.test) 

## Normalization and Log2 transform by DESeq2 ## 

DESeq.rlog.test  <- vst(DESeq.ds.test , blind = TRUE) 

## Summarized object data to matrix ## 

rlog.norm.counts.test  <- assay(DESeq.rlog.test) 

rlog.norm.counts.test <- data.frame(rlog.norm.counts.test) 

 

rlog.norm.counts.test$gene_id <- rownames(rlog.norm.counts.test) 

## Annotate with Ensemble gene symbol 

list <- NULL 

for (i in 1:nrow(rlog.norm.counts.test) ) { 

  list <- c(list, unlist(strsplit(rlog.norm.counts.test[i,"gene_id"], split = "[.]"))[1]) 

} 

rlog.norm.counts.test$gene_id_new <- list 

## Connect http 

httr::set_config(httr::config(ssl_cipher_list = "DEFAULT@SECLEVEL=1")) 

httr::set_config(httr::config(ssl_verifypeer = FALSE)) 

## Annotate gene name ## 

ensembl = useEnsembl(biomart = "ensembl", dataset = "hsapiens_gene_ensembl", 

mirror="uswest") 

genemap <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol"), 

                  filters = "ensembl_gene_id", 

                  values = rlog.norm.counts.test$gene_id_new, 

                  mart = ensembl) 

rlog.norm.counts.test <- rlog.norm.counts.test %>% left_join(genemap, by = 

c("gene_id_new" = "ensembl_gene_id")) 

gene_id.test <- rlog.norm.counts.test$gene_id 

rlog.norm.counts.test  <- assay(DESeq.rlog.test) 

rlog.norm.counts.test <- data.frame(rlog.norm.counts.test) 

## ggplot2 box plot ## 

df_norm.counts.test <- list(counts = as.numeric(unlist(rlog.norm.counts.test)), group = 

sample.info$name) 

df_norm.counts.test <- data.frame(df_norm.counts.test) 

# Plot 

p <-  ggplot(df_norm.counts.test, aes(x = group, y = counts)) + 

  geom_boxplot(varwidth = FALSE, outlier.colour = "black", outlier.size = 1.5, outlier.stroke 

= 1, 

               outlier.shape = 1, notch = FALSE, 

               color="black", outlier.alpha = 1) + 

  theme(axis.title.x=element_blank(), axis.title.y=element_blank() ) + 

  theme_bw() + ggtitle("Normalized read counts") + ylab("log 2 read counts") + 

xlab("Sample") + 

  theme(axis.text.x = element_text(angle = -90, vjust = 0.5, hjust=0.5))+ 

  theme(legend.position="bottom", legend.box = "horizontal", plot.title = element_text(hjust 

= 0.5) ) 

p 

 

rlog.norm.counts.test[which(rlog.norm.counts.test$hgnc_symbol == "GATA3"),] 

 

#Silhouette analysis for identifying optimal cluster number 
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#repeat k-means for 1:20 and extract silhouette: 

sil <- rep(0, 20) 

for(i in 2:20){ 

  cluster <- kmeans(rlog.norm.counts.test, centers = i, nstart = 20, iter.max = 200) 

  ss <- silhouette(cluster$cluster, dist(rlog.norm.counts.test)) 

  sil[i] <- mean(ss[, 3]) 

   

} 

# Plot the  average silhouette width 

plot(1:20, sil, type = "b", pch = 19, xlab = "Number of clusters k", ylab="Average silhouette 

width") 

abline(v = which.max(sil), lty = 2) 

 

#ev <- c() 

#for (i in 1:20) { 

#  km <- kmeans(rlog.norm.counts.test, centers = i, nstart = 20, iter.max = 200) 

#  ev[i] <- sum(km$betweenss)/km$totss 

#} 

#plot(1:20, ev, col="red", lwd=2, type = "l", xlab = "Number of Clusters", ylab = "Explained 

Variance") 

 

## Elbow method 

set.seed(123) 

# function to compute total within-cluster sum of square  

wss <- function(k) { 

  kmeans(rlog.norm.counts.test, k, nstart = 20 )$tot.withinss 

} 

# Compute and plot wss for k = 1 to k = 15 

k.values <- 1:20 

# extract wss for 2-20 clusters 

wss_values <- map_dbl(k.values, wss) 

plot(k.values, wss_values, 

     type="b", pch = 19,  

     xlab="Number of clusters K", 

     ylab="Total within-clusters sum of squares") 

 

## Clustering 

#kmean1 <- KMeans_rcpp(data = t(rlog.norm.counts.test), clusters = 3, num_init = 200, 

max_iters = 100, seed = 590, 

#                     tol_optimal_init=1,initializer = "kmeans++") 

kmean <- KMeans_arma(data = t(rlog.norm.counts.test), clusters = 3, n_iter = 200, 

seed_mode = "random_subset",  

                     verbose = T, CENTROIDS = NULL, seed = 900) #900-950 

pr <- predict_KMeans(data = t(rlog.norm.counts.test), kmean) 

pr 

 

#list <- kmean$clusters 

#list 

#sample.info$cluster <- paste("cluster",kmean$clusters,sep = "") 

sample.info$cluster <- paste("cluster",pr,sep = "") 
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## Create PCA by ggplot2 ## 

df_pca <- prcomp(t(rlog.norm.counts.test)) #Transform data row->col 

df_out <- as.data.frame(df_pca$x) #Transform to data frame 

df_out$Cluster <- as.character(sample.info$cluster) #Add group 

pca <- ggplot(df_out, aes(x=PC1,y=PC2, color= Cluster,fill = Cluster, 

label=row.names(df_out)  )) + 

  geom_point(size = 2) + 

  theme_bw() + 

  ggtitle("Principle Component Analysis of MIBC mRNA expression classified by K-mean 

Clustering") + 

  geom_label_repel( 

    aes(label = rownames(df_out),fill = Cluster),  

    color = 'white',   

    size = 3.5, 

    max.overlaps = Inf, 

    segment.color = "grey50" 

  ) + 

  guides(fill = guide_legend(override.aes = aes(label = "")),color= "none") + 

  theme(legend.position="bottom", legend.box = "horizontal", plot.title = element_text(hjust 

= 0.5) )+ 

  scale_fill_discrete(name = "K-mean Clustering", labels = c("Cluster A", "Cluster 

B","Cluster C")) 

pca 

###########################################################################

########################################### 

## DIFFERENTIAL EXPRESSION BETWEEN CLUSTERS ## 

cluster_list <- list(c("cluster1","cluster2"),c("cluster2","cluster3"),c("cluster3","cluster1")) 

 

for (i in cluster_list) { 

  cluster_compare <- i[1] 

  cluster_base <- i[2] 

  #compare cluster 

  sample.compare<- subset(sample.info, cluster==cluster_compare|cluster==cluster_base) 

#####Edit cluster here 

  read.counts.compare <- read.counts.test[sample.compare$name] 

  DESeq.ds.compare <- DESeqDataSetFromMatrix(read.counts.compare ,colData = 

sample.compare,~ cluster) 

  DESeq.ds.compare <- DESeq.ds.compare[ rowSums(counts(DESeq.ds.compare)) > 10, ] 

  DESeq.ds.compare <- estimateSizeFactors(DESeq.ds.compare) 

  str(colData(DESeq.ds.compare)$cluster) 

  colData(DESeq.ds.compare)$cluster  <- relevel(colData(DESeq.ds.compare)$cluster , 

cluster_base) #####Edit cluster here 

  DESeq.ds.compare <- DESeq(DESeq.ds.compare) 

  ## Extract result ## 

  DGE.results.compare <- results(DESeq.ds.compare , independentFiltering = TRUE , alpha 

= 0.01) 

  DGE.results.compare <- data.frame(DGE.results.compare) 

  DGE.results.compare <- na.omit(DGE.results.compare) 

  DGE.results.compare$gene_id <- rownames(DGE.results.compare) 
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  ## Annotate with Ensemble gene symbol 

  list <- NULL 

  for (i in 1:nrow(DGE.results.compare) ) { 

    list <- c(list, unlist(strsplit(DGE.results.compare[i,"gene_id"], split = "[.]"))[1]) 

  } 

  DGE.results.compare$gene_id_new <- list 

  ## Connect http 

  httr::set_config(httr::config(ssl_cipher_list = "DEFAULT@SECLEVEL=1")) 

  httr::set_config(httr::config(ssl_verifypeer = FALSE)) 

  ## Annotate gene name ## 

  ensembl = useEnsembl(biomart = "ensembl", dataset = "hsapiens_gene_ensembl", 

mirror="uswest") 

  genemap <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol"), 

                    filters = "ensembl_gene_id", 

                    values = DGE.results.compare$gene_id_new, 

                    mart = ensembl) 

  DGE.results.compare <- DGE.results.compare %>% left_join(genemap, by = 

c("gene_id_new" = "ensembl_gene_id")) 

  DGE.results.compare <- DGE.results.compare[!(is.na(DGE.results.compare$hgnc_symbol) 

| DGE.results.compare$hgnc_symbol==""), ] 

   

  significant <- DGE.results.compare %>% mutate( 

    Expression = case_when(  

      DGE.results.compare$log2FoldChange > 2 & DGE.results.compare$padj < 0.05 ~ 

"upregulate", 

      DGE.results.compare$log2FoldChange < -2 & DGE.results.compare$padj < 0.05 ~ 

"downregulate", 

      (DGE.results.compare$log2FoldChange <= 2 & DGE.results.compare$log2FoldChange 

>= -2 ) | DGE.results.compare$padj >= 0.05 ~ "non-significant", 

      is.na(DGE.results.compare$padj) ~ "non-significant" ) )  

   

  object_name <- paste("plot",cluster_compare,sep = "_") 

  assign(object_name,significant) 

   

  object_name <- paste("significant",cluster_compare,sep = "_") 

  temp_df <- significant %>% filter(Expression != "non-significant") 

  assign(object_name,temp_df) #####Edit cluster here 

} 

significant_cluster1.sorted <- significant_cluster1[order(significant_cluster1$padj), ] 

significant_cluster2.sorted <- significant_cluster2[order(significant_cluster2$padj), ] 

significant_cluster3.sorted <- significant_cluster3[order(significant_cluster3$padj), ] 

DGEgenes.cluster1 <- subset(significant_cluster1.sorted[1:30,],) 

DGEgenes.cluster2 <- subset(significant_cluster2.sorted[1:30,],) 

DGEgenes.cluster3 <- subset(significant_cluster3.sorted[1:30,],) 

############################################################ 

# Plot 

MA <- ggplot(data = plot_cluster1, aes(x = baseMean, y = log2FoldChange, col=Expression) 

)+ 

  geom_point(aes(color=as.factor(Expression), fill=Expression), alpha=0.8, size=1.3) + 

  scale_x_log10() +  
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  ggtitle("MA plot of mRNA Expression of derived from MIBC") + 

  theme_bw() + 

  geom_hline(yintercept=c(-2.0, 2.0), col=" red",linetype = "dashed", size = 0.4) + 

  geom_label_repel( 

    data = plot_cluster1 %>% filter( hgnc_symbol %in% cluster_all_gene$hgnc_symbol ), 

    aes(x=baseMean, y=log2FoldChange,label = hgnc_symbol,fill=as.factor(Expression)), 

    color = 'white',  

    max.overlaps = Inf, 

    segment.color = "grey70", 

    size = 3, 

    box.padding = unit(0.35, "lines"), 

    point.padding = unit(0.3, "lines") 

  ) + 

  ylim(-15,15) + 

  guides(fill = guide_legend(override.aes = aes(label = "")),color="none") + 

  theme(legend.position="bottom", legend.box = "horizontal", plot.title = element_text(hjust 

= 0.5) ) + 

  scale_fill_discrete(name = "Significant Expression", labels = c("Downregulate", "Non-

Significant", "Upregulate")) 

MA 

 

plot.volcano <- na.omit(plot_cluster3) 

 

options(ggrepel.max.overlaps = Inf) ##Change ggrepel max overlap, it may notice when we 

have more data. 

 

volcano <-  ggplot(plot.volcano) + 

  geom_point(aes(x=log2FoldChange, y=-log10(padj), fill=Expression, color = Expression)) 

+ 

  ggtitle("Volcano plot of mRNA expression derived from MIBC") + 

  xlab("log2 fold change") +  

  ylab("-log10 adjusted p-value") + 

  theme_bw() + 

  geom_vline(xintercept=c(-2.0, 2.0), col=" red",linetype = "dashed", size = 0.4) + 

  geom_hline(yintercept=-log10(0.05), col=" red",linetype = "dashed", size = 0.4) + 

  geom_label_repel( 

    data = plot.volcano %>% filter( hgnc_symbol %in% cluster_all_gene$hgnc_symbol ), 

    aes(x=log2FoldChange, y=-log10(padj),label = hgnc_symbol,fill=Expression), 

    color = 'white',  

    max.overlaps = Inf, 

    segment.color = "grey70", 

    size = 3, 

    box.padding = unit(0.35, "lines"), 

    point.padding = unit(0.3, "lines") 

  ) + 

  guides(fill = guide_legend(override.aes = aes(label = "")),color="none") + 

  theme(legend.position="bottom", legend.box = "horizontal", plot.title = element_text(hjust 

= 0.5) ) + 

  scale_fill_discrete(name = "Significant Expression", labels = c("Downregulate", "Non-

Significant", "Upregulate")) + 
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  xlim(-10,10) 

volcano 

###########################################################################

########################################### 

#Subtract Gene 

#clusterA <- significant_cluster1$hgnc_symbol[!(significant_cluster1$hgnc_symbol  

#                                               %in% c(significant_cluster2$hgnc_symbol, 

significant_cluster3$hgnc_symbol))] 

#clusterB <- significant_cluster2$hgnc_symbol[!(significant_cluster2$hgnc_symbol  

#                                               %in% c(significant_cluster1$hgnc_symbol, 

significant_cluster3$hgnc_symbol))] 

#clusterC <- significant_cluster3$hgnc_symbol[!(significant_cluster3$hgnc_symbol  

#                                               %in% c(significant_cluster1$hgnc_symbol, 

significant_cluster2$hgnc_symbol))] 

 

clusterA <- significant_cluster1$hgnc_symbol 

clusterB <- significant_cluster2$hgnc_symbol 

clusterC <- significant_cluster3$hgnc_symbol 

## Enrichment Analysis ## 

dbs <- c("GO_Molecular_Function_2021", "GO_Cellular_Component_2021", 

"GO_Biological_Process_2021", 

         

"KEGG_2021_Human","Reactome_2016","Panther_2016","WikiPathway_2021_Human","B

ioCarta_2016") 

 

dbs <- "KEGG_2021_Human" 

for (i in c("clusterA","clusterB","clusterC") ) { 

  for (j in dbs) { 

    enriched <- enrichr(eval(as.symbol(i)), dbs) 

    object_name <- paste(i,"enrich",sep = "_") 

    temp_df <- enriched[[1]] 

    assign(object_name,temp_df) 

  } 

} 

 

for ( i in c("clusterA_enrich","clusterB_enrich","clusterC_enrich") ) { 

  column <- "Adjusted.P.value" 

  temp_df <- eval(as.symbol(i))[which( eval(as.symbol(i))[[column]] < 0.05  ),] 

  temp_df <- data.frame(temp_df) 

  temp_df <- temp_df %>% filter(str_detect(temp_df$Term, "pathway") ) 

  object_name <- paste(i,"pathway",sep = "_") 

  assign(object_name,temp_df) 

  temp_list <- unique(unlist(str_split(temp_df[["Genes"]], ";"))) 

  object_name <- paste(i,"gene",sep = "_") 

  assign(object_name,temp_list) 

} 

 

# Store value 

#x <- list( 

#  ClusterA = significant_cluster1$hgnc_symbol,  
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#  ClusterB = significant_cluster2$hgnc_symbol, 

#  ClusterC = significant_cluster3$hgnc_symbol 

#) 

x <- list("ClusterA-B" = clusterA_enrich_gene, 

          "ClusterB-C" = clusterB_enrich_gene, 

          "ClusterA-C" = clusterC_enrich_gene) 

## Venn diagram 

ggvenn( 

  x,  

  show_elements = FALSE, 

  fill_color = c("#E69F00", "#56B4E9", "#009E73"), 

  fill_alpha = 0.3, 

  stroke_color = "black", 

  stroke_size = 0,  

  set_name_size = 5, 

  text_size = 4 

) 

## Plot p value 

#_________ installing Packages 

#install.packages("ggplot2", dependencies = TRUE) 

#install.packages("gridExtra", dependencies = TRUE) 

 

#--------- loading lib 

library("ggplot2") 

library("gridExtra") 

 

#Saving in png 

#png("ggplot2sizing.png",height=400,width=850) 

 

#df=data.frame(dOut_x,dOut_y,d_pvalue) 

 

head(clusterA_enrich_pathway) 

 

colnames(clusterA_enrich_pathway) 

 

clusterA_enrich_pathway$Overlap.gene <- clusterA_enrich_pathway$Overlap %>% 

str_match_all("[0-9]+") %>% data.frame() %>% .[1,] %>% unlist  %>% as.numeric 

clusterB_enrich_pathway$Overlap.gene <- clusterB_enrich_pathway$Overlap %>% 

str_match_all("[0-9]+") %>% data.frame() %>% .[1,] %>% unlist  %>% as.numeric 

clusterC_enrich_pathway$Overlap.gene <- clusterC_enrich_pathway$Overlap %>% 

str_match_all("[0-9]+") %>% data.frame() %>% .[1,] %>% unlist  %>% as.numeric 

 

#Graph3 with scale_color_gradien :: log10 

ggplot(data=clusterA_enrich_pathway, aes(x=Odds.Ratio,y=Term, size=Overlap.gene, 

color=Adjusted.P.value))+ 

  geom_point(alpha=0.4)+scale_colour_gradientn(colours=rainbow(5))+ 

  scale_size(range = c(2, 15), name="Overlap genes") + 

  theme_bw() + 

  labs(title = "Cluster A pathway enrichment", x= "Odds ratio", y= "Term", color = "Adjusted 

P-value",plot.title = element_text(hjust = 0.5)) 
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ggplot(data=clusterB_enrich_pathway, aes(x=Odds.Ratio,y=Term, size=Overlap.gene, 

color=Adjusted.P.value))+ 

  geom_point(alpha=0.4)+scale_colour_gradientn(colours=rainbow(5))+ 

  scale_size(range = c(2, 15), name="Overlap genes") + 

  theme_bw() + 

  labs(title = "Cluster B pathway enrichment", x= "Odds ratio", y= "Term", color = "Adjusted 

P-value",plot.title = element_text(hjust = 0.5)) 

 

ggplot(data=clusterC_enrich_pathway, aes(x=Odds.Ratio,y=Term, size=Overlap.gene, 

color=Adjusted.P.value))+ 

  geom_point(alpha=0.4)+scale_colour_gradientn(colours=rainbow(5))+ 

  scale_size(range = c(2, 15), name="Overlap genes") + 

  theme_bw() + 

  labs(title = "Cluster C pathway enrichment", x= "Odds ratio", y= "Term", color = "Adjusted 

P-value",plot.title = element_text(hjust = 0.5)) 

 

###########################################################################

########################################### 

## REVALIDATE ## 

#read.counts.filter <- read.counts.test 

#colnames(read.counts.filter) 

#read.counts.filter$gene_id <- rownames(read.counts.filter) 

#list <- NULL 

#for (i in 1:nrow(read.counts.filter) ) { 

#  list <- c(list, unlist(strsplit(read.counts.filter[i,"gene_id"], split = "[.]"))[1]) 

#} 

#read.counts.filter$gene_id_new <- list 

 

#genemap.filter <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol"), 

#                         filters = "ensembl_gene_id", 

#                         values = read.counts.filter$gene_id_new, 

#                         mart = ensembl) 

#read.counts.filter <- read.counts.filter %>% left_join(genemap.filter, by = c("gene_id_new" 

= "ensembl_gene_id")) 

#read.counts.filter <- read.counts.filter %>% filter( !(read.counts.filter$gene_id_new %in% 

gene_filter$ensembl_gene_id) ) 

#read.counts.filter <- read.counts.filter %>% filter( hgnc_symbol %in% 

c(clusterA_enrich_gene,clusterA_enrich_gene,clusterB_enrich_gene ) ) 

#read.counts.filter <- read.counts.filter[!(is.na(read.counts.filter$hgnc_symbol) | 

read.counts.filter$hgnc_symbol==""), ] 

#read.counts.filter <- distinct_at(read.counts.filter, vars(gene_id), .keep_all = TRUE) 

#rownames(read.counts.filter) <- read.counts.filter$gene_id 

#read.counts.filter <- read.counts.filter %>% dplyr::select(-

c(gene_id,gene_id_new,hgnc_symbol)) 

######################################################## 

# import 

#DESeq.ds.filter <- DESeqDataSetFromMatrix(read.counts.filter ,colData = sample.info,~ 1) 

## Include gene which counts more than 0 ##  

#DESeq.ds.filter <- DESeq.ds.filter[ rowSums(counts(DESeq.ds.filter)) > 10, ] 
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## Calculate size factor of normalization counts ## 

#DESeq.ds.filter <- estimateSizeFactors(DESeq.ds.filter) 

## Normalization and Log2 transform by DESeq2 ## 

#DESeq.rlog.filter  <- varianceStabilizingTransformation(DESeq.ds.filter , blind = TRUE) 

## Summarized object data to matrix ## 

#rlog.norm.counts.filter  <- assay(DESeq.rlog.filter) 

#rlog.norm.counts.filter <- data.frame(rlog.norm.counts.filter) 

 

 

# Do K-mean Clustering 

#kmean <- KMeans_rcpp(t(rlog.norm.counts.filter), clusters = 2, num_init = 5, max_iters = 

100, initializer = "random") 

#list <- kmean$clusters 

#list 

sample.info$cluster_filter <- paste("cluster",kmean$clusters,sep = "") 

 

## Create PCA by ggplot2 ## 

#df_pca <- prcomp(t(rlog.norm.counts.filter)) #Transform data row->col 

#df_out <- as.data.frame(df_pca$x) #Transform to data frame 

#df_out$Cluster <- as.character(sample.info$condition) #Add group 

#df_out$Cluster <- as.character(sample.info$cluster_filter) #Add group 

 

#pca <- ggplot(df_out, aes(x=PC1,y=PC2, color= Cluster,fill = Cluster, 

label=row.names(df_out)  )) + 

#  geom_point(size = 2) + 

#  theme_bw() + 

#  ggtitle("Principle Component Analysis of MIBC mRNA expression classified by K-mean 

Clustering") + 

#  geom_label_repel( 

#    aes(label = rownames(df_out),fill = Cluster),  

#    color = 'white',   

#    size = 3.5, 

#    max.overlaps = Inf, 

#    segment.color = "grey50" 

#  ) + 

#  guides(fill = guide_legend(override.aes = aes(label = "")),color= "none") + 

#  theme(legend.position="bottom", legend.box = "horizontal", plot.title = element_text(hjust 

= 0.5) )+ 

#  scale_fill_discrete(name = "K-mean Clustering", labels = c("Cluster A", "Cluster 

B","Cluster C")) 

#pca 

###########################################################################

########################################### 

## GET TCGA DATA 

setwd("~/bladder/tcga") 

# RAW 

query <- GDCquery( 

  project = "TCGA-BLCA",  

  data.category = "Transcriptome Profiling",  

  data.type = "Gene Expression Quantification",  
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  workflow.type = "HTSeq - Counts" 

) 

# FPKM 

#query <- GDCquery( 

#  project = "TCGA-BLCA", 

#  data.category = "Transcriptome Profiling",  

#  data.type = "Gene Expression Quantification",  

#  workflow.type = "HTSeq - FPKM" 

#) 

GDCdownload(query, method = "api", files.per.chunk = 5) 

data <- GDCprepare(query) 

metadata <- getManifest(query) 

sample <- as.data.frame(colData(data)) 

colnames(metadata) 

head(sample) 

sample[1,"treatments"] 

# column paper_mRNA.cluster paper_Histologic.subtype paper_Histologic.grade 

# paper_AJCC.Tumor.category paper_Lymphovascular.invasion paper_AJCC.LN.category 

paper_Number.of.LNs.examined paper_AJCC.metastasis.category 

# paper_Tumor.category.12.vs..34 paper_LN.negative.vs..positive 

paper_Combined.T.and.LN.category 

 

# Find barcode and file name 

barcode <-UUIDtoBarcode(metadata$id, from_type = "file_id") ## 

metadata$barcode <- barcode$associated_entities.entity_submitter_id ## 

# Subset TCGA data 

sample.df <- data.frame(sample$barcode, sample$ajcc_pathologic_stage, 

sample$ajcc_pathologic_t, sample$ajcc_pathologic_n , 

                        sample$ajcc_pathologic_m , sample$days_to_last_follow_up,  

                        sample$gender, sample$age_at_diagnosis,sample$vital_status ) 

 

colnames(sample.df) <- 

c("barcode","ajcc_pathologic_stage","ajcc_pathologic_t","ajcc_pathologic_n","ajcc_patholog

ic_m", 

                         "days_to_last_follow_up","gender","age_at_diagnosis","vital_status") 

metadata.new <- metadata %>% dplyr::select(barcode,filename) 

sample.df <- sample.df %>% left_join(metadata.new, by = c("barcode" = "barcode")) 

#select only MIBC 

 

mibc <- sample.df[which( sample$primary_diagnosis == "Transitional cell carcinoma" &  

                           ( sample$ajcc_pathologic_t == "T2" | sample$ajcc_pathologic_t == "T2a" | 

sample$ajcc_pathologic_t == "T2b" | 

                            sample$ajcc_pathologic_t == "T3" | sample$ajcc_pathologic_t == "T3a" | 

sample$ajcc_pathologic_t == "T3b" | 

                            sample$ajcc_pathologic_t == "T4" | sample$ajcc_pathologic_t == "T4a" | 

sample$ajcc_pathologic_t == "T4b" ) ),] 

mibc$cluster 

mibc <- na.omit(mibc) 

 

## make temp df 



 

 

 

119 

temp.sample <- data.frame(sample$barcode, sample$paper_mRNA.cluster, 

sample$paper_Histologic.subtype,  

                          sample$paper_Histologic.grade, sample$paper_Lymphovascular.invasion) 

colnames(temp.sample) <- c("barcode","tcga_cluster","subtype","grade","invasion") 

temp.sample$tcga_cluster 

 

## merge some data 

mibc <- mibc %>% left_join(temp.sample, by = c("barcode" = "barcode")) 

 

mibc <- mibc %>% mutate(tcga_cluster_modify = case_when(mibc$tcga_cluster == 

"Basal_squamous" ~"Basal",  

                                                        mibc$tcga_cluster == "Luminal_infiltrated" |  

mibc$tcga_cluster == "Luminal_papillary" |  mibc$tcga_cluster == "Luminal" ~"Luminal", 

                                                        mibc$tcga_cluster == "Neuronal" ~"Neuronal")) 

 

mibc <- mibc %>% mutate(cluster_filter_modify = case_when(mibc$cluster_filter == 

"cluster1" ~"Cluster A",  

                                                          mibc$cluster_filter == "cluster2" ~"Cluster B", 

                                                          mibc$cluster_filter == "cluster3" ~"Cluster C")) 

 

mibc <- mibc %>% mutate(ajcc_pathologic_t_modify = case_when(mibc$ajcc_pathologic_t 

== "T2"|mibc$ajcc_pathologic_t == "T2a"|mibc$ajcc_pathologic_t == "T2b" ~"T2",  

                                                             mibc$ajcc_pathologic_t == 

"T3"|mibc$ajcc_pathologic_t == "T3a"|mibc$ajcc_pathologic_t == "T3b" ~"T3", 

                                                             mibc$ajcc_pathologic_t == 

"T4"|mibc$ajcc_pathologic_t == "T4a"|mibc$ajcc_pathologic_t == "T4b" ~"T4")) 

 

#mibc <- mibc %>% dplyr::select(-mibc) 

 

mibc$filename <- gsub('*.gz','\\1',mibc$filename) 

mibc <- mibc %>% mutate(status = case_when(mibc$vital_status == "Alive" ~0, 

mibc$vital_status == "Dead" ~1,mibc$vital_status == "Not Reported" ~1)) 

###########################################################################

########################################### 

# Clinical graph 

colnames(mibc) 

#> colnames(mibc) 

#[1] "barcode"                "ajcc_pathologic_stage"  "ajcc_pathologic_t"      

"ajcc_pathologic_n"      "ajcc_pathologic_m"      "days_to_last_follow_up" 

#[7] "gender"                 "age_at_diagnosis"       "vital_status"           "filename"               

"cluster_filter"         "tcga_cluster"           

#[13] "subtype"                "grade"                  "invasion"               "tcga_cluster_modify"    

"cluster_filter_modify" 

 

#summ(mibc$days_to_last_follow_up/365, by=mibc$cluster_filter_modify) 

 

#tabpct(mibc$invasion ,mibc$cluster_filter_modify) 

 

 

## Cluster VS Cluster 
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cluster_tcga <- na.omit(mibc) %>% 

  group_by(cluster_filter_modify, tcga_cluster_modify) %>% 

  dplyr::summarize(n = n()) %>%  

  mutate(pct = n/sum(n), 

         lbl = scales::percent(pct)) 

cluster_tcga 

 

ggplot(cluster_tcga,  

       aes(x = cluster_filter_modify, 

           fill = tcga_cluster_modify, 

           y = pct 

           ))  +  

  geom_bar(stat = "identity", 

           position = "fill") + 

  scale_fill_brewer(palette = "Set2") + 

  scale_y_continuous(breaks = seq(0, 1, .2),labels = scales::percent) + 

  geom_text(aes(label = lbl),  

            size = 3,  

            position = position_stack(vjust = 0.5)) + 

  labs(y = "Percent",  

       fill = "TCGA classfication", 

       x = "K-mean clustering", 

       title = "Cumulative MIBC cases by K-mean clustering", 

       subtitle = "Classified by mRNA TCGA classification") + 

  theme_minimal() 

 

## ajcc_pathologic_T_stage 

ajcc_pathologic_stage <- na.omit(mibc) %>% 

  group_by(cluster_filter_modify, ajcc_pathologic_stage) %>% 

  dplyr::summarize(n = n()) %>%  

  mutate(pct = n/sum(n), 

         lbl = scales::percent(pct)) 

ajcc_pathologic_stage 

 

ggplot(ajcc_pathologic_stage,  

       aes(x = cluster_filter_modify, 

           fill = ajcc_pathologic_stage, 

           y = pct 

       ))  +  

  geom_bar(stat = "identity", 

           position = "fill") + 

  scale_fill_brewer(palette = "Accent") + 

  scale_y_continuous(breaks = seq(0, 1, .2),labels = scales::percent) + 

  geom_text(aes(label = lbl),  

            size = 3,  

            position = position_stack(vjust = 0.5)) + 

  labs(y = "Percent",  

       fill = "AJCC pathologic T stage", 

       x = "K-mean clustering", 

       title = "Cumulative MIBC cases by K-mean clustering", 
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       subtitle = "Classified by AJCC pathologic T stage") + 

  theme_minimal() 

 

## ajcc_pathologic_n_stage 

ajcc_pathologic_n <- na.omit(mibc) %>% 

  group_by(cluster_filter_modify, ajcc_pathologic_n) %>% 

  dplyr::summarize(n = n()) %>%  

  mutate(pct = n/sum(n), 

         lbl = scales::percent(pct)) 

ajcc_pathologic_n 

 

ggplot(ajcc_pathologic_n,  

       aes(x = cluster_filter_modify, 

           fill = ajcc_pathologic_n, 

           y = pct 

       ))  +  

  geom_bar(stat = "identity", 

           position = "fill") + 

  scale_fill_brewer(palette = "Accent") + 

  scale_y_continuous(breaks = seq(0, 1, .2),labels = scales::percent) + 

  geom_text(aes(label = lbl),  

            size = 3,  

            position = position_stack(vjust = 0.5)) + 

  labs(y = "Percent",  

       fill = "AJCC pathologic N stage", 

       x = "K-mean clustering", 

       title = "Cumulative MIBC cases by K-mean clustering", 

       subtitle = "Classified by AJCC pathologic N stage") + 

  theme_minimal() 

 

## ajcc_pathologic_m 

ajcc_pathologic_m <- na.omit(mibc) %>% 

  group_by(cluster_filter_modify, ajcc_pathologic_m) %>% 

  dplyr::summarize(n = n()) %>%  

  mutate(pct = n/sum(n), 

         lbl = scales::percent(pct)) 

ajcc_pathologic_m 

 

ggplot(ajcc_pathologic_m,  

       aes(x = cluster_filter_modify, 

           fill = ajcc_pathologic_m, 

           y = pct 

       ))  +  

  geom_bar(stat = "identity", 

           position = "fill") + 

  scale_fill_brewer(palette = "Accent") + 

  scale_y_continuous(breaks = seq(0, 1, .2),labels = scales::percent) + 

  geom_text(aes(label = lbl),  

            size = 3,  

            position = position_stack(vjust = 0.5)) + 
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  labs(y = "Percent",  

       fill = "AJCC pathologic M stage", 

       x = "K-mean clustering", 

       title = "Cumulative MIBC cases by K-mean clustering", 

       subtitle = "Classified by AJCC pathologic M stage") + 

  theme_minimal() 

 

 

## invasion 

invasion <- na.omit(mibc) %>% 

  group_by(cluster_filter_modify, invasion) %>% 

  dplyr::summarize(n = n()) %>%  

  mutate(pct = n/sum(n), 

         lbl = scales::percent(pct)) 

invasion 

 

ggplot(invasion,  

       aes(x = cluster_filter_modify, 

           fill = invasion, 

           y = pct 

       ))  +  

  geom_bar(stat = "identity", 

           position = "fill") + 

  scale_fill_brewer(palette = "Set1") + 

  scale_y_continuous(breaks = seq(0, 1, .2),labels = scales::percent) + 

  geom_text(aes(label = lbl),  

            size = 3,  

            position = position_stack(vjust = 0.5)) + 

  labs(y = "Percent",  

       fill = "Lymphovascular invasion", 

       x = "K-mean clustering", 

       title = "Cumulative MIBC cases by K-mean clustering", 

       subtitle = "Classified by lymphovascular invasion")+ 

  theme_minimal() 

 

 

ggplot(na.omit(mibc),  

       aes(x = cluster_filter_modify,  

           fill = gender)) +  

  geom_bar(position = "fill") + 

  labs(y = "Proportion") 

 

###########################################################################

########################################### 

# Get expression from TCGA file 

list_gene <- row.names(read.counts) 

#file <- fread("0a1b146d-7b9f-4382-9cfc-c187fafbb47c.htseq.counts") 

#file <- subset(file, file$V1 %in% list_gene) 

##Loop create data frame 

setwd("~/bladder/tcga/GDCdata/TCGA-BLCA") 
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i <- 1 

for (j in mibc$filename ) { 

  #j <- "74fa890a-d4e6-4718-959a-2b2c125c892e.FPKM.txt" 

  if (i == 1) { 

    file <- fread(j) 

    file <- subset(file, file$V1 %in% list_gene) 

    #gsub('*.genes.results','\\1',j) 

    ## Add first sample 

    read.counts.tcga <- data.frame(as.numeric(format(file$V2,scientific = FALSE),row.names 

= file$V1) ) 

    colnames(read.counts.tcga) <- mibc$barcode[which(mibc$filename==j)] 

    ## Set condition 

    #sample.info <- data.frame(gsub('*.genes.results','\\1',j),"normal") 

    sample.info.tcga <- data.frame(mibc$barcode[which(mibc$filename==j)],"cancer") 

    colnames(sample.info.tcga) <- c("name","condition") 

    row.names(read.counts.tcga) <- file$V1 

  } else { 

    ## Add another sample ## 

    file <- fread(j) 

    file <- subset(file, file$V1 %in% list_gene) 

    ## Set sample name ## 

    sample <- mibc$barcode[which(mibc$filename==j)] 

    ## Set condition 

    if (i >= 2) { 

      condition <- "cancer" 

    } else { 

      condition <- "cancer" 

    } 

    ## Insert sample to sample.info and read.counts ## 

    count <- data.frame(as.numeric(format(file$V2,scientific = FALSE) ) ) 

    colnames(count) <- sample 

    info <- data.frame(sample,condition) 

    colnames(info) <- c("name","condition") 

    read.counts.tcga <- cbind(read.counts.tcga,count) 

    sample.info.tcga <- rbind(sample.info.tcga,info) 

  } 

  i <- i + 1 

} 

rm(count) 

rm(sample) 

rm(info) 

rm(condition) 

rm(i) 

rm(j) 

rm(file) 

###########################################################################

########################################### 

# Discard non mRNA gene 

read.counts.tcga.test <- read.counts.tcga 

colnames(read.counts.tcga.test) 
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read.counts.tcga.test$gene_id <- rownames(read.counts.tcga.test) 

list <- NULL 

for (i in 1:nrow(read.counts.tcga.test) ) { 

  list <- c(list, unlist(strsplit(read.counts.tcga.test[i,"gene_id"], split = "[.]"))[1]) 

} 

read.counts.tcga.test$gene_id_new <- list 

 

genemap.test <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol"), 

                       filters = "ensembl_gene_id", 

                       values = read.counts.tcga.test$gene_id_new, 

                       mart = ensembl) 

read.counts.tcga.test <- read.counts.tcga.test %>% left_join(genemap.test, by = 

c("gene_id_new" = "ensembl_gene_id")) 

read.counts.tcga.test <- read.counts.tcga.test %>% filter( !(read.counts.tcga.test$gene_id_new 

%in% gene_filter$ensembl_gene_id) ) 

read.counts.tcga.test <- read.counts.tcga.test[!(is.na(read.counts.tcga.test$hgnc_symbol) | 

read.counts.tcga.test$hgnc_symbol==""), ] 

read.counts.tcga.test <- distinct_at(read.counts.tcga.test, vars(gene_id), .keep_all = TRUE) 

rownames(read.counts.tcga.test) <- read.counts.tcga.test$gene_id 

read.counts.tcga.test <- read.counts.tcga.test %>% dplyr::select(-

c(gene_id,gene_id_new,hgnc_symbol)) 

###########################################################################

########################################### 

## VALIDATE IN TCGA ## 

read.counts.tcga.test <- read.counts.tcga 

colnames(read.counts.tcga.test) 

read.counts.tcga.test$gene_id <- rownames(read.counts.tcga.test) 

list <- NULL 

for (i in 1:nrow(read.counts.tcga.test) ) { 

  list <- c(list, unlist(strsplit(read.counts.tcga.test[i,"gene_id"], split = "[.]"))[1]) 

} 

read.counts.tcga.test$gene_id_new <- list 

 

genemap.test <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol"), 

                       filters = "ensembl_gene_id", 

                       values = read.counts.tcga.test$gene_id_new, 

                       mart = ensembl) 

read.counts.tcga.test <- read.counts.tcga.test %>% left_join(genemap.test, by = 

c("gene_id_new" = "ensembl_gene_id")) 

read.counts.tcga.test <- read.counts.tcga.test %>% filter( !(read.counts.tcga.test$gene_id_new 

%in% gene_filter$ensembl_gene_id) ) 

read.counts.tcga.test <- read.counts.tcga.test %>% filter( read.counts.tcga.test$gene_id %in% 

gene_id.test ) 

read.counts.tcga.test <- read.counts.tcga.test[!(is.na(read.counts.tcga.test$hgnc_symbol) | 

read.counts.tcga.test$hgnc_symbol==""), ] 

read.counts.tcga.test <- distinct_at(read.counts.tcga.test, vars(gene_id), .keep_all = TRUE) 

rownames(read.counts.tcga.test) <- read.counts.tcga.test$gene_id 

read.count.tcga.gene <- read.counts.tcga.test %>% 

dplyr::select(gene_id,gene_id_new,hgnc_symbol) 
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read.counts.tcga.test <- read.counts.tcga.test %>% dplyr::select(-

c(gene_id,gene_id_new,hgnc_symbol)) 

# import 

DESeq.ds.test.tcga <- DESeqDataSetFromMatrix(read.counts.tcga.test ,colData = 

sample.info.tcga,~ 1) 

## Include gene which counts more than 0 ##  

#DESeq.ds.test.tcga <- DESeq.ds.test.tcga[ rowSums(counts(DESeq.ds.test.tcga)) > 0, ] 

## Calculate size factor of normalization counts ## 

DESeq.ds.test.tcga <- estimateSizeFactors(DESeq.ds.test.tcga) 

## Normalization and Log2 transform by DESeq2 ## 

DESeq.rlog.test.tcga  <- varianceStabilizingTransformation(DESeq.ds.test.tcga , blind = 

TRUE) 

## Summarized object data to matrix ## 

rlog.norm.counts.test.tcga  <- assay(DESeq.rlog.test.tcga) 

rlog.norm.counts.test.tcga <- data.frame(rlog.norm.counts.test.tcga) 

 

head(rlog.norm.counts.test.tcga) 

 

## violin plot expression by gene 

rlog.norm.counts.test.tcga$gene_id <- rownames(rlog.norm.counts.test.tcga) 

list <- NULL 

for (i in 1:nrow(rlog.norm.counts.test.tcga) ) { 

  list <- c(list, unlist(strsplit(rlog.norm.counts.test.tcga[i,"gene_id"], split = "[.]"))[1]) 

} 

rlog.norm.counts.test.tcga$gene_id_new <- list 

 

rlog.norm.counts.test.tcga <- rlog.norm.counts.test.tcga %>% left_join(genemap.test, by = 

c("gene_id_new" = "ensembl_gene_id")) 

 

rlog.norm.counts.test.tcga[which(rlog.norm.counts.test.tcga$hgnc_symbol == "KRT56"),] 

 

tcga_ihc <- 

data.frame(t(rlog.norm.counts.test.tcga[which(rlog.norm.counts.test.tcga$hgnc_symbol == 

"GATA3"| 

                                                          rlog.norm.counts.test.tcga$hgnc_symbol == "KRT14"| 

                                                          rlog.norm.counts.test.tcga$hgnc_symbol == "KRT5"| 

                                                          rlog.norm.counts.test.tcga$hgnc_symbol == "KRT20"| 

                                                          rlog.norm.counts.test.tcga$hgnc_symbol == "SNCA"| 

                                                          rlog.norm.counts.test.tcga$hgnc_symbol == "CD274" 

),1:231])) 

colnames(tcga_ihc) <- c("GATA3","KRT14","KRT5","KRT20","SNCA","CD274") 

 

tcga_ihc$cluster <- as.factor(mibc$cluster_filter_modify) 

 

for( i in 1:6) { 

  #i <- 2 

  plot_gene <- colnames(tcga_ihc[i]) 

  #plot_gene <- "GATA3" 

  plot_name <- paste0("Expression of ",plot_gene," by K-mean cluster") 

  plot_temp_df <- data.frame(tcga_ihc[[i]],tcga_ihc$cluster) 
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  colnames(plot_temp_df) <- c("rlog","cluster") 

  plot_temp <- ggplot(plot_temp_df, aes(x=cluster, y=rlog, fill=cluster)) +  

    geom_violin(trim=FALSE)+ 

    geom_boxplot(width=0.1, fill="white")+ 

    labs(title=plot_name,x="K-mean clustering", y = "Log 2 normalized count") + 

    scale_fill_brewer(palette="Dark2") + 

    theme_minimal() + 

    theme(legend.position="bottom", legend.box = "horizontal", plot.title = element_text(hjust 

= 0.5) ) 

  assign(plot_gene,plot_temp) 

} 

 

#pr <- predict_KMeans(t(rlog.norm.counts.test.tcga), kmean$centroids) 

 

pr = predict_KMeans(data = t(rlog.norm.counts.test.tcga), kmean) 

 

#kmean <- KMeans_rcpp(data = t(rlog.norm.counts.test.tcga), clusters = 3, num_init = 100, 

max_iters = 100, seed = 100, 

#                     tol_optimal_init=0.8,initializer = "kmeans++") 

 

## Create PCA by ggplot2 ## 

df_pca <- prcomp(t(rlog.norm.counts.test.tcga)) #Transform data row->col 

df_out <- as.data.frame(df_pca$x) #Transform to data frame 

df_out$Cluster <- paste("cluster",pr,sep = "") #Add group 

#df_out$Cluster <- paste("cluster",kmean$clusters,sep = "") 

 

pca <- ggplot(df_out, aes(x=PC1,y=PC2, color= Cluster,fill = Cluster, 

label=row.names(df_out)  )) + 

  geom_point(size = 2) + 

  theme_bw() + 

  ggtitle("Principle Component Analysis of TCGA MIBC mRNA expression classified by K-

mean Clustering") + 

  theme(legend.position="bottom", legend.box = "horizontal", plot.title = element_text(hjust 

= 0.5) ) 

pca 

###########################################################################

########################################### 

read.counts.filter.tcga <- read.counts.tcga 

colnames(read.counts.filter.tcga) 

read.counts.filter.tcga$gene_id <- rownames(read.counts.filter.tcga) 

list <- NULL 

for (i in 1:nrow(read.counts.filter.tcga) ) { 

  list <- c(list, unlist(strsplit(read.counts.filter.tcga[i,"gene_id"], split = "[.]"))[1]) 

} 

read.counts.filter.tcga$gene_id_new <- list 

 

genemap.filter.tcga <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol"), 

                              filters = "ensembl_gene_id", 

                              values = read.counts.filter.tcga$gene_id_new, 

                              mart = ensembl) 
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read.counts.filter.tcga <- read.counts.filter.tcga %>% left_join(genemap.filter.tcga, by = 

c("gene_id_new" = "ensembl_gene_id")) 

read.counts.filter.tcga <- read.counts.filter.tcga %>% filter( 

!(read.counts.filter.tcga$gene_id_new %in% gene_filter$ensembl_gene_id) ) 

read.counts.filter.tcga <- read.counts.filter.tcga %>% filter( hgnc_symbol %in% 

c(clusterA_enrich_gene,clusterA_enrich_gene,clusterB_enrich_gene ) ) 

read.counts.filter.tcga <- read.counts.filter.tcga[!(is.na(read.counts.filter.tcga$hgnc_symbol) | 

read.counts.filter.tcga$hgnc_symbol==""), ] 

read.counts.filter.tcga <- distinct_at(read.counts.filter.tcga, vars(gene_id), .keep_all = TRUE) 

rownames(read.counts.filter.tcga) <- read.counts.filter.tcga$gene_id 

read.counts.filter.tcga <- read.counts.filter.tcga %>% dplyr::select(-

c(gene_id,gene_id_new,hgnc_symbol)) 

# import 

DESeq.ds.filter.tcga <- DESeqDataSetFromMatrix(read.counts.filter.tcga ,colData = 

sample.info.tcga,~ 1) 

## Include gene which counts more than 0 ##  

DESeq.ds.filter.tcga <- DESeq.ds.filter.tcga[ rowSums(counts(DESeq.ds.filter.tcga)) > 100, ] 

## Calculate size factor of normalization counts ## 

DESeq.ds.filter.tcga <- estimateSizeFactors(DESeq.ds.filter.tcga) 

## Normalization and Log2 transform by DESeq2 ## 

DESeq.rlog.filter.tcga  <- varianceStabilizingTransformation(DESeq.ds.filter.tcga , blind = 

TRUE) 

## Summarized object data to matrix ## 

rlog.norm.counts.filter.tcga  <- assay(DESeq.rlog.filter.tcga) 

rlog.norm.counts.filter.tcga <- data.frame(rlog.norm.counts.filter.tcga) 

 

pr <- predict_KMeans(t(rlog.norm.counts.filter.tcga), kmean$centroids) 

sample.info.tcga$cluster <- paste("cluster",pr,sep = "") 

 

 

 

 

## Create PCA by ggplot2 ## 

df_pca <- prcomp(t(rlog.norm.counts.filter.tcga)) #Transform data row->col 

df_out <- as.data.frame(df_pca$x) #Transform to data frame 

df_out$Cluster <- as.character(pr) #Add group 

 

pca <- ggplot(df_out, aes(x=PC1,y=PC2, color= Cluster,fill = Cluster, 

label=row.names(df_out)  )) + 

  geom_point(size = 2) + 

  theme_bw() + 

  ggtitle("Principle Component Analysis of MIBC mRNA expression classified by K-mean 

Clustering") + 

  theme(legend.position="bottom", legend.box = "horizontal", plot.title = element_text(hjust 

= 0.5) ) 

pca 

###########################################################################

########################################### 

## Survival analysis 

colnames(mibc) 
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mibc$cluster_filter <- sample.info.tcga$cluster 

#mibc$cluster_filter <- paste("cluster",kmean$clusters,sep = "") 

 

mibc <- mibc %>% mutate(duration5 = ifelse(days_to_last_follow_up <=1825, 

days_to_last_follow_up, 1825)) 

mibc <- mibc %>% mutate(status5 = ifelse(days_to_last_follow_up <=1825, status, 0)) 

 

#surv_object <- Surv(time = mibc$days_to_last_follow_up, event = mibc$status) 

surv_object <- Surv(time = mibc$days_to_last_follow_up, event = mibc$status) 

fit2 <- survfit(surv_object ~cluster_filter , data = mibc) 

ggsurvplot(fit2, data = mibc, pval = TRUE,legend.title="") 

 

survplot <- ggsurvplot( 

  fit2,                      

  data = mibc,  

  risk.table = TRUE,  

  pval = TRUE, 

  pval.method=TRUE, 

  pval.coord = c(750, 0.075), 

  pval.method.coord = c(750, 0.15), 

  conf.int = T, 

  risk.table.y.text.col = TRUE, 

  legend.labs=c("Cluster A", "Cluster B", "Cluster C"),   

  size=0.7,                     

  xlim = c(0,1825), # 

  #alpha=c(0.4), 

  conf.int.alpha=c(0.1), 

  break.x.by = 300,     

  xlab="Days of follow-up", 

  ylab="Probability of native liver survival",              

  surv.median.line = "hv", 

  ylim=c(0,1), 

  surv.scale="percent", 

  tables.col="strata", 

  risk.table.col = "strata", 

  risk.table.y.text = FALSE, 

  tables.y.text = FALSE, 

  legend.title="K-mean Cluster", 

  palette = "Dark2") 

survplot$plot <- survplot$plot + labs( 

  title    = "Kaplan-Meier of MIBC derived from TCGA", 

  subtitle = "Classified by K-mean clustering" 

) + theme(plot.title = element_text(hjust = 0.5),plot.subtitle = element_text(hjust = 0.5)) 

survplot 

###########################################################################

########################################### 

## ROC gene expression with cluster 

DGEgenes.cluster1 

DGEgenes.cluster2 

DGEgenes.cluster3 
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clusterA_enrich_gene 

 

clusterA_unique_gene <- clusterA_enrich_gene[!(clusterA_enrich_gene %in% 

c(clusterB_enrich_gene,clusterC_enrich_gene))] 

clusterB_unique_gene <- clusterB_enrich_gene[!(clusterB_enrich_gene %in% 

c(clusterA_enrich_gene,clusterC_enrich_gene))] 

clusterC_unique_gene <- clusterC_enrich_gene[!(clusterC_enrich_gene %in% 

c(clusterA_enrich_gene,clusterB_enrich_gene))] 

 

cluster_all_gene <- clusterA_enrich_gene[which( (clusterA_enrich_gene %in% 

clusterB_enrich_gene) & 

                                                  (clusterA_enrich_gene %in% clusterC_enrich_gene) )] 

 

cluster_all_gene <- data.frame(cluster_all_gene) 

colnames(cluster_all_gene) <- "hgnc_symbol" 

cluster_all_gene <- cluster_all_gene %>% left_join(read.count.tcga.gene, by = 

c("hgnc_symbol" = "hgnc_symbol") ) 

cluster_all_gene$hgnc_symbol 

 

clusterA_unique_gene <- data.frame(clusterA_unique_gene) 

colnames(clusterA_unique_gene) <- "hgnc_symbol" 

clusterA_unique_gene <- clusterA_unique_gene %>% left_join(read.count.tcga.gene, by = 

c("hgnc_symbol" = "hgnc_symbol") ) 

clusterA_unique_gene$hgnc_symbol 

 

clusterB_unique_gene <- data.frame(clusterB_unique_gene) 

colnames(clusterB_unique_gene) <- "hgnc_symbol" 

clusterB_unique_gene <- clusterB_unique_gene %>% left_join(read.count.tcga.gene, by = 

c("hgnc_symbol" = "hgnc_symbol") ) 

clusterB_unique_gene$hgnc_symbol 

 

clusterC_unique_gene <- data.frame(clusterC_unique_gene) 

colnames(clusterC_unique_gene) <- "hgnc_symbol" 

clusterC_unique_gene <- clusterC_unique_gene %>% left_join(read.count.tcga.gene, by = 

c("hgnc_symbol" = "hgnc_symbol") ) 

clusterC_unique_gene$hgnc_symbol 

 

cluster_list <- list(c("cluster1","cluster2"),c("cluster2","cluster3"),c("cluster3","cluster1")) 

 

plot_list <- list() 

auc_score <- list() 

temp_df <- cluster_all_gene ## change here 

for (i in temp_df$gene_id) { 

  rocobj <- list() 

  auc <- list() 

  for (j in cluster_list) { 

    cluster_compare <- j[1] 

    cluster_base <- j[2] 

    gene.name <- temp_df$hgnc_symbol[which(temp_df$gene_id == i)] 
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    gene.id <- temp_df$gene_id_new[which(temp_df$gene_id == i)] 

    roc.gene <- i 

    roc.expression <- data.frame(t(rlog.norm.counts.test.tcga[roc.gene,])) 

    roc.expression$cluster <- sample.info.tcga$cluster 

    colnames(roc.expression) <- c("gene","cluster") 

    roc.expression <- roc.expression %>% filter(cluster == cluster_base | cluster == 

cluster_compare) 

     

    rocobj[[cluster_compare]] <- roc(roc.expression$cluster,roc.expression$gene) 

    auc[[cluster_compare]] <- round(auc(roc.expression$cluster,roc.expression$gene),3) 

  } 

  #create ROC plot 

  plot_list[[i]] <- ggroc(rocobj, size = 1) + 

    ggtitle(paste0(gene.name,' (',gene.id, ')')) + 

    theme_bw() + 

    labs(color='Cluster') + 

    theme(plot.title = element_text(hjust = 0.5) ) + 

    annotate("text", x=0.5, y=0.05, label=paste( "AUC:",auc[1],",",auc[2],",",auc[3] ) ) 

  auc_score[[i]] <- auc 

} 

auc_score <- data.frame(matrix(unlist(auc_score), nrow=length(auc_score), byrow=TRUE), 

                        row.names = temp_df$hgnc_symbol) 

colnames(auc_score) <- c("cluster1","cluster2","cluster3") 

 

grid.arrange(grobs=plot_list[1:16],ncol=4, newpage = TRUE) 

grid.arrange(grobs=plot_list[17:32],ncol=4, newpage = TRUE) 

grid.arrange(grobs=plot_list[33:37],ncol=4, newpage = TRUE) 

 

grid.arrange(grobs=plot_list,ncol=4, newpage = TRUE) 

 

##Check pathway 

dbs <- "KEGG_2021_Human" 

enriched <- enrichr(cluster_all_gene$hgnc_symbol, dbs) 

temp_df <- enriched[[1]] 

temp_df <- temp_df %>% filter(str_detect(temp_df$Term, "pathway") ) 

###########################################################################

########################################### 

## ROC gene expression with clinical data 

plot_list <- list() 

auc_score <- list() 

temp_df <- cluster_all_gene ## change here 

mibc <- mibc %>% mutate(adjust_pN = case_when(mibc$ajcc_pathologic_n == "N0" ~ 0,  

                                              mibc$ajcc_pathologic_n != "N0" ~1)) 

mibc <- mibc %>% mutate(adjust_pT = case_when(mibc$ajcc_pathologic_t == "T2" | 

mibc$ajcc_pathologic_t == "T2a" | mibc$ajcc_pathologic_t == "T2b" ~ 0,  

                                              mibc$ajcc_pathologic_t != "T2" & mibc$ajcc_pathologic_t != 

"T2a" & mibc$ajcc_pathologic_t != "T2b" ~ 1 )) 

factor_base <- "T2" 

factor_compare <- "T4" 

for (i in temp_df$gene_id) { 
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  #i <- "ENSG00000087258.12" 

  rocobj <- list() 

  auc <- list() 

  gene.name <- temp_df$hgnc_symbol[which(temp_df$gene_id == i)] 

  gene.id <- temp_df$gene_id_new[which(temp_df$gene_id == i)] 

  roc.gene <- i 

  roc.expression <- data.frame(t(rlog.norm.counts.test.tcga[roc.gene,])) 

  roc.expression$factor <- mibc$ajcc_pathologic_t 

  colnames(roc.expression) <- c("gene","factor") 

  roc.expression <- roc.expression %>% filter(factor %like% factor_base | factor %like% 

factor_compare) 

  roc.expression <- roc.expression %>% mutate(factor = case_when(roc.expression$factor 

%like% factor_base ~ 0,  

                                                                 roc.expression$factor %like% factor_compare ~1)) 

  rocobj <- roc(roc.expression$factor,roc.expression$gene) 

  auc <- round(auc(roc.expression$factor,roc.expression$gene),3) 

   

  #create ROC plot 

  plot_list[[i]] <- ggroc(rocobj, size = 1) + 

    ggtitle(paste0(gene.name,' (',gene.id, ')')) + 

    theme_bw() + 

    labs(color='factor') + 

    theme(plot.title = element_text(hjust = 0.5) ) + 

    annotate("text", x=0.5, y=0.05, label=paste( "AUC:",auc ) ) 

  auc_score[[i]] <- auc 

} 

grid.arrange(grobs=plot_list[1:16],ncol=4, newpage = TRUE) 

grid.arrange(grobs=plot_list[17:32],ncol=4, newpage = TRUE) 

grid.arrange(grobs=plot_list[33:37],ncol=4, newpage = TRUE) 

 

auc_score <- data.frame(matrix(unlist(auc_score), nrow=length(auc_score), byrow=TRUE), 

                        row.names = temp_df$hgnc_symbol) 

 

colnames(auc_score) <- c("cluster1","cluster2","cluster3") 
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