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ABSTRACT

Abstract

Purpose

Recently discovered molecular classifications for urothelial bladder cancer appeared to
be promising prognostic and predictive biomarkers. It is a major challenge for clinical work to
study the molecular subtypes of BC. Outcome of bladder cancer (BC) treatment still need
establish and explored the molecular subtypes of bladder cancer and potential clusters. The
present study was conducted to evaluate the prognostic impact of molecular subtypes assessed
by mRNA expression in a consecutively collected, mono-institutional muscle-invasive bladder
cancer (MIBC) cohort, performed by unsupervised clustering and validate subtypes of our
institutional cohort with data from The Cancer Genome Atlas (TCGA) and possible to correlate
the mRNA expression with tumor molecular subtype membership. Our overall goal was to
determine whether mRNA expression have shown significant difference in specific molecular
subtypes and correlation with clinical outcomes. Molecular subtyping of muscle-invasive
bladder cancer (MIBC) predicts disease progression and treatment response. However, present
subtyping techniques are based primarily on transcriptomic analysis, which is relatively
expensive. Subtype classification of protein levels by immunohistochemistry (IHC) are more
affordable and feasible to perform in a general pathology laboratory. Recent data demonstrated
that GATAS3, CK20, CK5/6, and CK14 protein levels were correlated with MIBC molecular
subtypes. We aimed to evaluate the correlation of those IHC markers with survival outcomes
after radical cystectomy in Thai patients. Moreover, we aim to evaluate molecular subtypings

by mRNA expression analysis.



viii

Method

30 MIBC were pathologically re-evaluated and molecular subtypes were assessed on
MRNA. Fresh-frozen primary tumor samples from a single cohort in Songklanagarind hospital
who underwent radical cystectomy between 2015 and 2020. First, we screened the expression
profiles of differentially genes expression and of BC by comparing DEG and principle
component analysis with K-mean clustering. Moreover, external validation set from the Cancer
Genome Atlas (TCGA) database was done by using significant gene expression. We used the
complete TCGA dataset with our subtype gene expression and assign TCGA’s bladder cancers
to molecular subtypes. Taken together, we explored the molecular subtypes and their outcome
treatment of BC. Institutional cohort (n= 30 MIBC) and The Cancer Genome Atlas (TCGA)-
dataset (n=231 MIBC) were subtyped using unsupervised genes and analyzed for predicting of
survival, cancer-specific survival (CSS), overall-survival (OS), and recurrence—free survival
(RFS). Moreover, we evaluated the IHC-based subtypes in MIBC, as classified by GATAS,
CK20, CK5/6, and CK14 expression in 132 MIBC patients who underwent radical cystectomy
followed by adjuvant chemotherapy (2008-2016). All individual markers and
clinicopathological parameters were analyzed against treatment outcomes after radical
cystectomy and some selected tissues were sent for whole transcriptome sequencing and

clustering from mRNA expression.

Result

Unsupervised consensus hierarchical clustering applied to gene expression data and
identified 3 molecular subtypes. These subtypes were associated with distinct
clinicopathological characteristics and molecular expression. The clustering was validated in
the TCGA dataset. We identified different clinical characteristics and identified 3 molecular
subtypes MIBC specimens from cohort dataset successfully. In multivariable analyses, N-
stage, T-stage, M-stage and/or age predicted CSS/OS and/or cisplatin- based adjuvant-
chemotherapy response. In the TCGA-dataset, publications report that subtypes risk-stratify
patients for OS. For IHC study section, the result showed that the mean patient age was 65.6
years, and the male to female ratio was 6.8:1. Positive IHC expression rates of GATA3, CK20,
CK5/6, and CK14 were 80.3%, 50.8%, 42.4%, and 28.0%, respectively. The 5-year overall
survival (OS) was 27.0% (95% confidence interval (CI) 19.6%-35.0%). Only GATAS3 and
CK5/6 were significantly associated with survival outcome (log-rank p-values = 0.004 and
0.02). GATA3 and CK5/6 were then used to establish subtypes, which were luminal (GATA+



and CK5/6—, 38.6%), basal (GATA— and CK5/6+, 12.9%), mixed (GATA+ and CK5/6+,
37.9%), and double-negative (GATA— and CK5/6—, 10.6%). Patients with the mixed subtype
had a significantly better 5-year OS at 42.8%, whereas patients with the double-negative
subtype had the worst prognosis among the four groups (5-year OS 7.14%). In the multivariable
analysis, lymph node status and subtype independently predicted survival probability. The
double-negative subtype had a hazard ratio of 3.29 (95% CI 1.71-6.32).

Conclusion

The results further reinforce the conclusion that the molecular subtypes of bladder
cancer are distinct disease entities with specific molecular subtype. In our cohorts/subtyping-
classifications, clinical and novel molecular subtypes for predicting outcome of treatment. For
immunohistochemistry subtyping using GATA3 and CK5/6 was applicable in MIBCs, and
patients with the double-negative subtype were at the highest risk and may require more
intensive therapy and mRNA subtyping by mRNA expression must showed the significant

relationship with survival rate.
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CHAPTER 1

Introduction

1.1 Background and Rationale

The new cases of bladder cancer (BCa) increase by more than 500,000 per year and the
deaths caused by BCa increase by approximately 200,000 per year (1,2). Traditionally, based
on the degree of invasion in the bladder muscle wall, BC can be classified into either non-
muscle invasive (NMIBC) or muscle invasive (MIBC) and also be divided pathologically into
high-grade (HG) or low-grade (LG) tumors. HG tumors are poorly differentiated and LG
tumors are usually well-differentiated, Urothelial carcinoma (UC) is a cancer that arises from
the epithelial lining of the bladder wall. Basal stem cells at the stromal interface self-renew and
make intermediate and superficial/umbrella cells to maintain and regenerate functioning
urothelium, according to well-established differentiation research. Although the majority of
urothelial cancers do not reach the submucosal stroma (lamina propria) or bladder wall
(muscularis propria), those that do can have a wide range of histologic features, clinical

outcomes, and molecular profiles (8).

The treatment outcomes are diverse for different BCa patients, especially muscle-
invasive BCa (MIBC) (3). Result of treatment in our published radical cystectomy cohort
included 111 MIBC patients reported the 5-year cancer-specific survival rate was only 36%.
Of several factors examined, univariate analysis identified tumor stage, nodal status,
metastasis, margin positive and lymphovascular invasion (LV1) as significant predictors of OS,
of which tumor stage and nodal status appeared to be independently related to overall survival

on multivariate analysis (4). However, personalized treatment of each patient need



development for improve survival of patient. Molecular subtyping has been purposed for

classified and specified treatment option in each subtype.

Predicting response to available peri-operative treatment and developing novel methods
of targeting invasive bladder cancers are two areas of intense research where molecular
profiling is thought to be useful. The availability of diagnostic trans-urethral resection of
bladder tumor (TURBT) specimens before radical surgery allows molecular profiling to

potentially assist patient decisions about surgery and neoadjuvant treatment (8).

There were previously five major subtyping classification systems: LUND, UROMOL,
The Cancer Genome Atlas (TCGA), The University of North Carolina (UNC), and the MD
Anderson Cancer Center (MDACC). These five subtyping classification systems not only
evolved independently, but each taxonomy's nomenclature differs from the others (5-10). Until
now, there is no consistent risk stratification for BCa. Before having radical cystectomy,
patients with MIBC are usually treated with neoadjuvant chemotherapy (NAC) (11). Immune
checkpoint inhibitors (ICI) or other novel drugs guided by biomarkers, such as targeted

treatments, are commonly used to treat locally progressed and metastatic illness (12-21).

The genetic categorization of urothelial carcinoma tumors may provide important
information for stratifying prognostically significant groups or determining the best treatment
for a specific patient (15,22). The development of a molecular taxonomy for bladder cancer is
possibly the most exciting and major therapeutic discovery in decades. MIBC was also
separated into two primary molecular subgroups, luminal and basal, utilizing advanced
approaches comparable to those used in breast cancer research (5,7,9,23-27). According to
reports, there are considerable differences in prognosis and responsiveness to current therapy
between these two broad categories, with the basal subtype being more aggressive than the

luminal subtype (5,9,26,28,29). Many molecularly defined groups are now accessible due to



differences in approach and interpretation of previous findings (7,8,10,15,22,30-35). Figure 1

shows how bladder cancer molecular classifications have changed over time.
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Figure 1. Evolving schemes of molecular classification of urothelial carcinoma of the

bladder.

Despite recent agreement on several molecular subtypes, molecular categorization
remains a complicated, expensive, and infrequently available technology (10,36-39).
However, the recent introduction of gene expression analysis offers an alternative method for
molecular subtyping, with the potential benefit of decreased analysis costs and the production
of accurate gene classifiers with clinical relevance (33,40). Thus, a study examining novel
subtypes in the context of urothelial carcinoma's molecular taxonomy using mRNA and
immunohistochemistry (IHC) would be relevant and beneficial in terms of developing less
expensive and repeatable tools for investigating the molecular classification of urothelial
bladder carcinoma. As a result, molecular subtypes provide a context that connects tumor
biology to the ability to affect and stratify patients in order to improve oncological outcomes.
The goal of this study was to see how far molecular profiling had progressed in muscle-invasive

bladder cancer. We hope to present a description of molecular subtypes, an enumeration of



promising targeted therapeutics, and a vision of how molecular subtypes could be incorporated
in routine pathology for the healthcare professional who diagnoses or treats bladder cancer. We
also want to learn more about fundamental molecular pathology studies and how to interpret

molecular subtypes in tissue samples with the cellular diversity of invasive bladder tumors.

1.2 Research Questions

1.2.1 Can we perform molecular subtyping of muscle invasive bladder cancer by mRNA

expression and immunohistochemistry?

1.2.2 What is the impact of molecular subtyping in muscle invasive bladder cancer on

predicting survival and response of treatment?

1.3 Hypotheses

1.3.1 Molecular subtypes of the muscle-invasive bladder have different expressions in

MRNA and protein level.

1.3.2 Molecular subtypes of bladder cancer can predict the outcome and survival of

treatment.

Our study aimed to study NGS-genomic/transcriptomic profiling used to generate
molecular data in bladder cancer and provide clinically meaningful datasets for the molecular
classification of bladder cancer. For IHC, our study generated a four-gene classifier,
incorporating GATA3 and CK20 (typically related to luminal molecular subtype) and CK5/6
and CK14 (typically related to basal molecular subtype). This methodology allowed us to
explore differences in clinicopathological parameters and potential sensitivities to treatment in
urothelial carcinomas of bladder patients. The purpose of this study was to use IHC to identify

molecular subgroups in four distinct MIBC cohorts and to investigate their link to prognosis



and treatment results. We expected that IHC will uncover significant groups of tumors that
mimic known molecular subtypes and have relevant clinical relationships, with patients with
Basal or double negative subtypes having worse outcomes than patients with the other subtype.
Moreover, we performed a transcriptomic study of MIBC to perform the unsupervised
clustering of the novel molecular subtypes and validate with TCGA, different molecular

subtypes impact survival.

1.4 Objectives

1.4.1 Primary objective

%+ To cluster the novel molecular subtypes by transcriptomic profiling and evaluate
clinically significant of data of MIBC

% To validate the subtypes with TCGA dataset

1.4.2 Secondary objective

% To use the 4 markers (GATAS3, CK5/6, CK14 and CK20) classified into molecular

subtypes and evaluate the clinically significant of MIBC patients

1.5 Literature review

1.5.1 Gene expression profiling of bladder cancer

A significant difficulty in molecular oncology is interpreting the cumulative biological
effect of the many genetic abnormalities and dysregulated cellular processes observed in each
given tumor. The RNA transcriptome serves as a link between the molecular foundations and
the cellular phenotype, and as such, global gene expression profiling is one of the most

powerful methods available for biological characterization. Early research in bladder cancer



demonstrated that low-grade NMIBC and MIBC could be separated by their gene expression
patterns. Numerous studies provided mRNA expression profiles with purported clinical
prognostic value, such as predicting overall survival, disease-free survival, or progression;
nevertheless, these signatures are difficult to test in independent datasets, frequently
performing no better than chance. Perou and Srlie pioneered the use of hierarchical clustering
to deduce unique molecular subgroups exhibiting distinct gene expression patterns associated
with a range of biological activities and pathways, exhibited a correlation with pathogenic

factors such as ERBB2 and ESR1 expression and shown survival differences (41).

1.5.2 Molecular classification of MIBC

The molecular characterisation of MIBC has been a major focus of recent bladder
cancer research. Internal subtypes with intriguing prognostic and predictive capabilities have
been discovered by large-scale mMRNA profiling studies (5,6,9). These subgroups are analogous
to those observed in breast cancer, for which a basal-luminal molecular categorization scheme
identifying five subtypes has been devised (41-43). These subgroups have been defined as key
components of breast cancer treatment stratification due to their prognostic and predictive
relationships. University of North Carolina (UNC) researchers discovered basal-luminal
differentiation of tumors as a critical axis that contributes to the formation of two separate main
subtypes of MIBC (44). Following this, genomic and proteomic tumor profiling have resulted
in the development of a succession of revised and overlapping subtyping taxonomies for
bladder cancer subtyping, with UNC, MD Anderson University (MDA), The Cancer Genome
Atlas (TCGA), and Lund University pioneering these efforts. All of these subtyping approaches
have in common the identification of luminal-like and non-luminal-like (basal-like) subtypes
at the highest hierarchical level, corresponding to differential paths of urothelial differentiation

(45). Thus, while the various taxonomies for subtyping were devised independently, they all



agree on the identification of basal and luminal subtypes that can be divided from three to seven
groupings. Notably, these subtypes have exhibited disparities in clinical outcomes, with basal
subtype cancers being more aggressive and having a poor prognosis, whereas patients with
luminal subtype tumors had an improved overall survival (5,6,45). Each taxonomy's
subcategories also have specific prognostic connections. While each of these classifications
gives valuable insight into the genetic variety and clinical behavior of these malignancies,
discrepancies in these taxonomies due to methodological variances in subtyping have limited
the impact of this work. The varied nomenclatures, definitions, and distinctions in subtyping
taxonomies, as well as their clinical importance, have hampered the interpretation of this data.
Thus, in 2019, key leaders from each of these groups collaborated to develop a consensus
methodology and taxonomy for subtyping, pooling transcriptomic data from 1750 patients to
delineate six consensus subtypes: luminal-papillary, luminal-unstable, luminal-unspecified,

basal-squamous, and stroma-rich. (10). (Fig. 2)
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Figure 2. Comparative analysis of urothelial cancer molecular subtyping schemes. UNC =
Univesity of North Carolina group; MDA = MD Anderson group, TCGA = The Cancer
Genome Atlas; Lund, The Lund Bladder Cancer Research group. URO = Urothilial-like; GU
= Genomically Unstable; Ing. = Infiltrated; Mes = Mesenchymal-like; Basal/SCCL =
Basal/Squamous Cell Carcinoma-like; NE-like = Small-cell/Neuroendocrine-like; LumP =
luminal papillary; LumU = luminal unstable; LumNS = luminal non-specified (10,26).

The substantial effort necessary to classify MIBCs into distinct categories is
unsurprising, given their high biological heterogeneity, which may be a result of their high
mutation rates - one of the highest of all human malignancies (44). In general, UC develops
via one of two mutually exclusive genetic pathways: the Fibroblast Growth Factor Receptor 3
(FGFR3)/Cyclin D1 (CCND1) system or the E2F Transcription Factor 3
(E2F3)/Retinoblastoma (RB1) pathway (47,48). Lower stage and grade tumors have been
linked to mutations in the FGFR3/CCND1 pathway. These tumors are defined by
hyperactivation of FGFR3, overexpression of CCNDL1, and deletions of genes on 9p and 9q,
including the cyclin-dependent kinase inhibitor (CDKNZ2A) gene, which produces the pl16
protein (47). Tumors with a higher stage or grade have been documented to have mutations in
the E2F2/RB1 pathway, as well as increased CDKN2A expression. Whichever of these two
routes is disrupted contributes to a tumor's molecular landscape, with changes in either pathway

determining molecular subtypes. Across all categorization schemes, widely classified luminal

MIBC tumors are enriched for mutations in FGFR3, uroplakins, KRT20, ERBB2, and CCND1,



as well as differentiation markers forkhead box Al (FOXA1) and GATA-binding protein 3
(GATAB3) (5,6,9). Whereas basal cancers exhibit basal differentiation-associated cytokeratins
such as KRT5, KRT6, and KRT14, as well as CD44 and CDH3. Enrichment of Epidermal

Growth Factor Receptor (EGFR) mutations further characterizes basal cancers (10,49).

1.5.3 Transcriptional regulation of bladder cancer subtypes

Divergent differentiation is a well-known characteristic of urothelial malignancies, as
seen by the range of subtypes reported. Corruption of the normal urothelial stratification and
differentiation regulatory pathways appears to be at the root of various molecular subtypes.
PPARG, FOXAL, and GATAS3, as well as other key transcription factors involved in the
development and differentiation of normal urothelium, have been repeatedly demonstrated to
be defining factors in tumor subtypes that retain some degree of normal urothelial
differentiation or expression of urothelial markers, whereas their loss is strongly associated
with non-urothelial-like subtypes. Similarly, retinoic acid (RA) signaling is a critical
component of urothelial development, and dysregulations of this signaling have been observed
in bladder cancer proliferator-activated receptor (PPAR) proteins from heterodimers with
retinoid X receptor (RXR) proteins, as well as the expression pattern of several genes involved
in ligand shuttling to these nuclear hormone receptor dimers (e.g. FABP4, FABP5, and
CRABP2) EGFR, in future research, in BaSg-like cancers. Both retinoic acid receptors (RAR)
and peroxisome, STAT3, and Np63 appear to be significant drivers of the observed expression
patterns that exhibit subtype-specific expression. The interaction of hedgehog proteins (SHH,
IHH, and DHH), fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPS),
WNTSs, GLIs, HOX, and TBF-signaling is well researched in embryonic biology, where
gradient expression and feedback loops are crucial for organ formation. When studying

components of these pathways, one cannot rely merely on gene expression from a tumor
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biopsy, since the spatial arrangement of signaling gradients and interaction between stratified
urothelium and stroma is critical and must be taken into account. Each of the regulatory
components listed in this section has been thoroughly investigated in both normal and cancer
environments; nevertheless, a comprehensive understanding of how they each contribute to the
molecular biology of bladder cancer is still lacking. It will be critical to appropriately evaluate
the dysregulation seen in cancer. Numerous components of the hedgehog indicate that

knowledge of the bladder's natural embryonic biology has been included (41).

1.5.4 Prognostic and predictive associations of MIBC subtypes

The connections between molecular subtypes and prognosis and response to therapy
suggest that subtyping has a wide range of clinical uses (5,6,13,22,26,50). Several
therapeutically meaningful correlations have been postulated by various organizations based
on these various taxonomies; however, these need to be validated further. As a result,
determining a uniform, high-throughput subtyping process would speed up the identification
and confirmation of these applications. In the end, this simplified process would make

molecular subtyping for patient stratification more realistic for doctors.

The first of these potential uses is the use of systemic medicines such as NACT, which
should ideally be prioritized for patients who are at high risk. Molecular subtypes of the Lund
taxonomy, as well as other subtyping methods, have been shown to have strong predictive
value. In terms of prognosis, luminal cancers have a better overall survival rate than their more
aggressive basal counterparts (5,6,44). One of the most appealing uses of bladder cancer
subtyping is the development of a predictive biomarker for treatment response (6,22,25,26,50).
A number of studies have found that patients with the Basal/SCCL subtype benefit more from
treatment (6,22,25,26,50). Notably, Seiler et al. demonstrated that NACT treatment improves

the prognosis of basal malignancies from the worst to the best, but patients with luminal
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tumours experienced no change in survival (26). In a clinical trial conducted in 2016,
McConkey and colleagues found that 90 percent of patients with bladder cancer of the basal
subtype received a 5-year survival benefit from NACT, compared to 70 percent of patients with
bladder cancer of the luminal subtype (22). Numerous studies have now corroborated these
findings in relation to NACT, demonstrating benefits for the basal subtype in terms of survival
or pathologic response (10,50). However, a new multi-omics study by Taber and colleagues
has found that the basal subtype is linked to poor NAC response as measured by pathologic
response, directly contradicting previous research (51). Taber et al. show that immunological
infiltration and genomic instability caused by a large number of chromosomal abnormalities
and/or BRCA2 mutations are linked to treatment response in this study (51). Although
basal/luminal subtyping has been linked to NACT response and survival outcomes, recent

contradictory data suggest that more research is needed to fully understand these interactions.

Another potentially intriguing application of these molecular groupings is the
occurrence of targetable mutations in specific subtypes, which suggests the possibility of
stratifying patients for targeted therapy based on their subtype. Uro malignancies, which are
enriched for FGFR3 activating mutations, and Basal/SCCL cancers, which are enriched for
EGFR mutations, could be appealing targets for targeted FGFR3 and EGFR inhibitors,
respectively (10,25). Furthermore, recent research has revealed that certain MIBC subtypes are
linked to immune checkpoint blockade response or response biomarkers (13,32,52).
Mariathasan et al. discovered an enrichment in the GU subtype for patients responding to the
anti-PD-L1 (programmed death-ligand 1) drug atezolizumab (52). Following anti-PD1
treatment with pembrolizumab, Necchi et al. discovered that basal tumors with high

immunological scores have the highest 2-year progression-free survival (13).
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Overall, MIBC subgroups have shown a multitude of connections with prognosis,
targetable changes, and medication responsiveness, providing a viable route for improving
patient treatment stratification. Despite their importance in stratifying patients for NACT,
targeted treatment, and ICB, these findings need to be validated in retrospective and clinical
trial research. Importantly, a consistent, clinically practical, and robust methodology for
identifying these MIBC subtypes is required to both determine these relationships and ease

their clinical adoption.

1.5.5 Immunohistochemistry-based profiling

Despite advancements in bladder cancer categorization, large-scale transcriptome
investigations and insights from genetic subtyping have proven minimal benefit to patients.
Biomarkers of prognosis or chemotherapeutic response, as well as basal/luminal profiling of
bladder cancer, have yet to be used in clinical practice and play no role in treatment decision-
making. The intricacy of RNA-based profiling approaches, which are expensive and time-
consuming, has hampered implementation. This has made it difficult to construct a single,
consistent, and straightforward methodology for determining the clinical consequences of
various subtypes. Furthermore, infiltrative signals from benign stromal and immunological
cells have caused confusion and discordance among subtyping systems that use this
methodology. As a result, a number of studies have demonstrated the efficacy of IHC in
identifying tumor intrinsic molecular subgroups (5,24,25,30,53). IHC has the limitation of
often only looking at one gene product (protein) per sample, which pales in comparison to
transcriptome profiling, which may look at up to 40,000 transcripts per sample. IHC, on the
other hand, has the advantage of being a simple, clinically available instrument that
pathologists utilize on a regular basis, and it is now widely employed in the clinical diagnosis

and prognosis of a range of malignancies. IHC also avoids the drawbacks of transcriptome
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profiling, which does not distinguish between cancer cells and non-cancer cells. IHC allows
pathologists to distinguish and analyse signals from only the tumor cells of interest when

evaluating protein expression.

As a result, recent research has focused on confirming IHC-based bladder cancer
subtypes by identifying putative proteome characteristics that distinguish subtype. Several of
these studies use basal-luminal transcriptome profiling of MIBCs and IHC to confirm
subtyping. Many of the luminal markers FOXAL, GATAS3, and KRT20, as well as basal
markers KRT5 and KRT14 for defining basal-luminal subtypes, are recapitulated in the Lund
group's tumor cell phenotypic classifications (30,32,34,54). GATA3 and KRT5
immunohistochemistry have been discovered as the two best indicators for distinguishing
between basal and luminal cancers with over 90% accuracy (30,34), and p16 expression as a

marker for identifying GU cancers by distinguishing between luminal subtypes (55).

However, none of these studies employing IHC to validate subtype identification define
luminal tumor subtypes, such as the GU subtype reported by the Lund taxonomy. Furthermore,
many of these address the links between transcriptome and IHC phenotypes, highlighting
significant aspects, but do not provide a step-by-step approach for using these stains to identify

subtypes (25).

In our cohort translated these findings and methods into a 4-antibody, which uses
antibodies against GATA3, CK5/6, CK 14 and CK 20 to identify intrinsic molecular subtypes
of MIBC (Figure 3). This method focuses on key MIBC subtype characteristics and uses
antibodies commonly found in clinical pathology labs to speed up research and clinical

application of molecular subtyping.
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Figure 3. Immunohistochemical staining of MIBC tissues for GATA3, CK20, CK5/6, and

CK14. (A) Luminal type, (B) Basal type.

The study discussed here aims to decrease the complexity of tumor intrinsic subtyping
to a manageable number of antibodies, making IHC a viable alternative to transcriptome
profiling. Our goal is to show that a simplified IHC subtyping assay preserves critical
prognostic correlations established with more complicated profiling approaches. Future views
for bladder cancer molecular classification Although different organizations now utilize
different classification approaches, they all capture essential characteristics of bladder cancer
biology. Clinical trials and other research investigations are increasingly using RNA and DNA
sequencing and molecular categorization systems to get new insights. The reanalysis of this
plethora of created data will definitely yield a much improved understanding of bladder cancer

and how to treat it. Remember that existing classification systems are still evolving. More work
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is needed on categorization algorithm, accounting for tumor microenvironment, multi-level

data integration, and clinical usefulness.
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CHAPTER 2

Research methodology

2.1 Methodology: Part I

2.1.1 Study design and targeted population

A prospective study was performed. The inclusion criteria were patients, who were
diagnosed with muscle invasive bladder cancer, were admitted to the university hospital in
Thailand between January 2015 and December 2020 were included. Additionally, the patients
had a histologically-confirmed diagnosis by a pathologist. The patients were excluded as
follows: 1) unavailable and inaccessible medical record, or 2) unavailable tissue specimens for

RNA sequencing.

2.1.2 Sample selection

We studied 30 MIBC cases, collected fresh frozen tissues from consecutive patients
who underwent radical cystectomy in Songklanagarind hospitals, Thailand from 2015 until
2020. All tumor specimens reviewed by an experienced pathologist in bladder cancer
diagnosis. Fresh-frozen tissues were collected at the time of surgical resection, and samples
with size 0.5 cm were snap frozen with RNA later and kept in tube kept at -80 C for long term
storage or liquid nitrogen until RNA extraction. These samples were used as quality controls,
since they are a source of high-quality RNA. Seven samples of non-tumorous urinary bladder
obtained during a cystectomy were used as controls. Informed consent was obtained from all
patients, and the study was approved by the Ethical Committee of Songklanagarind hospital,
Prince of Songkla University, in accordance with the Helsinki Declaration. (REC 61-222-10-

1).
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2.1.3 RNA isolation

All fresh frozen tissues were used for isolation. RNA was isolated with DNA/RNA
AllPrep kit (QIAGEN). RNA was measured with Qubit® fluorometer or NanoDrop™

spectrophotometer. Digital quality control (QC) analysis for mMRNA was performed using the

NanoStringTIVI PanCancer Progression Panel. The samples were loaded (10-35 ng RNA in a
total of 30 ul loading mixture) on a cartridge and proceeded according to the manufacturers’
instructions. RNA extracted from fresh-frozen tissues was assessed for quantity using
Nanodrop 1000 (Nanodrop), and for quality using the 2100 Bioanalyzer (Agilent Technologies,

Canada). (Figure 4)
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Figure 4. Sample of bladder tumor preparation for mRNA sequencing
2.1.4 Data acquisition
Our cohort: RNA-Seq data on MIBC specimens was accessed through our institutional
cohort included 30 MIBC specimens. Additionally, we further confirmed the results by

analyzing the 231 MIBC specimens from the TCGA was accessed. The mRNA-seq data
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(counts format), clinical data of 30 MIBC patients and 231 data were downloaded from the

TCGA database (https://cancergenome.nih. gov/).

2.1.5 Gene expression analysis

From each RNA sample, 3 ug of total RNA was used for strand-specific library
preparation. lllumina Stranded mRNA preparation kit (Illumina) was used to generate the
sequencing libraries, according to the manufacturer’s protocol. cDNA was prepared with
random hexamer primer. The Illumina NovaSeq 6000 platform was used for transcriptome

sequencing following the manufacturer’s instructions.

Paired-end raw data in FASTQ format from the sequencing machine was checked for
read quality, size and GC content using FASTQC program. The pipeline began with alignment
step that can be done and reads were aligned to the reference genome using STAR version
2.7.8. Total mapping rate and mapped read number were analyzed using HTSeq version 0.13.5.
After we re-build full mMRNA sequence, the number of mMRNA of each gene will be counted
and the number of MRNA of each gene will represent gene expression level. Finally, the gene
expression level from two group of samples will be compared using differential gene
expression analysis by DESeq2 software (R package) then will get the differently expressed

gene that can be candidate gene marker for bladder cancer.
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Figure 5. Transcriptomic pipeline after mMRNA sequencing

Total number of mapped reads and fragement per Kilobase of exon model per million
mapped reads (FPKM) were calculated for each annotated gene. The differentially expressed
genes (DEGs) for 30 BC samples, 7 non-tumorous bladder tissue and 231 samples from TCGA

were analyzed with the DESeq2 package, and |log2FC| >2 and p < 0.05 were set as the cutoff

for DEGs. Venn algorithm was performed on the obtained DEGs and obtained differentially
expressed genes in BC. The top 30 up-regulated genes in each subtype were selected and
subjected to heatmap analysis and three-dimensional principal component analysis (PCA) to
distinguish different molecular subtypes. The false discovery rate (FDR) measures the
proportion of false discoveries among a set of hypothesis tests called significant. This quantity
is typically estimated based on p-values or test statistics. In some scenarios, there is additional

information available that may be used to more accurately estimate the FDR.

For further investigation, the gene expression value from mRNA-seq was log2-

transformed. (Figure 6-8)
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Figure 8. Alignment and transcript count

Log2 fold change (logFC) expression and normalized mean counts are shown in the
MA-plot for each gene in comparison to the control group. Depending on the logFC threshold
the user specifies and the expression directionality, different colors are utilized to denote
distinct characteristics (UP or DOWN). Volcano plots, which stress both rate of expression
(logFC) and statistical significance, are widely used and maybe the most instructive (p-value).
Gene-specific tests (y-axis) versus logFC have negative log10-transformed p-values (y-axis)
(on the x-axis). There is a distinct clustering of data points with low p-values at the top of the
graph. Equidistant points' direction shift (up and down) is calculated using logFC values.
Features that are more prominent than others are highlighted in red according to the selected

cut-off values (83).
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2.1.6 Principle component analysis (PCA)

Principal Component Analysis (PCA) is one of the techniques in unsupervised learning
that is used to reduce the dimensions of the data with minimum loss of information. PCA is
usually used for data that has many features.

Generally, the Principal Component Analysis (PCA) steps are: 1) Scaling our data. This
is important because PCA is an algorithm that is strongly influenced by the size of each column,
2) Calculate Covariance Matrix, 3) Calculate Eigenvalues and Eigenvector, 4) Sort Eigenvalues
and Eigenvector, 5) Pick top-2 or top-3 (or any amount of Principal Components that you want)
eigenvalues and 6) Transform the original data.

PCA plots are a great way to display the combined effect of experimental variables and
batch effects. PCA depicts groups of samples that, in an ideal world, would correspond to each
of the RNA-Seq conditions. First, the most important group is clustered, followed by groupings
that are less important. It is advisable to remove a repetition from the analysis if there are
enough other samples from different situations to do so (at least two). It could also demonstrate
if there is a batch effect problem, where samples in the same condition are spread out over a
large area of a plot. To determine which samples are from a different batch in this circumstance,
the user can simply rerun the analysis. Double-checking with data from the wet lab sample

preparation is still recommended (83).

The K-Means Clustering is the process of dividing the entire data into groups (also
known as clusters) based on the patterns in the data. K-means clustering is an unsupervised
learning technique to group data by considering the centroid of each data group. In other words,
the data will be grouped by the nearest centroid.

The stages of K-means are 1) Determine the number of clusters (k), 2) The algorithm

will choose ‘k’ objects randomly from the data as the center of the cluster, 3) The rest of the
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data will be entered into the cluster. It will belong to the cluster whose center is closest, 4) After
cluster ‘k’ is created, the algorithm will select a new center by calculating the average value of
all data in the cluster, 5) Then, the rest of the data will be iteratively updated again (because the
centers are now different — there may be data points closer to the center of the new cluster than
the center of the original cluster). This step is carried out until no more members have moved

clusters and determine the value of k using the elbow method.

2.1.7 External validate TCGA cohort

The Cancer Genome Atlas provided data for the muscle invasive bladder cancer
(MIBC) cohort used in this study, which was used in previous research. The
clinicopathological and mRNA data from the cohort were downloaded using the open access
site cBioPortal (https://www.cbioportal.org), leaving a total of 231 patients in the study for

further analysis.

2.1.8 Statistical analysis

Statistical analyses were performed using R software version 4.1.10. Subtypes’
association with clinical outcome was analyzed by univariate (single parameter logistic
regression) analysis. ROC curves were used to compute sensitivity and specificity. Mean,
median, and 95% CI of sensitivity and specificity were calculated. Hosmer-Lemeshow test was
performed to confirm the model's goodness of fit. The Cox proportional hazard model with
stepwise selection was used to assess subtypes' correlation OS. One of the most popular
regression techniques for survival outcomes is Cox proportional hazards regression analysis.
There are several important assumptions for appropriate use of the Cox proportional hazards

regression model, including independence of survival times between distinct individuals in the
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sample, a multiplicative relationship between the predictors and the hazard (as opposed to a
linear one as was the case with multiple linear regression analysis, discussed in more detail
below), and a constant hazard ratio over time. Tests of hypothesis are used to assess whether
there are statistically significant associations between predictors and time to event.

The Cox proportional hazards model is called a semi-parametric model, because there
are no assumptions about the shape of the baseline hazard function. There are other regression
models used in survival analysis that assume specific distributions for the survival times such
as the exponential, Weibull, Gompertz and log-normal distributions. The exponential
regression survival model, for example, assumes that the hazard function is constant. Other
distributions assume that the hazard is increasing over time, decreasing over time, or increasing

initially and then decreasing.

Kaplan-Meier plots with log-rank statistics categorized MIBC patients into outcome
risk categories. Molecular subtypes and age were compared. The Bonferroni adjustment was
employed to correct for multiple testing. The significance of univariable Kaplan-Meier
regressions was assessed using the log-rank and Wilcoxon tests. Multivariable analyses using
Cox proportional hazard regression. For results from the univariable analysis a p value cut-off
of <0.2 was chosen to include relevant clinical or pathologic parameters that would have been
missed with a more restrictive p value of <0.05. Contingency analyses of nominal variables
were performed with Pearson’s chi-squared test. Variables for the multivariable analysis
included significant (p<0.2) clinicopathological characteristics on univariable analysis (pT-
Stage, pN-Stage, age, gender,) and genes (Statistical analyses of numeric continuous variables

were performed with non-parametric tests (Wilcoxon rank-sum test, Kruskal-Wallis test).
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2.2 Methodology: Part 11

2.2.1 Cohort composition

Criteria for patient inclusion was diagnosis of MIBC (Stage T2+) at radical cystectomy.
Patients included in this study underwent radical cystectomy following a diagnosis of muscle
invasive bladder cancer (stage pT2+) or high risk NMIBC (high grade, recurrent tumors with
aggressive features). Specimens were collected from formalin-fixed paraffin-embedded
(FFPE) tissue obtained from TURBT and cystectomy procedures. MIBC tumour samples were
obtained from archived tissue samples from Songklanagarind hospital (cystectomies). All
samples of our cohorts were obtained from cystectomy procedures performed at
Songklanagarind hospital. Clinical and pathologic information for all patients and samples was
compiled into a research database. Hematoxylin and Eosin (H&E) samples underwent
pathologic review and were annotated by pathologists to select regions of interest for tissue
coring and tissue microarray construction. High grade muscle-invasive tumor regions were
selected, with samples excluded on the basis of lack of muscle-invasive disease, insufficient

amount of tissue or sample unavailability.

2.2.2 Study design and targeted population

This study included 132 patients with urinary bladder cancer who underwent radical
cystectomy and who received standard adjuvant chemotherapy at Songklanagarind Hospital,
Thailand from 2008 to 2016. Inclusion criteria were patients with bladder cancer aged older
than 15 years who underwent surgery primarily at our institute and who completed adjuvant
treatment according to the standard of the Thai Urological Association. All eligible cases were
reviewed for clinical stage, and their histopathology was confirmed by a pathologist. Staging
was performed according to the TNM classification, whereas stage grouping was performed

according to the eighth version of the American Joint Committee on Cancer Staging Manual.
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Cases without muscularis propria invasion and those with subtypes other than non-urothelial
carcinoma were excluded. Clinical data were extracted from the electronic medical records of
the hospital (HIS system). Data on survival status combined with the clinical follow-up records
and death registry data from the Thai citizen registration system were analyzed and archived
by the Cancer Unit, Songklanagarind Hospital. Cases with operative mortality were excluded
from the survival analysis. The study protocol was approved by the Human Research Ethic
Committee of the Faculty of Medicine, Prince of Songkla University (REC61-222-10-1). All
methods were carried out in accordance with the World Medical Association Declaration of
Helsinki. Informed consent was obtained from all patients or legally authorized representatives

included in the study.

2.2.3 IHC study by tissue microarray

Sampling of the tumor part for this pilot study was performed by a collaborative work
between the attending surgeon who know the orientation of the specimen and the pathologist
who examined the histopathology. Bladder carcinoma in situ and flat lesions were excluded in
this study. Several areas of tumor in the same patients for the pathological morphology and
selected the representative areas that have both richness in tumor cells and the morphology was
like other areas in the same cases were selected for examination. Archived pathological
specimens from all included cases were retrieved as formalin-fixed paraffin- embedded tissue
blocks, which were then selected and prepared as 5-um sections for a tissue microarray (TMA)
using a tissue arrayer (Quick-Ray, UTO06; UNITMA, Seoul, Korea). Immunostaining
procedures were conducted with 3 (triplicate) TMA cores per section by a pathology technician
who specializes in this technique. In cases of multiple foci, all foci were selected for
examinations. Subtype-specific primary antibodies used here are as follows: GATA3
(UMAB218, 1:100 dilution; OriGene, MD, USA), CK5/6 (D5/16, 1:50 dilution; Dako,

Glostrup, Denmark), CK14 (OIT4A7, 1:100 dilution; OriGene), and CK20 (OTI4A, 21:50
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dilution; OriGene). These antibodies were used to identify potential markers to establish
molecular subtypes in the tissue sections contained in the TMA. A pathologist (Kanet
Kanjanapradit) blinded to the clinical outcomes examined the results using a light microscope
and scored all TMA sections. For mixed and/or borderline cases, the positive immunostains
were interpreted 2 times with the consensus of a pathologist. The positivity and intensity of
tumor cell nuclei stained for GATA3 and membranous or cytoplasmic staining for CK20,
CK5/6, and CK14 were recorded. Staining intensity was assessed as 0 (negative; 0-10%) or 1

(positive; 10-100%).

2.2.4 Statistical analysis

Categorical and continuous parameters were compared using the Chi-square test and
were analyzed using the Spearman rank correlation test. The median differences between
groups for non- normally distributed variables were evaluated by independent sample Kruskal—
Wallis test. Differences in the percentages of IHC staining between or among comparable
groups were analyzed using the Student’s t test and one-way analysis of variance. The hazard
ratios (HRs) and 95% confidence intervals (Cls) were also calculated. In all patients who
underwent radical cystectomy with perioperative chemotherapy, the OS after radical
cystectomy was calculated using the Kaplan—Meier method. Survival probabilities were
estimated using the Kaplan—Meier method, whereas the log-rank test was adopted to compare
survival probabilities between each variable. All variables with p < 0.1 in the univariable
analyses were entered into the multivariable regression analysis. Multivariable analyses were
also performed using Cox regression as described in section 2.1.8. Two-sided p values < 0.05
were considered statistically significant. The R program (version 4.0.1) was used for statistical

analyses.
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2.2.5 Sample size calculation

The DEPTh model is approaches categorized clinical research questions into the four
types. In detail, D stands for Diagnosis, E for Etiology, P for Prognosis, and or Therapy (or
intervention). For objective studied the survival of each subtype as therapy research in the

DEPTh model. Sample size calculation was performed using Schoenfeld’s formula

Schoenfeld’s formula as follows:

= 4(Z1—q +Z1-p )?
(log®)?

Where Z 1-¢ equals 1.96 (confidence level 95%), Z 1-3 equals 0.84 (power 80%), and &

denotes the hazard ratio

library (powerSurvEpi)
ssizeEpi.default(power=0.80,theta=0.54, p=0.5,psi=0.73,rho2=0.0, alpha=0.05)
?ssizekpi.default

##p 777 Proportion of subjects taking value one for the covariate of interest
##psi 7?? Proportion of subjects died of the disease of interest ?7?777272727777
##rho2 77?7 Square of the correlation between the covariate of interest and the other covariate

> ssizeEpi.default(power=0.80,theta=0.54, p=0.5,psi=0.73,rho2=0.0, alpha=0.05)
[1] 114
?ssizeEpi.default

##p 77?7 Proportion of subjects taking value one for the covariate of interest

##psi ??? Proportion of subjects died of the disease of interest ?7?7?7?77727772?

##rho2 ??7? Square of the correlation between the covariate of interest and the other co
variate

>

>

>

> ##theta ??? Postulated hazard ratio ????7?7?7??72?? Arita [12] ????? Hazard ratio 77?7
>

>

>

>
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CHAPTER 3

Results

3.1 Results: Part |
3.1.1 Clinical characteristics

All tissue samples were from patients recruited at the Songklanagarind Hospital,
Songkhla, Thailand (Table 1). These included tumor tissue from 26 males and 4 females with
ages between 52-92 years old. The data of 231 MIBC cohorts retrieved from The Cancer
Genome Atlas (TCGA) was also shown in Table 1 that included the clinical information from
304 males and 108 females between the age of 32-90 years old. It should be noted that there is
a quite difference in the proportion of T stages and N stages between data from tissue samples

and TCGA cohort. Moreover, no metastasis was found in all Thai MIBC patients.

Table 1. Clinical data summary of studied MIBC datasets

Thai patient Percentage TCGA dataset Percentage
dataset
Samples 30 231
Average of age 67.5 (52- 92) 69 (46-90)
(range)
Gender
Male 26 86.2 169 73.16
Female 4 13.8 62 26.64
ECOG
0 21 70 158 68.5
1 9 30 73 315
T stage
T2 24 80 75 32.47

T3 6 20 123 53.25
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T4 0 0 33 14.28
N stage
N O 22 73.3 143 58.01
N1 7 23.3 28 10.68
N2 1 3.3 42 18.2
N3 0 0 4 1.94
N x 0 0 14 6.06
M stage
MO 30 100 116 50.22
M1 0 0 5 2.16
. 0 0
Not available 110 47.62

3.1.2 Transcriptome profiling and classification of Thai MIBC

The transcriptome sequencing of all tissue samples was performed based on the strand-
specific library preparation to identify the expression levels of all genes. Figure 9 presents the

boxplots which provide an easy way to visualize the count distribution in each sample.
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Figure 9. Boxplot with normalized counts. The frequency distribution and some statistics
like mean, median and outliers are represented in these plots of log2 normalized counts
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MA and Volcano plot analysis demonstrated more than a hundred of genes were found

to be up-regulated and downregulated in MIBC compared to normal bladder tissue (Fig. 10

and 11).
MA plot of mMRNA Expression of derived from MIBC
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Figure. 10 MA plot analysis demonstrated more than a hundred of genes were found to be up-

regulated and downregulated in MIBC



Volcano plot of mMRNA expression derived from MIBC
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Figure 11. Volcano plot analysis demonstrated more than a hundred of genes were found to
be up-regulated and downregulated in MIBC

The thirty most significantly changed genes included PI3K-Akt signaling
molecules (FN1, COL6A2, and COL1A2), MAPK pathway related molecules (TGFB1 and
MECOM), mitochondrial biogenesis regulators (MT1A and MT2A), exosomal proteins
(TUBBG6, TUBB3, LGALS1 and IFITM3), biomolecules metabolism (CDA, SPHK1, MAOA and
MGST1), and others. To identify the optimal number of clusters based on transcriptomic
classification, Elbow plot analysis was applied for Thai MIBC transcriptome data. The result

showed that the three clusters were found to be optimal as demonstrated in Fig. 12.
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Figure 12. Elbow plot analysis was applied for Thai MIBC transcriptome data. The result
showed that the three clusters were found to be optimal

The transcriptomic data of all MIBC tissue samples were then subjected to the
classification of the MIBC groups by using principal component analysis by K-mean clustering
(Fig. 13).

Principle Component Analysis of MIBC mRNA expression classified by K-mean Clustering
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Figure 13. The transcriptomic data of all MIBC tissue samples were then subjected to the
classification of the MIBC groups by using principal component analysis by K-mean clustering
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Heatmap analysis of gene expression derived from the thirty most significantly changed
genes revealed the obvious unique pattern of each MIBC cluster confirming the specific

character of each group of MIBC patients (Fig. 14).
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Figure 14. Heatmap analysis of 30 gene expression derived from the thirty most significantly
changed genes revealed the obvious unique pattern of each MIBC cluster confirming the
specific character of each group of MIBC patients. The genes were ranked following by adjust
p-value.

Example of each gene expression in difference 3 clusters were shown in Fig. 15
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Figure 15. Boxplot of examples gene expression in 3 clusters
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3.1.3 Differential gene expression (DEG) analysis revealed 37 genes expressed with the

different levels among clusters

In addition to the enrichment study, the data from differential gene expression
(DEG) analysis also revealed the number of genes that expressed differently between two

clusters, as displayed in the Venn diagram (Fig. 16).
Cluster A-B Cluster B-C

162

11 (208%) 234
(2.0%) (43.0%)
37

4 (6.8%) 85
(0.7%) (15.6%)

11
(2.0%)

Cluster A-C

Figure 16. The data from differential gene expression (DEG) analysis also revealed the number
of genes that expressed differently between two clusters, as displayed in the Venn diagram

Importantly, 37 genes were observed to be expressed differently in all clusters.
These included the genes related to calcium signaling pathway (BDKRB1, EDNRA, AVPR1A,
PTGERS3, PTGFR, NTRK3, P2RX1, etc.), PI3K-Akt signaling pathway (COL6A2, COL1A2,
ITGA8, CREB5, COL6A3), MAPK signaling pathway (FGF7, NGF, HGF, ANGPT1), or
cGMP-PKG signaling pathway (KCNMB1, KCNMA1, ADRA2A, ATP1B2, ADORA1L, PRKG1).
The expression levels of each gene were demonstrated as VVolcano plots for each cluster (Fig.
17,18, and 19). Interestingly, all 37 genes were significantly up-regulated in clusters A and C,
but down-regulated in cluster B. The most significantly expressed genes in cluster A included
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BDKRB1, EDNRA, AVPR1A, PDGFRB, and TNC, while COL6A3, COL1Al, COL6A2,
PDGFRB, and PRKG1 were found to be the top 5 genes highly expressed in cluster C. For
cluster B, the collagen-related genes (COL6A3, COL1A2, COL6A2), tenascin C (TNC), and
fibroblast growth factor 2 (FGF2) were the transcripts statistically suppressed.
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Figure 18. The expression levels of each gene were demonstrated as VVolcano plots for cluster
B
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Figure 19. The expression levels of each gene were demonstrated as VVolcano plots for
cluster C

3.1.4 ROC analysis of 37 differentially expressed genes found in MIBC tissues

To evaluate the specificity and sensitivity of the genes expressed differently for
each MIBC cluster, ROC curve analysis was performed for all 37 genes and all cluster.
Interestingly, the corresponding areas under the ROC curve (AUCs) with the value more than
0.8, 0.9, and 0.95 were found in 33, 25, and 14 genes from 37 genes for cluster B (Table 2 and
Fig. 20). While the AUC values above 0.9 were observed only in 5 genes for cluster C, no one
could be found for cluster A. The highest AUC value of cluster B was 0.988 for PDGFRB and
COLB6A2 genes meanwhile the lowest AUC was 0.72 from ITGA8 gene (Table 2 and Fig. 20).
KCNMBL1 is the gene presented the highest AUC with the value of 0.936 in cluster C while
ITGA11 showed the lowest AUC with 0.67. Cluster A displayed the lowest value of mean
AUC, the range of AUC values of differential expressed genes in this cluster were between
0.52-0.869 which RYR3 gene showed the lowest and COL1A1 are the highest AUC.



Table 2. The area under the curve (AUC) from specificity and sensitivity of the genes

expressed differently for each MIBC cluster

38

Genes cluster A cluster B cluster C
CCL2 0.7680 0.941 0.859
FGF2 0.6940 0.947 0.886
RYR3 0.5200 0.721 0.735
MYLK 0.8040 0.955 0.914
EDNRA 0.8110 0.951 0.833
FGF7 0.7890 0.976 0.927
BDKRB1 0.7030 0.872 0.727
PDGFRB 0.8380 0.988 0.838
HGF 0.7310 0.945 0.867
AVPR1A 0.6200 0.774 0.708
NGF 0.6650 0.893 0.783
PTGFR 0.7230 0.947 0.912
PDE1A 0.6170 0.916 0.86
PTGERS3 0.7790 0.951 0.821
CAMK2A 0.8200 0.971 0.862
NTRK3 0.5380 0.828 0.831
P2RX1 0.7710 0.96 0.907
TNC 0.8530 0.947 0.746
COL4A4 0.5890 0.852 0.785
COLBA2 0.8640 0.988 0.886
ITGAS8 0.6030 0.72 0.799
COL6BA3 0.8430 0.979 0.849
CREB5 0.8200 0.946 0.79
TNXB 0.6460 0.875 0.815
ANGPT1 0.6820 0.826 0.686
IGF1 0.689 0.919 0.879
COL1A1 0.869 0.95 0.736
COL1A2 0.857 0.967 0.787
ITGAl1l 0.824 0.915 0.67
NPR1 0.628 0.885 0.808
KCNMB1 0.749 0.957 0.936
ADORA1 0.761 0.89 0.762
PRKG1 0.777 0.964 0.889
ATP1B2 0.542 0.743 0.751
ADRA2A 0.582 0.915 0.845
KCNMA1 0.799 0.954 0.88
GNAO1 0.739 0.939 0.85
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Figure 20. ROC curve analysis was performed for all 37 genes and all cluster. Interestingly,
the corresponding areas under the ROC curve (AUCs) with the value more than 0.8, 0.9, and
0.95 were found in 33, 25, and 14 genes from 37 genes for cluster B



40

3.1.5 Clinical characteristic of MIBC in our cohort associated with treatment outcome

To identify factors associated with MIBC, logistic regression analysis was performed,

including prognostic scores, patient characteristics and tumour characteristics (Table 1).

Univariate analysis identified tumour stage and nodal status as significant predictors of overall

suvival. The multivariate logistic regression model identified tumour stage (HR, 25.64; 95%

Cl, 2.31-284.04; p=0.006) as independent predictor of overall survival. For cluster C exhibited

showed higher hazard ratio without statistically significant. (HR, 2.63; 95% CI, 0.44-15.79;

p=0.291) (Table 3)

Table 3 Univariate and multivariate logistic regression analyses of clinical data of MIBC

patients

Variables Univariate analysis Multivariate analysis

HR 95% CI P HR  95% ClI P value
value

T stage

2 Ref

3-4 6.62 1.09-40.1 0.041 25.64 2.31-284.04 0.006
N stage

0 Ref 0.036

1 4.05 0.45-5.46

2 6.46 0.35-6.86

Age (yrs)

<=65 Ref

>65 242 0.27- 0.392

21.67

Lymph node

metastasis

negative Ref

positive 239 129441 0.01

LVI

negative Ref

positive 1.08 0.18-6.5 0.929

Ureteric margin

negative Ref

positive 532 0.59- 0.212

48.17

Cluster

Cluster A Ref

Cluster B 0 1.6-4.94 0.108

Cluster C 2.63 0.44-15.79 0.291
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Univariate analysis showed no significant differences in survival between the
molecular subtypes (p =0.108). Pairwise comparisons using log-rank tests also showed that
survival not differed significantly between each molecular subtype, with patients with the
cluster B subtype experiencing the longest survival, followed by those with the cluster A. The

poorest survival was observed among patients with cluster C (Figure 21).
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Figure 21. The Kaplan-Meier analysis demonstrated that cluster B displayed the highest
probability of survival within 48 months of follow-up while cluster C showed the lowest value

3.1.6 Molecular subtypes of MIBC are associated with response of perioperative

chemotherapy

We applied molecular subtype classification to tumors from 30 patients treated with
preoperative chemotherapy. We henceforth analyzed response in the neoadjuvant
chemotherapy. Among these patients, cluster B had better pathologic response to neoadjuvant

chemotherapy (40%). (Fig. 22)
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Figure 22. RNA-based molecular subtypes are associated with pathological response to
neoadjuvant chemotherapy

Moreover, MIBC in cluster B also exhibited better outcome after adjuvant

chemotherapy for progression or metastatic free survival. (Fig. 23)
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40.0%

%

Cluster A Cluster B Cluster C

Figure 23. RNA-based molecular subtypes are associated with pathological response to

adjuvant chemotherapy
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3.1.7 The transcriptomic classification using PCA analysis of tissue sample with the
TCGA data provided the significant prognostic value of MIBC overall survival
To increase the number of samples used in this study, we included 231
transcriptomic data from TCGA database for classification by using PCA analysis and
unsupervised K-mean clustering. We decided to apply the centroid derived from MIBC tissue
samples to separate PCA coordinates of TCGA cohort into three clusters according to MIBC
tissues (Fig. 24).

Principle Component Analysis of TCGA MIBC mRNA expression classified by K-mean Clustering

PC2
.
.
’
L ]

PCY

K-mean Clustering Cluster A . Cluster B I_ Cluster C

Figure 24. The centroid derived from MIBC tissue samples to separate PCA coordinates of
TCGA cohort into three clusters according to MIBC tissues

MA and Volcano plot analysis demonstrated up-regulated and downregulated in MIBC

comparing between non-TCGA and TCGA group (Fig. 25 and 26).
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Figure 25. MA plot analysis demonstrated more than a hundred of genes were found to be up-
regulated and downregulated in MIBC comparing between non-TCGA and TCGA group
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26. The expression levels of each gene were demonstrated as VVolcano plots

ing between non-TCGA and TCGA group

We also determined the relationship between each cluster and survival data. The

Meier analysis demonstrated that cluster B displayed the highest probability of survival

within 1,800 days of follow-up while cluster C showed the lowest value (p = 0.028; Fig. 27).
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Figure 27. The Kaplan-Meier analysis demonstrated that cluster B displayed the highest
probability of survival within 1,800 days of follow-up while cluster C showed the lowest

value

However, we found some overlaps of gene expressions which classified by TCGA

that clustering in 3 clusters. (Fig. 28)
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Figure 28. Cumulative MIBC cases by K-mean clustering that classified by mRNA with
TCGA classification
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3.1.8 Identification of differentially expressed genes of each cluster of MIBC
We compared the differentially expressed genes in the 3 subtypes and found that 15
differentially expressed genes were unique to the cluster A, 78 were unique to cluster B, and
106 were unique to cluster B muscle invasive bladder cancer samples using Filtered by

log2normalized count > 15. (Fig. 29 and Table 4)

Cluster A Cluster B

Cluster C

Figure 29. Unique and common enriched genes of each cluster
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Table 4. Unique significant differential expression

C
lu
st

Genes

CPSF7,ALYREF,PABPCIL,ITGA2,EFNA1,KRT23,KRT16,F3,CCL5,SIK1B,G6PD,IR
F1,S100A8,CD36,ACSL1

PPP2R2A,HK2,IGF1R,EP300,VHL,CAMK2G,EGLN3,SLC9A1,TSC2,NCOR1,TP53,A
TF6B,KRT20,CREB3L2,PRKCD,HSPA1A,IRS1,CRKL,MAP3K5,RBL2,COL4A6,COL
4A5MET,IFNAR1,PRKAA1,GNG5,COL9A2, GNA15,MMP1,CAB39L,ADIPORL,ELA
VL1,ULK1,PATJ, TEAD3FZD6,FRMD6,CAT,PGM2,PGLS,XIAP,NLRP1,ERBIN,EH
MT2,SOD1,EIFAEBP2,TELO2,GNA11,GTF2I,EML4,VAV2 ELK4,MECOM,DUSP4,D
USP2,TAOK2,NF1,SGPL1,SPTLC2,ACER2,CCNG1,DBI,ACSL3,FABP4,SCP2,FABP
5,ACOX1,UBC,PLIN2,HMGCS2,ACAA1,PLTP,SKIL,ZFHX3,PCGF3,TBX3,ID3,TCF3

ITGB5,TNC,FGF7,MYC,PDGFRB,VWF,ITGA1,COL6A3,ITGA7,ITGA5,CSF1R,LAM
A4, THBS2,PPP2CB,FGFR1,CASC3,ICAM1,CCL2,STAT5B,CYBB,SELE,IL1B,BAX,P
FKFB3,HMOX1,NOTCHZ2,PLN,PRKACA,RCAN1,ROCK1,ROCK2,SRF,MYLK,RGS2
,MEF2D,PPP1R12A,IRAG1,GNAQ,MYL9,MMP9,HBEGF,STMN1,MAP2K3,DUSP5,
DUSP3,IL1IR1,CACNA1H,RAP1IA MAP3K20,CD14,FLNC,MAP4K4,GADD45B,GAD
D45ANFKB2,ABL1,RAPGEF1,ITGB2,ENAH,PPP1R12B,ACTA2,SORBS1,RHOQ,C
CN2,WWTR1,KLF2,APLNR,TNFAIP3,CXCL2,JUNB,DAB2IP,CFLAR,TNFRSF1B,B
CL3,ANTXR2,ANTXR1,FOSL1,EGR3,LSP1,CXCL14,GRK2,CXCL12,UBE2I,PARP1,
PLAU,RAB5B,RAB5C,ETS1,ETS2,RALBP1,PLA2G2A,RGL2,ARF6,DEGS1,LTBP1,
DCN,GREM1,NBL1,SKP1,FBN1,CAB39,RBPJ,FHL1,STATG6,IL13RALIL6ST

3.1.9 The certain signaling pathways were associated with each type of MIBC cluster

To identify the signaling pathways enriched in each cluster, the transcriptomic data

was used with KEGG (Kyoto Encyclopedia of Genes and Genomes) term enrichment analysis.

The metabolic pathways or signal transduction pathways associated with differentially

expressed genes, comparing the whole genome background with the KEGG terms and padj <

0.05 are justified as significant enrichment. The top 10 significantly enriched terms in the

KEGG enrichment analysis are displayed for each cluster (Fig. 30-32).
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Figure 30. The top 10 significantly enriched terms in the KEGG enrichment analysis are

displayed for cluster A

3
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Figure 31. The top 10 significantly enriched terms in the KEGG enrichment analysis are

displayed for cluster B
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Adjusted.P.value
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Figure 32. The top 10 significantly enriched terms in the KEGG enrichment analysis are
displayed for cluster C

The calcium signaling pathway was found to be a general significant process in all

clusters. However, the chemokine signaling pathway was observed significantly only in

clusters 1 and 2. Interestingly, the immune signal transduction pathways, including JAK-

STAT, B cell receptor signaling, and T cell receptor signaling pathways, were marked to be

the key mechanism in cluster A of MIBC specifically, while AGE-RAGE and Rap1 signaling

pathways were found as significantly enriched molecular processes in cluster B. For cluster C,

cGMP-PKG, oxytocin, MAPK, and Relaxin signaling pathways were observed to be unique in

this cluster. GO Enrichment analyses of the differentially expressed genes in each cluster (Fig.
33-35)
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Figure 33. GO Enrichment analyses of the differentially expressed genes in cluster A
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Figure 34. GO Enrichment analyses of the differentially expressed genes in cluster B
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Figure 35. GO Enrichment analyses of the differentially expressed genes in cluster C

Number of differential gene expressions among different cluster after achieved by
pathway enrichment were shown. (Fig. 36)
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Figure 36. Number of differential gene expressions among different cluster after achieved by
pathway enrichment
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3.2 Results: Part 11

3.2.1 Demographic and clinicopathological data
This study included 132 patients with MIBC who underwent radical cystectomy during
the study period. Their mean age was 65.6 years, and the male to female ratio was 6.8:1. The
demographic characteristics of the patients and immunoreactivity for each IHC marker are
summarized in Table 5.

Table 5. The demographic characteristics of the patients and immunoreactivity for each IHC
marker

Variable Value (N;%) 5-year OS (95% CI)*  Log-rank p-value
Age (year)
Mean(SD) 65.6 (9.3) -
Sex 0.56
Male 115 (87.1%) 25.7 (17.9-34.2)
Female 17 (12.9%) 35.3 (14.5-57.0)
ECOG status 0.18
0 29 (22.0%) 39.2 (21.6-56.5)
1 103 (78.0%) 23.7 (15.9-32.6)
T stage <0.01
T1/2 44 (33.3%) 57.4 (40.8-70.9)
T3 41 (31.1%) 18.0 (7.9-31.3)
T4 47 (35.6%) 6.4 (1.7-15.8)
N stage
NO 90 (68.2%) 33.7 (23.8-43.8) <0.01
N1 24 (18.2%) 12.2 (4.5-24.1)
N2 15 (11.4%)
N3 3 (2.3%)
M stage NA
MO 128 (97.7%) 26.9 (19.4-34.9)
M1 3 (2.3%) NA
Tumor grade 0.04
Low 7 (5.30%) 85.7 (33.4-97.9)
High 125 (94.7%) 23.7 (16.5-31.7)
Chemotherapy 0.80
No 106 (80.3%) 27.9 (19.5-37.0)
Yes 26 (19.7%) 23.1 (9.4-40.3)
Diversion 0.03
ileal conduit 123 (93.2%) 24.0 (16.6-32.1)
neobladder 9 (6.8%) 66.7 (28.2-87.8)
LVI <0.01

Negative

52 (39.4%)

40.0 (26.3-53.3)
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Positive 80 (60.6%) 18.8 (11.1-28.2)
CK20 0.45
Negative 76 (57.6%) 25.3 (16.2-35.5)
Positive 56 (42.4%) 29.7 (18.0-42.4)
CKb5/6 0.02
Negative 65 (49.2%) 16.2 (8.3-26.5)
Positive 67 (50.8%) 37.8 (26.2-49.3)
CK14 0.63
Negative 95 (72.0%) 26.0 (17.5-35.4)
Positive 37 (28.0%) 30.6 (16.6-45.7)
GATA3 <0.01
Negative 26 (19.7%) 16.1 (5.9-30.9)
Positive 106 (80.3%) 30.5 (21.6-39.9)

*: excluding 2 operative deaths; 5-Year OS (95% CI): 5-year overall survival (95% confidence interval);
ECOG status: Eastern Cooperative Oncology Group performance status

Two patients who died at 3 and 7 days after surgery were considered to have operative

mortality and were excluded from the survival analysis. As of January 2021, the median follow-

up duration was 125 months (interquartile range 103—-154 months). The median OS time was

12.2 months (interquartile range 4.7, 46.4 months), and the 5-year OS was 27.0% (95% ClI

19.6%-35.0%). IHC showed positivity for GATAS3, CK5/6, CK20, and CK14 with kappa value

between 0.799-0.908 (93.2-96.2% agreement) (Table 6).

Table 6. Immunopositivity of the 4 markers studied and their correlation with clinic-

pathological parameters

All GATA3 CK5/6 CK20 CK14
Positive staining (%) 132 101 (76.5%) | 67 (50.8%) | 56 (42.4%) | 37 (28.0%)
Mean age in positive 64.7 (9.3) 64.7 (9.1) 64.8 (8.7) 65.7 (9.3)
cases (SD)
Gender
Male (%) | 115 (87.1%) | 91 (90.1%) | 56 (83.6%) | 50 (89.3%) | 30 (81.1%)
Female (%) | 17 (12.9%) 10 (9.9%) | 11(16.4%) | 6 (10.7%) 7 (18.9%)
ECOG status, n (%)
0| 29(22.0%) | 25(24.7%) | 13 (19.4%) | 13 (23.1%) | 8(21.6%)
1| 103 (78.0%) | 76 (75.3%) | 54 (80.6%) | 43(76.8%) | 29 (78.3%)
T stage, n (%)
pT1l| 21(15.9%) |20 (19.8%)*| 12 (17.9%) |14 (25.0%)* | 0 (0.0%)*
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pT2| 23(17.4%) | 20 (19.8%) | 14 (20.9%) | 13 (23.2%) | 8 (21.6%)
pT3| 41(31.1%) | 28 (27.7%) | 20 (29.9%) | 10 (17.9%) | 18 (48.7%)
pT4| 47(35.6%) | 33(32.6%) | 21 (31.3%) | 19 (33.9%) | 11 (29.7%)
N stage, n (%)
NO| 90 (68.2%) | 69 (68.3%) | 47 (70.2%) | 41 (73.2%) | 27 (73.0%)
N1| 24(18.2%) | 19 (18.8%) | 12 (17.9%) | 7 (12.5%) | 7 (18.9%)
N2| 15(11.4%) | 11(10.9%) | 7(10.5%) | 6(10.7%) | 2 (5.4%)
N3| 3(2.3%) 2(2.0%) | 1(1.5%) | 2(3.6%) 1 (2.3%)
M stage, n (%)
MO| 128 (97.7%) | 98 (98.0%) | 65 (98.5%) | 54 (98.2%) | 35 (97.2%)
M1| 3(2.3%) 2(2.0%) | 1(1.5%) 1 (1.8%) 1 (2.8%)
Tumor grade, n (%)
Low| 7 (5.30%) 6 (5.9%) 6 (9.0%) 3 (5.4%) 0 (0.0%)
High| 125 (94.7%) | 95 (94.1%) | 61 (91.0%) | 53 (94.6%) | 37 (100.0%)
LVI, n (%)
Neg| 52 (39.4%) | 41 (40.6%) | 26 (38.8%) | 25 (44.6%) | 11 (29.7%)
Pos| 80(60.6%) | 60 (59.4%) | 41 (61.1%) | 31 (55.4%) | 26 (70.3%)
*p-value < 0.05 when comparing distribution between positive cases and all cases

The immunostains for GATA3, CK5/6, CK20, and CK14 showed positive results with
80.3%, 50.8%, 42.4%, and 28.0% of cases, respectively. GATA3 and CK5/6 immunopositivity
was significantly associated with OS by log-rank analysis (Table 4). Twenty-six cases received
a median of 3 cycles of adjuvant chemotherapy. GATA3 expression was significantly inversely
correlated with pT stage progression. Some mixed and/or borderline cases, the positive
immunostains were interpreted 2 times with the consensus of a pathologist found 5 of 132 cases

(3.8%)

According to the Kaplan—Meier survival analysis, significant differences in outcomes
with respect to OS were demonstrated among cases with positive GATA3 staining (p = 0.008)

and in cases with positive CK5/6 staining (p = 0.038). The other markers did not show
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significant prognostication value for survival. The Kaplan—Meier survival curves for GATAS,

CK5/6, CK14, and CK20 are depicted in Fig. 37
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Figure 37. Kaplan-Meier curves demonstrating survival probability in 132 MIBC patients
according to IHC markers expression; GATA3 (A), CK5/6 (B), CK14 (C) and CK 20 (D).
The correlation between each individual marker was evaluated by Pearson correlation
test. The significant association of GATA3, CK5/6, and CK20 was found only in pathological
stage 1 of patients. When the correlation between markers in the basal and luminal subtypes
was assessed, moderate correlation was observed between GATA3 and CK20 expression,
which indicated that the basal-like subtype was demonstrated by Pearson correlation at 0.46 (p
= 0.022). The analysis showed small correlation between the luminal-like subtype markers,

CKS5/6 and CK14; 0.31 (p = 0.048) (Fig. 38).
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Figure 38. Correlation heatmap of immunohistochemistry markers expression among GATAS,
CK20 (basal-like markers), CK5/6 and CK14 (luminal-like markers)

As GATA3 and CK5/6 were the only two markers representing different subtypes that
were significantly associated with survival, we elected to categorize our cases into four groups
according to those two markers: luminal-like (GATA3" and CK5/67), basal-like (GATA3™
and CK5/6%), mixed (GATA3* and CK5/6%), and double-negative (GATA3™ and CK5/67)
subtypes. By this definition, the luminal-like, basal-like, mixed, and double-negative subtypes
were observed in 38.6%, 12.9%, 37.9%, and 10.6% of cases, respectively. Associations
between each subtype and clinicopathological factors including survival outcomes are
displayed in Table 7. The double-negative subtype was significantly associated with higher

incidence of pT4 disease.

Table 7. Patient’s characteristic classified by IHC subtypes categorized by GATA3 and CK5/6

Double-neg Luminal-like Basal-like Mixed p-value**
Total (%) 14(10.6) 51(38.6) 17(12.9) 50(37.9) -
Mean age (SD) 70.2(6.0) 65.3(10.1) 66.6(10.7)  64.1(8.6) 0.18
Gender, n (%)
Male 12 (85.7) 47 (92.2) 12 (70.6) 44 (88.0) 0.15
Female 2(14.3) 4(7.8) 5(29.4) 6 (12.0)
ECOG status, n (%) 0.29

0 1(7.) 15 (29.4) 3(17.7) 10 (20.0)
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1 13(92.9) 36 (70.6) 14 (82.3) 40 (80.0)

Urinary Diversion type 0.98
lleal conduit 13 (92.9) 47 (92.2) 16 (94.1) 47 (94.0)
Neobladder 1(7.1) 4(7.8) 1(5.9) 3(6.0)

T stage, n (%) 0.048

T2  0(0.0) 18 (35.3) 4 (23.5) 22 (44.0)
T3 6(42.9) 15 (29.4) 7 (41.2) 13 (26.0)
T4 8(57.1) 18 (35.3) 6 (35.3) 15 (30.0)
N stage, n (%) 0.71
NO 11 (78.6) 32 (62.8) 10 (58.8) 37 (74.0)
N1  1(7.) 11 (21.6) 4 (23.5) 8 (16.0)
N2 1(7.1) 7 (13.7) 3(17.7) 4 (8.0)
N3 1(7.1) 1(2.0) 0 (0.0) 1(2.0)
M stage, n (%) 0.55
MO 13 (92.9) 50 (98.0) 17 (100.0) 48 (98.0)
M1 1(7.1) 1(2.0) 0 (0.0) 1(2.0)
Tumor grade, n (%) 0.25
Low  0(0.0) 1(2.0) 1(5.9) 5 (10.0)
High 14 (100.0) 50 (98.0) 16 (94.1) 45 (90.0)
Margin, n (%) 0.57
Neg 11 (78.6) 46 (90.2) 16 (94.1) 43 (86.0)
Pos  3(21.4) 5(9.8) 1(5.9) 7 (14.0)
LVI, n (%) 0.97
Neg 5(35.7) 21 (41.2) 6 (35.3) 20 (40.0)
Pos 9 (64.3) 30 (58.8) 11 (64.7) 30 (60.0)
CK20, n (%) <0.01
Neg 12 (85.7) 17 (33.3) 16 (94.1) 31 (62.0)
Pos 2(14.3) 34 (66.7) 1(5.9) 19 (38.0)
CK14, n (%) <0.01
Neg 12 (85.7) 48 (94.1) 4 (23.5) 31 (62.0)
Pos 2(14.3) 3(5.9) 13 (76.5) 19 (38.0)
5-year OS (%) 7.14 18.9 235 42.8 <0.01
(95% confidence (0.4-27.5) (9.2-31.1) (7.3-24.9)  (28.9-56.1)
interval)

*: p-value by chi-square or Fisher’s exact test, ECOG status: Eastern Cooperative Oncology Group

performance status; LVI: Lymph Vascular Invasion; OS: overall survival
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CK20 immunopositivity, a marker of the luminal molecular subtype, was significantly
associated with the GATA3-defined luminal subtype (p < 0.01), whereas CK14 positivity was

significantly associated with the CK5/6-defined basal subtype (p < 0.01). In the 50 mixed

subtype (GATA3* and CK2/5%) cases in this study, an equal number of cases with CK20 and

CK5/6 positivity was found (Table 7).

When clinicopathological parameters and IHC subtypes were analyzed against survival
in a univariable Cox hazard model, tumor stage (pT and N), lymphovascular invasion,
pathologic grade, loss of GATA3 immunoreactivity, and loss of CK5/6 immunoreactivity were
significantly associated with poorer survival outcomes. Considering subtyping, while patients
with the mixed subtype had the lowest risk, which was followed by patients with the luminal-
like and basal-like subtypes, those with the double-negative subtype had the highest crude HR.
In the multivariable analysis by stepwise Cox hazard regression, N stage (N > 0) and the
double-negative subtype were significantly associated with higher risk (model p = 0.0001)
(Table 8).

Table 8. Univariable and multivariable regression analysis of clinical outcomes in 132 MIBC
patients

Univariable analysis Multivariable analysis
Factor crude HR (95%Cl) p-value  adj. HR (95%CI) p-value
T-stage: pT1l 1.00 (reference) <0.01

pT2 1.61(0.65, 3.95)
pT3 5.15(2.36, 11.19)
pT4 6.50 (3.01, 14.02)

N-stage: NO 1.00 (reference) <0.01 1.00 (reference)
N1 1.78 (1.07,2.96) 1.84 (1.09-3.13) 0.02
N2 2.58 (1.43, 4.66) 2.63 (1.44-4.78) <0.01

N3 5.34(1.63, 16.58) 4.45 (1.35-14.68)  0.01
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LVI (positive) 1.94 (1.27, 2.96) <0.01
Grading (high grade) 3.16 (1.00, 10.00) 0.02
GATAS3 (negative) 1.87 (1.20-2.90) <0.01
CK5/6 (negative) 1.57 (1.06-1.35) 0.03
CK20 (negative) 1.16 (0.78-1.75) 0.45
CK14 (negative) 0.89 (0.58-1.39) 0.63
Mixed subtype 0.52 (0.34-0.81) <0.01
Basal subtype 1.39 (0.79-2.46) 0.25
Luminal subtype 1.18 (0.79-1.76) 0.43
Double negative 2.24 (1.27-3.96) <0.01
Subtypes <0.01
Mixed 1 (reference) (reference) 1
Luminal-like 1.66 (1.03-2.68) 1.66 (0.86-3.21) 0.13
Basal-like 2.01 (1.06-3.81) 1.60 (0.99-2.60) 0.05
Double negative 3.12 (1.63-5.92) 3.29 (1.71-6.31) <0.01

crude HR: crude hazard ratio; adj.HR: adjusted hazard ratio; 95%CI: 95% confidence interval,

LN: lymph node, LVI: lymphovascular invasion

3.2.2 Association between molecular subtypes and survival outcomes

Kaplan—Meier curves compare the survival probability of 132 patients with MIBC

following radical surgery (Fig.39). The 5-year OS rates of patients with the mixed, basal,

luminal, and double-negative subtypes were 42.5% (95% CI 28.9-56.1%), 23.5% (7.3-44.9%),

18.9% (9.2-31.1%), and 7.1% (0.4-27.5%), respectively.

In the 50 MIBCs of mixed subtype (GATA3™* and CK5/61), if CK20 and CK14 were

added to the subcategorization criteria, which means that mixed subtype cases with positive

CK20 were reclassified as luminal, whereas mixed subtype cases with positive CK14 were

reclassified as basal. The univariable hazard model did not improve. Using the mixed subtype
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as a reference, the HRs (and 95% CIs) for the luminal, basal, and double-negative subtypes

were 1.17 (95% CI1 0.62-2.20), 1.54 (0.76-3.10), and 2.64 (1.22-5.73) respectively.
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Figure 39. Kaplan-Meier survival curves of molecular subtypes of muscle invasive bladder
cancer according to their immunohistological subtypes
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3.3 Results: Part 111

3.3.1 Integrative result of molecular subtyping from mRNA expressions using 4
markers from immunohistochemistry in our MIBC cohort

Each gene expressions were selected from IHC part (GATAS3, CK 5/6, CK14 and CK
20) and compared between cluster from K-mean clustering in 3 cluster A-C. Furthermore, our

interesting 4 markers mRNA expression were shown in violin plot. (Fig.40-43)
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Figure 40. Violin plot of GATAS expression in 3 clusters
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Figure 41. Violin plot of CK14 expression in 3 clusters
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Figure 42. Violin plot of CK5/6 expression in 3 clusters
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Expression of KRT20 by K-mean cluster
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Figure 43. Violin plot of CK20 expression in 3 cluster

3.3.2 Validate each signature gene expression in TCGA data

Gene expression level of signature markers in our study were validated in TCGA data

that exhibited the same fashion with our cohort (Fig. 44-47)

Expression of GATAS3 by K-mean cluster

Kruskal-Wallis, p = 3e-14
0.049
[ 2e-11 |
20 1.3e-13

Log 2 normalized count

Cluster A Cluster B Cluster C
K-mean clustering

cluster . Cluster A . Cluster B . Cluster C

Figure 44. Violin plot of GATA3 expression in 3 cluster from TCGA data
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Figure 45. Violin plot of CK 14 expression in 3 cluster from TCGA data

Expression of KRT5 by K-mean cluster
Kruskal-Wallis, p = 1.4e-08

4.5e-06
4.7e-09
15 0.018
—

E
3
8
j:
©
£ 10
=]
[ =
ol
g

5

Cluster A Cluster B Cluster C

K-mean clustering

cluster . Cluster A . Cluster B . Cluster C

Figure 46. Violin plot of CK 5/6 expression in 3 cluster from TCGA data
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Expression of KRT20 by K-mean cluster
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Figure 47. Violin plot of CK 20 expression in 3 cluster from TCGA data

3.3.3 AUC score of selected signature genes of molecular subtypes
We explored the significant genes that classified each clusters and AUC score were shown

in Table 9 and sensitivity, specificity and cut point of selected signature genes. (Fig. 48)

Table 9 AUC score of selected signature genes classified clusters

GATA3 0.763 0.916 0.614
CD274 0.722 0.623 0.590
SNCA 0.640 0.608 0.547
KRT20 0.658 0.708 0.546
KRT5 0.627 0.813 0.723
KRT14 0.776 0.835 0.458
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Figure 48. Sensitivity, specificity and cut point of selected signature genes
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The most highest power of significant genes in cluster differentiation found in between

cluster B-C were GATA 3, KRT 5 and KRT 14 (Table 10), in ROC curve of each gene are

shown in Fig.

Table 10. Sensitivity, specificity and cut point of selected signature genes between cluster B-
C

GATA3 0.8636 0.8514 13.2592
KRTS 0.8378 0.6591 8.2409
KRT14 0.6351 1 6.3685
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Figure 49. Cut point and ROC of GATAS genes between cluster B-C
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Figure 51. Cut point and ROC of KRT5 (CK5/6) genes between cluster B-C

3.3.4 Optimal cutpoint, accuracy, sensitivity, specificity and AUC of 37 difference gene

in each cluster

We have concluded the limited gened of each cluster that have high accuracy,

sensitivity, specificity and AUC and also optimal cutpoint if each gene. (Table 11)

Table 11 Optimal cutpoint, accuracy, sensitivity, specificity and AUC of 37 difference

gene in each cluster

optimal_cutpoint | accuracy sensitivity specificity AUC pos_class [ mneg class | gene.name | gene.id

15.13054314 0.949152542 | 0.909090909 | 0.972972973 | 0.988022113 | cluster3 cluster2 COL6A2 ENSG00000142173
11.97505214 0.940677966 | 0.954545455 | 0.932432432 | 0.988022113 | cluster3 cluster2 PDGFRB ENSG00000113721
14.87228319 0.93220339 0.886363636 | 0.959459459 | 0.979115479 | cluster3 cluster2 COL6A3 ENSG00000163359
16.60303405 0.93220339 0.909090909 | 0.945945946 | 0.967137592 | cluster3 cluster2 COL1A2 ENSG00000164692
9.359841457 0.923728814 | 0.886363636 | 0.945945946 | 0.975737101 | cluster3 cluster2 FGF7 ENSG00000140285
6.002827133 0.923728814 | 0.863636364 | 0.959459459 [ 0.970515971 | cluster3 cluster2 CAMK2A ENSG00000070808
7.516355782 0.923728814 | 0.954545455 | 0.905405405 | 0.960380835 | cluster3 cluster2 P2RX1 ENSG00000108405
8.392888585 0.923728814 |1 0.878378378 | 0.956695332 | cluster3 cluster2 KCNMB1 ENSG00000145936
7.611806926 0.915254237 | 0.931818182 [ 0.905405405 | 0.947174447 | cluster3 cluster2 FGF2 ENSG00000138685
11.93492692 0.915254237 | 0.977272727 | 0.878378378 | 0.955159705 | cluster3 cluster2 MYLK ENSG00000065534
9.786311303 0.906779661 | 0.931818182 [ 0.891891892 | 0.941031941 | cluster3 cluster2 CCL2 ENSG00000108691
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9.394808887 0.906779661 | 0.863636364 | 0.932432432 | 0.950552826 | cluster3 cluster2 EDNRA ENSG00000151617
8.124055003 0.906779661 | 0.931818182 | 0.891891892 | 0.964373464 | cluster3 cluster2 PRKG1 ENSG00000185532
7.600736771 0.898305085 | 0.886363636 | 0.905405405 | 0.944717445 | cluster3 cluster2 HGF ENSG00000019991
7.246230903 0.898305085 [ 0.909090909 | 0.891891892 [ 0.946253071 | cluster3 cluster2 CREB5 ENSG00000146592
17.17557014 0.898305085 | 0.840909091 | 0.932432432 | 0.949938575 | cluster3 cluster2 COL1A1 ENSG00000108821
8.864905314 0.898305085 | 0.886363636 | 0.905405405 [ 0.953931204 | cluster3 cluster2 KCNMA1 ENSG00000156113
11.65133272 0.889830508 | 0.931818182 | 0.864864865 | 0.946560197 | cluster3 cluster2 TNC ENSG00000041982
9.995064583 0.885350318 | 0.75 0.938053097 | 0.926588898 | cluster3 clusterl FGF7 ENSG00000140285
6.445600088 0.881355932 | 0.954545455 | 0.837837838 | 0.947174447 | cluster3 cluster2 PTGFR ENSG00000122420
8.278331858 0.881355932 | 0.772727273 | 0.945945946 | 0.915233415 | cluster3 cluster2 ADRA2A ENSG00000150594
12.83410809 0.878980892 [ 0.795454545 | 0.911504425 [ 0.913716814 | cluster3 clusterl MYLK ENSG00000065534
7.320245712 0.872881356 | 0.863636364 | 0.878378378 | 0.938882064 | cluster3 cluster2 GNAO1 ENSG00000087258
9.518218658 0.872611465 | 0.772727273 | 0.911504425 | 0.936041834 | cluster3 clusterl KCNMB1 ENSG00000145936
7.595931955 0.866242038 | 0.704545455 | 0.92920354 0.912107804 | cluster3 clusterl PTGFR ENSG00000122420
7.26381242 0.866242038 [ 0.659090909 | 0.946902655 [ 0.879123089 | cluster3 clusterl IGF1 ENSG00000017427
7.00558066 0.86440678 0.886363636 | 0.851351351 | 0.950859951 | cluster3 cluster2 PTGER3 ENSG00000050628
9.696381429 0.86440678 0.863636364 | 0.864864865 | 0.915233415 | cluster3 cluster2 ITGA11 ENSG00000137809
6.923456429 0.86440678 0.818181818 | 0.891891892 | 0.889742015 | cluster3 cluster2 ADORA1 ENSG00000163485
9.080415118 0.859872611 | 0.613636364 | 0.955752212 | 0.907079646 | cluster3 clusterl P2RX1 ENSG00000108405
15.97275163 0.859872611 [ 0.659090909 | 0.938053097 | 0.885559131 | cluster3 clusterl COL6A2 ENSG00000142173
8.942791723 0.859872611 | 0.659090909 | 0.938053097 | 0.889179405 | cluster3 clusterl PRKG1 ENSG00000185532
9.614988721 0.853503185 [ 0.704545455 | 0.911504425 | 0.879525342 | cluster3 clusterl KCNMA1 ENSG00000156113
7.970822028 0.847457627 | 0.704545455 | 0.932432432 | 0.915540541 | cluster3 cluster2 PDEIA ENSG00000115252
8.897935146 0.847457627 | 0.704545455 | 0.932432432 | 0.88544226 cluster3 cluster2 NPR 1.00 ENSG00000169418
10.89526475 0.840764331 | 0.613636364 | 0.92920354 0.859412711 | cluster3 clusterl CCL2 ENSG00000108691
8.529875041 0.840764331 | 0.636363636 | 0.920353982 | 0.885961384 | cluster3 clusterl FGF2 ENSG00000138685
7.89679706 0.840764331 | 0.75 0.876106195 | 0.859814964 | cluster3 clusterl PDEIA ENSG00000115252
5.58740235 0.838983051 | 0.886363636 | 0.810810811 | 0.892813268 | cluster3 cluster2 NGF ENSG00000134259
10.08890118 0.834394904 | 0.568181818 | 0.938053097 | 0.833065165 | cluster3 clusterl EDNRA ENSG00000151617
9.025286608 0.834394904 | 0.704545455 | 0.884955752 | 0.808125503 | cluster3 clusterl NPR 1.00 ENSG00000169418
8.795996736 0.834394904 | 0.681818182 | 0.89380531 0.845132743 | cluster3 clusterl ADRA2A ENSG00000150594
6.622162229 0.830508475 | 0.772727273 | 0.864864865 | 0.872235872 | cluster3 cluster2 BDKRBI1 ENSG00000100739
9.741937824 0.830508475 | 0.636363636 | 0.945945946 | 0.875307125 | cluster3 cluster2 TNXB ENSG00000168477
1297372033 0.828877005 | 0.92920354 0.675675676 | 0.863668979 | clusterl cluster2 COL6A2 ENSG00000142173
8.418409883 0.828025478 | 0.590909091 | 0.920353982 | 0.866854385 | cluster3 clusterl HGF ENSG00000019991
6.144844467 0.821656051 | 0.818181818 [ 0.82300885 0.862027353 | cluster3 clusterl CAMK2A ENSG00000070808
15.51959587 0.818181818 | 0.902654867 | 0.689189189 | 0.868811289 | clusterl cluster2 COL1A1 ENSG00000108821
15.66478501 0.815286624 | 0.568181818 | 0.911504425 | 0.849356396 | cluster3 clusterl COL6A3 ENSG00000163359
10.3105166 0.815286624 | 0.522727273 | 0.92920354 0.814963797 | cluster3 clusterl TNXB ENSG00000168477
8.918644275 0.815286624 | 0.5 0.938053097 | 0.850160901 | cluster3 clusterl GNAO1 ENSG00000087258
6.226280889 0.813559322 [ 0.795454545 | 0.824324324 | 0.919226044 | cluster3 cluster2 IGF1 ENSG00000017427
9.887559279 0.812834225 | 0.946902655 | 0.608108108 | 0.853384358 | clusterl cluster2 TNC ENSG00000041982
14.67695898 0.812834225 | 0.911504425 | 0.662162162 | 0.856852428 | clusterl cluster2 COL1A2 ENSG00000164692
13.48829213 0.808917197 | 0.363636364 | 0.982300885 | 0.838495575 | cluster3 clusterl PDGFRB ENSG00000113721
6.645688678 0.802547771 | 0.522727273 | 0.911504425 | 0.831255028 | cluster3 clusterl NTRK3 ENSG00000140538
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9.636916223 0.802547771 | 0.477272727 | 0.92920354 0.799477072 | cluster3 clusterl ITGAS8 ENSG00000077943
10.49857997 0.796791444 | 0.840707965 | 0.72972973 0.80399426 cluster1 cluster2 MYLK ENSG00000065534
4.245436954 0.796791444 | 0.911504425 | 0.621621622 | 0.820318106 | clusterl cluster2 CAMK2A ENSG00000070808
13.06476358 0.796791444 | 0.840707965 | 0.72972973 0.842621382 | clusterl cluster2 COL6A3 ENSG00000163359
6.208464543 0.796791444 | 0.849557522 | 0.716216216 | 0.820138723 | clusterl cluster2 CREB5 ENSG00000146592
7.616307314 0.789808917 [ 0.295454545 | 0.982300885 | 0.734714401 | cluster3 clusterl RYR3 ENSG00000198838
8.342644928 0.789808917 | 0.568181818 | 0.876106195 | 0.784593725 | cluster3 clusterl COL4A4 ENSG00000081052
7.498288647 0.789808917 | 0.454545455 | 0.920353982 | 0.750804505 | cluster3 clusterl ATP1B2 ENSG00000129244
8.196355693 0.788135593 | 0.590909091 | 0.905405405 | 0.851658477 | cluster3 cluster2 COL4A4 ENSG00000081052
18.59786455 0.78343949 0.454545455 | 0.911504425 | 0.735518906 | cluster3 clusterl COL1A1 ENSG00000108821
17.61894538 0.78343949 0.522727273 | 0.884955752 | 0.787208367 | cluster3 clusterl COL1A2 ENSG00000164692
5.785646207 0.780748663 | 0.920353982 | 0.567567568 | 0.789165271 | clusterl cluster2 FGF7 ENSG00000140285
6.755978322 0.780748663 | 0.902654867 | 0.594594595 | 0.798971538 | clusterl cluster2 KCNMA1 ENSG00000156113
6.295458069 0.779661017 | 0.590909091 | 0.891891892 | 0.828316953 | cluster3 cluster2 NTRK3 ENSG00000140538
8.135940071 0.777070064 | 0.613636364 | 0.840707965 | 0.820997586 | cluster3 clusterl PTGER3 ENSG00000050628
9.027323188 0.77540107 0.752212389 | 0.810810811 | 0.824204736 | clusterl cluster2 ITGA11 ENSG00000137809
7.080592053 0.771186441 | 0.590909091 | 0.878378378 | 0.742628993 | cluster3 cluster2 ATP1B2 ENSG00000129244
14.76613388 0.770700637 | 0.318181818 [ 0.946902655 | 0.745776348 | cluster3 clusterl TNC ENSG00000041982
7.344674719 0.770700637 | 0.613636364 | 0.831858407 | 0.762469831 | cluster3 clusterl ADORA1 ENSG00000163485
11.32377996 0.770053476 | 0.734513274 | 0.824324324 | 0.837598661 | clusterl cluster2 PDGFRB ENSG00000113721
8.168522118 0.764705882 | 0.82300885 0.675675676 | 0.811169577 | clusterl cluster2 EDNRA ENSG00000151617
8.312934396 0.757961783 | 0.386363636 | 0.902654867 | 0.727473854 | cluster3 clusterl BDKRBI1 ENSG00000100739
7.077832763 0.754237288 | 0.863636364 | 0.689189189 | 0.774262899 | cluster3 cluster2 AVPRIA ENSG00000166148
6.559483816 0.754237288 | 0.931818182 | 0.648648649 | 0.825859951 | cluster3 cluster2 ANGPT1 ENSG00000154188
8.217513355 0.754010695 | 0.89380531 0.540540541 | 0.768476441 | clusterl cluster2 CCL2 ENSG00000108691
5.566831178 0.754010695 | 0.82300885 0.648648649 | 0.770748625 | clusterl cluster2 P2RX1 ENSG00000108405
7.086393598 0.748663102 | 0.787610619 | 0.689189189 | 0.748505142 | clusterl cluster2 KCNMB1 ENSG00000145936
9.617669535 0.745762712 | 0.5 0.891891892 | 0.719594595 | cluster3 cluster2 ITGAS8 ENSG00000077943
6.876902256 0.74522293 0.340909091 | 0.902654867 | 0.783185841 | cluster3 clusterl NGF ENSG00000134259
8.040385391 0.74522293 0.659090909 | 0.778761062 | 0.790426388 | cluster3 clusterl CREB5 ENSG00000146592
7.277550694 0.743315508 | 0.734513274 | 0.756756757 | 0.777445587 | clusterl cluster2 PRKG1 ENSG00000185532
5.15983813 0.737967914 | 0.814159292 | 0.621621622 | 0.723152356 | clusterl cluster2 PTGFR ENSG00000122420
5.035757385 0.737967914 | 0.938053097 | 0.432432432 | 0.778880651 | clusterl cluster2 PTGER3 ENSG00000050628
5.932093438 0.737967914 | 0.805309735 | 0.635135135 | 0.761420713 | clusterl cluster2 ADORA1 ENSG00000163485
5.40067901 0.732620321 [ 0.911504425 | 0.459459459 [ 0.73056685 cluster1 cluster2 HGF ENSG00000019991
10.53198408 0.732484076 | 0.045454545 |1 0.686242961 | cluster3 clusterl ANGPT1 ENSG00000154188
11.65910541 0.732484076 | 0.272727273 | 0.911504425 | 0.669750603 | cluster3 clusterl ITGA11 ENSG00000137809
8.169702747 0.72611465 0.477272727 | 0.82300885 0.707562349 | cluster3 clusterl AVPRIA ENSG00000166148
5.508098753 0.721925134 | 0.902654867 | 0.445945946 | 0.738698876 | clusterl cluster2 GNAO1 ENSG00000087258
6.639627253 0.703389831 | 0.568181818 | 0.783783784 | 0.721437346 | cluster3 cluster2 RYR3 ENSG00000198838
4.589351842 0.700534759 | 0.82300885 0.513513514 | 0.688591246 | clusterl cluster2 IGF1 ENSG00000017427
5.95628405 0.689839572 | 0.82300885 0.486486486 | 0.681655106 | clusterl cluster2 ANGPT1 ENSG00000154188
5.696923613 0.684491979 | 0.805309735 | 0.5 0.703061469 | clusterl cluster2 BDKRBI1 ENSG00000100739
4.764814732 0.684491979 | 0.752212389 | 0.581081081 | 0.665271466 | clusterl cluster2 NGF ENSG00000134259
6.455683628 0.673796791 | 0.681415929 | 0.662162162 | 0.693853145 | clusterl cluster2 FGF2 ENSG00000138685
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5.773886663 0.657754011 | 0.902654867 | 0.283783784 | 0.619588615 | clusterl cluster2 AVPRIA ENSG00000166148
6.775991666 0.657754011 | 0.752212389 | 0.513513514 | 0.646496054 | clusterl cluster2 TNXB ENSG00000168477
8.599869878 0.64171123 0.391891892 | 0.805309735 | 0.603204975 | cluster2 clusterl ITGAS8 ENSG00000077943
5.891807142 0.636363636 | 0.796460177 | 0.391891892 | 0.617077254 | clusterl cluster2 PDEIA ENSG00000115252
7.548315019 0.625668449 | 0.094594595 | 0.973451327 | 0.520090887 | cluster2 clusterl RYR3 ENSG00000198838
3.713780217 0.620320856 | 0.991150442 | 0.054054054 | 0.538387945 | clusterl cluster2 NTRK3 ENSG00000140538
7.497294766 0.614973262 | 0.646017699 | 0.567567568 | 0.628318584 | clusterl cluster2 NPR 1.00 ENSG00000169418
5.792872806 0.609625668 | 0.690265487 | 0.486486486 | 0.588854341 | clusterl cluster2 COL4A4 ENSG00000081052
9.094951437 0.609625668 | 0.013513514 |1 0.542095193 | cluster2 clusterl ATP1B2 ENSG00000129244
4.230722549 0.604278075 |1 0 0.582276967 | clusterl cluster2 ADRA2A ENSG00000150594
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CHAPTER 4

Discussion

This is the first report of our institutional MIBC cohort subtyping using an unsupervised
clustering based on transcriptomic data in Thailand. The primary finding of this study is that
the locations of MIBC cluster on the principal components identified from transcriptome data
can be predicted from an understanding of the average coalescent differential genes for tissue
samples. This analysis transformed the high-dimensional data into an orthogonal basis which
represent the variant of mRNA expression profile in each sample. Unsupervised clustering
revealed the three clusters of MIBC with the 37 genes expressed differently in all clusters.
Interestingly, all signaling pathway was found to be increased in colon cancer (56), breast
cancers (57), and liver cancer (58). The PI3K-Akt activation was also found in breast cancer
(59), gastric cancer (60), and thyroid carcinoma (61). The ubiquitous signal transduction
MAPK pathway also associated to cancer cell proliferation and survival, and inflammatory
environment (62). Although all these signal transductions are in cancers, the dominant pathway
in cancer cell is depend on the genetic background, the mutation status, or type of cancer (63)
determining the aggressive behavior, the progression rate, and drug response of cancer.

Surprisingly, most of the genes are not related to the markers used for subtyping in the
previous reports (6,7,9,10,22,45,64). This may be due to drug response study was not included
for marker selection. Moreover, other studies performed the association of other biological
factors such as INCRNA, miRNA, protein expression, or DNA methylation (6,7,9,10,22,45,64).
We determined the sensitivity and specificity of the genes instead. ROC curve analysis revealed
most of the genes showed high correlation of the sensitivity and specificity only for cluster B

which may be used as expression markers for Thai MIBC patient. Our transcriptomic clustering
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provided three clusters of MIBC tissue which expressed the specific pattern of mRNA
profiling. In addition to our MIBC transcriptomic study from patient tissue, we included the
information from TCGA dataset for validation. However, PCA analysis with the comparison
between two cohorts demonstrated the obviously different PC coordinates between data from
our MIBC tissue samples and TCGA dataset. The variation of genetic background of the
different population studied may be the factors that caused the difference of PCA data plot
(65). By using the initial cluster centroids of the MIBC tissue data, we applied the distance of
tissue PCA coordinated with mRNA expression profile to TCGA data for transcriptomic
clustering of TCGA cohort. This gives us the influence of various expression scenarios on the
relationships between MIBC patients identified from PCA and how to apply this PCA for data
inference in other population. The three clusters obtained from this method were related to the
significant difference of the overall survival of MIBC patients meaning that the classification
based on transcriptomic data of MIBC tissue may be alternative way to predict the survival

outcome.

The nature of disease heterogeneity is represented by bladder cancer molecular
subtyping. MIBCs can be classified into at least three intrinsic subtypes, including luminal,
basal, and double negative, according to previous gene expression analysis (34). High
expression of terminal urothelial differentiation markers (GATA3, CK20, and uroplakin 2),
often known as umbrella cells, is a feature of luminal malignancies (7). Because umbrella cells
have a shorter lifespan than basal cells, they are less sensitive to genetic mutations, but their
chromatin landscape changes more often. The tumor tissue of the basal-like bladder cancer
expressed mesenchymal stem cell biomarkers (CK5/6 and CK14), as well as squamous and
sarcomatous characteristics (23). According to recent research, GATA3 and CK5/6 can detect
molecular subtypes in 80-90 percent of instances (30,34). GATA3 and CK5/6 were shown to

be linked with survival result in 62 percent of cases in our analysis, and only these two markers
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could unambiguously divide cases into luminal, basal, or double-negative subtypes. Loss of
expression in one of these two markers was linked to a lower chance of survival, and loss of
both markers was a strong predictor of poor outcome. Adding CK20 and CK14 to the criteria
to identify the subtypes did not seem to improve survival prediction, despite substantial

associations between CK20 and GATAS expression and CK14 and CK5/6 expression.

MIBCs that expressed GATA3 were found to be less aggressive and to have a higher
chance of survival. GATAS, also known as GATAS3 binding protein, is a transcription factor
that controls the expression of genes involved in breast and urothelial epithelial luminal
differentiation (68,69). GATAZ is also found in T-lymphocytes, the central nervous system,
and erythrocytes (70). The triple negative subtype of breast cancer has been found to have
lower GATA3 expression (71). Loss of GATA3 expression increased tumor cell motility and
invasion in urothelial cell line models by upregulating oncogenes (72,73). GATAS has been
studied in bladder cancer in a number of clinical trials (74-76). GATAS3 expression loss has
been linked to high-grade malignancy (76). Furthermore, in most investigations, GATA3-
negative bladder cancer patients had a poorer prognosis. (74,75,77). When those reports are
combined with our findings, GATAS appears to be a potential biomarker in MIBCs. CK20,
another luminal marker investigated in this work, has been linked to greater tumor grade and
stage in papillary urothelial carcinoma (78). However, no significant link was found between

CKZ20 and any clinicopathological condition or survival result in our investigation.

CK5/6 is a cytokeratin that is expressed in the squamous epithelial lineage and is
commonly utilized as a squamous differentiation marker that distinguishes the basal subtype
(79). In multiple studies, CK5/6 expression in urothelial cancer was linked to a poorer
prognosis (79,80). On the other hand, studies have shown that reduction of CK5/6 expression

is linked to a lower survival rate in transitional cell carcinoma of the upper urinary tract (80,81).
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Loss of CK5/6 expression was linked to a considerably lower survival outcome in our study.
CK14 is another basal subtype marker whose expression has been shown to have a negative

connection with MIBC survival.

Although molecular subtyping has been shown to be associated with disease
progression and treatment outcomes in MIBCs, RNA expression profiling is not a routinely
used technique. Several research have looked into the idea of evaluating an
immunohistochemical panel to be utilized for intrinsic subtype categorization in MIBCs
(74,80,82). Apart from GATAS, the predictive usefulness of other IHC markers remained a
mystery. The gap in results could be explained in part by differences in staining techniques and
interpretation. Because GATA3 and CK5/6 were found to have a substantial survival
correlation in our investigation, these markers were combined into a simple subgroup
categorization as luminal when the tumor had exclusive GATAS3 expression and basal when
the tumor had exclusive CK5/6 expression. The study discovered that the double-negative
subtype, which means that both markers were negative, predicted the worst outcome. Other
previously reported combinations, such as CK20 with CK5/6 or CK20 with CK14, were

explored but yielded no intriguing results.

However, mRNA expression clustering that exhibited 3 clusters and KRT expressions
in MRNA level as same as in IHC study found the important correlations of CK20, CK5/6,

GATAS3 and CK14 in each cluster.

The modest sample size of our investigation, as well as the lack of gene expression
profiling to confirm concordance between molecular subtypes and IHC marker expression,
were also limitations. Furthermore, only 20% of our patients underwent chemotherapy
following a radical cystectomy since their physical condition prevented them from doing so.

Because neoadjuvant chemotherapy is becoming more popular in the treatment of MIBC, the
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findings of our study may aid in identifying patients at high risk of treatment failure who should
get chemotherapy before undergoing definitive surgery. The presented study's high core
agreement, as well as earlier studies comparing TMA core expression to whole slides, suggests
that core regions are typical of expression in the entire sample. Tissue microarrays, on the other
hand, have clear limitations in terms of capturing tumor heterogeneity. To validate the efficacy
of this methodology, full slide analysis comparing expression and subtype assignment of a core
to complete sections will be necessary. Validation on complete slides is especially important
since pathologists evaluate larger samples in real practice. Staining patterns would have to be
assessable in ordinary workflow if subtyping was to be employed effectively in the clinical

context.

% Small sample size

% Validating and refining subtype classification

¢+ require prospective studies

% molecular subtyping of MIBC has mainly focused on stratifying global mRNA
expression, which comprises less than 2% of total transcription, due to the majority of

transcribed genes: ribosomal RNAs and non-coding RNAs

While IHC is a reliable and reasonable method for clinical subtyping and avoiding the
difficulties of transcriptome profiling, it may be subject to artifacts of its own due to
variances in antigen storage. The discovery of double negative subtypes and possible
challenges with antigen preservation in this study emphasizes the importance of giving
careful thought to these concerns about IHC staining repeatability. These concerns about
antigen storage and staining intensities make it difficult to create a repeatable, therapeutically

effective assay. Finally, the transcriptome profiles of these tumors should be evaluated in



tandem with IHC in order to ensure that the two approaches produce identical results. In

order to confirm if the same subtypes have been identified.
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CHAPTER S

Conclusion

Molecular subtyping classifications have provided insight into the biology of bladder
tumors, especially regarding tumor heterogeneity. New genomic techniques provide insight
into the marked genetic complexity of MIBC. Over the last decade, RNA- based molecular
subtyping has identified distinct or partially overlapping molecular classifications of MIBC.
Our studies show that molecular stratification of MIBC is of clinical importance into 3 clusters
with validate these subtypes in TCGA dataset, suggesting that responses to chemotherapy and
immunotherapy may be increased for specific MIBC subtypes. Further investigation is needed
into the clinical applicability of molecular subtypes before their incorporation into the
personalized care of MIBC patients. Moreover, GATA3, CK20, CK5/6, and CK14 staining
was selected to be tested against clinical outcomes with respect to survival after a radical
cystectomy. While subtype proportions and staining patterns differed by sample type, we
believe this was primarily due to poor antigen preservation in cystectomy samples. In addition
to the fact that TURBT samples are obtained at an earlier and perhaps more prognostically
relevant timepoint prior to NACT treatment, this points to the utility of TURBT samples for
MIBC subtyping, and potential limitations of IHC-based subtyping using cystectomy samples.
The study evaluated 4 immunohistochemical markers that mark luminal subtype (GATA3 and
CK20) and basal subtype (CK5/6 and CK14) in MIBC, focusing on their association with
survival outcome after a radical cystectomy. GATA3 and CK5/6 were significantly associated
with survival probability. When the 2 markers were combined, the double-negative subtype

had the poorest prognosis.
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We believe that altogether, this work demonstrates that a much simpler, IHC-based
assay for subtyping retains key biologic and clinical associations seen previously with more
complex profiling methods. Future work will validate the prognostic associations in larger
cohorts of patients, as well as investigate the predictive utility of IHC-based subtypes and also

new molecular subtyping of our study.

“* RNA expression-based subtypes in muscle-invasive bladder cancer: unique and offer

*,

insights to biology and subtype specific treatment

¢+ novel molecular subtypes of MIBC: 3 clusters

% Neoadjuvant chemotherapy and immunotherapy response: associated with each
subtype and may provide insights into the mechanisms of treatment response >> further
evaluation

s Clinical trials validating predictive biomarkers: essential for precision medicine

% a simplified four-gene signature: a practical, cost-effective platform to translational
research

% identifying 4 molecular subtypes (luminal, basal, mixed and double negative)

¢

o
%

double negative molecular subtypes: worse bladder cancer-related mortality
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Impact

of immunohistochemistry-based
subtyping of GATA3, CK20,

CK5/6, and CK14 expression

on survival after radical cystectomy
for muscle-invasive bladder cancer

Tanan Bejranandal*?, Kanet Kanjanapradit?, Jirakrit Saetang®* & Surasak Sangkhathat**

Molecular subtyping of muscle-invasive bladder cancer (MIBC) predicts disease progression and
treatment response. However, standard subtyping based on transcriptomic analysis is relatively
expensive. This study tried to use immunohistochemistry (IHC) to subtype MIBC based on GATA3,
CK20, CK5/6, and CK14 protein expression. The IHC-based subtypes in MIBC subtypes were classified
as luminal (GATA3* CK5/67, 38.6%), basal (GATA3 CK5/6*, 12.9%), mixed (GATA3* CK5/6*, 37.9%),
and double-negative (GATA3 CK5/6°, 10.6%) in 132 MIBC patients. All individual markers and
clinicopathological parameters were analyzed against treatment outcomes after radical cystectomy.
The mean patient age was 65.6 years, and the male to female ratio was 6.8:1. Positive IHC expression
of GATA3, CK20, CK5/6, and CK14 were 80.3%, 50.8%, 42.4%, and 28.0%, respectively. Only GATA3
and CK5/6 were significantly associated with survival outcome (p values =0.004 and 0.02). The mixed
subtype was significantly better in 5-year OS at 42.8%, whereas the double-negative subtype had the
worst prognosis (5-year OS 7.14%). The double-negative subtype had a hazard ratio of 3.29 (95% CI
1.71-6.32). Subtyping using GATA3 and CK5/6 was applicable in MIBCs, and patients with the double-
negative subtype were at the highest risk and may require more intensive therapy.

Urinary bladder cancer is among the top 10 most frequent cancers and one of the most common causes of
cancer-related deaths in humans with an estimated 500,000 new cases and 200,000 deaths per year worldwide'~.
In Thailand, the estimated incidence of bladder cancer from 2013 to 2015 was approximately 4.0 cases/100,000
population-years®. Bladder cancer is a disease with high heterogeneity in its pathology and clinical presenta-
tion. Urothelial carcinoma accounts for more than 90% of bladder cancers'. Generally, urothelial carcinoma
is categorized into non-muscle-invasive bladder cancer (NMBC) and muscle-invasive bladder cancer (MIBC)
according to bladder wall invasion®. While NMBC generally has a low risk of distant metastasis and better out-
comes, MIBC is more aggressive and is more likely to metastasize. MIBC usually requires intensive management,
which includes radical cystectomy with perioperative chemotherapy®”. Despite complete surgery and adjuvant
therapy, the 5-year overall survival (OS) of MIBC is approximately 36%°.

MIBC has a high level of genomic instability, and TP53 mutations are the most common genetic abnormalities
found in the tumor tissue’. Studies of HER2/neu, E-cadherin, p53, and p16 expression in MIBC tumor tissue
using immunohistochemistry (IHC) have been reported”. However, none of these markers has been applied in
clinical practice. Recently, comprehensive mRNA expression profiles in bladder cancer were used to categorize
MIBC into various molecular subtypes®''~"%, The primary molecular subtypes of MIBC are the luminal and basal
subtypes', which are similar to the initially reported molecular breast cancer subtypes'*'. Although further
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studies have extended the molecular classification of MIBC into 5 or 6 subtypes'®", the luminal and basal sub-
types remain the fundamental types.

Intrinsic subtypes of bladder cancer have demonstrated increased utility in predicting treatment outcomes,
especially in patients with MIBC who undergo radical cystectomy followed by adjuvant chemotherapy’®. The
established molecular subtypes proposed in previous studies were primarily established by high-throughput
molecular technology, especially transcriptomic analysis. Traditional IHC techniques are not technology-depend-
ent, and hence it is more feasible to classify subtypes at the protein level using IHC. Discovery of potential
IHC markers that can stratify molecular subtypes of MIBC may be useful in the prediction of disease progres-
sion. Previous studies have reported a correlation between mRNA expression profiles and IHC staining results
in luminal (CK20 expression) and basal (CK5/6 expression) subtypes' and also confirmed that GATA3 and
CK5/6 expression by IHC may also identify these two subtypes with greater than 90% accuracy according to a
meta-analysis'’. Another study revealed that the basal/squamous-like subtype was correlated with poor clinical
outcome™, as was decreased GATA3 expression®. In this study, GATA3, CK20, CK5/6, and CK14 staining was
selected to be tested against clinical outcomes with respect to survival after a radical cystectomy. This study aimed
to determine IHC markers or patterns that may predict prognosis in patients with MIBC.

Results

Demographic and clinicopathological data. This study included 132 patients with MIBC who under-
went radical cystectomy during the study period. Their mean age was 65.6 years, and the male to female ratio
was 6.8:1. The demographic characteristics of the patients and immunoreactivity for each IHC marker are sum-
marized in Table 1. Two patients who died at 3 and 7 days after surgery were considered to have operative
mortality and were excluded from the survival analysis. As of January 2021, the median follow-up duration was
125 months (interquartile range 103-154 months). The median OS time was 12.2 months (interquartile range
4.7, 46.4 months), and the 5-year OS5 was 27.0% (95% CI 19.6%-35.0%). IHC showed positivity for GATA3,
CK5/6, CK20, and CK14 with kappa value between 0.799-0.908 (93.2-96.2% agreement) (Table 2). The immu-
nostains for GATA3, CK5/6, CK20, and CK14 showed positive results with 80.3%, 50.8%, 42.4%, and 28.0%
of cases, respectively (Fig. 1). GATA3 and CK5/6 immunopositivity was significantly associated with OS by
log-rank analysis (Table 1). Twenty-six cases received a median of 3 cycles of adjuvant chemotherapy. GATA3
expression was significantly inversely correlated with pT stage progression.

According to the Kaplan-Meier survival analysis, significant differences in outcomes with respect to OS5 were
demonstrated among cases with positive GATA3 staining (p = 0.008) and in cases with positive CK5/6 staining
(p=10.038). The other markers did not show significant prognostication value for survival. The Kaplan-Meier
survival curves for GATA3, CK5/6, CK14, and CK20 are depicted in Fig. 2.

The correlation between each individual marker was evaluated by Pearson correlation test. As showed in
Table 2, the significant association of GATA3, CK5/6, and CK20 was found only in pathological stage 1 of
patients. When the correlation between markers in the basal and luminal subtypes was assessed, moderate
correlation was observed between GATA3 and CK20 expression, which indicated that the basal-like subtype
was demonstrated by Pearson correlation at 0.46 (p=0.022). The analysis showed small correlation between the
luminal-like subtype markers, CK5/6 and CK14; 0.31 (p=0.048) (Fig. 3).

As GATA3 and CK5/6 were the only two markers representing different subtypes that were significantly
associated with survival, we elected to categorize our cases into four groups according to those two mark-
ers: luminal-like (GATA3* and CK5/67), basal-like (GATA3~ and CK5/6%), mixed (GATA3" and CK5/6%), and
double-negative (GATA3™ and CK5/67) subtypes. By this definition, the luminal-like, basal-like, mixed, and
double-negative subtypes were observed in 38.6%, 12.9%, 37.9%, and 10.6% of cases, respectively. Associations
between each subtype and clinicopathological factors including survival outcomes are displayed in Table 3. The
double-negative subtype was significantly associated with higher incidence of pT4 disease.

CK20 immunopositivity, a marker of the luminal molecular subtype, was significantly associated with the
GATA3-defined luminal subtype (p <0.01), whereas CK14 positivity was significantly associated with the CK5/6-
defined basal subtype (p<0.01). In the 50 mixed subtype (GATA3" and CK2/5%) cases in this study, an equal
number of cases with CK20 and CK5/6 positivity was found (Table 3).

When clinicopathological parameters and IHC subtypes were analyzed against survival in a univariable Cox
hazard model, tumor stage (pT and N), lymphovascular invasion, pathologic grade, loss of GATA3 immuno-
reactivity, and loss of CK5/6 immunoreactivity were significantly associated with poorer survival outcomes.
Considering subtyping, while patients with the mixed subtype had the lowest risk, which was followed by patients
with the luminal-like and basal-like subtypes, those with the double-negative subtype had the highest crude HR.
In the multivariable analysis by stepwise Cox hazard regression, N stage (N > 0) and the double-negative subtype
were significantly associated with higher risk (model p=0.0001) (Table 4).

Association between molecular subtypes and survival outcomes. Kaplan-Meier curves compare
the survival probability of 132 patients with MIBC following radical surgery (Fig. 4). The 5-year OS rates of
patients with the mixed, basal, luminal, and double-negative subtypes were 42.5% (95% CI 28.9-56.1%), 23.5%
(7.3-44.9%), 18.9% (9.2-31.1%), and 7.1% (0.4-27.5%), respectively.

In the 50 MIBCs of mixed subtype (GATA3* and CK5/6%), if CK20 and CK14 were added to the subcategori-
zation criteria, which means that mixed subtype cases with positive CK20 were reclassified as luminal, whereas
mixed subtype cases with positive CK14 were reclassified as basal. The univariable hazard model did not improve.
Using the mixed subtype as a reference, the HRs (and 95% Cls) for the luminal, basal, and double-negative sub-
types were 1.17 (95% CI 0.62-2.20), 1.54 (0.76-3.10), and 2.64 (1.22-5.73) respectively.
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Age (years)

Mean (SD) 65.6 (9.3} -

Sex 0.56
Male 115 (87.1%) 257 (17.9-34.2)

Female 17 (12.9%) 35.3 (14.5-57.0)

ECOG status 018
[ 29 (22.0%) 39.2 (21.6-56.5)

1 103 (78.0%) 237 (15.9-32.6)

T stage <0.01
T1 21(15.9%) 68.6 (50.0-94.1)

T2 23 (14.7%) 440 (302-73.1)

3 41 (31.1%) 17.1 (8.7-33.5)

T4 47 (35.6%) 6.4 (21-19.1)

N stage

No 90 (68.2%) 337 (23.8-43.8) <0.01
NI 24 (18.2%) 12.2(45-24.1)

N2 15 (11.4%)

N3 3(2.3%)

M stage NA
Mo 128 (97.7%) 26.9(19.4-34.9)

M1 3(2.3%) NA

Tumor grade 0.04
Low 7 (5.30%) 85.7 (33.4-97.9)

High 125 (94.7%) 237 (165-31.7)

Chemotherapy 0.80
No 106 (80.3%) 27.9(19.5-37.0)

Yes 26 (19.7%) 23.1(9.4-40.3)

Diversion 0.03
Tleal conduit 123 {93.2%) 24.0(16.6-32.1)

Neobladder 9 (6.8%) 66.7 (28.2-87.8)

vl <0.01
Negative 51(39.4%) 40,00 (26.3-53.3)

Positive 80 {60.6%) 18.8(11.1-28.7)

CK20 0.45
Negative 76 (57.6%) 25.3 (16.2-35.5)

Positive 56 (42.4%) 29.7 (18.0-42.4)

CK5/6 0.02
Negative 65 (49.2%) 16.2 (8.3-26.5)

Positive 67 (50.8%) 37.8(26.2-49.3)

CK14 0.63
Negative 95 (72.0%) 26.0(17.5-35.4)

Positive 37 (28.0%) 30,6 (16.6-45.7)

GATA3 <0.01
Negative 26 (19.7%) 16.1(5.9-30.9)

Positive 106 (80.3%) 30.5 (21.6-39.9)

Table 1. Clinicopathological features of the 132 patients who underwent radical cystectomy.

Discussion

The molecular subtyping of bladder cancer represents disease heterogeneity. Previous gene expression profil-
ing has revealed that MIBCs can be subcategorized into at least three intrinsic subtypes including the luminal,
basal, and double-negative suhtypesn. The characteristics of luminal tumors include high expression of markers
(GATA3, CK20, and uroplakin 2) of terminally differentiated urothelial cells, which are also known as umbrella
cells. As umbrella cells have shorter longevity than basal cells, they are less susceptible to genomic alterations but
usually exhibit greater changes in their chromatin landscape. Basal-like bladder cancer cells express biomarkers
of mesenchymal stem cells (CK5/6 and CK14) and exhibit some squamous and sarcomatous features in tumor
tissue™. Recent studies have suggested that GATA3 and CK5/6 expression can identify molecular subtypes in
80-90% of cases'™*2. In our study, 62% of cases could be clearly categorized into luminal, basal, or double-negative
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Positive staining (%) 132 101(76.5%) | 67 (50.8%)| 56(42.4%) | 37 (28.0%)
Mean age of positive cases (SD) 647(93) |647(9.1) |648(87) | 657(93)
Gender

Male (%) 115 (87.1%) | 91(90.1%) | 56(33.6%)| 50(393%) | 30(81.1%)
Female (%) 17(129%) | 10(9.9%) | 11(164%)| 6(107%) | 7(16.9%)
ECOG status, n (%)

o | 209 (22.0%) | 25 (24.7%) | 13 (15.4%) I 13 (23.1%) I B(21.6%)
1 | 103 (78.0%) | 76 (75.3%) | s4(s0.6%)| 43(768%) | 29 (78.3%)
T stage, n (%)

pT1 21(159%) | 20(198%)* ] 12(17.9%)| 14(250%)] o (0%
pI2 23(17.4%) | 20(19.8%) | 14(209%)| 13(232%) | 8(216%)
pI3 41(311%) | 28(27.7%) | 20(29.9%)| 10(17.9%) | 18 (48.7%)
P4 47(35.6%) | 33(326%) | 21(31.3%)| 19(339%) | 11(20.7%)
N stage, n (%)

No o0 (68.2%) | 69(68.3%) | 47(70.2%)| 41(732%) [ 27(73.0%)
N1 24(182%) | 19(18.8%) | 12(17.9%)| 7(125%) | 7(18.9%)
N2 15(114%) | 11(109%) | 7(105%)] 6(107%) | 2(5.4%)
N3 3(2.3%) 2(2.0%) 1(L5%) | 2(3.6%) 1(2.3%)
M stage, n (%)

Mo 128 (97.7%) | 98(98.0%) | 65(98.5%)| 54(982%) | 35(97.2%)
M1 3(2.3%) 2(2.0%) 1(L5%) | 1(18%) 1(2.8%)
Tumor grade, n (%)

Low 7 (5.30%) 6(5.9%) 6(9.0%) | 3(54%) | 0(0.0%)
High 125 (94.7%) | 95(94.1%) | 61(90.0%)| 53(346%) | 37 (100.0%)
LVL n (%)

Negative 52(39.4%) | 41(406%) | 26(36.8%)| 25(448%) | 11(29.7%)
Positive B0 (60.6%) | 60(59.4%) | 41(61.1%)| 31(35.4%) | 26(70.3%)

Table 2. Immunopositivity of the four markers analyzed and their correlation with dlinicopathological
parameters. *p value <0.05 when distribution between positive cases and among all cases was compared; LVI:
lymphovascular invasion.
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Figure1. [ histochemical staining of MIBC tissues for GATA3, CK20, CK5/6, and CK14. (A) Luminal

type, (B) Basal type.
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Figure 2. (A-D) Kaplan-Meier curves demonstrate the survival probability in 132 patients with MIBC
according to marker expression by IHC; GATA3 (A), CK5/6 (B), CK14 (C), and CK20 (D).
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Figure 3. Correlation heatmap of GATA3, CK20 (basal-like markers), CK5/6, and CK14 (luminal-like markers)
expression by IHC.

subtypes based on GATA3 and CK5/6 expression, and only these two markers were associated with survival
outcome. Loss of expression of either GATA3 or CK5/6 was associated with poorer survival probability, whereas
loss of expression of both markers was a strong predictor of poor outcome. Although a significant association
was observed between CK20 and GATA3 expression and between CK14 and CK5/6 expression, the addition of
CK20 and CK14 to the criteria to categorize the subtypes did not appear to improve survival prediction.
MIBCs expressing GATA3 exhibited less aggressive characteristics and were associated with significantly bet-
ter survival. GATA3, also known as GATA3 binding protein, is a transcription factor that regulates the expression
of genes that function in the luminal differentiation of breast and urothelial epithelium?®-*, In addition, GATA3
is expressed in T-lymphocytes, the central nervous system, and erythrocytes™. In breast cancers, reduced GATA3
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Total (%) 14 (10.6) 51(38.6) 17 (12.9) 50(37.9) -
Mean age (SD) 70.2(6.0) 65.3(10.1) 66.6 (10.7) 64.1 (8.6) 0.18
Gender, n (%)

Male 12 (85.7) 47(923) 12 (70.6) 44 (88.0) 0.15
Female 2(143) 4(7.8) 5(29.4) 6(12.0)

ECOG status, n (%) 0.29
[} 1(7.0) 15 (29.4) 3(17.7) 10 (20.0)

1 13 (929) 36 (70.6) 14 (82.3) 40 (B0.0)

Urinary diversion type 098
Tleal conduit 13 (929) 47 (92.3) 16 (94.1) 47 (94.0)

Neobladder 1(7.1) 4(7.8) 1(55) 3(6.0)

T stage, n (%) 0.24
1 0 (0.0) 9 (17.6) 1(59) 11(22.0)

T2 0 (0.0) 9 (17.6) 3(17.6) 11(22.0)

T3 6 (42.9) 15 (29.4) 7(41.2) 13 (26.0)

T4 8(57.1) 18 (35.3) 6(35.3) 15 (30.0)

N stage, n (%) 0.71
N 11 (78.6) 32 (62.8) 10 (58.8) 37 (74.0)

N1 1(7.1) 11 (21.6) 4(23.5) B (16.0)

N2 1(7.1) 7(13.7) 3(17.7) 4(80)

N3 1(7.1) 1{2.00 0 (0.0 1{2.00

M stage, n (%) 0.55
Mo 13 (92.9) 50 (98.0) 17 (100.0) 48 (98.0)

M1 1(7.1) 1(2.0) 0 (0.0) 1(2.0)

Tumor grade, n (%) 0.25
Low 0 (0.0) 1(2.0) 1(5.9) 5 (10.0)

High 14 {100.0) 50 (98.0) 16 (94.1) 45 (90.0)

Margin, n (%) 057
Negative 11 (78.6) 46 (30.2) 16 (94.1) 43 (86.0)

Positive 3{21.4) 5(9.8) 1(5.9) 7 (14.0)

LVLn (%) 097
Negative 5(35.7) 21 (41.2) 6(35.3) 20 (40.0)

Positive 9 (64.3) 30 (58.8) 11 (64.7) 30 (60.0)

CK20, n (%) <0.01
Negative 12 (85.7) 17(33.3) 16 (94.1) 31 (62.0)

Positive 2(14.3) 34(66.7) 1(5.9) 19 (38.0)

CK14, n (%) <0.01
Negative 12 (85.7) 48 (94.1) 4(23.5) 31 (62.0)

Positive 2(143) 3(59) 13(76.5) 19 (38.0)

5-Year OS5 (%) (95% confidence interval) | 7.14 (0.4-27.5) | 18.9(9.2-31.1) |23.5(7.3-249) |42.8(28.9-56.1) |<0.01

Table 3. Patient characteristics and classification by IHC subtype according to GATA3 and CK5/6 expression.
*p value by Chi-square or Fisher's exact test; ECOG status: Eastern Cooperative Oncology Group performance
status; LVI: lymphovascular invasion; O8: overall survival

expression was reported in the triple-negative subtype”, In urothelial cell line models, the loss of GATA3 expres-
sion promoted tumor cell migration and invasion via upregulation of oncogenes™°, Several clinical studies of
GATA3 in bladder cancer have been conducted™ %, Loss of GATA3 expression was associated with high-grade
cancer”, and patients with GATA3-negative bladder cancer had poorer survival outcomes in most studies™ ",
Taken together, those reports and our data demonstrate that GATA3 is a promising biomarker of MIBC. Another
luminal marker evaluated in this study, CK20, has been reported to be correlated with higher tumor grade and
stage in papillary urothelial carcinoma®. However, our study did not reveal a significant association between
CK20 and any clinicopathological factor or survival outcome.

CK5/6 is a cytokeralin expressed in a squamous epithelial lineage and is generally used as a marker of squa-
mous differentiation, which indicates the basal subtype™. Expression of CK5/6 in urothelial carcinoma was asso-
ciated with poorer survival in several reports***°, In contrast, some reports also demonstrated that loss of CK5/6
expression was associated with decreased survival probability in patients with transitional cell carcinoma of the
upper urinary tract’*"", In our study, loss of CK5/6 expression was associated with significantly worse survival
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T stage

pl1 1.00 (reference) < (.01

pI2 1.61 (0.65-3.95)

pI3 5.15 (2.36-11.19)

pr4 6.50 (3.01-14.02)

N stage

NO 1.00 (reference) < (.01 1.00 (reference) 002
N1 1.78 (1.07-2.96) 1.84 (1.09-3.13) 20.01
N2 2.58 (1.43-4.66) 2.63 (1.44-4.78)

N3 5.34 (1.63-16.58) 4.45 (1.35-14.68) 0.01
LVI (positive) 1.94 (1.27-2.96) <001

Grade (high grade) | 3.16 (1.00-10.00) 0.02

GATA3 (negative) | 1.87 (1.20-2.90) <0.01

CK5/6 (negative) 1.57 (1.06-1.35) 0.03

CK20 (negative) 1.16 (0.78-1.75) 045

CK14 (negative) 0.89 (0.58-1.39) 0.63

Mixed subtype 0.52 (0.34-0.81) 2001

Basal subtype 1.39 (0.79-2.46) 025

Luminal subtype 1.18 (0.79-1.76) 043

Double-negative 2.24 (1.27-3.96) <0.01

Subtypes <0.01

Mixed 1 (reference) (Reference) 1
Luminal 1.66 (1.03-2.68) 1.66 (0.86-3.21) 0.13
Basal 2.01 (1.06-3.81) 1.60 (0.99-2.60) 0.05
Double-negative 3.12 (1.63-5.92) 3.29 (1.71-6.31) 20.01

Table 4. Univariable and multivariable regression analyses of clinical outcomes in 132 patients with MIBC.
Crude HR: crude hazard ratio; adj. HR: adjusted hazard ratio; 95% CI: 95% confidence interval; LVI:
lymphovascular invasion, Univariate and multivariable Cox regression analysis of overall survival (Cox
proportional hazards regression model).
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Figure 4. Kaplan—Meier survival curves of patients with different molecular subtypes of muscle-invasive
bladder cancer according to their immunoexpression of four markers.
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outcome. CK14 is another marker of the basal subtype, and its expression has been reported to be negatively
correlated with survival in MIBC.

Although molecular subtyping has been accepted for its correlation with disease progression and treatment
outcome in MIBC, RNA expression profiling is not a widely available technology. The evaluation of IHC panels
for intrinsic subtype categorization of MIBC has been reported in several studies’***%, However, except for
GATA3, the prognostic value of other IHC markers has remained intriguing. Variation in staining techniques
and interpretation may partly explain the disparity in results. Since our study revealed significant associations
between survival and GATA3 and CK5/6 expression, these markers were combined in a simple subgroup as
luminal when the tumor had exclusive expression of GATA3 and as basal for exclusive CK5/6 expression. Our
study also found that the double-negative subtype, which is indicated by negative staining of both markers,
predicted the poorest outcome. Other combinations that have been reported in previous studies, such as CK20
with CK5/6 or CK20 with CK14, have been investigated with no interesting findings.

The limitations of our study included the small sample size and the lack of gene expression profiling to validate
concordance between molecular subtypes and IHC marker expression. However, the transcriptomic profiling
study using the markers from this study as a part of clustering is running and will be launched in the next year. In
addition, only 20% of our patients received chemotherapy after radical cystectomy because the physical status of
most patients did not allow for chemotherapy. As neoadjuvant chemotherapy is becoming a new trend in MIBC
treatment, the results of our study may help in the selection of patients at a high risk for treatment failure who
should receive upfront chemotherapy before definitive surgery.

Methods

Patients and specimens. This study included 132 patients with urinary bladder cancer who underwent
radical cystectomy and who received standard adjuvant chemotherapy at Songklanagarind Hospital, Thailand
from 2008 to 2016. Inclusion criteria were patients with bladder cancer aged older than 15 years who under-
went surgery primarily at our institute and who completed adjuvant treatment according to the standard of
the Thai Urelogical Association®. All eligible cases were reviewed for clinical stage, and their histopathology
was confirmed by a pathologist who specializes in genitourinary tract pathology (KK). Staging was performed
according to the TNM classification, whereas stage grouping was performed according to the eighth version
of the American Joint Committee on Cancer Staging Manual. Cases without muscularis propria invasion and
those with subtypes other than non-urothelial carcinoma were excluded. Clinical data were extracted from the
electronic medical records of the hospital (HIS system). Data on survival status combined with the clinical
follow-up records and death registry data from the Thai citizen registration system were analyzed and archived
by the Cancer Unit, Songklanagarind Hospital. Cases with operative mortality were excluded from the survival
analysis. The study protocol was approved by the Human Research Ethic Committee of the Faculty of Medicine,
Prince of Songkla University (REC61-222-10-1). All methods were carried out in accordance with the World
Medical Association Declaration of Helsinki. Informed consent was obtained from all patients or legally author-
ized representatives included in the study.

IHC study by tissue microarray. Sampling of the tumor part for this pilot study was performed by a col-
laborative work between the attending surgeon who know the orientation of the specimen and the pathologist
who examined the histopathology. Bladder carcinoma in situ and flat lesions were excluded in this study. Several
areas of tumor in the same patients for the pathological morphology and selected the representative areas that
have both richness in tumor cells and the morphology was like other areas in the same cases were selected for
examination. Archived pathological specimens from all included cases were retrieved as formalin-fixed paraffin-
embedded tissue blocks, which were then selected and prepared as 5-um sections for a tissue microarray (TMA)
using a tissue arrayer (Beecher Instruments, Silver Spring, MD, USA). Immunostaining procedures were con-
ducted with 3 (triplicate) TMA cores per section by a pathology technician who specializes in this technique.
In cases of multiple foci, all foci were selected for examinations. Subtype-specific primary antibodies used here
are as follows: GATA3 (UMAB218, 1:100 dilution; OriGene, MD, USA), CK5/6 {D5/16, 1:50 dilution; Dako,
Glostrup, Denmark), CK14 (OIT4A7, 1:100 dilution; OriGene), and CK20 (OTI4A, 21:50 dilution; OriGene).
These antibodies were used to identify potential markers to establish molecular subtypes in the tissue sections
contained in the TMA. A pathologist (KK) blinded to the clinical outcomes examined the results using a light
microscope and scored all TMA sections. For mixed and/or borderline cases, the positive immunostains were
interpreted especially by the consensus of two pathologists. The positivity and intensity of tumor cell nuclei
stained for GATA3 and membranous or cytoplasmic staining for CK20, CK5/6, and CK14 were recorded. Stain-
ing intensity was assessed as 0 (negative; 0-10%) or 1 (positive; 10-100%).

Statistical analysis. Categorical and continuous parameters were compared using the Chi-square test
and were analyzed using the Spearman rank correlation test. The median differences between groups for non-
normally distributed variables were evaluated by independent sample Kruskal-Wallis test. Differences in the
percentages of [HC staining between or among comparable groups were analyzed using the Student’s ¢ test and
one-way analysis of variance. The hazard ratios (HRs) and 95% confidence intervals (Cls) were also calculated.
In all patients who underwent radical cystectomy with adjuvant chemotherapy, the OS after radical cystectomy
was calculated using the Kaplan-Meier method. Survival probabilities were estimated using the Kaplan-Meier
method, whereas the log-rank test was adopted to compare survival probabilities between each variable. All vari-
ables with p<0.1 in the univariable analyses were entered into the multivariable regression analysis. Multivari-
able analyses were also performed using Cox regression. Two-sided p values < 0.05 were considered statistically
significant. The R program (version 4.0.1) was used for statistical analyses.
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Appendix C
Shell command: Alignment and transcript count

## STAR 1 PASS ##
/home/user/software/STAR-2.7.8a/source/STAR \
--genomeDir ${reference_tcga}/human_grch38_star2.7.8 \
--readFilesIn ${out_trim}/${sample_name} 1_pair.fastq.gz
${out_trim}/${sample_name} 2 pair.fastq.gz \
--runThreadN $NSLOTS \
--outFilterMultimapScoreRange 1\
--outFilterMultimapNmax 20 \
--outFilterMismatchNmax 10 \

--alignintronMax 500000 \

--alignMatesGapMax 1000000 \

--sjdbScore 2\

--alignSJDBoverhangMin 1\

--genomeL.oad NoSharedMemory \
--readFilesCommand zcat \
--outFilterMatchNminOverLread 0.33 \
--outFilterScoreMinOverLread 0.33 \
--sjdbOverhang 100 \

--outSAMstrandField intronMotif \

--0utSAMtype None \

--outSAMmode None \

--outFileNamePrefix ${out_align}/${sample_name}.

## STAR GENOME GENERATE
/home/user/software/STAR-2.7.8a/source/STAR \

--runMode genomeGenerate \

--genomeDir ${out_align}/genome \

--genomeFastaFiles ${reference_tcga}/GRCh38.d1.vd1.fa\
--sjdbOverhang 100 \

--runThreadN $NSLOTS \

--sjdbFileChrStartEnd ${out_align}/${sample_name}.SJ.out.tab \
--outFileNamePrefix ${out_align}/${sample_name}.

## STAR 2 PASS
/home/user/software/STAR-2.7.8a/source/STAR \
--genomeDir ${out_align}/genome \

--readFilesIn ${out_trim}/${sample_name} 1 pair.fastq.gz
${out_trim}/${sample_name} 2 pair.fastq.gz \
--runThreadN $NSLOTS \

--outFilterMultimapScoreRange 1\
--outFilterMultimapNmax 20 \

--outFilterMismatchNmax 10 \

--alignintronMax 500000 \
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--alignMatesGapMax 1000000 \
--sjdbScore 2\

--alignSJDBoverhangMin 1\
--genomeLoad NoSharedMemory \
--limitBAMsortRAM 0\
--readFilesCommand zcat \
--outFilterMatchNminOverLread 0.33 \
--outFilterScoreMinOverLread 0.33 \
--sjdbOverhang 100\
--outSAMstrandField intronMotif \
--outSAMattributes NH HI NM MD AS XS\
--outSAMunmapped Within \
--0utSAMtype BAM SortedByCoordinate \
--0utSAMheaderHD @HD VN:1.4\
--outSAMattrRGline ID:MIBC \

--outFileNamePrefix ${out_align}/${sample_name}.

## HTseq count
htseg-count \

-f bam\

-r name \

-sno\

-al10\

-texon\

-igene_id \

-m intersection-nonempty \

${out_align}/${sample_name}.Aligned.sortedByCoord.out.bam \

${reference_tcga}/gencode.v22.annotation.gtf >\
${out_count}/${sample_name}_htseq.count
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R code for analysis



##Load library
library(data.table)
library(DESeq2)

library(ggplot2)

library(dplyr)
library(tidyverse)

library(biomaRt)
library(httr)

library(ggvenn)
library(enrichR)
library(NMF)

library(grid)
library(gridExtra)

library(ggrepel)

library(ClusterR)

library(survival)
library(survminer)

library(TCGADbiolinks)

library(DT)

library(TCGAUtils)
#BiocManager::install("")
#install.packages("")

library(pROC)

Appendix D

R code for analysis
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R R R R R R R R R R B R R R R R R R R R
HEHHHHH R

##Set directory

setwd(""~/bladder/DEG_2pass/use”)

##Load data

list.files <- list.files(path = ".")

##Get file name

file_name <- NULL

for (i in list.files) {

file_name <- c(file_name,gsub(™*_htseq.count’,'\\1",i))

¥

rm(i)

##Loop create data frame
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i<-1
for (j in list.files ) {
if(i==1){

file <- fread(j,header = FALSE)
file <- file[-c(60484,60485,60486,60487,60488),]
gsub('*_htseg.count’,"\\1',j)
## Add first sample
#read.counts <- data.frame(file$expected_count,row.names = file$gene_id)
read.counts <- data.frame(file$VV2,row.names = file$V1)
colnames(read.counts) <- gsub("*_htseq.count’,\\1',j)
## Set condition
#sample.info <- data.frame(gsub('*_htseq.count’,"\\1',j),"normal™)
sample.info <- data.frame(gsub(*_htseq.count’,\\1'j),"cancer")
colnames(sample.info) <- c("name","condition™)
}else {
## Add another sample ##
file <- fread(j, header = FALSE)
file <- file[-c(60484,60485,60486,60487,60488),]
## Set sample name ##
sample <- gsub(*_htseq.count',"\\1',j)
## Set condition
condition <- "cancer"
## Insert sample to sample.info and read.counts ##
count <- data.frame(file$V2)
colnames(count) <- sample
info <- data.frame(sample,condition)
colnames(info) <- ¢(*"'name","condition™)
read.counts <- chind(read.counts,count)
sample.info <- rbind(sample.info,info)
}
i<-i+1
}
rm(count)
rm(sample)
rm(info)
rm(condition)
rm(i)
rm(j)
rm(file)
T
U
read.counts$gene_id <- rownames(read.counts)
## Annotate with Ensemble gene symbol
list <- NULL
for (i in L:nrow(read.counts) ) {
list <- c(list, unlist(strsplit(read.counts[i,"gene_id"], split ="[.]")[1])
}
read.counts$gene_id_new <- list
##Annotate gene
httr::set_config(httr::config(ssl_cipher_list = "DEFAULT@SECLEVEL=1"))
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httr::set_config(httr::config(ssl_verifypeer = FALSE))

## Annotate gene name ##

ensembl = useEnsembl(biomart = "ensembl”, dataset = "hsapiens_gene_ensembl",
mirror="uswest")

genemap <- getBM( attributes = c("ensembl_gene_id", "entrezgene_id",

"hgnc_symbol”, "external_gene_name",
"description”, "chromosome_name",
"strand"),
filters = "ensembl_gene_id",
values = read.counts$gene_id_new,
mart = ensembl)
##Create gene filter data frame
gene_filter <- genemap %>% filter(str_detect(genemap$description, "pseudogene™) |
str_detect(genemap$description, "antisense™) |
str_detect(genemap$description, "long intergenic") )
##Remove column
read.counts <- read.counts %>% dplyr::select(-c(gene_id,gene_id_new))
R
D e e S
##FILTER none mRNA gene
read.counts.test <- read.counts
colnames(read.counts.test)
read.counts.test$gene_id <- rownames(read.counts.test)
list <- NULL
for (i in 1:nrow(read.counts.test) ) {
list <- c(list, unlist(strsplit(read.counts.test[i,"gene_id"], split = "[.]")[1])
}
read.counts.test$gene_id_new <- list
genemap.test <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol™),
filters = "ensembl_gene_id",
values = read.counts.test$gene_id_new,
mart = ensembl)
read.counts.test <- read.counts.test %>% left_join(genemap.test, by = c("gene_id_new" =
"ensembl_gene_id"))
read.counts.test <- read.counts.test %>% filter( !(read.counts.test$gene_id_new %in%
gene_filtersensembl_gene_id) )
read.counts.test <- read.counts.test[!(is.na(read.counts.testShgnc_symbol) |
read.counts.test$hgnc_symbol==""), ]
read.counts.test <- distinct_at(read.counts.test, vars(gene_id), .keep_all = TRUE)
rownames(read.counts.test) <- read.counts.testbgene_id
read.counts.test <- read.counts.test %>% dplyr::select(-
c(gene_id,gene_id_new,hgnc_symbol))
T R
U
## UNSUPERVISE CLUSTERING ##
# With no condition #
DESeq.ds.test <- DESegDataSetFromMatrix(read.counts.test ,colData = sample.info,~ 1)
## Include gene which counts more than 0 ##
DESeq.ds.test <- DESeq.ds.test[ rowSums(counts(DESeq.ds.test)) > 10, ] #10
## Calculate size factor of normalization counts ##
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DESeq.ds.test <- estimateSizeFactors(DESeq.ds.test)

## Normalization and Log2 transform by DESeq?2 ##
DESeq.rlog.test <- vst(DESeq.ds.test, blind = TRUE)
## Summarized object data to matrix ##
rlog.norm.counts.test <- assay(DESeq.rlog.test)
rlog.norm.counts.test <- data.frame(rlog.norm.counts.test)

rlog.norm.counts.test$gene_id <- rownames(rlog.norm.counts.test)
## Annotate with Ensemble gene symbol
list <- NULL
for (i in L:nrow(rlog.norm.counts.test) ) {
list <- c(list, unlist(strsplit(rlog.norm.counts.test[i,"gene_id"], split = "[.]"))[1])
}
rlog.norm.counts.test$gene_id_new <- list
## Connect http
httr::set_config(httr::config(ssl_cipher_list = "DEFAULT@SECLEVEL=1"))
httr::set_config(httr::config(ssl_verifypeer = FALSE))
## Annotate gene name ##
ensembl = useEnsembl(biomart = "ensembl”, dataset = "hsapiens_gene_ensembl",
mirror="uswest")
genemap <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol"),
filters = "ensembl_gene_id",
values = rlog.norm.counts.test$gene_id_new,
mart = ensembl)
rlog.norm.counts.test <- rlog.norm.counts.test %>% left_join(genemap, by =
c("gene_id_new" = "ensembl_gene_id"))
gene_id.test <- rlog.norm.counts.test$gene_id
rlog.norm.counts.test <- assay(DESeq.rlog.test)
rlog.norm.counts.test <- data.frame(rlog.norm.counts.test)
## ggplot2 box plot ##
df_norm.counts.test <- list(counts = as.numeric(unlist(rlog.norm.counts.test)), group =
sample.info$name)
df _norm.counts.test <- data.frame(df_norm.counts.test)
# Plot
p <- ggplot(df_norm.counts.test, aes(x = group, y = counts)) +
geom_boxplot(varwidth = FALSE, outlier.colour = "black", outlier.size = 1.5, outlier.stroke
=1,
outlier.shape = 1, notch = FALSE,
color="black", outlier.alpha = 1) +
theme(axis.title.x=element_blank(), axis.title.y=element_blank() ) +
theme_bw() + ggtitle("Normalized read counts") + ylab("log 2 read counts") +
xlab("Sample") +
theme(axis.text.x = element_text(angle = -90, vjust = 0.5, hjust=0.5))+
theme(legend.position="bottom", legend.box = "horizontal”, plot.title = element_text(hjust
=0.5))
p

rlog.norm.counts.test[which(rlog.norm.counts.test$hgnc_symbol == "GATA3"),]

#Silhouette analysis for identifying optimal cluster number
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#repeat k-means for 1:20 and extract silhouette:

sil <- rep(0, 20)

for(i in 2:20){
cluster <- kmeans(rlog.norm.counts.test, centers = i, nstart = 20, iter.max = 200)
ss <- silhouette(cluster$cluster, dist(rlog.norm.counts.test))
sil[i] <- mean(ss|, 3])

¥

# Plot the average silhouette width

plot(1:20, sil, type = "b", pch = 19, xlab = "Number of clusters k", ylab="Average silhouette
width™)

abline(v = which.max(sil), Ity = 2)

#ev <-¢()

#for (i in 1:20) {

# km <- kmeans(rlog.norm.counts.test, centers = i, nstart = 20, iter.max = 200)

# evl[i] <- sum(km$betweenss)/km$totss

#}

#plot(1:20, ev, col="red", lwd=2, type = "I", xlab = "Number of Clusters", ylab = "Explained
Variance")

## Elbow method
set.seed(123)
# function to compute total within-cluster sum of square
wss <- function(k) {
kmeans(rlog.norm.counts.test, k, nstart = 20 )$tot.withinss
}
# Compute and plot wss fork =1to k =15
k.values <- 1:20
# extract wss for 2-20 clusters
wss_values <- map_dbl(k.values, wss)
plot(k.values, wss_values,
type="b", pch =19,
xlab="Number of clusters K",
ylab="Total within-clusters sum of squares")

## Clustering
#kmeanl <- KMeans_rcpp(data = t(rlog.norm.counts.test), clusters = 3, num_init = 200,
max_iters = 100, seed = 590,
# tol_optimal_init=1,initializer = "kmeans++")
kmean <- KMeans_arma(data = t(rlog.norm.counts.test), clusters = 3, n_iter = 200,
seed_mode = "random_subset",
verbose = T, CENTROIDS = NULL, seed = 900) #900-950
pr <- predict KMeans(data = t(rlog.norm.counts.test), kmean)

pr

#list <- kmean$clusters

#list

#sample.info$cluster <- paste("cluster” kmean$clusters,sep = ")
sample.info$cluster <- paste("cluster",pr,sep = ")
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## Create PCA by ggplot2 ##
df_pca <- prcomp(t(rlog.norm.counts.test)) #Transform data row->col
df_out <- as.data.frame(df_pca$x) #Transform to data frame
df_out$Cluster <- as.character(sample.info$cluster) #Add group
pca <- ggplot(df_out, aes(x=PC1,y=PC2, color= Cluster,fill = Cluster,
label=row.names(df out) )) +
geom_point(size = 2) +
theme_bw() +
ggtitle("Principle Component Analysis of MIBC mRNA expression classified by K-mean
Clustering™) +
geom_label_repel(
aes(label = rownames(df_out),fill = Cluster),
color = 'white',
size = 3.5,
max.overlaps = Inf,
segment.color = "grey50"

)+

guides(fill = guide_legend(override.aes = aes(label = "")),color= "none™) +

theme(legend.position="bottom", legend.box = "horizontal", plot.title = element_text(hjust
=0.5))+

scale_fill_discrete(name = "K-mean Clustering", labels = c¢("Cluster A", "Cluster
B","Cluster C"))
pca
U R R R
HHHBHHH R HHH R
## DIFFERENTIAL EXPRESSION BETWEEN CLUSTERS ##

cluster_list <- list(c("clusterl”,"cluster2™),c("cluster2"”,"cluster3"),c("cluster3", cluster1™))

for (i in cluster_list) {

cluster_compare <- i[1]

cluster_base <- i[2]

#compare cluster

sample.compare<- subset(sample.info, cluster==cluster_compare|cluster==cluster_base)
#HH#H#EdIt cluster here

read.counts.compare <- read.counts.test[sample.compare$name]

DESeq.ds.compare <- DESegDataSetFromMatrix(read.counts.compare ,colData =
sample.compare,~ cluster)

DESeq.ds.compare <- DESeq.ds.compare[ rowSums(counts(DESeq.ds.compare)) > 10, ]

DESeq.ds.compare <- estimateSizeFactors(DESeq.ds.compare)

str(colData(DESeq.ds.compare)$cluster)

colData(DESeq.ds.compare)$cluster <- relevel(colData(DESeq.ds.compare)$cluster ,
cluster_base) #####Edit cluster here

DESeq.ds.compare <- DESeq(DESeq.ds.compare)

## Extract result ##

DGE.results.compare <- results(DESeq.ds.compare , independentFiltering = TRUE , alpha
=0.01)

DGE.results.compare <- data.frame(DGE.results.compare)

DGE.results.compare <- na.omit(DGE.results.compare)

DGE.results.compare$gene_id <- rownames(DGE.results.compare)
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## Annotate with Ensemble gene symbol
list <- NULL
for (i in 1:nrow(DGE.results.compare) ) {
list <- c(list, unlist(strsplit(DGE.results.compare[i,"gene_id"], split ="[.]"))[1])
}
DGE.results.compare$gene_id_new <- list
## Connect http
httr::set_config(httr::config(ssl_cipher_list = "DEFAULT@SECLEVEL=1"))
httr::set_config(httr::config(ssl_verifypeer = FALSE))
## Annotate gene name ##
ensembl = useEnsembl(biomart = "ensembl”, dataset = "hsapiens_gene_ensembl",
mirror="uswest")
genemap <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol"),
filters = "ensembl_gene_id",
values = DGE.results.compare$gene_id_new,
mart = ensembl)
DGE.results.compare <- DGE.results.compare %>% left_join(genemap, by =
c("gene_id_new" ="ensembl_gene_id"))
DGE.results.compare <- DGE.results.compare[!(is.na(DGE.results.compare$hgnc_symbol)
| DGE.results.compare$hgnc_symbol==""), ]

significant <- DGE.results.compare %>% mutate(
Expression = case_when(

DGE.results.compare$log2FoldChange > 2 & DGE.results.compare$padj < 0.05 ~
"upregulate”,

DGE.results.compare$log2FoldChange < -2 & DGE.results.compare$padj < 0.05 ~
"downregulate”,

(DGE.results.compare$log2FoldChange <= 2 & DGE.results.compare$log2FoldChange
>= -2 ) | DGE.results.compare$padj >= 0.05 ~ "non-significant",

is.na(DGE.results.compare$padj) ~ "non-significant" ) )

object_name <- paste("plot",cluster_compare,sep = "_")
assign(object_name,significant)

object_name <- paste("significant”,cluster_compare,sep =" _")
temp_df <- significant %>% filter(Expression != "non-significant™)
assign(object_name,temp_df) #####Edit cluster here
}
significant_clusterl.sorted <- significant_cluster1[order(significant_clusterl$pad)), ]
significant_cluster2.sorted <- significant_cluster2[order(significant_cluster2$padj), ]
significant_cluster3.sorted <- significant_cluster3[order(significant_cluster3$pad)), ]
DGEgenes.clusterl <- subset(significant_clusterl.sorted[1:30,],)
DGEgenes.cluster2 <- subset(significant_cluster2.sorted[1:30,],)
DGEgenes.cluster3 <- subset(significant_cluster3.sorted[1:30,],)
HHHHHHH R R
# Plot
MA <- ggplot(data = plot_clusterl, aes(x = baseMean, y = log2FoldChange, col=Expression)
)+
geom_point(aes(color=as.factor(Expression), fill=Expression), alpha=0.8, size=1.3) +
scale_x_logl10() +
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gatitle("MA plot of mMRNA Expression of derived from MIBC") +
theme_bw() +
geom_hline(yintercept=c(-2.0, 2.0), col="red" linetype = "dashed", size = 0.4) +
geom_label_repel(
data = plot_clusterl %>% filter( hgnc_symbol %in% cluster_all_gene$hgnc_symbol ),
aes(x=baseMean, y=log2FoldChange,label = hgnc_symbol, fill=as.factor(Expression)),
color = 'white',
max.overlaps = Inf,
segment.color = "grey70",
size = 3,
box.padding = unit(0.35, "lines"),
point.padding = unit(0.3, "lines")
) +
ylim(-15,15) +
guides(fill = guide_legend(override.aes = aes(label = "")),color="none") +
theme(legend.position="bottom", legend.box = "horizontal”, plot.title = element_text(hjust
=0.5)) +
scale_fill_discrete(name = "Significant Expression”, labels = c("Downregulate™, "Non-
Significant", "Upregulate™))
MA

plot.volcano <- na.omit(plot_cluster3)

options(ggrepel.max.overlaps = Inf) ##Change ggrepel max overlap, it may notice when we
have more data.

volcano <- ggplot(plot.volcano) +
geom_point(aes(x=log2FoldChange, y=-log10(padj), fill=Expression, color = Expression))
+
gatitle("Volcano plot of MRNA expression derived from MIBC") +
xlab(*"log2 fold change™) +
ylab("-log10 adjusted p-value") +
theme_bw() +
geom_vline(xintercept=c(-2.0, 2.0), col="red",linetype = "dashed", size = 0.4) +
geom_hline(yintercept=-log10(0.05), col="red" linetype = "dashed", size = 0.4) +
geom_label_repel(
data = plot.volcano %>% filter( hgnc_symbol %in% cluster_all_gene$hgnc_symbol ),
aes(x=log2FoldChange, y=-log10(padj),label = hgnc_symbol,fill=Expression),
color = 'white',
max.overlaps = Inf,
segment.color = "grey70",
size = 3,
box.padding = unit(0.35, "lines"),
point.padding = unit(0.3, "lines™)
)+
guides(fill = guide_legend(override.aes = aes(label = "")),color="none") +
theme(legend.position="bottom", legend.box = "horizontal”, plot.title = element_text(hjust
=05))+
scale_fill_discrete(name = "Significant Expression”, labels = c("Downregulate™, "Non-
Significant"”, "Upregulate™)) +
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xlim(-10,10)
volcano
HEHHHEHHH
B R R R

#Subtract Gene
#clusterA <- significant_cluster1$hgnc_symbol[!(significant_clusterl$hgnc_symbol
# %in% c(significant_cluster2$hgnc_symbol,

significant_cluster3$hgnc_symbol))]

#clusterB <- significant_cluster2$hgnc_symbol[!(significant_cluster2$hgnc_symbol
# %in% c(significant_cluster1$hgnc_symbol,
significant_cluster3$hgnc_symbol))]

#clusterC <- significant_cluster3$hgnc_symbol[!(significant_cluster3$hgnc_symbol
# %in% c(significant_clusterl$hgnc_symbol,
significant_cluster2$hgnc_symbol))]

clusterA <- significant_cluster1$hgnc_symbol

clusterB <- significant_cluster2$hgnc_symbol

clusterC <- significant_cluster3$hgnc_symbol

## Enrichment Analysis ##

dbs <- ¢("GO_Molecular_Function_2021", "GO_Cellular_Component_2021",
"GO_Biological_Process_2021",

"KEGG_2021 Human","Reactome_2016","Panther_2016","WikiPathway 2021 Human","B
ioCarta_2016")

dbs <- "KEGG_2021 Human"
for (i in c("clusterA","clusterB","clusterC") ) {
for (j in dbs) {
enriched <- enrichr(eval(as.symbol(i)), dbs)
object_name <- paste(i,"enrich",sep="_")
temp_df <- enriched[[1]]
assign(object_name,temp_df)
}
}

for (1 in c("clusterA_enrich","clusterB_enrich","clusterC_enrich") ) {
column <- "Adjusted.P.value"
temp_df <- eval(as.symbol(i))[which( eval(as.symbol(i))[[column]] < 0.05 ),]
temp_df <- data.frame(temp_df)
temp_df <- temp_df %>% filter(str_detect(temp_df$Term, "pathway") )
object_name <- paste(i,"pathway",sep =" ")
assign(object_name,temp_df)
temp_list <- unique(unlist(str_split(temp_df[["Genes"]], ™;")))
object_name <- paste(i,"gene",sep="_")
assign(object_name,temp_list)

ky

# Store value
#x <- list(
# ClusterA = significant_cluster1$hgnc_symbol,



# ClusterB = significant_cluster2$hgnc_symbol,

# ClusterC = significant_cluster3$hgnc_symbol

#)

X <- list("ClusterA-B" = clusterA_enrich_gene,
"ClusterB-C" = clusterB_enrich_gene,
"ClusterA-C" = clusterC_enrich_gene)

## Venn diagram

ggvenn(

X,

show_elements = FALSE,

fill_color = c("#E69F00", "#56B4E9", "#009E73"),
fill_alpha =0.3,

stroke_color = "black™,

stroke_size =0,

set_name_size =5,

text size =4

)

## Plot p value

# installing Packages

#install.packages("ggplot2", dependencies = TRUE)

#install.packages("gridExtra”, dependencies = TRUE)

e loading lib
library(“ggplot2™)
library("gridExtra™)

#Saving in png
#png("ggplot2sizing.png",height=400,width=850)

#df=data.frame(dOut_x,dOut_y,d_pvalue)
head(clusterA_enrich_pathway)

colnames(clusterA_enrich_pathway)

clusterA_enrich_pathway$Overlap.gene <- clusterA_enrich_pathway$Overlap %>%
str_match_all("[0-9]+") %>% data.frame() %>% .[1,] %>% unlist %>% as.numeric
clusterB_enrich_pathway$Overlap.gene <- clusterB_enrich_pathway$Overlap %>%
str_match_all("[0-9]+") %>% data.frame() %>% .[1,] %>% unlist %>% as.numeric
clusterC_enrich_pathway$Overlap.gene <- clusterC_enrich_pathway$Overlap %>%
str_match_all("[0-9]+") %>% data.frame() %>% .[1,] %>% unlist %>% as.numeric

#Graph3 with scale_color_gradien :: log10

ggplot(data=clusterA_enrich_pathway, aes(x=0dds.Ratio,y=Term, size=Overlap.gene,

color=Adjusted.P.value))+

geom_point(alpha=0.4)+scale_colour_gradientn(colours=rainbow(5))+

scale_size(range = c(2, 15), name="0Overlap genes") +
theme_bw() +
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labs(title = "Cluster A pathway enrichment”, x="0dds ratio", y="Term", color = "Adjusted

P-value"”,plot.title = element_text(hjust = 0.5))
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ggplot(data=clusterB_enrich_pathway, aes(x=0dds.Ratio,y=Term, size=Overlap.gene,
color=Adjusted.P.value))+

geom_point(alpha=0.4)+scale_colour_gradientn(colours=rainbow(5))+

scale_size(range = c(2, 15), name="0Overlap genes") +

theme_bw() +

labs(title = "Cluster B pathway enrichment"”, x= "0dds ratio"”, y= "Term", color = "Adjusted
P-value",plot.title = element_text(hjust = 0.5))

ggplot(data=clusterC_enrich_pathway, aes(x=0Odds.Ratio,y=Term, size=Overlap.gene,
color=Adjusted.P.value))+

geom_point(alpha=0.4)+scale_colour_gradientn(colours=rainbow(5))+

scale_size(range = c(2, 15), name="0Overlap genes") +

theme_bw() +

labs(title = "Cluster C pathway enrichment”, x= "0dds ratio", y= "Term", color = " Adjusted
P-value"”,plot.title = element_text(hjust = 0.5))

R R
D e e S

## REVALIDATE ##

#read.counts.filter <- read.counts.test

#colnames(read.counts.filter)

#read.counts.filter$gene_id <- rownames(read.counts.filter)

#list <- NULL

#for (i in L:nrow(read.counts.filter) ) {

# list <- c(list, unlist(strsplit(read.counts.filter[i,"gene_id"], split = "[.]")[1])

#}

#read.counts.filter$gene_id_new <- list

#genemap.filter <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol™),

# filters = "ensembl_gene_id",
# values = read.counts.filter$gene_id_new,
# mart = ensembl)

#read.counts.filter <- read.counts.filter %>% left_join(genemap.filter, by = c("gene_id_new"
= "ensembl_gene_id"))

#read.counts.filter <- read.counts.filter %>% filter( !(read.counts.filter$gene_id_new %in%
gene_filter$ensembl_gene_id) )

#read.counts.filter <- read.counts.filter %>% filter( hgnc_symbol %in%
c(clusterA_enrich_gene,clusterA_enrich_gene,clusterB_enrich_gene ) )

#read.counts.filter <- read.counts.filter[!(is.na(read.counts.filterfhgnc_symbol) |
read.counts.filter$hgnc_symbol==""), ]

#read.counts.filter <- distinct_at(read.counts.filter, vars(gene_id), .keep_all = TRUE)
#rownames(read.counts.filter) <- read.counts.filter$gene_id

#read.counts.filter <- read.counts.filter %>% dplyr::select(-
c(gene_id,gene_id_new,hgnc_symbol))
R

# import

#DESeq.ds.filter <- DESeqDataSetFromMatrix(read.counts.filter ,colData = sample.info,~ 1)
## Include gene which counts more than 0 ##

#DESeq.ds.filter <- DESeq.ds.filter[ rowSums(counts(DESeq.ds.filter)) > 10, ]



117

## Calculate size factor of normalization counts ##

#DESeq.ds.filter <- estimateSizeFactors(DESeq.ds.filter)

## Normalization and Log?2 transform by DESeq?2 ##

#DESeq.rlog.filter <- varianceStabilizingTransformation(DESeq.ds.filter , blind = TRUE)
## Summarized object data to matrix ##

#rlog.norm.counts.filter <- assay(DESeq.rlog.filter)

#rlog.norm.counts.filter <- data.frame(rlog.norm.counts.filter)

# Do K-mean Clustering

#kmean <- KMeans_rcpp(t(rlog.norm.counts.filter), clusters = 2, num_init = 5, max_iters =
100, initializer = "random")

#list <- kmean$clusters

#list

sample.info$cluster_filter <- paste("cluster” ,kmean$clusters,sep = "")

## Create PCA by ggplot2 ##

#df_pca <- prcomp(t(rlog.norm.counts.filter)) #Transform data row->col
#df_out <- as.data.frame(df_pca$x) #Transform to data frame

#df out$Cluster <- as.character(sample.info$condition) #Add group

#df _out$Cluster <- as.character(sample.info$cluster_filter) #Add group

#pca <- ggplot(df_out, aes(x=PC1,y=PC2, color= Cluster,fill = Cluster,
label=row.names(df_out) )) +
# geom_point(size = 2) +
# theme_bw() +
# ggatitle("Principle Component Analysis of MIBC mRNA expression classified by K-mean
Clustering™) +
# geom_label repel(
# aes(label = rownames(df_out),fill = Cluster),
# color = 'white’,
# size=3.5,
# max.overlaps = Inf,
# segment.color = "grey50"
#)+
# guides(fill = guide_legend(override.aes = aes(label = "")),color="none") +
# theme(legend.position="bottom", legend.box = "horizontal”, plot.title = element_text(hjust
=0.5) )+
# scale_fill_discrete(name = "K-mean Clustering"”, labels = c("Cluster A", "Cluster
B","Cluster C"))
#pca
R R R R R R R T R R e R
T
## GET TCGA DATA
setwd("~/bladder/tcga")
# RAW
query <- GDCquery(
project = "TCGA-BLCA",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification”,
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workflow.type = "HTSeq - Counts”
)
# FPKM
#query <- GDCquery(
# project ="TCGA-BLCA",
# data.category = "Transcriptome Profiling",
# data.type = "Gene Expression Quantification™,
# workflow.type = "HTSeq - FPKM"
#)
GDCdownload(query, method = "api", files.per.chunk = 5)
data <- GDCprepare(query)
metadata <- getManifest(query)
sample <- as.data.frame(colData(data))
colnames(metadata)
head(sample)
sample[1,"treatments"]
# column paper_mRNA .cluster paper_Histologic.subtype paper_Histologic.grade
# paper_AJCC.Tumor.category paper_Lymphovascular.invasion paper_AJCC.LN.category
paper_Number.of.LNs.examined paper AJCC.metastasis.category
# paper_Tumor.category.12.vs..34 paper_LN.negative.vs..positive
paper_Combined.T.and.LN.category

# Find barcode and file name

barcode <-UUIDtoBarcode(metadata$id, from_type = "file_id") ##

metadata$barcode <- barcode$associated_entities.entity submitter_id ##

# Subset TCGA data

sample.df <- data.frame(sample$barcode, sample$ajcc_pathologic_stage,

sample$ajcc_pathologic_t, sample$ajcc_pathologic_n,
sample$ajcc_pathologic_m , sample$days_to_last_follow_up,
sample$gender, sample$age_at_diagnosis,sample$vital_status )

colnames(sample.df) <-
c("barcode","ajcc_pathologic_stage™,"ajcc_pathologic_t","ajcc_pathologic_n","ajcc_patholog
ic. m",

"days_to_last_follow_up","gender","age at diagnosis”,"vital status™)
metadata.new <- metadata %>% dplyr::select(barcode,filename)
sample.df <- sample.df %>% left_join(metadata.new, by = c¢("barcode” = "barcode"))

#select only MIBC

mibc <- sample.df[which( sample$primary_diagnosis == "Transitional cell carcinoma" &

( sample$ajcc_pathologic_t =="T2" | sample$ajcc_pathologic_t=="T2a" |
sample$ajcc_pathologic_t =="T2b" |

sample$ajcc_pathologic_t =="T3" | sample$ajcc_pathologic_t =="T3a" |
sample$ajcc_pathologic_t =="T3b" |

sample$ajcc_pathologic_t =="T4" | sample$ajcc_pathologic_t == "T4a" |
sample$ajcc_pathologic t =="T4b")),]
mibc$cluster
mibc <- na.omit(mibc)

## make temp df
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temp.sample <- data.frame(sample$barcode, sample$paper mRNA .cluster,
sample$paper_Histologic.subtype,
sample$paper_Histologic.grade, sample$paper_Lymphovascular.invasion)

colnames(temp.sample) <- c¢("barcode","tcga_cluster”,"subtype","grade","invasion™)
temp.sample$tcga_cluster

## merge some data
mibc <- mibc %>% left_join(temp.sample, by = c("barcode” = "barcode"))

mibc <- mibc %>% mutate(tcga_cluster_modify = case_when(mibc$tcga_cluster ==
"Basal_squamous" ~"Basal",
mibc$tcga_cluster == "Luminal_infiltrated" |
mibc$tcga_cluster == "Luminal_papillary” | mibc$tcga_cluster == "Luminal” ~"Luminal®,
mibc$tcga_cluster == "Neuronal” ~"Neuronal"))

mibc <- mibc %>% mutate(cluster_filter_modify = case_when(mibc$cluster_filter ==
"clusterl” ~"Cluster A",
mibcS$cluster_filter == "cluster2" ~"Cluster B",
mibc$cluster_filter == "cluster3" ~"Cluster C"))

mibc <- mibc %>% mutate(ajcc_pathologic_t modify = case_when(mibc$ajcc_pathologic_t
== "T2"|mibc$ajcc_pathologic_t == "T2a"|mibc$ajcc_pathologic_t == "T2b" ~"T2",
mibc$ajcc_pathologic_t ==
"T3"|mibc$ajcc_pathologic_t == "T3a"|mibc$ajcc_pathologic_t =="T3b" ~"T3",
mibc$ajcc_pathologic_t ==
"T4"|mibc$ajcc_pathologic_t == "T4a"|mibc$ajcc_pathologic_t == "T4b" ~"T4"))

#mibc <- mibc %>% dplyr::select(-mibc)

mibc$filename <- gsub(*.gz',\\1',mibc$filename)

mibc <- mibc %>% mutate(status = case_when(mibc$vital_status == "Alive" ~0,
mibc$vital_status == "Dead" ~1,mibc$vital_status == "Not Reported"” ~1))

HHH R R
HHH A

# Clinical graph

colnames(mibc)

#> colnames(mibc)

#[1] "barcode" "ajcc_pathologic_stage” "ajcc_pathologic_t"
"ajcc_pathologic_n"  "ajcc_pathologic_ m"  "days_to last follow_up"

#[7] "gender™ "age_at_diagnosis”  "vital_status" "filename™
"cluster_filter" "tcga_cluster”

#[13] "subtype™ "grade" "Invasion” "tcga_cluster_modify"

"cluster_filter_modify"
#summ(mibc$days_to last_follow _up/365, by=mibc$cluster_filter _modify)

#tabpct(mibc$invasion ,mibc$cluster_filter_ modify)

## Cluster VS Cluster
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cluster_tcga <- na.omit(mibc) %>%
group_by(cluster_filter_modify, tcga_cluster_modify) %>%
dplyr::summarize(n = n()) %>%
mutate(pct = n/sum(n),
Ibl = scales::percent(pct))
cluster_tcga

ggplot(cluster_tcga,
aes(x = cluster_filter_modify,
fill = tcga_cluster_modify,
y = pct
) +
geom_bar(stat = "identity",
position = "fill"") +
scale_fill_brewer(palette = "Set2") +
scale_y continuous(breaks = seq(0, 1, .2),labels = scales::percent) +
geom_text(aes(label = Ibl),
size = 3,
position = position_stack(vjust = 0.5)) +
labs(y = "Percent",
fill = "TCGA classfication",
x = "K-mean clustering”,
title = "Cumulative MIBC cases by K-mean clustering",
subtitle = "Classified by mMRNA TCGA classification™) +
theme_minimal()

## ajcc_pathologic_T_stage
ajcc_pathologic_stage <- na.omit(mibc) %>%
group_by(cluster_filter_modify, ajcc_pathologic_stage) %>%
dplyr::summarize(n = n()) %>%
mutate(pct = n/sum(n),
Ibl = scales::percent(pct))
ajcc_pathologic_stage

ggplot(ajcc_pathologic_stage,
aes(x = cluster_filter_modify,
fill = ajcc_pathologic_stage,
y = pct
) +
geom_bar(stat = "identity",
position = "fill") +
scale_fill_brewer(palette = "Accent") +
scale_y_continuous(breaks = seq(0, 1, .2),labels = scales::percent) +
geom_text(aes(label = Ibl),
size = 3,
position = position_stack(vjust = 0.5)) +
labs(y = "Percent",
fill = "AJCC pathologic T stage”,
x = "K-mean clustering”,
title = "Cumulative MIBC cases by K-mean clustering”,
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subtitle = "Classified by AJCC pathologic T stage") +
theme_minimal()

## ajcc_pathologic_n_stage
ajcc_pathologic_n <- na.omit(mibc) %>%
group_by(cluster_filter_modify, ajcc_pathologic_n) %>%
dplyr::summarize(n = n()) %>%
mutate(pct = n/sum(n),
Ibl = scales::percent(pct))
ajcc_pathologic_n

ggplot(ajcc_pathologic_n,
aes(x = cluster_filter_modify,
fill = ajcc_pathologic_n,
y = pct
) +
geom_bar(stat = "identity",
position = "fill"") +
scale_fill_brewer(palette = "Accent™) +
scale_y continuous(breaks = seq(0, 1, .2),labels = scales::percent) +
geom_text(aes(label = Ibl),
size = 3,
position = position_stack(vjust = 0.5)) +
labs(y = "Percent",
fill = "AJCC pathologic N stage",
x = "K-mean clustering™,
title = "Cumulative MIBC cases by K-mean clustering"”,
subtitle = "Classified by AJCC pathologic N stage™) +
theme_minimal()

## ajcc_pathologic_m
ajcc_pathologic_m <- na.omit(mibc) %>%
group_by(cluster_filter_modify, ajcc_pathologic_m) %>%
dplyr::summarize(n = n()) %>%
mutate(pct = n/sum(n),
Ibl = scales::percent(pct))
ajcc_pathologic_m

ggplot(ajcc_pathologic_m,
aes(x = cluster_filter_modify,
fill = ajcc_pathologic_m,
y = pct
)+
geom_bar(stat = "identity",
position = "fill") +
scale_fill_brewer(palette = "Accent") +
scale_y_continuous(breaks = seq(0, 1, .2),labels = scales::percent) +
geom_text(aes(label = Ibl),
size = 3,
position = position_stack(vjust = 0.5)) +
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labs(y = "Percent",
fill = "AJCC pathologic M stage",
x = "K-mean clustering”,
title = "Cumulative MIBC cases by K-mean clustering",
subtitle = "Classified by AJCC pathologic M stage™) +
theme_minimal()

## invasion
invasion <- na.omit(mibc) %>%
group_by(cluster_filter_modify, invasion) %>%
dplyr::summarize(n = n()) %>%
mutate(pct = n/sum(n),
Ibl = scales::percent(pct))
invasion

ggplot(invasion,
aes(x = cluster_filter_modify,

fill = invasion,
y = pct
) +

geom_bar(stat = "identity",
position = "fill") +
scale_fill_brewer(palette = "Setl") +
scale_y_continuous(breaks = seq(0, 1, .2),labels = scales::percent) +
geom_text(aes(label = Ibl),
size = 3,
position = position_stack(vjust = 0.5)) +
labs(y = "Percent",
fill = "Lymphovascular invasion”,
x = "K-mean clustering”,
title = "Cumulative MIBC cases by K-mean clustering”,
subtitle = "Classified by lymphovascular invasion™)+
theme_minimal()

ggplot(na.omit(mibc),
aes(x = cluster_filter_modify,
fill = gender)) +
geom_bar(position = "fill") +
labs(y = "Proportion™)

T
U

# Get expression from TCGA file

list_gene <- row.names(read.counts)

#file <- fread("0alb146d-7b9f-4382-9cfc-c187fafbb47c.htseq.counts™)

#file <- subset(file, file$V1 %in% list_gene)

##Loop create data frame

setwd(""~/bladder/tcga/GDCdata/TCGA-BLCA")
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i<-1
for (j in mibc$filename ) {
#j <- "74fa890a-d4e6-4718-959a-2b2c125¢892e. FPKM.txt"
if(i==1){
file <- fread(j)
file <- subset(file, file$V1 %in% list_gene)
#gsub(™*.genes.results',"\\1'}})
## Add first sample
read.counts.tcga <- data.frame(as.numeric(format(file$V2,scientific = FALSE),row.names
= file$V1))
colnames(read.counts.tcga) <- mibc$barcode[which(mibc$filename==j)]
## Set condition
#sample.info <- data.frame(gsub('*.genes.results','\\1',j),"normal™)
sample.info.tcga <- data.frame(mibc$barcode[which(mibc$filename==j)],"cancer")
colnames(sample.info.tcga) <- ¢("name","condition™)
row.names(read.counts.tcga) <- file$Vv1
}else {
## Add another sample ##
file <- fread(j)
file <- subset(file, file$V1 %in% list_gene)
## Set sample name ##
sample <- mibc$barcode[which(mibc$filename==j)]
## Set condition
if (i>=2){
condition <- "cancer"

} else {

condition <- "cancer"
}
## Insert sample to sample.info and read.counts ##
count <- data.frame(as.numeric(format(file$V2,scientific = FALSE) ) )
colnames(count) <- sample
info <- data.frame(sample,condition)
colnames(info) <- ¢("name","condition™)
read.counts.tcga <- chind(read.counts.tcga,count)
sample.info.tcga <- rbind(sample.info.tcga,info)

yo
I<-1+1
}
rm(count)
rm(sample)
rm(info)
rm(condition)
rm(i)
rm(j)
rm(file)
R R R R
U R R
# Discard non mRNA gene
read.counts.tcga.test <- read.counts.tcga
colnames(read.counts.tcga.test)
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read.counts.tcga.test$gene_id <- rownames(read.counts.tcga.test)
list <- NULL
for (i in 1:nrow(read.counts.tcga.test) ) {
list <- c(list, unlist(strsplit(read.counts.tcga.test[i,"gene_id"], split="[.]")[1])
}

read.counts.tcga.testbgene_id_new <- list

genemap.test <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol"),
filters = "ensembl_gene_id",
values = read.counts.tcga.test$gene_id_new,
mart = ensembl)
read.counts.tcga.test <- read.counts.tcga.test %>% left_join(genemap.test, by =
c("gene_id_new" ="ensembl_gene_id"))
read.counts.tcga.test <- read.counts.tcga.test %>% filter( !(read.counts.tcga.test$gene_id_new
%in% gene_filter$ensembl_gene _id) )
read.counts.tcga.test <- read.counts.tcga.test[!(is.na(read.counts.tcga.test$hgnc_symbol) |
read.counts.tcga.test$hgnc_symbol==""), ]
read.counts.tcga.test <- distinct_at(read.counts.tcga.test, vars(gene_id), .keep_all = TRUE)
rownames(read.counts.tcga.test) <- read.counts.tcga.test$gene_id
read.counts.tcga.test <- read.counts.tcga.test %>% dplyr::select(-
c(gene_id,gene_id_new,hgnc_symbol))
U R R R R
HHHHHHH R
## VALIDATE IN TCGA ##
read.counts.tcga.test <- read.counts.tcga
colnames(read.counts.tcga.test)
read.counts.tcga.testbgene_id <- rownames(read.counts.tcga.test)
list <- NULL
for (i in L:nrow(read.counts.tcga.test) ) {
list <- c(list, unlist(strsplit(read.counts.tcga.test[i,"gene_id"], split = "[.]")[1])
}

read.counts.tcga.testbgene_id_new <- list

genemap.test <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol™),

filters = "ensembl_gene_id",

values = read.counts.tcga.test$gene_id_new,

mart = ensembl)
read.counts.tcga.test <- read.counts.tcga.test %>% left_join(genemap.test, by =
c("gene_id_new" = "ensembl_gene_id"))
read.counts.tcga.test <- read.counts.tcga.test %>% filter( !(read.counts.tcga.test$gene_id_new
%in% gene_filter$ensembl_gene_id) )
read.counts.tcga.test <- read.counts.tcga.test %>% filter( read.counts.tcga.test$gene_id %in%
gene_id.test)
read.counts.tcga.test <- read.counts.tcga.test[!(is.na(read.counts.tcga.test$hgnc_symbol) |
read.counts.tcga.test$hgnc_symbol==""), ]
read.counts.tcga.test <- distinct_at(read.counts.tcga.test, vars(gene_id), .keep_all = TRUE)
rownames(read.counts.tcga.test) <- read.counts.tcga.test$gene_id
read.count.tcga.gene <- read.counts.tcga.test %>%
dplyr::select(gene_id,gene_id_new,hgnc_symbol)
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read.counts.tcga.test <- read.counts.tcga.test %>% dplyr::select(-
c(gene_id,gene_id_new,hgnc_symbol))

# import

DESeq.ds.test.tcga <- DESegDataSetFromMatrix(read.counts.tcga.test ,colData =
sample.info.tcga,~ 1)

## Include gene which counts more than 0 ##

#DESeq.ds.test.tcga <- DESeq.ds.test.tcga] rowSums(counts(DESeq.ds.test.tcga)) > 0, ]
## Calculate size factor of normalization counts ##

DESeq.ds.test.tcga <- estimateSizeFactors(DESeq.ds.test.tcga)

## Normalization and Log?2 transform by DESeq?2 ##

DESeq.rlog.test.tcga <- varianceStabilizingTransformation(DESeq.ds.test.tcga , blind =
TRUE)

## Summarized object data to matrix ##

rlog.norm.counts.test.tcga <- assay(DESeq.rlog.test.tcga)

rlog.norm.counts.test.tcga <- data.frame(rlog.norm.counts.test.tcga)

head(rlog.norm.counts.test.tcga)

## violin plot expression by gene
rlog.norm.counts.test.tcga$gene_id <- rownames(rlog.norm.counts.test.tcga)
list <- NULL
for (i in 1:nrow(rlog.norm.counts.test.tcga) ) {
list <- c(list, unlist(strsplit(rlog.norm.counts.test.tcga[i,"gene_id"], split = "[.]")[1])
}

rlog.norm.counts.test.tcga$gene_id_new <- list

rlog.norm.counts.test.tcga <- rlog.norm.counts.test.tcga %>% left_join(genemap.test, by =
c("gene_id_new" ="ensembl_gene_id"))

rlog.norm.counts.test.tcga[which(rlog.norm.counts.test.tcga$hgnc_symbol == "KRT56"),]

tcga_ihc <-
data.frame(t(rlog.norm.counts.test.tcga[which(rlog.norm.counts.test.tcga$hgnc_symbol ==
"GATA3"|
rlog.norm.counts.test.tcga$hgnc_symbol == "KRT14"|
rlog.norm.counts.test.tcga$hgnc_symbol == "KRT5"|
rlog.norm.counts.test.tcga$hgnc_symbol == "KRT20"|
rlog.norm.counts.test.tcga$hgnc_symbol == "SNCA"|
rlog.norm.counts.test.tcga$hgnc_symbol == "CD274"
),1:231]))
colnames(tcga_ihc) <- c("GATA3","KRT14","KRT5","KRT20","SNCA","CD274")

tcga_ihc$cluster <- as.factor(mibc$cluster_filter_modify)

for(iin 1:6) {
#i<-2
plot_gene <- colnames(tcga_ihc[i])
#plot_gene <- "GATA3"
plot_name <- pasteO("Expression of " ,plot_gene,” by K-mean cluster")
plot_temp_df <- data.frame(tcga_ihc[[i]],tcga_ihc$cluster)
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colnames(plot_temp_df) <- c("rlog","cluster")

plot_temp <- ggplot(plot_temp_df, aes(x=cluster, y=rlog, fill=cluster)) +
geom_violin(trim=FALSE)+
geom_boxplot(width=0.1, fill="white")+
labs(title=plot_name,x="K-mean clustering”, y = "Log 2 normalized count™) +
scale_fill_brewer(palette="Dark2") +
theme_minimal() +
theme(legend.position="bottom", legend.box = "horizontal", plot.title = element_text(hjust

=0.9))
assign(plot_gene,plot_temp)

ky

#pr <- predict_KMeans(t(rlog.norm.counts.test.tcga), kmean$centroids)
pr = predict_KMeans(data = t(rlog.norm.counts.test.tcga), kmean)

#kmean <- KMeans_rcpp(data = t(rlog.norm.counts.test.tcga), clusters = 3, num_init = 100,
max_iters = 100, seed = 100,
# tol_optimal_init=0.8,initializer = "kmeans++")

## Create PCA by ggplot2 ##

df_pca <- prcomp(t(rlog.norm.counts.test.tcga)) #Transform data row->col
df_out <- as.data.frame(df_pca$x) #Transform to data frame
df_out$Cluster <- paste("cluster”,pr,sep = "") #Add group

#df _out$Cluster <- paste(*'cluster” , kmean$clusters,sep = ")

pca <- ggplot(df_out, aes(x=PC1,y=PC2, color= Cluster,fill = Cluster,
label=row.names(df out) )) +

geom_point(size = 2) +

theme_bw() +

ggtitle("Principle Component Analysis of TCGA MIBC mRNA expression classified by K-
mean Clustering™) +

theme(legend.position="bottom", legend.box = "horizontal", plot.title = element_text(hjust
=0.5))
pca
HHH R
HHHHHH A A
read.counts.filter.tcga <- read.counts.tcga
colnames(read.counts.filter.tcga)
read.counts.filter.tcga$gene_id <- rownames(read.counts.filter.tcga)
list <- NULL
for (i in L:nrow(read.counts.filter.tcga) ) {

list <- c(list, unlist(strsplit(read.counts.filter.tcga[i,"gene_id"], split = "[.]")[1])
}

read.counts.filter.tcga$gene_id_new <- list

genemap.filter.tcga <- getBM( attributes = c("ensembl_gene_id", "hgnc_symbol™),
filters = "ensembl_gene_id",
values = read.counts.filter.tcga$gene_id_new,
mart = ensembl)
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read.counts.filter.tcga <- read.counts.filter.tcga %>% left_join(genemap.filter.tcga, by =
c("gene_id_new" ="ensembl_gene_id"))

read.counts.filter.tcga <- read.counts.filter.tcga %>% filter(
I(read.counts.filter.tcga$gene_id_new %in% gene_filter$ensembl_gene_id) )
read.counts.filter.tcga <- read.counts.filter.tcga %>% filter( hgnc_symbol %in%
c(clusterA_enrich_gene,clusterA_enrich_gene,clusterB_enrich_gene))
read.counts.filter.tcga <- read.counts.filter.tcga[!(is.na(read.counts.filter.tcgathgnc_symbol) |
read.counts.filter.tcga$hgnc_symbol==""), ]

read.counts.filter.tcga <- distinct_at(read.counts.filter.tcga, vars(gene_id), .keep_all = TRUE)
rownames(read.counts.filter.tcga) <- read.counts.filter.tcga$gene_id

read.counts.filter.tcga <- read.counts.filter.tcga %>% dplyr::select(-
c(gene_id,gene_id_new,hgnc_symbol))

# import

DESeq.ds.filter.tcga <- DESeqDataSetFromMatrix(read.counts.filter.tcga ,colData =
sample.info.tcga,~ 1)

## Include gene which counts more than 0 ##

DESeq.ds.filter.tcga <- DESeq.ds.filter.tcga[ rowSums(counts(DESeq.ds.filter.tcga)) > 100, ]
## Calculate size factor of normalization counts ##

DESeq.ds.filter.tcga <- estimateSizeFactors(DESeq.ds.filter.tcga)

## Normalization and Log2 transform by DESeq?2 ##

DESeq.rlog.filter.tcga <- varianceStabilizingTransformation(DESeq.ds.filter.tcga , blind =
TRUE)

## Summarized object data to matrix ##

rlog.norm.counts.filter.tcga <- assay(DESeq.rlog.filter.tcga)

rlog.norm.counts.filter.tcga <- data.frame(rlog.norm.counts.filter.tcga)

pr <- predict_KMeans(t(rlog.norm.counts.filter.tcga), kmean$centroids)
sample.info.tcga$cluster <- paste(“cluster”,pr,sep ="")

## Create PCA by ggplot2 ##

df_pca <- prcomp(t(rlog.norm.counts.filter.tcga)) #Transform data row->col
df_out <- as.data.frame(df_pca$x) #Transform to data frame

df_out$Cluster <- as.character(pr) #Add group

pca <- ggplot(df_out, aes(x=PC1,y=PC2, color= Clusterfill = Cluster,
label=row.names(df_out) )) +

geom_point(size = 2) +

theme_bw() +

gatitle("Principle Component Analysis of MIBC mRNA expression classified by K-mean
Clustering™) +

theme(legend.position="bottom", legend.box = "horizontal”, plot.title = element_text(hjust
=0.5))
pca
B R R R R R
HHHHHHH R R
## Survival analysis
colnames(mibc)
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mibc$cluster_filter <- sample.info.tcga$cluster
#mibc$cluster_filter <- paste("'cluster”,kmean$clusters,sep = ")

mibc <- mibc %>% mutate(duration5 = ifelse(days_to_last_follow up <=1825,
days_to_last follow_up, 1825))
mibc <- mibc %>% mutate(status5 = ifelse(days_to_last follow up <=1825, status, 0))

#surv_object <- Surv(time = mibc$days_to_last_follow_up, event = mibc$status)
surv_object <- Surv(time = mibc$days_to_last_follow_up, event = mibc$status)
fit2 <- survfit(surv_object ~cluster_filter , data = mibc)

ggsurvplot(fit2, data = mibc, pval = TRUE,legend.title="")

survplot <- ggsurvplot(
fit2,
data = mibc,
risk.table = TRUE,
pval = TRUE,
pval.method=TRUE,
pval.coord = ¢(750, 0.075),
pval.method.coord = ¢(750, 0.15),
conf.int=T,
risk.table.y.text.col = TRUE,
legend.labs=c("Cluster A", "Cluster B", "Cluster C"),
size=0.7,
xlim = ¢(0,1825), #
#alpha=c(0.4),
conf.int.alpha=c(0.1),
break.x.by = 300,
xlab="Days of follow-up",
ylab="Probability of native liver survival",
surv.median.line = "hv",
ylim=c(0,1),
surv.scale="percent",
tables.col="strata",
risk.table.col = "strata",
risk.table.y.text = FALSE,
tables.y.text = FALSE,
legend.title="K-mean Cluster",
palette = "Dark2")
survplot$plot <- survplot$plot + labs(
title = "Kaplan-Meier of MIBC derived from TCGA",
subtitle = "Classified by K-mean clustering”
) + theme(plot.title = element_text(hjust = 0.5),plot.subtitle = element_text(hjust = 0.5))
survplot
R R R R R R R e R
T
## ROC gene expression with cluster
DGEgenes.clusterl
DGEgenes.cluster2
DGEgenes.cluster3
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clusterA_enrich_gene

clusterA_unique_gene <- clusterA_enrich_gene[!(clusterA_enrich_gene %in%
c(clusterB_enrich_gene,clusterC_enrich_gene))]
clusterB_unique_gene <- clusterB_enrich_gene[!(clusterB_enrich_gene %in%
c(clusterA_enrich_gene,clusterC_enrich_gene))]
clusterC_unique_gene <- clusterC_enrich_gene[!(clusterC_enrich_gene %in%
c(clusterA_enrich_gene,clusterB_enrich_gene))]

cluster_all_gene <- clusterA_enrich_gene[which( (clusterA_enrich_gene %in%
clusterB_enrich_gene) &
(clusterA_enrich_gene %in% clusterC_enrich_gene) )]

cluster_all_gene <- data.frame(cluster_all_gene)

colnames(cluster_all_gene) <- "hgnc_symbol"

cluster_all_gene <- cluster_all_gene %>% left_join(read.count.tcga.gene, by =
c("hgnc_symbol” = "hgnc_symbol™) )

cluster_all_gene$hgnc_symbol

clusterA_unique_gene <- data.frame(clusterA_unique_gene)
colnames(clusterA_unique_gene) <- "hgnc_symbol”

clusterA_unique_gene <- clusterA_unique_gene %>% left_join(read.count.tcga.gene, by =
c("hgnc_symbol" = "hgnc_symbol™) )

clusterA_unique_gene$hgnc_symbol

clusterB_unique_gene <- data.frame(clusterB_unique_gene)
colnames(clusterB_unique_gene) <- "hgnc_symbol*"

clusterB_unique_gene <- clusterB_unique_gene %>% left_join(read.count.tcga.gene, by =
c("hgnc_symbol" = "hgnc_symbol") )

clusterB_unique_gene$hgnc_symbol

clusterC_unique_gene <- data.frame(clusterC_unique_gene)
colnames(clusterC_unique_gene) <- "hgnc_symbol"

clusterC_unique_gene <- clusterC_unique_gene %>% left_join(read.count.tcga.gene, by =
c("hgnc_symbol" = "hgnc_symbol") )

clusterC_unique_gene$hgnc_symbol

cluster_list <- list(c("clusterl","cluster2"),c("cluster2","cluster3"),c("cluster3","clusterl™))

plot_list <- list()
auc_score <- list()
temp_df <- cluster_all_gene ## change here
for (i in temp_df$gene_id) {
rocobj <- list()
auc <- list()
for (j in cluster_list) {
cluster_compare <- j[1]
cluster_base <- j[2]
gene.name <- temp_df$hgnc_symbol[which(temp_df$gene_id ==i)]
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gene.id <- temp_df$gene_id_new[which(temp_df$gene_id == )]

roc.gene <- i

roc.expression <- data.frame(t(rlog.norm.counts.test.tcga[roc.gene,]))

roc.expression$cluster <- sample.info.tcga$cluster

colnames(roc.expression) <- c(*'gene","cluster")

roc.expression <- roc.expression %>% filter(cluster == cluster_base | cluster ==
cluster_compare)

rocobj[[cluster_compare]] <- roc(roc.expression$cluster,roc.expression$gene)
auc[[cluster_compare]] <- round(auc(roc.expression$cluster,roc.expression$gene),3)
}
#create ROC plot
plot_list[[i]] <- ggroc(rocobj, size = 1) +
ggtitle(pasteO(gene.name,’ (',gene.id, ")) +
theme_bw() +
labs(color="Cluster") +
theme(plot.title = element_text(hjust = 0.5) ) +
annotate("text", x=0.5, y=0.05, label=paste( "AUC:",auc[1],",",auc[2],",",auc[3] ) )
auc_score[[i]] <- auc
}
auc_score <- data.frame(matrix(unlist(auc_score), nrow=Ilength(auc_score), byrow=TRUE),
row.names = temp_df$hgnc_symbol)
colnames(auc_score) <- c(*'clusterl","cluster2","cluster3™)

grid.arrange(grobs=plot_list[1:16],ncol=4, newpage = TRUE)
grid.arrange(grobs=plot_list[17:32],ncol=4, newpage = TRUE)
grid.arrange(grobs=plot_list[33:37],ncol=4, newpage = TRUE)

grid.arrange(grobs=plot_list,ncol=4, newpage = TRUE)

##Check pathway

dbs <- "KEGG_2021 Human"

enriched <- enrichr(cluster_all_gene$hgnc_symbol, dbs)

temp_df <- enriched[[1]]

temp_df <- temp_df %>% filter(str_detect(temp_df$Term, "pathway") )

HHH R R R R

HHHHHH A A

## ROC gene expression with clinical data

plot_list <- list()

auc_score <- list()

temp_df <- cluster_all_gene ## change here

mibc <- mibc %>% mutate(adjust_pN = case_when(mibc$ajcc_pathologic_n == "N0" ~ 0,
mibc$ajcc_pathologic_n !'="NQ" ~1))

mibc <- mibc %>% mutate(adjust_pT = case_when(mibc$ajcc_pathologic_t =="T2" |

mibc$ajcc_pathologic_t =="T2a" | mibc$ajcc_pathologic_t =="T2b" ~ 0,
mibc$ajcc_pathologic_t !="T2" & mibc$ajcc_pathologic t =

"T2a" & mibc$ajcc_pathologic_t !'="T2b" ~ 1))

factor_base <- "T2"

factor_compare <- "T4"

for (i in temp_df$gene_id) {
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#i <- "ENSG00000087258.12"

rocobj <- list()

auc <- list()

gene.name <- temp_df$hgnc_symbol[which(temp_df$gene_id ==i)]

gene.id <- temp_df$gene_id_new[which(temp_df$gene_id == )]

roc.gene <- i

roc.expression <- data.frame(t(rlog.norm.counts.test.tcgafroc.gene,]))

roc.expression$factor <- mibc$ajcc_pathologic_t

colnames(roc.expression) <- c(*'gene™,"factor™)

roc.expression <- roc.expression %>% filter(factor %like% factor_base | factor %like%
factor_compare)

roc.expression <- roc.expression %>% mutate(factor = case_when(roc.expression$factor
%like% factor_base ~ 0,

roc.expression$factor %like% factor_compare ~1))
rocobj <- roc(roc.expression$factor,roc.expression$gene)
auc <- round(auc(roc.expression$factor,roc.expression$gene),3)

#create ROC plot
plot_list[[i]] <- ggroc(rocobj, size = 1) +
ggtitle(pasteO(gene.name,’ (',gene.id, ')")) +
theme_bw() +
labs(color="factor") +
theme(plot.title = element_text(hjust =0.5) ) +
annotate("text", x=0.5, y=0.05, label=paste( "AUC:",auc) )
auc_score[[i]] <- auc
}
grid.arrange(grobs=plot_list[1:16],ncol=4, newpage = TRUE)
grid.arrange(grobs=plot_list[17:32],ncol=4, newpage = TRUE)
grid.arrange(grobs=plot_list[33:37],ncol=4, newpage = TRUE)

auc_score <- data.frame(matrix(unlist(auc_score), nrow=length(auc_score), byrow=TRUE),
row.names = temp_df$hgnc_symbol)

colnames(auc_score) <- c("clusterl”,"cluster2","cluster3")
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